Lipschitz Bounds and Nonuniform Ellipticity
We consider nonuniformly elliptic variational problems and give optimal conditions guaranteeing the local Lipschitz regularity of solutions in terms of the regularity of the given data. The analysis catches the main model cases in the literature. Integrals with fast, exponential‐type growth conditio...
Saved in:
Published in | Communications on pure and applied mathematics Vol. 73; no. 5; pp. 944 - 1034 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Melbourne
John Wiley & Sons Australia, Ltd
01.05.2020
John Wiley and Sons, Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We consider nonuniformly elliptic variational problems and give optimal conditions guaranteeing the local Lipschitz regularity of solutions in terms of the regularity of the given data. The analysis catches the main model cases in the literature. Integrals with fast, exponential‐type growth conditions as well as integrals with unbalanced polynomial growth conditions are covered. Our criteria involve natural limiting function spaces and reproduce, in this very general context, the classical and optimal ones known in the linear case for the Poisson equation. Moreover, we provide new and natural growth a priori estimates whose validity was an open problem. Finally, we find new results also in the classical uniformly elliptic case. Beyond the specific results, the paper proposes a new approach to nonuniform ellipticity that, in a sense, allows us to reduce nonuniform elliptic problems to uniformly elliptic ones via potential theoretic arguments that are for the first time applied in this setting. © 2019 Wiley Periodicals, Inc. |
---|---|
AbstractList | We consider nonuniformly elliptic variational problems and give optimal conditions guaranteeing the local Lipschitz regularity of solutions in terms of the regularity of the given data. The analysis catches the main model cases in the literature. Integrals with fast, exponential‐type growth conditions as well as integrals with unbalanced polynomial growth conditions are covered. Our criteria involve natural limiting function spaces and reproduce, in this very general context, the classical and optimal ones known in the linear case for the Poisson equation. Moreover, we provide new and natural growth a priori estimates whose validity was an open problem. Finally, we find new results also in the classical uniformly elliptic case. Beyond the specific results, the paper proposes a new approach to nonuniform ellipticity that, in a sense, allows us to reduce nonuniform elliptic problems to uniformly elliptic ones via potential theoretic arguments that are for the first time applied in this setting. © 2019 the Authors. Communications on Pure and Applied Mathematics is published by the Courant Institute of Mathematical Sciences and Wiley Periodicals, Inc. We consider nonuniformly elliptic variational problems and give optimal conditions guaranteeing the local Lipschitz regularity of solutions in terms of the regularity of the given data. The analysis catches the main model cases in the literature. Integrals with fast, exponential‐type growth conditions as well as integrals with unbalanced polynomial growth conditions are covered. Our criteria involve natural limiting function spaces and reproduce, in this very general context, the classical and optimal ones known in the linear case for the Poisson equation. Moreover, we provide new and natural growth a priori estimates whose validity was an open problem. Finally, we find new results also in the classical uniformly elliptic case. Beyond the specific results, the paper proposes a new approach to nonuniform ellipticity that, in a sense, allows us to reduce nonuniform elliptic problems to uniformly elliptic ones via potential theoretic arguments that are for the first time applied in this setting. © 2019 the Authors. Communications on Pure and Applied Mathematics is published by the Courant Institute of Mathematical Sciences and Wiley Periodicals, Inc. We consider nonuniformly elliptic variational problems and give optimal conditions guaranteeing the local Lipschitz regularity of solutions in terms of the regularity of the given data. The analysis catches the main model cases in the literature. Integrals with fast, exponential‐type growth conditions as well as integrals with unbalanced polynomial growth conditions are covered. Our criteria involve natural limiting function spaces and reproduce, in this very general context, the classical and optimal ones known in the linear case for the Poisson equation. Moreover, we provide new and natural growth a priori estimates whose validity was an open problem. Finally, we find new results also in the classical uniformly elliptic case. Beyond the specific results, the paper proposes a new approach to nonuniform ellipticity that, in a sense, allows us to reduce nonuniform elliptic problems to uniformly elliptic ones via potential theoretic arguments that are for the first time applied in this setting. © 2019 Wiley Periodicals, Inc. |
Author | Beck, Lisa Mingione, Giuseppe |
Author_xml | – sequence: 1 givenname: Lisa surname: Beck fullname: Beck, Lisa email: lisa.beck@math.uni-augsburg.de organization: Universität Augsburg – sequence: 2 givenname: Giuseppe surname: Mingione fullname: Mingione, Giuseppe email: giuseppe.mingione@unipr.it organization: Università di Parma |
BookMark | eNp1kE1LAzEQhoNUsFYP_oMFTyLbTjLdNHuspX5AUQ96Dtk0iynbZE12kfrrjbYn0dMw8DzvDO8pGTjvDCEXFMYUgE10q8aMCgFHZEihnOWAlA3IEIBCjnwKJ-Q0xk1a6VTgkFyvbBv1m-0-sxvfu3XMlFtnj971ztY-bLNl09i2s9p2uzNyXKsmmvPDHJHX2-XL4j5fPd09LOarXGMpIK9YgWCAa4EcRcmxMqJmVVGqmguOJWItqspUa0MLzdMnWokyOXUxZYgacEQu97lt8O-9iZ3c-D64dFIynHE-Y7OiTNRkT-ngYwymlulH1VnvuqBsIynI70ZkakT-NJKMq19GG-xWhd2f7CH9wzZm9z8oF8_zvfEFUyRvyw |
CitedBy_id | crossref_primary_10_1016_j_jde_2021_09_033 crossref_primary_10_3934_mine_2023055 crossref_primary_10_1016_j_jmaa_2021_125791 crossref_primary_10_14232_ejqtde_2024_1_7 crossref_primary_10_1007_s13324_021_00534_z crossref_primary_10_1016_j_jmaa_2021_124974 crossref_primary_10_1016_j_matpur_2022_05_001 crossref_primary_10_1016_j_nonrwa_2022_103681 crossref_primary_10_1016_j_jmaa_2020_124698 crossref_primary_10_1016_j_na_2019_02_006 crossref_primary_10_1093_imrn_rnae072 crossref_primary_10_58997_ejde_2022_80 crossref_primary_10_1007_s11118_024_10146_4 crossref_primary_10_1007_s12220_025_01952_2 crossref_primary_10_1016_j_jde_2020_11_014 crossref_primary_10_1007_s00526_023_02566_8 crossref_primary_10_1007_s00208_021_02249_9 crossref_primary_10_1016_j_jde_2023_04_043 crossref_primary_10_1007_s00205_021_01698_5 crossref_primary_10_1007_s00526_020_01822_5 crossref_primary_10_1016_j_jmaa_2020_124072 crossref_primary_10_1016_j_jmaa_2022_126894 crossref_primary_10_3934_dcdss_2021111 crossref_primary_10_1007_s11118_023_10077_6 crossref_primary_10_1007_s00205_022_01807_y crossref_primary_10_1016_j_jmaa_2020_123899 crossref_primary_10_1063_5_0020702 crossref_primary_10_1007_s00205_023_01907_3 crossref_primary_10_1016_j_jfa_2020_108670 crossref_primary_10_1016_j_na_2022_113066 crossref_primary_10_1016_j_nonrwa_2023_104025 crossref_primary_10_1093_imrn_rnac283 crossref_primary_10_1007_s00526_021_01940_8 crossref_primary_10_1002_mana_202100271 crossref_primary_10_14232_ejqtde_2022_1_17 crossref_primary_10_2140_apde_2020_13_2241 crossref_primary_10_1142_S166436072350008X crossref_primary_10_1515_acv_2023_0005 crossref_primary_10_1007_s00205_024_02008_5 crossref_primary_10_1112_jlms_12947 crossref_primary_10_1515_acv_2021_0074 crossref_primary_10_1515_anona_2021_0206 crossref_primary_10_1007_s00526_022_02393_3 crossref_primary_10_1093_imrn_rnad040 crossref_primary_10_1051_cocv_2021017 crossref_primary_10_1515_anona_2024_0044 crossref_primary_10_1007_s00526_020_01769_7 crossref_primary_10_1016_j_jmaa_2024_129185 crossref_primary_10_1016_j_jmaa_2020_124451 crossref_primary_10_1016_j_jmaa_2020_124452 crossref_primary_10_1007_s00526_022_02247_y crossref_primary_10_1016_j_jmaa_2020_124569 crossref_primary_10_1090_proc_15050 crossref_primary_10_1007_s00009_022_02013_6 crossref_primary_10_1515_forum_2022_0108 crossref_primary_10_1016_j_jmaa_2020_123918 crossref_primary_10_1007_s00033_020_01412_7 crossref_primary_10_1007_s00009_022_02135_x crossref_primary_10_1016_j_jde_2024_04_016 crossref_primary_10_1016_j_jmaa_2021_125197 crossref_primary_10_1016_j_jmaa_2023_127776 crossref_primary_10_3934_mine_2022043 crossref_primary_10_1515_acv_2022_0016 crossref_primary_10_1016_j_jde_2024_08_023 crossref_primary_10_1007_s00526_023_02632_1 crossref_primary_10_1080_17476933_2022_2080199 crossref_primary_10_1007_s00229_022_01452_5 crossref_primary_10_1016_j_jfa_2023_109952 crossref_primary_10_1016_j_bulsci_2024_103534 crossref_primary_10_1093_qmath_haaa067 crossref_primary_10_1007_s00526_023_02587_3 crossref_primary_10_3934_dcdss_2024143 crossref_primary_10_1016_j_jde_2021_08_038 crossref_primary_10_1007_s00526_020_01889_0 crossref_primary_10_2140_apde_2023_16_1955 crossref_primary_10_1007_s00526_020_01907_1 crossref_primary_10_1016_j_jmaa_2022_126448 crossref_primary_10_1007_s10231_024_01489_1 crossref_primary_10_1007_s00526_022_02196_6 crossref_primary_10_1007_s00526_025_02969_9 crossref_primary_10_1016_j_matpur_2020_08_011 crossref_primary_10_1007_s11425_022_2137_x crossref_primary_10_1007_s12210_020_00885_y crossref_primary_10_1007_s11854_021_0170_7 crossref_primary_10_1112_jlms_12499 crossref_primary_10_1007_s00526_024_02829_y crossref_primary_10_1515_acv_2022_0072 crossref_primary_10_3934_mine_2023079 crossref_primary_10_1007_s00526_024_02912_4 crossref_primary_10_3934_mine_2023077 crossref_primary_10_3934_mine_2023081 crossref_primary_10_1007_s00526_022_02402_5 crossref_primary_10_1007_s41808_022_00179_4 crossref_primary_10_1090_proc_16878 crossref_primary_10_1007_s00205_022_01768_2 crossref_primary_10_1007_s00222_023_01216_2 crossref_primary_10_1016_j_jde_2022_03_029 crossref_primary_10_58997_ejde_2021_100 crossref_primary_10_1142_S0219199720500297 crossref_primary_10_1007_s11856_024_2619_8 crossref_primary_10_1007_s00526_023_02564_w crossref_primary_10_1007_s40574_023_00394_4 crossref_primary_10_1016_j_na_2021_112334 crossref_primary_10_1007_s13324_020_00409_9 crossref_primary_10_1007_s10231_021_01147_w crossref_primary_10_1007_s10231_023_01375_2 crossref_primary_10_3934_mine_2023065 crossref_primary_10_1016_j_cnsns_2024_107860 crossref_primary_10_1016_j_jmaa_2020_124487 crossref_primary_10_1002_mma_7334 crossref_primary_10_1007_s00208_022_02539_w crossref_primary_10_1016_j_jmaa_2022_126746 crossref_primary_10_1016_j_jmaa_2020_124408 crossref_primary_10_1016_j_nonrwa_2024_104224 |
Cites_doi | 10.1007/s00205-012-0562-z 10.1007/s00205-015-0859-9 10.1007/BF02392316 10.1007/s00526-017-1137-5 10.1016/j.anihpc.2010.07.002 10.1201/b18601 10.1007/BF02392793 10.1007/s10778-006-0110-3 10.3934/cpaa.2015.14.285 10.1016/j.na.2017.12.007 10.1007/s00205-008-0162-0 10.1007/s00205-006-0036-2 10.1016/j.jde.2017.09.038 10.1016/j.jde.2004.11.011 10.4171/JEMS/440 10.1007/s002291020227 10.1002/cpa.3160230409 10.1016/0022-0396(91)90158-6 10.1007/s00526-017-1148-2 10.1007/BF00251503 10.1142/S0129167X91000223 10.1007/BF01158049 10.1007/s00526-018-1323-0 10.4171/rmi/684 10.1007/s00205-013-0705-x 10.1006/jdeq.1998.3614 10.1080/03605302.2013.866959 10.1073/pnas.222494699 10.1007/s13373-013-0048-9 10.1007/BF01759317 10.1512/iumj.1976.25.25066 10.1007/s00526-018-1332-z 10.4171/jems/258 10.1080/03605301003657843 10.1016/0022-0396(88)90070-8 10.1016/j.na.2015.02.011 10.1016/j.anihpc.2011.02.005 10.1515/form.2002.011 10.1007/s00526-014-0768-z 10.1007/s00208-016-1362-9 10.1007/BF02921575 10.1142/5002 10.1016/S0022-247X(03)00584-5 10.1007/BF02192251 10.1007/s00526-003-0209-x 10.4171/JEMS/780 10.1016/j.jfa.2015.06.022 10.1080/03605309108820761 10.1051/cocv/2015034 |
ContentType | Journal Article |
Copyright | 2019 Wiley Periodicals, Inc. 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019 Wiley Periodicals, Inc. – notice: 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION JQ2 |
DOI | 10.1002/cpa.21880 |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1097-0312 |
EndPage | 1034 |
ExternalDocumentID | 10_1002_cpa_21880 CPA21880 |
Genre | article |
GroupedDBID | --Z .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 6OB 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEFU ABEML ABIJN ABLJU ABTAH ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OHT P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL S10 SAMSI SUPJJ TN5 TWZ UB1 UHB V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WWM WXSBR WYISQ XBAML XG1 XPP XV2 YZZ ZY4 ZZTAW ~IA ~WT AAYXX ADXHL AETEA AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 |
ID | FETCH-LOGICAL-c3980-b2530e06c83638963be8f2b59af6863933f8bbebde15c6001ca89253f54233c03 |
IEDL.DBID | DR2 |
ISSN | 0010-3640 |
IngestDate | Fri Jul 25 10:42:17 EDT 2025 Thu Apr 24 23:12:31 EDT 2025 Tue Jul 01 02:50:31 EDT 2025 Wed Jan 22 16:36:20 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3980-b2530e06c83638963be8f2b59af6863933f8bbebde15c6001ca89253f54233c03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpa.21880 |
PQID | 2376672759 |
PQPubID | 48818 |
PageCount | 91 |
ParticipantIDs | proquest_journals_2376672759 crossref_citationtrail_10_1002_cpa_21880 crossref_primary_10_1002_cpa_21880 wiley_primary_10_1002_cpa_21880_CPA21880 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2020 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
PublicationDecade | 2020 |
PublicationPlace | Melbourne |
PublicationPlace_xml | – name: Melbourne – name: New York |
PublicationTitle | Communications on pure and applied mathematics |
PublicationYear | 2020 |
Publisher | John Wiley & Sons Australia, Ltd John Wiley and Sons, Limited |
Publisher_xml | – name: John Wiley & Sons Australia, Ltd – name: John Wiley and Sons, Limited |
References | 1968; 7 2002; 14 1991; 16 2007; 184 2013; 207 1994; 172 2002; 99 1988; 76 2014a; 212 2011; 13 1996a; 23 2003; 18 1993; 164 2010; 27 1989; 105 2018; 170 2014; 4 1991; 146 2014b; 16 1981; 113 1976b; 282 1992; 431 1970; 23 1986 1991; 90 2013; 674 2014; 13 1983 2015; 218 2012; 28 1977; 138 2011; 28 2016; 270 2001; 13 1992; 2 2003; 287 1991; 2 2018; 264 2015; 14 1986; 50 2006; 51 1976a; 25 2015; 53 2015; 120 2016; 366 2003 2011; 36 1992; 33 2018; 20 1957; 3 1987; 59 1972; 27 2000; 102 2009; 193 2017; 56 1999; 157 2015 2014; 39 1996b; 90 2006; 221 2018; 57 2016; 22 Beck L. (e_1_2_1_4_1) 2013; 674 e_1_2_1_20_1 Bildhauer M. (e_1_2_1_6_1) 2001; 13 Lieberman G. M. (e_1_2_1_41_1) 1992; 33 e_1_2_1_24_1 e_1_2_1_45_1 e_1_2_1_62_1 e_1_2_1_22_1 e_1_2_1_43_1 e_1_2_1_28_1 e_1_2_1_49_1 Zhikov V. V (e_1_2_1_65_1) 1986; 50 e_1_2_1_26_1 Simon J (e_1_2_1_58_1) 1976; 282 De Giorgi E. (e_1_2_1_23_1) 1957; 3 Stein E. M. (e_1_2_1_60_1) 1981; 113 e_1_2_1_54_1 e_1_2_1_8_1 Kuusi T. (e_1_2_1_34_1) 2012; 28 e_1_2_1_12_1 e_1_2_1_35_1 Rao M. M. (e_1_2_1_56_1) 1991 e_1_2_1_10_1 e_1_2_1_33_1 e_1_2_1_52_1 e_1_2_1_2_1 e_1_2_1_16_1 e_1_2_1_39_1 e_1_2_1_14_1 e_1_2_1_37_1 e_1_2_1_18_1 Marcellini P. (e_1_2_1_47_1) 1996; 23 ceva N. N. (e_1_2_1_63_1) 1968; 7 Hamburger C (e_1_2_1_31_1) 1992; 431 e_1_2_1_42_1 e_1_2_1_40_1 e_1_2_1_46_1 e_1_2_1_61_1 e_1_2_1_21_1 e_1_2_1_44_1 e_1_2_1_27_1 Mingione G. (e_1_2_1_53_1) 2011; 13 e_1_2_1_25_1 e_1_2_1_48_1 Havin V. P. A (e_1_2_1_50_1) 1972; 27 e_1_2_1_29_1 e_1_2_1_7_1 Urdaletova A. B. (e_1_2_1_64_1) 1983 e_1_2_1_30_1 e_1_2_1_55_1 e_1_2_1_5_1 e_1_2_1_57_1 e_1_2_1_3_1 e_1_2_1_13_1 e_1_2_1_51_1 e_1_2_1_32_1 e_1_2_1_17_1 e_1_2_1_38_1 e_1_2_1_15_1 e_1_2_1_36_1 Carozza M. (e_1_2_1_11_1) 2014; 13 e_1_2_1_59_1 e_1_2_1_9_1 e_1_2_1_19_1 |
References_xml | – volume: 212 start-page: 129 issue: 1 year: 2014a end-page: 177 article-title: Global boundedness of the gradient for a class of nonlinear elliptic systems publication-title: Arch. Ration. Mech. Anal. – volume: 14 start-page: 245 issue: 2 year: 2002 end-page: 272 article-title: Regularity results for minimizers of irregular integrals with growth publication-title: Forum Math. – volume: 366 start-page: 1403 issue: 3‐4 year: 2016 end-page: 1450 article-title: Global Lipschitz continuity for minima of degenerate problems publication-title: Math. Ann. – volume: 287 start-page: 593 issue: 2 year: 2003 end-page: 608 article-title: Everywhere regularity for a class of vectorial functionals under subquadratic general growth conditions publication-title: J. Math. Anal. Appl. – volume: 27 start-page: 67 year: 1972 end-page: 138 article-title: nonlinear potential theory. publication-title: Math. Surveys – volume: 57 year: 2018 article-title: On the higher differentiability of solutions to a class of variational problems of fast growth publication-title: Calc. Var. Partial Differential Equations – volume: 221 start-page: 412 issue: 2 year: 2006 end-page: 443 article-title: Nonlinear elliptic systems with general growth publication-title: J. Differential Equations – volume: 674 start-page: 113 year: 2013 end-page: 194 article-title: On the Dirichlet problem for variational integrals in BV publication-title: J. Reine Angew. Math. – volume: 16 start-page: 311 year: 1991 end-page: 361 article-title: The natural generalization of the natural conditions of Ladyzhenskaya and Ural tseva for elliptic equations publication-title: Comm. Partial Differential Equations – volume: 105 start-page: 267 issue: 3 year: 1989 end-page: 284 article-title: Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions publication-title: Arch. Rational Mech. Anal. – volume: 193 start-page: 311 issue: 2 year: 2009 end-page: 337 article-title: Regularity of relaxed minimizers of quasiconvex variational integrals with ‐growth publication-title: Arch. Ration. Mech. Anal. – volume: 76 start-page: 203 issue: 2 year: 1988 end-page: 212 article-title: Regularity for minima of functionals with ‐growth publication-title: J. Differential Equations – volume: 157 start-page: 414 issue: 2 year: 1999 end-page: 438 article-title: Higher integrability for minimizers of integral functionals with growth publication-title: J. Differential Equations – volume: 13 start-page: 459 issue: 2 year: 2011 end-page: 486 article-title: Gradient potential estimates publication-title: J. Eur. Math. Soc. (JEMS) – volume: 13 start-page: 537 issue: 4 year: 2001 end-page: 560 article-title: Partial regularity for variational integrals with ‐growth. publication-title: Partial Differential Equations – volume: 16 start-page: 571 issue: 3 year: 2014b end-page: 595 article-title: Gradient regularity via rearrangements for ‐Laplacian type elliptic boundary value problems publication-title: J. Eur. Math. Soc. (JEMS) – volume: 172 start-page: 137 issue: 1 year: 1994 end-page: 161 article-title: The Wiener test and potential estimates for quasilinear elliptic equations publication-title: Acta Math. – volume: 18 start-page: 373 issue: 4 year: 2003 end-page: 400 article-title: Bounds for the singular set of solutions to non linear elliptic systems publication-title: Calc. Var. Partial Differential Equations – volume: 51 start-page: 355 issue: 4 year: 2006 end-page: 426 article-title: Regularity of minima: an invitation to the dark side of the calculus of variations publication-title: Appl. Math. – year: 1986 – volume: 36 start-page: 100 issue: 1 year: 2011 end-page: 133 article-title: Global Lipschitz regularity for a class of quasilinear elliptic equations publication-title: Comm. Partial Differential Equations – volume: 23 start-page: 677 year: 1970 end-page: 703 article-title: Local estimates for gradients of solutions of non‐uniformly elliptic and parabolic equations publication-title: Comm. Pure Appl. Math – volume: 14 start-page: 285 issue: 1 year: 2015 end-page: 311 article-title: Global gradient estimates in elliptic problems under minimal data and domain regularity publication-title: Commun. Pure Appl. Anal. – volume: 25 start-page: 821 issue: 9 year: 1976a end-page: 855 article-title: Interior gradient bounds for non‐uniformly elliptic equations publication-title: Indiana Univ. Math. J. – volume: 22 start-page: 862 issue: 3 year: 2016 end-page: 871 article-title: Strict convexity and the regularity of solutions to variational problems publication-title: ESAIM Control Optim. Calc. Var. – volume: 170 start-page: 1 year: 2018 end-page: 20 article-title: Higher integrability for constrained minimizers of integral functionals with ‐growth in low dimension publication-title: Nonlinear Anal. – year: 2015 – volume: 3 start-page: 25 year: 1957 end-page: 43 article-title: Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari publication-title: Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) – volume: 2 start-page: 395 issue: 4 year: 1991 end-page: 408 article-title: Regularity of exponentially harmonic functions publication-title: Internat. J. Math. – volume: 56 issue: 2 year: 2017 article-title: Regularity of ‐minimizers for a class of functionals with non‐standard growth publication-title: Calc. Var. Partial Differential Equations – start-page: 50 year: 1983 end-page: 56 article-title: The boundedness of the gradients of generalized solutions of degenerate quasilinear nonuniformly elliptic equations publication-title: Vestnik Leningrad. Univ. Mat. Mekh. Astronom – volume: 2 start-page: 499 year: 1992 end-page: 515 article-title: Maximizing the norm of the gradient of solutions to the Poisson equation publication-title: J. Geom. Anal. – volume: 90 start-page: 161 issue: 1 year: 1996b end-page: 181 article-title: Regularity for some scalar variational problems under general growth conditions publication-title: J. Optim. Theory Appl. – volume: 39 start-page: 574 issue: 3 year: 2014 end-page: 590 article-title: Borderline estimates for fully nonlinear elliptic equations publication-title: Comm. Partial Differential Equations – volume: 282 start-page: A1351 year: 1976b end-page: A1354 article-title: Régularité de solutions de problèmes nonlinéaires publication-title: C. R. Acad. Sci. Paris Sér. A‐B – year: 2003 – volume: 28 start-page: 535 issue: 2 year: 2012 end-page: 576 article-title: Potential estimates and gradient boundedness for nonlinear parabolic systems publication-title: Rev. Mat. Iberoam. – volume: 23 start-page: 1 issue: 1 year: 1996a end-page: 25 article-title: Everywhere regularity for a class of elliptic systems without growth conditions publication-title: Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) – volume: 184 start-page: 341 issue: 2 year: 2007 end-page: 369 article-title: The singular set of Lipschitzian minima of multiple integrals publication-title: Arch. Ration. Mech. Anal. – volume: 7 start-page: 184 year: 1968 end-page: 222 article-title: Degenerate quasilinear elliptic systems publication-title: Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) – volume: 207 start-page: 215 issue: 1 year: 2013 end-page: 246 article-title: Linear potentials in nonlinear potential theory publication-title: Arch. Ration. Mech. Anal. – volume: 50 start-page: 675 year: 1986 end-page: 710 article-title: Averaging of functionals of the calculus of variations and elasticity theory publication-title: Izv. Akad. Nauk SSSR Ser. Mat – volume: 13 start-page: 1065 issue: 4 year: 2014 end-page: 1089 article-title: Regularity of minimizers of autonomous convex variational integrals publication-title: Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) – volume: 113 start-page: 383 year: 1981 end-page: 385 publication-title: Ann. of Math. (2) – volume: 59 start-page: 245 issue: 2 year: 1987 end-page: 248 article-title: Growth conditions and regularity, a counterexample publication-title: Manuscripta Math. – volume: 164 start-page: 103 year: 1993 end-page: 120 article-title: Gradient estimates for a class of elliptic systems publication-title: Ann. Mat. Pura Appl. (4) – volume: 27 start-page: 1361 issue: 6 year: 2010 end-page: 1396 article-title: Local Lipschitz regularity for degenerate elliptic systems publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire – volume: 264 start-page: 1263 issue: 2 year: 2018 end-page: 1316 article-title: Riesz potential estimates for a class of double phase problems publication-title: J. Differential Equations – volume: 102 start-page: 227 year: 2000 end-page: 250 publication-title: Manuscripta Math – volume: 56 year: 2017 article-title: Global gradient estimates for non‐uniformly elliptic equations publication-title: Calc. Var. Partial Differential Equations – volume: 431 start-page: 7 year: 1992 end-page: 64 article-title: Regularity of differential forms minimizing degenerate elliptic functionals publication-title: J. Reine Angew. Math. – volume: 20 start-page: 929 issue: 4 year: 2018 end-page: 1004 article-title: Vectorial nonlinear potential theory publication-title: J. Eur. Math. Soc. (JEMS) – volume: 90 year: 1991 article-title: Regularity and existence of solutions of elliptic equations with ‐growth conditions publication-title: J. Differential Equations – volume: 99 start-page: 15269 issue: 24 year: 2002 end-page: 15276 article-title: Non‐Lipschitz minimizers of smooth uniformly convex variational integrals publication-title: Proc. Natl. Acad. Sci. USA – volume: 120 start-page: 86 year: 2015 end-page: 106 article-title: Interior gradient regularity for BV minimizers of singular variational problems publication-title: Nonlinear Anal. – volume: 33 start-page: 45 issue: 1 year: 1992 end-page: 49 article-title: On the regularity of the minimizer of a functional with exponential growth publication-title: Comment. Math. Univ. Carolin. – volume: 53 start-page: 803 issue: 3‐4 year: 2015 end-page: 846 article-title: Riesz potential estimates for a general class of quasilinear equations publication-title: Calc. Var. Partial Differential Equations – volume: 57 year: 2018 article-title: Regularity for general functionals with double phase publication-title: Calc. Var. Partial Differential Equations – volume: 218 start-page: 219 issue: 1 year: 2015 end-page: 273 article-title: Bounded minimisers of double phase variational integrals publication-title: Arch. Ration. Mech. Anal. – volume: 270 start-page: 1416 issue: 4 year: 2016 end-page: 1478 article-title: Calderón‐Zygmund estimates and non‐uniformly elliptic operators publication-title: J. Funct. Anal. – volume: 146 year: 1991 – volume: 4 start-page: 1 issue: 1 year: 2014 end-page: 82 article-title: Guide to nonlinear potential estimates publication-title: Bull. Math. Sci. – volume: 28 start-page: 395 issue: 3 year: 2011 end-page: 411 article-title: Higher differentiability of minimizers of convex variational integrals publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire – volume: 138 start-page: 219 issue: 3‐4 year: 1977 end-page: 240 article-title: Regularity for a class of non‐linear elliptic systems publication-title: Acta Math. – ident: e_1_2_1_36_1 doi: 10.1007/s00205-012-0562-z – ident: e_1_2_1_19_1 doi: 10.1007/s00205-015-0859-9 – volume: 3 start-page: 25 year: 1957 ident: e_1_2_1_23_1 article-title: Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari publication-title: Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) – ident: e_1_2_1_62_1 doi: 10.1007/BF02392316 – ident: e_1_2_1_54_1 doi: 10.1007/s00526-017-1137-5 – ident: e_1_2_1_43_1 – ident: e_1_2_1_25_1 doi: 10.1016/j.anihpc.2010.07.002 – ident: e_1_2_1_55_1 doi: 10.1201/b18601 – ident: e_1_2_1_32_1 doi: 10.1007/BF02392793 – ident: e_1_2_1_52_1 doi: 10.1007/s10778-006-0110-3 – volume: 13 start-page: 537 issue: 4 year: 2001 ident: e_1_2_1_6_1 article-title: Partial regularity for variational integrals with (s, μ, q)‐growth. Calc. Var publication-title: Partial Differential Equations – ident: e_1_2_1_18_1 doi: 10.3934/cpaa.2015.14.285 – ident: e_1_2_1_22_1 doi: 10.1016/j.na.2017.12.007 – ident: e_1_2_1_59_1 doi: 10.1007/s00205-008-0162-0 – ident: e_1_2_1_33_1 doi: 10.1007/s00205-006-0036-2 – ident: e_1_2_1_9_1 doi: 10.1016/j.jde.2017.09.038 – volume-title: Theory of Orlicz spaces. Monographs and Textbooks in Pure and Applied Mathematics year: 1991 ident: e_1_2_1_56_1 – ident: e_1_2_1_49_1 doi: 10.1016/j.jde.2004.11.011 – ident: e_1_2_1_17_1 doi: 10.4171/JEMS/440 – volume: 674 start-page: 113 year: 2013 ident: e_1_2_1_4_1 article-title: On the Dirichlet problem for variational integrals in BV publication-title: J. Reine Angew. Math. – ident: e_1_2_1_28_1 doi: 10.1007/s002291020227 – ident: e_1_2_1_38_1 doi: 10.1002/cpa.3160230409 – ident: e_1_2_1_46_1 doi: 10.1016/0022-0396(91)90158-6 – ident: e_1_2_1_8_1 doi: 10.1007/s00526-017-1148-2 – ident: e_1_2_1_45_1 doi: 10.1007/BF00251503 – volume: 27 start-page: 67 year: 1972 ident: e_1_2_1_50_1 article-title: nonlinear potential theory. Russ publication-title: Math. Surveys – ident: e_1_2_1_24_1 doi: 10.1142/S0129167X91000223 – ident: e_1_2_1_29_1 doi: 10.1007/BF01158049 – volume: 13 start-page: 1065 issue: 4 year: 2014 ident: e_1_2_1_11_1 article-title: Regularity of minimizers of autonomous convex variational integrals publication-title: Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) – ident: e_1_2_1_13_1 doi: 10.1007/s00526-018-1323-0 – volume: 28 start-page: 535 issue: 2 year: 2012 ident: e_1_2_1_34_1 article-title: Potential estimates and gradient boundedness for nonlinear parabolic systems publication-title: Rev. Mat. Iberoam. doi: 10.4171/rmi/684 – ident: e_1_2_1_16_1 doi: 10.1007/s00205-013-0705-x – ident: e_1_2_1_26_1 doi: 10.1006/jdeq.1998.3614 – volume: 7 start-page: 184 year: 1968 ident: e_1_2_1_63_1 article-title: Degenerate quasilinear elliptic systems publication-title: Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) – ident: e_1_2_1_21_1 doi: 10.1080/03605302.2013.866959 – ident: e_1_2_1_61_1 doi: 10.1073/pnas.222494699 – ident: e_1_2_1_35_1 doi: 10.1007/s13373-013-0048-9 – ident: e_1_2_1_42_1 doi: 10.1007/BF01759317 – ident: e_1_2_1_57_1 doi: 10.1512/iumj.1976.25.25066 – volume: 113 start-page: 383 year: 1981 ident: e_1_2_1_60_1 publication-title: Ann. of Math. (2) – volume: 431 start-page: 7 year: 1992 ident: e_1_2_1_31_1 article-title: Regularity of differential forms minimizing degenerate elliptic functionals publication-title: J. Reine Angew. Math. – volume: 50 start-page: 675 year: 1986 ident: e_1_2_1_65_1 article-title: Averaging of functionals of the calculus of variations and elasticity theory publication-title: Izv. Akad. Nauk SSSR Ser. Mat – volume: 23 start-page: 1 issue: 1 year: 1996 ident: e_1_2_1_47_1 article-title: Everywhere regularity for a class of elliptic systems without growth conditions publication-title: Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) – volume: 282 start-page: A1351 year: 1976 ident: e_1_2_1_58_1 article-title: Régularité de solutions de problèmes nonlinéaires publication-title: C. R. Acad. Sci. Paris Sér. A‐B – ident: e_1_2_1_3_1 doi: 10.1007/s00526-018-1332-z – volume: 13 start-page: 459 issue: 2 year: 2011 ident: e_1_2_1_53_1 article-title: Gradient potential estimates publication-title: J. Eur. Math. Soc. (JEMS) doi: 10.4171/jems/258 – ident: e_1_2_1_15_1 doi: 10.1080/03605301003657843 – ident: e_1_2_1_44_1 doi: 10.1016/0022-0396(88)90070-8 – ident: e_1_2_1_5_1 doi: 10.1016/j.na.2015.02.011 – ident: e_1_2_1_10_1 doi: 10.1016/j.anihpc.2011.02.005 – ident: e_1_2_1_27_1 doi: 10.1515/form.2002.011 – volume: 33 start-page: 45 issue: 1 year: 1992 ident: e_1_2_1_41_1 article-title: On the regularity of the minimizer of a functional with exponential growth publication-title: Comment. Math. Univ. Carolin. – start-page: 50 year: 1983 ident: e_1_2_1_64_1 article-title: The boundedness of the gradients of generalized solutions of degenerate quasilinear nonuniformly elliptic equations publication-title: Vestnik Leningrad. Univ. Mat. Mekh. Astronom – ident: e_1_2_1_2_1 doi: 10.1007/s00526-014-0768-z – ident: e_1_2_1_7_1 doi: 10.1007/s00208-016-1362-9 – ident: e_1_2_1_14_1 doi: 10.1007/BF02921575 – ident: e_1_2_1_30_1 doi: 10.1142/5002 – ident: e_1_2_1_39_1 doi: 10.1016/S0022-247X(03)00584-5 – ident: e_1_2_1_48_1 doi: 10.1007/BF02192251 – ident: e_1_2_1_51_1 doi: 10.1007/s00526-003-0209-x – ident: e_1_2_1_37_1 doi: 10.4171/JEMS/780 – ident: e_1_2_1_20_1 doi: 10.1016/j.jfa.2015.06.022 – ident: e_1_2_1_40_1 doi: 10.1080/03605309108820761 – ident: e_1_2_1_12_1 doi: 10.1051/cocv/2015034 |
SSID | ssj0011483 |
Score | 2.5925956 |
Snippet | We consider nonuniformly elliptic variational problems and give optimal conditions guaranteeing the local Lipschitz regularity of solutions in terms of the... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 944 |
SubjectTerms | Ellipticity Function space Integrals Poisson equation Polynomials Regularity |
Title | Lipschitz Bounds and Nonuniform Ellipticity |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpa.21880 https://www.proquest.com/docview/2376672759 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KT3rwLVarBPHgJe26r27wVIulCC0iFnoQQnaze1HTYNKD_fXuJE2qoiDecphNspud2W8yM98gdBEzKiMjjd8zwjkoRlBfYWN8RgyLWS-IegSqkccTMZqyuxmfNdB1VQtT8kPUP9xAMwp7DQoeqay7Jg3VadQhwCbm7C_kagEgeqipowDml9FlsDOC4YpVCJNuPfLrWbQGmJ9hanHODLfRU_WGZXrJc2eRq45efiNv_OcUdtDWCn96_XLD7KKGSfbQ5rgmb832kfPT0wzCC0vvBpouZV6UxN5kniwSKON69SDPI4Vs7Pz9AE2Ht4-Dkb_qqeBrGkjsK8IpNlhoSQGrCKqMtETxILJCOrRCqZVKGRWbK64BDOlIBm6M5Q53UY3pIWom88QcIQ9LxSyPheUOQgrNJCeBc-CYtVzGzvVtoctqdUO9IhyHvhcvYUmVTEI3_7CYfwud16JpybLxk1C7-kThStGyEJJ6IJjMA_e4Yq1_v0E4uO8XF8d_Fz1BGwQ87CLFsY2a-dvCnDoYkquzYr99AJkh1bE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYCBN-JRIEIMLGmDX3UkllKBCrQVQkXqgqLYcRYgVKQd6K_HlzQpIJAQW4ZzEj_O_s539x3AScSoDI00bsMIa6AYQV3lGeMyYljEGn7YIJiN3O2J9gO7GfDBHJwXuTA5P0R54Yaake3XqOB4IV2fsYbqYVgjSCc2DwtY0TszqO5L8igE-rl_GXcawbyCV8gj9bLp19NoBjE_A9XspLlahcfiH_MAk6faeKRqevKNvvG_nViDlSkEdZr5mlmHOZNswHK35G9NN8Ga6sMUPQwT5wLrLqVOmERO7zUZJ5jJ9eJgqMcQA7JH71vwcHXZb7XdaVkFV1Nfeq4inHrGE1pShCuCKiNjorgfxkJawEJpLJUyKjJnXCMe0qH0bZuYW-hFtUe3oZK8JmYHHE8qFvNIxNyiSKGZ5MS3NhyLYy4ja_3uwmkxvIGeco5j6YvnIGdLJoHtf5D1fxeOS9FhTrTxk1C1mKNgqmtpgHE96E_mvv1cNti_vyBo3TWzh72_ix7BYrvf7QSd697tPiwRNLiziMcqVEZvY3NgUclIHWaL7wMICNnM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gOjBt_hYtYgHL11jXpviaX0sPhcRBQ9CadLkotbi7h7015tpt_WBgnjrYdI26UzyTWfmG4DtlDOVWGXDlpXeQbGShZpYG3JqecpbUdKiWI182ZUnt_zsTtyNwH5VC1PyQ9Q_3NAyiv0aDTxP3e4HaajJkyZFNrFRGOeSKFTpo-uaOwpxfhlexo1GclLRChG6Ww_9ehh9IMzPOLU4aDozcF-9Yplf8tAc9HXTvH1jb_znHGZheghAg3apMXMwYrN5mLqs2Vt7C-Ad9byH8YW34AC7LvWCJEuD7nM2yLCO6ynARI8c07H7r4tw2zm-OTwJh00VQsMiRUJNBSOWSKMYghXJtFWOahElTioPVxhzSmurU7snDKIhk6jIj3HCAy9mCFuCsew5s8sQEKW5E6l0wmNIabgSNPIeHHdOqNT7viuwU61ubIaM49j44jEuuZJp7OcfF_Nfga1aNC9pNn4SalSfKB5aWi_GrB6MJovIP65Y699vEB9etYuL1b-LbsLE1VEnvjjtnq_BJEVvu0h3bMBY_2Vg1z0k6euNQvXeAa4n2IQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lipschitz+Bounds+and+Nonuniform+Ellipticity&rft.jtitle=Communications+on+pure+and+applied+mathematics&rft.au=Beck%2C+Lisa&rft.au=Mingione%2C+Giuseppe&rft.date=2020-05-01&rft.pub=John+Wiley+and+Sons%2C+Limited&rft.issn=0010-3640&rft.eissn=1097-0312&rft.volume=73&rft.issue=5&rft.spage=944&rft.epage=1034&rft_id=info:doi/10.1002%2Fcpa.21880&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-3640&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-3640&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-3640&client=summon |