Lipschitz Bounds and Nonuniform Ellipticity

We consider nonuniformly elliptic variational problems and give optimal conditions guaranteeing the local Lipschitz regularity of solutions in terms of the regularity of the given data. The analysis catches the main model cases in the literature. Integrals with fast, exponential‐type growth conditio...

Full description

Saved in:
Bibliographic Details
Published inCommunications on pure and applied mathematics Vol. 73; no. 5; pp. 944 - 1034
Main Authors Beck, Lisa, Mingione, Giuseppe
Format Journal Article
LanguageEnglish
Published Melbourne John Wiley & Sons Australia, Ltd 01.05.2020
John Wiley and Sons, Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We consider nonuniformly elliptic variational problems and give optimal conditions guaranteeing the local Lipschitz regularity of solutions in terms of the regularity of the given data. The analysis catches the main model cases in the literature. Integrals with fast, exponential‐type growth conditions as well as integrals with unbalanced polynomial growth conditions are covered. Our criteria involve natural limiting function spaces and reproduce, in this very general context, the classical and optimal ones known in the linear case for the Poisson equation. Moreover, we provide new and natural growth a priori estimates whose validity was an open problem. Finally, we find new results also in the classical uniformly elliptic case. Beyond the specific results, the paper proposes a new approach to nonuniform ellipticity that, in a sense, allows us to reduce nonuniform elliptic problems to uniformly elliptic ones via potential theoretic arguments that are for the first time applied in this setting. © 2019 Wiley Periodicals, Inc.
AbstractList We consider nonuniformly elliptic variational problems and give optimal conditions guaranteeing the local Lipschitz regularity of solutions in terms of the regularity of the given data. The analysis catches the main model cases in the literature. Integrals with fast, exponential‐type growth conditions as well as integrals with unbalanced polynomial growth conditions are covered. Our criteria involve natural limiting function spaces and reproduce, in this very general context, the classical and optimal ones known in the linear case for the Poisson equation. Moreover, we provide new and natural growth a priori estimates whose validity was an open problem. Finally, we find new results also in the classical uniformly elliptic case. Beyond the specific results, the paper proposes a new approach to nonuniform ellipticity that, in a sense, allows us to reduce nonuniform elliptic problems to uniformly elliptic ones via potential theoretic arguments that are for the first time applied in this setting. © 2019 the Authors. Communications on Pure and Applied Mathematics is published by the Courant Institute of Mathematical Sciences and Wiley Periodicals, Inc.
We consider nonuniformly elliptic variational problems and give optimal conditions guaranteeing the local Lipschitz regularity of solutions in terms of the regularity of the given data. The analysis catches the main model cases in the literature. Integrals with fast, exponential‐type growth conditions as well as integrals with unbalanced polynomial growth conditions are covered. Our criteria involve natural limiting function spaces and reproduce, in this very general context, the classical and optimal ones known in the linear case for the Poisson equation. Moreover, we provide new and natural growth a priori estimates whose validity was an open problem. Finally, we find new results also in the classical uniformly elliptic case. Beyond the specific results, the paper proposes a new approach to nonuniform ellipticity that, in a sense, allows us to reduce nonuniform elliptic problems to uniformly elliptic ones via potential theoretic arguments that are for the first time applied in this setting. © 2019 the Authors. Communications on Pure and Applied Mathematics is published by the Courant Institute of Mathematical Sciences and Wiley Periodicals, Inc.
We consider nonuniformly elliptic variational problems and give optimal conditions guaranteeing the local Lipschitz regularity of solutions in terms of the regularity of the given data. The analysis catches the main model cases in the literature. Integrals with fast, exponential‐type growth conditions as well as integrals with unbalanced polynomial growth conditions are covered. Our criteria involve natural limiting function spaces and reproduce, in this very general context, the classical and optimal ones known in the linear case for the Poisson equation. Moreover, we provide new and natural growth a priori estimates whose validity was an open problem. Finally, we find new results also in the classical uniformly elliptic case. Beyond the specific results, the paper proposes a new approach to nonuniform ellipticity that, in a sense, allows us to reduce nonuniform elliptic problems to uniformly elliptic ones via potential theoretic arguments that are for the first time applied in this setting. © 2019 Wiley Periodicals, Inc.
Author Beck, Lisa
Mingione, Giuseppe
Author_xml – sequence: 1
  givenname: Lisa
  surname: Beck
  fullname: Beck, Lisa
  email: lisa.beck@math.uni-augsburg.de
  organization: Universität Augsburg
– sequence: 2
  givenname: Giuseppe
  surname: Mingione
  fullname: Mingione, Giuseppe
  email: giuseppe.mingione@unipr.it
  organization: Università di Parma
BookMark eNp1kE1LAzEQhoNUsFYP_oMFTyLbTjLdNHuspX5AUQ96Dtk0iynbZE12kfrrjbYn0dMw8DzvDO8pGTjvDCEXFMYUgE10q8aMCgFHZEihnOWAlA3IEIBCjnwKJ-Q0xk1a6VTgkFyvbBv1m-0-sxvfu3XMlFtnj971ztY-bLNl09i2s9p2uzNyXKsmmvPDHJHX2-XL4j5fPd09LOarXGMpIK9YgWCAa4EcRcmxMqJmVVGqmguOJWItqspUa0MLzdMnWokyOXUxZYgacEQu97lt8O-9iZ3c-D64dFIynHE-Y7OiTNRkT-ngYwymlulH1VnvuqBsIynI70ZkakT-NJKMq19GG-xWhd2f7CH9wzZm9z8oF8_zvfEFUyRvyw
CitedBy_id crossref_primary_10_1016_j_jde_2021_09_033
crossref_primary_10_3934_mine_2023055
crossref_primary_10_1016_j_jmaa_2021_125791
crossref_primary_10_14232_ejqtde_2024_1_7
crossref_primary_10_1007_s13324_021_00534_z
crossref_primary_10_1016_j_jmaa_2021_124974
crossref_primary_10_1016_j_matpur_2022_05_001
crossref_primary_10_1016_j_nonrwa_2022_103681
crossref_primary_10_1016_j_jmaa_2020_124698
crossref_primary_10_1016_j_na_2019_02_006
crossref_primary_10_1093_imrn_rnae072
crossref_primary_10_58997_ejde_2022_80
crossref_primary_10_1007_s11118_024_10146_4
crossref_primary_10_1007_s12220_025_01952_2
crossref_primary_10_1016_j_jde_2020_11_014
crossref_primary_10_1007_s00526_023_02566_8
crossref_primary_10_1007_s00208_021_02249_9
crossref_primary_10_1016_j_jde_2023_04_043
crossref_primary_10_1007_s00205_021_01698_5
crossref_primary_10_1007_s00526_020_01822_5
crossref_primary_10_1016_j_jmaa_2020_124072
crossref_primary_10_1016_j_jmaa_2022_126894
crossref_primary_10_3934_dcdss_2021111
crossref_primary_10_1007_s11118_023_10077_6
crossref_primary_10_1007_s00205_022_01807_y
crossref_primary_10_1016_j_jmaa_2020_123899
crossref_primary_10_1063_5_0020702
crossref_primary_10_1007_s00205_023_01907_3
crossref_primary_10_1016_j_jfa_2020_108670
crossref_primary_10_1016_j_na_2022_113066
crossref_primary_10_1016_j_nonrwa_2023_104025
crossref_primary_10_1093_imrn_rnac283
crossref_primary_10_1007_s00526_021_01940_8
crossref_primary_10_1002_mana_202100271
crossref_primary_10_14232_ejqtde_2022_1_17
crossref_primary_10_2140_apde_2020_13_2241
crossref_primary_10_1142_S166436072350008X
crossref_primary_10_1515_acv_2023_0005
crossref_primary_10_1007_s00205_024_02008_5
crossref_primary_10_1112_jlms_12947
crossref_primary_10_1515_acv_2021_0074
crossref_primary_10_1515_anona_2021_0206
crossref_primary_10_1007_s00526_022_02393_3
crossref_primary_10_1093_imrn_rnad040
crossref_primary_10_1051_cocv_2021017
crossref_primary_10_1515_anona_2024_0044
crossref_primary_10_1007_s00526_020_01769_7
crossref_primary_10_1016_j_jmaa_2024_129185
crossref_primary_10_1016_j_jmaa_2020_124451
crossref_primary_10_1016_j_jmaa_2020_124452
crossref_primary_10_1007_s00526_022_02247_y
crossref_primary_10_1016_j_jmaa_2020_124569
crossref_primary_10_1090_proc_15050
crossref_primary_10_1007_s00009_022_02013_6
crossref_primary_10_1515_forum_2022_0108
crossref_primary_10_1016_j_jmaa_2020_123918
crossref_primary_10_1007_s00033_020_01412_7
crossref_primary_10_1007_s00009_022_02135_x
crossref_primary_10_1016_j_jde_2024_04_016
crossref_primary_10_1016_j_jmaa_2021_125197
crossref_primary_10_1016_j_jmaa_2023_127776
crossref_primary_10_3934_mine_2022043
crossref_primary_10_1515_acv_2022_0016
crossref_primary_10_1016_j_jde_2024_08_023
crossref_primary_10_1007_s00526_023_02632_1
crossref_primary_10_1080_17476933_2022_2080199
crossref_primary_10_1007_s00229_022_01452_5
crossref_primary_10_1016_j_jfa_2023_109952
crossref_primary_10_1016_j_bulsci_2024_103534
crossref_primary_10_1093_qmath_haaa067
crossref_primary_10_1007_s00526_023_02587_3
crossref_primary_10_3934_dcdss_2024143
crossref_primary_10_1016_j_jde_2021_08_038
crossref_primary_10_1007_s00526_020_01889_0
crossref_primary_10_2140_apde_2023_16_1955
crossref_primary_10_1007_s00526_020_01907_1
crossref_primary_10_1016_j_jmaa_2022_126448
crossref_primary_10_1007_s10231_024_01489_1
crossref_primary_10_1007_s00526_022_02196_6
crossref_primary_10_1007_s00526_025_02969_9
crossref_primary_10_1016_j_matpur_2020_08_011
crossref_primary_10_1007_s11425_022_2137_x
crossref_primary_10_1007_s12210_020_00885_y
crossref_primary_10_1007_s11854_021_0170_7
crossref_primary_10_1112_jlms_12499
crossref_primary_10_1007_s00526_024_02829_y
crossref_primary_10_1515_acv_2022_0072
crossref_primary_10_3934_mine_2023079
crossref_primary_10_1007_s00526_024_02912_4
crossref_primary_10_3934_mine_2023077
crossref_primary_10_3934_mine_2023081
crossref_primary_10_1007_s00526_022_02402_5
crossref_primary_10_1007_s41808_022_00179_4
crossref_primary_10_1090_proc_16878
crossref_primary_10_1007_s00205_022_01768_2
crossref_primary_10_1007_s00222_023_01216_2
crossref_primary_10_1016_j_jde_2022_03_029
crossref_primary_10_58997_ejde_2021_100
crossref_primary_10_1142_S0219199720500297
crossref_primary_10_1007_s11856_024_2619_8
crossref_primary_10_1007_s00526_023_02564_w
crossref_primary_10_1007_s40574_023_00394_4
crossref_primary_10_1016_j_na_2021_112334
crossref_primary_10_1007_s13324_020_00409_9
crossref_primary_10_1007_s10231_021_01147_w
crossref_primary_10_1007_s10231_023_01375_2
crossref_primary_10_3934_mine_2023065
crossref_primary_10_1016_j_cnsns_2024_107860
crossref_primary_10_1016_j_jmaa_2020_124487
crossref_primary_10_1002_mma_7334
crossref_primary_10_1007_s00208_022_02539_w
crossref_primary_10_1016_j_jmaa_2022_126746
crossref_primary_10_1016_j_jmaa_2020_124408
crossref_primary_10_1016_j_nonrwa_2024_104224
Cites_doi 10.1007/s00205-012-0562-z
10.1007/s00205-015-0859-9
10.1007/BF02392316
10.1007/s00526-017-1137-5
10.1016/j.anihpc.2010.07.002
10.1201/b18601
10.1007/BF02392793
10.1007/s10778-006-0110-3
10.3934/cpaa.2015.14.285
10.1016/j.na.2017.12.007
10.1007/s00205-008-0162-0
10.1007/s00205-006-0036-2
10.1016/j.jde.2017.09.038
10.1016/j.jde.2004.11.011
10.4171/JEMS/440
10.1007/s002291020227
10.1002/cpa.3160230409
10.1016/0022-0396(91)90158-6
10.1007/s00526-017-1148-2
10.1007/BF00251503
10.1142/S0129167X91000223
10.1007/BF01158049
10.1007/s00526-018-1323-0
10.4171/rmi/684
10.1007/s00205-013-0705-x
10.1006/jdeq.1998.3614
10.1080/03605302.2013.866959
10.1073/pnas.222494699
10.1007/s13373-013-0048-9
10.1007/BF01759317
10.1512/iumj.1976.25.25066
10.1007/s00526-018-1332-z
10.4171/jems/258
10.1080/03605301003657843
10.1016/0022-0396(88)90070-8
10.1016/j.na.2015.02.011
10.1016/j.anihpc.2011.02.005
10.1515/form.2002.011
10.1007/s00526-014-0768-z
10.1007/s00208-016-1362-9
10.1007/BF02921575
10.1142/5002
10.1016/S0022-247X(03)00584-5
10.1007/BF02192251
10.1007/s00526-003-0209-x
10.4171/JEMS/780
10.1016/j.jfa.2015.06.022
10.1080/03605309108820761
10.1051/cocv/2015034
ContentType Journal Article
Copyright 2019 Wiley Periodicals, Inc.
2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 Wiley Periodicals, Inc.
– notice: 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
JQ2
DOI 10.1002/cpa.21880
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1097-0312
EndPage 1034
ExternalDocumentID 10_1002_cpa_21880
CPA21880
Genre article
GroupedDBID --Z
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
6OB
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEFU
ABEML
ABIJN
ABLJU
ABTAH
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OHT
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
S10
SAMSI
SUPJJ
TN5
TWZ
UB1
UHB
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
YZZ
ZY4
ZZTAW
~IA
~WT
AAYXX
ADXHL
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
ID FETCH-LOGICAL-c3980-b2530e06c83638963be8f2b59af6863933f8bbebde15c6001ca89253f54233c03
IEDL.DBID DR2
ISSN 0010-3640
IngestDate Fri Jul 25 10:42:17 EDT 2025
Thu Apr 24 23:12:31 EDT 2025
Tue Jul 01 02:50:31 EDT 2025
Wed Jan 22 16:36:20 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3980-b2530e06c83638963be8f2b59af6863933f8bbebde15c6001ca89253f54233c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpa.21880
PQID 2376672759
PQPubID 48818
PageCount 91
ParticipantIDs proquest_journals_2376672759
crossref_citationtrail_10_1002_cpa_21880
crossref_primary_10_1002_cpa_21880
wiley_primary_10_1002_cpa_21880_CPA21880
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2020
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationPlace Melbourne
PublicationPlace_xml – name: Melbourne
– name: New York
PublicationTitle Communications on pure and applied mathematics
PublicationYear 2020
Publisher John Wiley & Sons Australia, Ltd
John Wiley and Sons, Limited
Publisher_xml – name: John Wiley & Sons Australia, Ltd
– name: John Wiley and Sons, Limited
References 1968; 7
2002; 14
1991; 16
2007; 184
2013; 207
1994; 172
2002; 99
1988; 76
2014a; 212
2011; 13
1996a; 23
2003; 18
1993; 164
2010; 27
1989; 105
2018; 170
2014; 4
1991; 146
2014b; 16
1981; 113
1976b; 282
1992; 431
1970; 23
1986
1991; 90
2013; 674
2014; 13
1983
2015; 218
2012; 28
1977; 138
2011; 28
2016; 270
2001; 13
1992; 2
2003; 287
1991; 2
2018; 264
2015; 14
1986; 50
2006; 51
1976a; 25
2015; 53
2015; 120
2016; 366
2003
2011; 36
1992; 33
2018; 20
1957; 3
1987; 59
1972; 27
2000; 102
2009; 193
2017; 56
1999; 157
2015
2014; 39
1996b; 90
2006; 221
2018; 57
2016; 22
Beck L. (e_1_2_1_4_1) 2013; 674
e_1_2_1_20_1
Bildhauer M. (e_1_2_1_6_1) 2001; 13
Lieberman G. M. (e_1_2_1_41_1) 1992; 33
e_1_2_1_24_1
e_1_2_1_45_1
e_1_2_1_62_1
e_1_2_1_22_1
e_1_2_1_43_1
e_1_2_1_28_1
e_1_2_1_49_1
Zhikov V. V (e_1_2_1_65_1) 1986; 50
e_1_2_1_26_1
Simon J (e_1_2_1_58_1) 1976; 282
De Giorgi E. (e_1_2_1_23_1) 1957; 3
Stein E. M. (e_1_2_1_60_1) 1981; 113
e_1_2_1_54_1
e_1_2_1_8_1
Kuusi T. (e_1_2_1_34_1) 2012; 28
e_1_2_1_12_1
e_1_2_1_35_1
Rao M. M. (e_1_2_1_56_1) 1991
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_52_1
e_1_2_1_2_1
e_1_2_1_16_1
e_1_2_1_39_1
e_1_2_1_14_1
e_1_2_1_37_1
e_1_2_1_18_1
Marcellini P. (e_1_2_1_47_1) 1996; 23
ceva N. N. (e_1_2_1_63_1) 1968; 7
Hamburger C (e_1_2_1_31_1) 1992; 431
e_1_2_1_42_1
e_1_2_1_40_1
e_1_2_1_46_1
e_1_2_1_61_1
e_1_2_1_21_1
e_1_2_1_44_1
e_1_2_1_27_1
Mingione G. (e_1_2_1_53_1) 2011; 13
e_1_2_1_25_1
e_1_2_1_48_1
Havin V. P. A (e_1_2_1_50_1) 1972; 27
e_1_2_1_29_1
e_1_2_1_7_1
Urdaletova A. B. (e_1_2_1_64_1) 1983
e_1_2_1_30_1
e_1_2_1_55_1
e_1_2_1_5_1
e_1_2_1_57_1
e_1_2_1_3_1
e_1_2_1_13_1
e_1_2_1_51_1
e_1_2_1_32_1
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_15_1
e_1_2_1_36_1
Carozza M. (e_1_2_1_11_1) 2014; 13
e_1_2_1_59_1
e_1_2_1_9_1
e_1_2_1_19_1
References_xml – volume: 212
  start-page: 129
  issue: 1
  year: 2014a
  end-page: 177
  article-title: Global boundedness of the gradient for a class of nonlinear elliptic systems
  publication-title: Arch. Ration. Mech. Anal.
– volume: 14
  start-page: 245
  issue: 2
  year: 2002
  end-page: 272
  article-title: Regularity results for minimizers of irregular integrals with growth
  publication-title: Forum Math.
– volume: 366
  start-page: 1403
  issue: 3‐4
  year: 2016
  end-page: 1450
  article-title: Global Lipschitz continuity for minima of degenerate problems
  publication-title: Math. Ann.
– volume: 287
  start-page: 593
  issue: 2
  year: 2003
  end-page: 608
  article-title: Everywhere regularity for a class of vectorial functionals under subquadratic general growth conditions
  publication-title: J. Math. Anal. Appl.
– volume: 27
  start-page: 67
  year: 1972
  end-page: 138
  article-title: nonlinear potential theory.
  publication-title: Math. Surveys
– volume: 57
  year: 2018
  article-title: On the higher differentiability of solutions to a class of variational problems of fast growth
  publication-title: Calc. Var. Partial Differential Equations
– volume: 221
  start-page: 412
  issue: 2
  year: 2006
  end-page: 443
  article-title: Nonlinear elliptic systems with general growth
  publication-title: J. Differential Equations
– volume: 674
  start-page: 113
  year: 2013
  end-page: 194
  article-title: On the Dirichlet problem for variational integrals in BV
  publication-title: J. Reine Angew. Math.
– volume: 16
  start-page: 311
  year: 1991
  end-page: 361
  article-title: The natural generalization of the natural conditions of Ladyzhenskaya and Ural tseva for elliptic equations
  publication-title: Comm. Partial Differential Equations
– volume: 105
  start-page: 267
  issue: 3
  year: 1989
  end-page: 284
  article-title: Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions
  publication-title: Arch. Rational Mech. Anal.
– volume: 193
  start-page: 311
  issue: 2
  year: 2009
  end-page: 337
  article-title: Regularity of relaxed minimizers of quasiconvex variational integrals with ‐growth
  publication-title: Arch. Ration. Mech. Anal.
– volume: 76
  start-page: 203
  issue: 2
  year: 1988
  end-page: 212
  article-title: Regularity for minima of functionals with ‐growth
  publication-title: J. Differential Equations
– volume: 157
  start-page: 414
  issue: 2
  year: 1999
  end-page: 438
  article-title: Higher integrability for minimizers of integral functionals with growth
  publication-title: J. Differential Equations
– volume: 13
  start-page: 459
  issue: 2
  year: 2011
  end-page: 486
  article-title: Gradient potential estimates
  publication-title: J. Eur. Math. Soc. (JEMS)
– volume: 13
  start-page: 537
  issue: 4
  year: 2001
  end-page: 560
  article-title: Partial regularity for variational integrals with ‐growth.
  publication-title: Partial Differential Equations
– volume: 16
  start-page: 571
  issue: 3
  year: 2014b
  end-page: 595
  article-title: Gradient regularity via rearrangements for ‐Laplacian type elliptic boundary value problems
  publication-title: J. Eur. Math. Soc. (JEMS)
– volume: 172
  start-page: 137
  issue: 1
  year: 1994
  end-page: 161
  article-title: The Wiener test and potential estimates for quasilinear elliptic equations
  publication-title: Acta Math.
– volume: 18
  start-page: 373
  issue: 4
  year: 2003
  end-page: 400
  article-title: Bounds for the singular set of solutions to non linear elliptic systems
  publication-title: Calc. Var. Partial Differential Equations
– volume: 51
  start-page: 355
  issue: 4
  year: 2006
  end-page: 426
  article-title: Regularity of minima: an invitation to the dark side of the calculus of variations
  publication-title: Appl. Math.
– year: 1986
– volume: 36
  start-page: 100
  issue: 1
  year: 2011
  end-page: 133
  article-title: Global Lipschitz regularity for a class of quasilinear elliptic equations
  publication-title: Comm. Partial Differential Equations
– volume: 23
  start-page: 677
  year: 1970
  end-page: 703
  article-title: Local estimates for gradients of solutions of non‐uniformly elliptic and parabolic equations
  publication-title: Comm. Pure Appl. Math
– volume: 14
  start-page: 285
  issue: 1
  year: 2015
  end-page: 311
  article-title: Global gradient estimates in elliptic problems under minimal data and domain regularity
  publication-title: Commun. Pure Appl. Anal.
– volume: 25
  start-page: 821
  issue: 9
  year: 1976a
  end-page: 855
  article-title: Interior gradient bounds for non‐uniformly elliptic equations
  publication-title: Indiana Univ. Math. J.
– volume: 22
  start-page: 862
  issue: 3
  year: 2016
  end-page: 871
  article-title: Strict convexity and the regularity of solutions to variational problems
  publication-title: ESAIM Control Optim. Calc. Var.
– volume: 170
  start-page: 1
  year: 2018
  end-page: 20
  article-title: Higher integrability for constrained minimizers of integral functionals with ‐growth in low dimension
  publication-title: Nonlinear Anal.
– year: 2015
– volume: 3
  start-page: 25
  year: 1957
  end-page: 43
  article-title: Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari
  publication-title: Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3)
– volume: 2
  start-page: 395
  issue: 4
  year: 1991
  end-page: 408
  article-title: Regularity of exponentially harmonic functions
  publication-title: Internat. J. Math.
– volume: 56
  issue: 2
  year: 2017
  article-title: Regularity of ‐minimizers for a class of functionals with non‐standard growth
  publication-title: Calc. Var. Partial Differential Equations
– start-page: 50
  year: 1983
  end-page: 56
  article-title: The boundedness of the gradients of generalized solutions of degenerate quasilinear nonuniformly elliptic equations
  publication-title: Vestnik Leningrad. Univ. Mat. Mekh. Astronom
– volume: 2
  start-page: 499
  year: 1992
  end-page: 515
  article-title: Maximizing the norm of the gradient of solutions to the Poisson equation
  publication-title: J. Geom. Anal.
– volume: 90
  start-page: 161
  issue: 1
  year: 1996b
  end-page: 181
  article-title: Regularity for some scalar variational problems under general growth conditions
  publication-title: J. Optim. Theory Appl.
– volume: 39
  start-page: 574
  issue: 3
  year: 2014
  end-page: 590
  article-title: Borderline estimates for fully nonlinear elliptic equations
  publication-title: Comm. Partial Differential Equations
– volume: 282
  start-page: A1351
  year: 1976b
  end-page: A1354
  article-title: Régularité de solutions de problèmes nonlinéaires
  publication-title: C. R. Acad. Sci. Paris Sér. A‐B
– year: 2003
– volume: 28
  start-page: 535
  issue: 2
  year: 2012
  end-page: 576
  article-title: Potential estimates and gradient boundedness for nonlinear parabolic systems
  publication-title: Rev. Mat. Iberoam.
– volume: 23
  start-page: 1
  issue: 1
  year: 1996a
  end-page: 25
  article-title: Everywhere regularity for a class of elliptic systems without growth conditions
  publication-title: Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
– volume: 184
  start-page: 341
  issue: 2
  year: 2007
  end-page: 369
  article-title: The singular set of Lipschitzian minima of multiple integrals
  publication-title: Arch. Ration. Mech. Anal.
– volume: 7
  start-page: 184
  year: 1968
  end-page: 222
  article-title: Degenerate quasilinear elliptic systems
  publication-title: Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)
– volume: 207
  start-page: 215
  issue: 1
  year: 2013
  end-page: 246
  article-title: Linear potentials in nonlinear potential theory
  publication-title: Arch. Ration. Mech. Anal.
– volume: 50
  start-page: 675
  year: 1986
  end-page: 710
  article-title: Averaging of functionals of the calculus of variations and elasticity theory
  publication-title: Izv. Akad. Nauk SSSR Ser. Mat
– volume: 13
  start-page: 1065
  issue: 4
  year: 2014
  end-page: 1089
  article-title: Regularity of minimizers of autonomous convex variational integrals
  publication-title: Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
– volume: 113
  start-page: 383
  year: 1981
  end-page: 385
  publication-title: Ann. of Math. (2)
– volume: 59
  start-page: 245
  issue: 2
  year: 1987
  end-page: 248
  article-title: Growth conditions and regularity, a counterexample
  publication-title: Manuscripta Math.
– volume: 164
  start-page: 103
  year: 1993
  end-page: 120
  article-title: Gradient estimates for a class of elliptic systems
  publication-title: Ann. Mat. Pura Appl. (4)
– volume: 27
  start-page: 1361
  issue: 6
  year: 2010
  end-page: 1396
  article-title: Local Lipschitz regularity for degenerate elliptic systems
  publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire
– volume: 264
  start-page: 1263
  issue: 2
  year: 2018
  end-page: 1316
  article-title: Riesz potential estimates for a class of double phase problems
  publication-title: J. Differential Equations
– volume: 102
  start-page: 227
  year: 2000
  end-page: 250
  publication-title: Manuscripta Math
– volume: 56
  year: 2017
  article-title: Global gradient estimates for non‐uniformly elliptic equations
  publication-title: Calc. Var. Partial Differential Equations
– volume: 431
  start-page: 7
  year: 1992
  end-page: 64
  article-title: Regularity of differential forms minimizing degenerate elliptic functionals
  publication-title: J. Reine Angew. Math.
– volume: 20
  start-page: 929
  issue: 4
  year: 2018
  end-page: 1004
  article-title: Vectorial nonlinear potential theory
  publication-title: J. Eur. Math. Soc. (JEMS)
– volume: 90
  year: 1991
  article-title: Regularity and existence of solutions of elliptic equations with ‐growth conditions
  publication-title: J. Differential Equations
– volume: 99
  start-page: 15269
  issue: 24
  year: 2002
  end-page: 15276
  article-title: Non‐Lipschitz minimizers of smooth uniformly convex variational integrals
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 120
  start-page: 86
  year: 2015
  end-page: 106
  article-title: Interior gradient regularity for BV minimizers of singular variational problems
  publication-title: Nonlinear Anal.
– volume: 33
  start-page: 45
  issue: 1
  year: 1992
  end-page: 49
  article-title: On the regularity of the minimizer of a functional with exponential growth
  publication-title: Comment. Math. Univ. Carolin.
– volume: 53
  start-page: 803
  issue: 3‐4
  year: 2015
  end-page: 846
  article-title: Riesz potential estimates for a general class of quasilinear equations
  publication-title: Calc. Var. Partial Differential Equations
– volume: 57
  year: 2018
  article-title: Regularity for general functionals with double phase
  publication-title: Calc. Var. Partial Differential Equations
– volume: 218
  start-page: 219
  issue: 1
  year: 2015
  end-page: 273
  article-title: Bounded minimisers of double phase variational integrals
  publication-title: Arch. Ration. Mech. Anal.
– volume: 270
  start-page: 1416
  issue: 4
  year: 2016
  end-page: 1478
  article-title: Calderón‐Zygmund estimates and non‐uniformly elliptic operators
  publication-title: J. Funct. Anal.
– volume: 146
  year: 1991
– volume: 4
  start-page: 1
  issue: 1
  year: 2014
  end-page: 82
  article-title: Guide to nonlinear potential estimates
  publication-title: Bull. Math. Sci.
– volume: 28
  start-page: 395
  issue: 3
  year: 2011
  end-page: 411
  article-title: Higher differentiability of minimizers of convex variational integrals
  publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire
– volume: 138
  start-page: 219
  issue: 3‐4
  year: 1977
  end-page: 240
  article-title: Regularity for a class of non‐linear elliptic systems
  publication-title: Acta Math.
– ident: e_1_2_1_36_1
  doi: 10.1007/s00205-012-0562-z
– ident: e_1_2_1_19_1
  doi: 10.1007/s00205-015-0859-9
– volume: 3
  start-page: 25
  year: 1957
  ident: e_1_2_1_23_1
  article-title: Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari
  publication-title: Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3)
– ident: e_1_2_1_62_1
  doi: 10.1007/BF02392316
– ident: e_1_2_1_54_1
  doi: 10.1007/s00526-017-1137-5
– ident: e_1_2_1_43_1
– ident: e_1_2_1_25_1
  doi: 10.1016/j.anihpc.2010.07.002
– ident: e_1_2_1_55_1
  doi: 10.1201/b18601
– ident: e_1_2_1_32_1
  doi: 10.1007/BF02392793
– ident: e_1_2_1_52_1
  doi: 10.1007/s10778-006-0110-3
– volume: 13
  start-page: 537
  issue: 4
  year: 2001
  ident: e_1_2_1_6_1
  article-title: Partial regularity for variational integrals with (s, μ, q)‐growth. Calc. Var
  publication-title: Partial Differential Equations
– ident: e_1_2_1_18_1
  doi: 10.3934/cpaa.2015.14.285
– ident: e_1_2_1_22_1
  doi: 10.1016/j.na.2017.12.007
– ident: e_1_2_1_59_1
  doi: 10.1007/s00205-008-0162-0
– ident: e_1_2_1_33_1
  doi: 10.1007/s00205-006-0036-2
– ident: e_1_2_1_9_1
  doi: 10.1016/j.jde.2017.09.038
– volume-title: Theory of Orlicz spaces. Monographs and Textbooks in Pure and Applied Mathematics
  year: 1991
  ident: e_1_2_1_56_1
– ident: e_1_2_1_49_1
  doi: 10.1016/j.jde.2004.11.011
– ident: e_1_2_1_17_1
  doi: 10.4171/JEMS/440
– volume: 674
  start-page: 113
  year: 2013
  ident: e_1_2_1_4_1
  article-title: On the Dirichlet problem for variational integrals in BV
  publication-title: J. Reine Angew. Math.
– ident: e_1_2_1_28_1
  doi: 10.1007/s002291020227
– ident: e_1_2_1_38_1
  doi: 10.1002/cpa.3160230409
– ident: e_1_2_1_46_1
  doi: 10.1016/0022-0396(91)90158-6
– ident: e_1_2_1_8_1
  doi: 10.1007/s00526-017-1148-2
– ident: e_1_2_1_45_1
  doi: 10.1007/BF00251503
– volume: 27
  start-page: 67
  year: 1972
  ident: e_1_2_1_50_1
  article-title: nonlinear potential theory. Russ
  publication-title: Math. Surveys
– ident: e_1_2_1_24_1
  doi: 10.1142/S0129167X91000223
– ident: e_1_2_1_29_1
  doi: 10.1007/BF01158049
– volume: 13
  start-page: 1065
  issue: 4
  year: 2014
  ident: e_1_2_1_11_1
  article-title: Regularity of minimizers of autonomous convex variational integrals
  publication-title: Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
– ident: e_1_2_1_13_1
  doi: 10.1007/s00526-018-1323-0
– volume: 28
  start-page: 535
  issue: 2
  year: 2012
  ident: e_1_2_1_34_1
  article-title: Potential estimates and gradient boundedness for nonlinear parabolic systems
  publication-title: Rev. Mat. Iberoam.
  doi: 10.4171/rmi/684
– ident: e_1_2_1_16_1
  doi: 10.1007/s00205-013-0705-x
– ident: e_1_2_1_26_1
  doi: 10.1006/jdeq.1998.3614
– volume: 7
  start-page: 184
  year: 1968
  ident: e_1_2_1_63_1
  article-title: Degenerate quasilinear elliptic systems
  publication-title: Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)
– ident: e_1_2_1_21_1
  doi: 10.1080/03605302.2013.866959
– ident: e_1_2_1_61_1
  doi: 10.1073/pnas.222494699
– ident: e_1_2_1_35_1
  doi: 10.1007/s13373-013-0048-9
– ident: e_1_2_1_42_1
  doi: 10.1007/BF01759317
– ident: e_1_2_1_57_1
  doi: 10.1512/iumj.1976.25.25066
– volume: 113
  start-page: 383
  year: 1981
  ident: e_1_2_1_60_1
  publication-title: Ann. of Math. (2)
– volume: 431
  start-page: 7
  year: 1992
  ident: e_1_2_1_31_1
  article-title: Regularity of differential forms minimizing degenerate elliptic functionals
  publication-title: J. Reine Angew. Math.
– volume: 50
  start-page: 675
  year: 1986
  ident: e_1_2_1_65_1
  article-title: Averaging of functionals of the calculus of variations and elasticity theory
  publication-title: Izv. Akad. Nauk SSSR Ser. Mat
– volume: 23
  start-page: 1
  issue: 1
  year: 1996
  ident: e_1_2_1_47_1
  article-title: Everywhere regularity for a class of elliptic systems without growth conditions
  publication-title: Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
– volume: 282
  start-page: A1351
  year: 1976
  ident: e_1_2_1_58_1
  article-title: Régularité de solutions de problèmes nonlinéaires
  publication-title: C. R. Acad. Sci. Paris Sér. A‐B
– ident: e_1_2_1_3_1
  doi: 10.1007/s00526-018-1332-z
– volume: 13
  start-page: 459
  issue: 2
  year: 2011
  ident: e_1_2_1_53_1
  article-title: Gradient potential estimates
  publication-title: J. Eur. Math. Soc. (JEMS)
  doi: 10.4171/jems/258
– ident: e_1_2_1_15_1
  doi: 10.1080/03605301003657843
– ident: e_1_2_1_44_1
  doi: 10.1016/0022-0396(88)90070-8
– ident: e_1_2_1_5_1
  doi: 10.1016/j.na.2015.02.011
– ident: e_1_2_1_10_1
  doi: 10.1016/j.anihpc.2011.02.005
– ident: e_1_2_1_27_1
  doi: 10.1515/form.2002.011
– volume: 33
  start-page: 45
  issue: 1
  year: 1992
  ident: e_1_2_1_41_1
  article-title: On the regularity of the minimizer of a functional with exponential growth
  publication-title: Comment. Math. Univ. Carolin.
– start-page: 50
  year: 1983
  ident: e_1_2_1_64_1
  article-title: The boundedness of the gradients of generalized solutions of degenerate quasilinear nonuniformly elliptic equations
  publication-title: Vestnik Leningrad. Univ. Mat. Mekh. Astronom
– ident: e_1_2_1_2_1
  doi: 10.1007/s00526-014-0768-z
– ident: e_1_2_1_7_1
  doi: 10.1007/s00208-016-1362-9
– ident: e_1_2_1_14_1
  doi: 10.1007/BF02921575
– ident: e_1_2_1_30_1
  doi: 10.1142/5002
– ident: e_1_2_1_39_1
  doi: 10.1016/S0022-247X(03)00584-5
– ident: e_1_2_1_48_1
  doi: 10.1007/BF02192251
– ident: e_1_2_1_51_1
  doi: 10.1007/s00526-003-0209-x
– ident: e_1_2_1_37_1
  doi: 10.4171/JEMS/780
– ident: e_1_2_1_20_1
  doi: 10.1016/j.jfa.2015.06.022
– ident: e_1_2_1_40_1
  doi: 10.1080/03605309108820761
– ident: e_1_2_1_12_1
  doi: 10.1051/cocv/2015034
SSID ssj0011483
Score 2.5925956
Snippet We consider nonuniformly elliptic variational problems and give optimal conditions guaranteeing the local Lipschitz regularity of solutions in terms of the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 944
SubjectTerms Ellipticity
Function space
Integrals
Poisson equation
Polynomials
Regularity
Title Lipschitz Bounds and Nonuniform Ellipticity
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpa.21880
https://www.proquest.com/docview/2376672759
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KT3rwLVarBPHgJe26r27wVIulCC0iFnoQQnaze1HTYNKD_fXuJE2qoiDecphNspud2W8yM98gdBEzKiMjjd8zwjkoRlBfYWN8RgyLWS-IegSqkccTMZqyuxmfNdB1VQtT8kPUP9xAMwp7DQoeqay7Jg3VadQhwCbm7C_kagEgeqipowDml9FlsDOC4YpVCJNuPfLrWbQGmJ9hanHODLfRU_WGZXrJc2eRq45efiNv_OcUdtDWCn96_XLD7KKGSfbQ5rgmb832kfPT0wzCC0vvBpouZV6UxN5kniwSKON69SDPI4Vs7Pz9AE2Ht4-Dkb_qqeBrGkjsK8IpNlhoSQGrCKqMtETxILJCOrRCqZVKGRWbK64BDOlIBm6M5Q53UY3pIWom88QcIQ9LxSyPheUOQgrNJCeBc-CYtVzGzvVtoctqdUO9IhyHvhcvYUmVTEI3_7CYfwud16JpybLxk1C7-kThStGyEJJ6IJjMA_e4Yq1_v0E4uO8XF8d_Fz1BGwQ87CLFsY2a-dvCnDoYkquzYr99AJkh1bE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYCBN-JRIEIMLGmDX3UkllKBCrQVQkXqgqLYcRYgVKQd6K_HlzQpIJAQW4ZzEj_O_s539x3AScSoDI00bsMIa6AYQV3lGeMyYljEGn7YIJiN3O2J9gO7GfDBHJwXuTA5P0R54Yaake3XqOB4IV2fsYbqYVgjSCc2DwtY0TszqO5L8igE-rl_GXcawbyCV8gj9bLp19NoBjE_A9XspLlahcfiH_MAk6faeKRqevKNvvG_nViDlSkEdZr5mlmHOZNswHK35G9NN8Ga6sMUPQwT5wLrLqVOmERO7zUZJ5jJ9eJgqMcQA7JH71vwcHXZb7XdaVkFV1Nfeq4inHrGE1pShCuCKiNjorgfxkJawEJpLJUyKjJnXCMe0qH0bZuYW-hFtUe3oZK8JmYHHE8qFvNIxNyiSKGZ5MS3NhyLYy4ja_3uwmkxvIGeco5j6YvnIGdLJoHtf5D1fxeOS9FhTrTxk1C1mKNgqmtpgHE96E_mvv1cNti_vyBo3TWzh72_ix7BYrvf7QSd697tPiwRNLiziMcqVEZvY3NgUclIHWaL7wMICNnM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gOjBt_hYtYgHL11jXpviaX0sPhcRBQ9CadLkotbi7h7015tpt_WBgnjrYdI26UzyTWfmG4DtlDOVWGXDlpXeQbGShZpYG3JqecpbUdKiWI182ZUnt_zsTtyNwH5VC1PyQ9Q_3NAyiv0aDTxP3e4HaajJkyZFNrFRGOeSKFTpo-uaOwpxfhlexo1GclLRChG6Ww_9ehh9IMzPOLU4aDozcF-9Yplf8tAc9HXTvH1jb_znHGZheghAg3apMXMwYrN5mLqs2Vt7C-Ad9byH8YW34AC7LvWCJEuD7nM2yLCO6ynARI8c07H7r4tw2zm-OTwJh00VQsMiRUJNBSOWSKMYghXJtFWOahElTioPVxhzSmurU7snDKIhk6jIj3HCAy9mCFuCsew5s8sQEKW5E6l0wmNIabgSNPIeHHdOqNT7viuwU61ubIaM49j44jEuuZJp7OcfF_Nfga1aNC9pNn4SalSfKB5aWi_GrB6MJovIP65Y699vEB9etYuL1b-LbsLE1VEnvjjtnq_BJEVvu0h3bMBY_2Vg1z0k6euNQvXeAa4n2IQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lipschitz+Bounds+and+Nonuniform+Ellipticity&rft.jtitle=Communications+on+pure+and+applied+mathematics&rft.au=Beck%2C+Lisa&rft.au=Mingione%2C+Giuseppe&rft.date=2020-05-01&rft.pub=John+Wiley+and+Sons%2C+Limited&rft.issn=0010-3640&rft.eissn=1097-0312&rft.volume=73&rft.issue=5&rft.spage=944&rft.epage=1034&rft_id=info:doi/10.1002%2Fcpa.21880&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-3640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-3640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-3640&client=summon