Systematic variation in the temperature dependence of bacterial carbon use efficiency

Carbon use efficiency (CUE) is a key characteristic of microbial physiology and underlies community‐level responses to changing environments. Yet, we currently lack general empirical insights into variation in microbial CUE at the level of individual taxa. Here, through experiments with 29 strains o...

Full description

Saved in:
Bibliographic Details
Published inEcology letters Vol. 24; no. 10; pp. 2123 - 2133
Main Authors Smith, Thomas P., Clegg, Tom, Bell, Thomas, Pawar, Samrāt, Bardgett, Richard
Format Journal Article
LanguageEnglish
Published Paris Blackwell Publishing Ltd 01.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Carbon use efficiency (CUE) is a key characteristic of microbial physiology and underlies community‐level responses to changing environments. Yet, we currently lack general empirical insights into variation in microbial CUE at the level of individual taxa. Here, through experiments with 29 strains of environmentally isolated bacteria, we find that bacterial CUE typically responds either positively to temperature, or has no discernible response, within biologically meaningful temperature ranges. Using a global data synthesis, we show that these results are generalisable across most culturable groups of bacteria. This variation in the thermal responses of bacterial CUE is taxonomically structured, and stems from the fact that relative to respiration rates, bacterial population growth rates typically respond more strongly to temperature, and are also subject to weaker evolutionary constraints. Our results provide new insights into microbial physiology, and a basis for more accurately modelling the effects of thermal fluctuations on complex microbial communities. Carbon use efficiency (CUE) is a key characteristic of microbial physiology and underlies community‐level responses to changing environments, however we currently lack an understanding of how CUE varies with temperature. Combining new empirical data with those of a data synthesis, we find that bacterial CUE typically responds either positively to temperature, or has no discernible response, within biologically meaningful temperature ranges.
AbstractList Carbon use efficiency (CUE) is a key characteristic of microbial physiology and underlies community‐level responses to changing environments. Yet, we currently lack general empirical insights into variation in microbial CUE at the level of individual taxa. Here, through experiments with 29 strains of environmentally isolated bacteria, we find that bacterial CUE typically responds either positively to temperature, or has no discernible response, within biologically meaningful temperature ranges. Using a global data synthesis, we show that these results are generalisable across most culturable groups of bacteria. This variation in the thermal responses of bacterial CUE is taxonomically structured, and stems from the fact that relative to respiration rates, bacterial population growth rates typically respond more strongly to temperature, and are also subject to weaker evolutionary constraints. Our results provide new insights into microbial physiology, and a basis for more accurately modelling the effects of thermal fluctuations on complex microbial communities.
Carbon use efficiency (CUE) is a key characteristic of microbial physiology and underlies community‐level responses to changing environments. Yet, we currently lack general empirical insights into variation in microbial CUE at the level of individual taxa. Here, through experiments with 29 strains of environmentally isolated bacteria, we find that bacterial CUE typically responds either positively to temperature, or has no discernible response, within biologically meaningful temperature ranges. Using a global data synthesis, we show that these results are generalisable across most culturable groups of bacteria. This variation in the thermal responses of bacterial CUE is taxonomically structured, and stems from the fact that relative to respiration rates, bacterial population growth rates typically respond more strongly to temperature, and are also subject to weaker evolutionary constraints. Our results provide new insights into microbial physiology, and a basis for more accurately modelling the effects of thermal fluctuations on complex microbial communities.
Carbon use efficiency (CUE) is a key characteristic of microbial physiology and underlies community‐level responses to changing environments. Yet, we currently lack general empirical insights into variation in microbial CUE at the level of individual taxa. Here, through experiments with 29 strains of environmentally isolated bacteria, we find that bacterial CUE typically responds either positively to temperature, or has no discernible response, within biologically meaningful temperature ranges. Using a global data synthesis, we show that these results are generalisable across most culturable groups of bacteria. This variation in the thermal responses of bacterial CUE is taxonomically structured, and stems from the fact that relative to respiration rates, bacterial population growth rates typically respond more strongly to temperature, and are also subject to weaker evolutionary constraints. Our results provide new insights into microbial physiology, and a basis for more accurately modelling the effects of thermal fluctuations on complex microbial communities. Carbon use efficiency (CUE) is a key characteristic of microbial physiology and underlies community‐level responses to changing environments, however we currently lack an understanding of how CUE varies with temperature. Combining new empirical data with those of a data synthesis, we find that bacterial CUE typically responds either positively to temperature, or has no discernible response, within biologically meaningful temperature ranges.
Carbon use efficiency (CUE) is a key characteristic of microbial physiology and underlies community-level responses to changing environments. Yet, we currently lack general empirical insights into variation in microbial CUE at the level of individual taxa. Here, through experiments with 29 strains of environmentally isolated bacteria, we find that bacterial CUE typically responds either positively to temperature, or has no discernible response, within biologically meaningful temperature ranges. Using a global data synthesis, we show that these results are generalisable across most culturable groups of bacteria. This variation in the thermal responses of bacterial CUE is taxonomically structured, and stems from the fact that relative to respiration rates, bacterial population growth rates typically respond more strongly to temperature, and are also subject to weaker evolutionary constraints. Our results provide new insights into microbial physiology, and a basis for more accurately modelling the effects of thermal fluctuations on complex microbial communities.Carbon use efficiency (CUE) is a key characteristic of microbial physiology and underlies community-level responses to changing environments. Yet, we currently lack general empirical insights into variation in microbial CUE at the level of individual taxa. Here, through experiments with 29 strains of environmentally isolated bacteria, we find that bacterial CUE typically responds either positively to temperature, or has no discernible response, within biologically meaningful temperature ranges. Using a global data synthesis, we show that these results are generalisable across most culturable groups of bacteria. This variation in the thermal responses of bacterial CUE is taxonomically structured, and stems from the fact that relative to respiration rates, bacterial population growth rates typically respond more strongly to temperature, and are also subject to weaker evolutionary constraints. Our results provide new insights into microbial physiology, and a basis for more accurately modelling the effects of thermal fluctuations on complex microbial communities.
Author Bardgett, Richard
Bell, Thomas
Pawar, Samrāt
Clegg, Tom
Smith, Thomas P.
Author_xml – sequence: 1
  givenname: Thomas P.
  orcidid: 0000-0002-4038-9722
  surname: Smith
  fullname: Smith, Thomas P.
  email: thomas.smith1@imperial.ac.uk
  organization: Imperial College London
– sequence: 2
  givenname: Tom
  surname: Clegg
  fullname: Clegg, Tom
  organization: Imperial College London
– sequence: 3
  givenname: Thomas
  surname: Bell
  fullname: Bell, Thomas
  organization: Imperial College London
– sequence: 4
  givenname: Samrāt
  surname: Pawar
  fullname: Pawar, Samrāt
  organization: Imperial College London
– sequence: 5
  givenname: Richard
  surname: Bardgett
  fullname: Bardgett, Richard
BookMark eNqF0c9LwzAUB_AgCm7Tg_9BwIsetuVHkzZHGfMHDDw4wVtJX18xo2tn0ir7742beBioIZAH-XwfJG9Ijpu2QUIuOJvwuKZY44TLLGFHZMATzcdMJNnxTy1fTskwhBVjXJiUD8jz0zZ0uLadA_puvYtF21DX0O4VabzYoLdd75GWuMGmxAaQthUtLHQYdU3B-iIm-oAUq8qBi2R7Rk4qWwc8_z5HZHk7X87ux4vHu4fZzWIM0mRsnJgShVIJT0WlwVaqUDaFTIKWaaFSY41AMJxDyQA0NxITbRIFJZSl0EKOyNW-7ca3bz2GLl-7AFjXtsG2D7nQUsetjPyfKsWETplMIr08oKu29018R1QpE4opwaO63ivwbQgeq3zj3dr6bc5Z_jWKPI4i340i2umBBdftfrrz1tV_JT5cjdvfW-fzxXyf-AT8YZux
CitedBy_id crossref_primary_10_1111_gcb_16600
crossref_primary_10_1016_j_pocean_2024_103316
crossref_primary_10_1093_icb_icad060
crossref_primary_10_1038_s41598_024_82497_2
crossref_primary_10_3390_w14081203
crossref_primary_10_1038_s41561_024_01393_6
crossref_primary_10_1073_pnas_2302190120
crossref_primary_10_1111_mmi_15236
crossref_primary_10_1111_ele_14093
crossref_primary_10_1086_731997
crossref_primary_10_1016_j_catena_2024_108145
crossref_primary_10_3390_sci6020028
crossref_primary_10_1002_lno_12740
crossref_primary_10_1016_j_jtherbio_2025_104063
crossref_primary_10_1038_s42003_022_03030_7
crossref_primary_10_3389_fmars_2023_1331680
crossref_primary_10_1016_j_agee_2025_109582
crossref_primary_10_1038_s41467_024_50593_6
crossref_primary_10_7554_eLife_80867
crossref_primary_10_1016_j_soilbio_2024_109315
crossref_primary_10_1016_j_scitotenv_2023_163236
crossref_primary_10_1038_s41586_024_07850_x
crossref_primary_10_7554_eLife_84662
crossref_primary_10_1007_s42832_022_0137_3
crossref_primary_10_1007_s11356_021_18407_0
crossref_primary_10_1038_s41467_024_52160_5
crossref_primary_10_1111_gcb_16971
crossref_primary_10_1016_j_soilbio_2024_109394
crossref_primary_10_1111_gcb_17465
crossref_primary_10_1111_gcb_17565
crossref_primary_10_1016_j_catena_2024_108632
Cites_doi 10.1038/s41467-019-11488-z
10.1139/m74-207
10.1890/06-1641
10.1046/j.1462-2920.1999.00061.x
10.1890/15-2110.1
10.1016/0169-5347(89)90211-5
10.1093/icb/icx041
10.1007/s11104-016-3104-x
10.1126/science.291.5512.2398
10.3389/fmicb.2016.02083
10.1038/nclimate1796
10.1038/ngeo846
10.1029/2004GB002390
10.1016/j.soilbio.2019.03.008
10.1038/nclimate2361
10.1016/j.soilbio.2008.07.002
10.1128/mBio.02293-19
10.1002/bit.260320112
10.1016/S0167-7012(02)00128-8
10.1073/pnas.1800222115
10.1111/j.1574-6941.2012.01389.x
10.1111/1462-2920.15120
10.1890/03-9000
10.1016/j.soilbio.2011.05.018
10.1111/ele.12916
10.1128/AEM.69.6.3593-3599.2003
10.1016/j.femsec.2004.10.002
10.1134/S0001437010040089
10.1016/j.soilbio.2015.01.025
10.1016/j.soilbio.2020.107969
10.1002/elsc.200900027
10.1128/AEM.00405-07
10.1038/ncomms11965
10.1073/pnas.0707200104
10.1111/ele.12113
10.1038/s41467-020-17502-z
10.1073/pnas.1805518115
10.1111/evo.13946
10.1111/gcb.14738
10.1146/annurev.ecolsys.29.1.503
10.1007/s10533-016-0191-y
10.1016/j.soilbio.2018.09.036
10.3389/fmicb.2014.00571
10.1029/2018GB006077
10.1371/journal.pbio.3000894
10.1111/j.1574-6941.2010.00912.x
10.1016/S0038-0717(03)00015-4
10.3354/ame043243
10.1111/j.1365-2672.1996.tb03517.x
10.1002/bit.260221202
10.1016/j.soilbio.2018.10.006
10.5194/bg-13-3319-2016
10.1086/684590
10.5194/bg-15-5929-2018
10.1038/s41467-019-13109-1
10.1016/0022-5193(81)90246-0
10.1111/j.1469-8137.2012.04225.x
10.1111/ele.12932
10.1073/pnas.1015178108
10.1098/rsif.2017.0502
10.1038/s41396-019-0356-5
10.1007/s10533-014-0058-z
10.1029/2019GB006507
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd.
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 The Authors. Ecology Letters published by John Wiley & Sons Ltd.
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 The Authors. Ecology Letters published by John Wiley & Sons Ltd.
DBID 24P
AAYXX
CITATION
7SN
7SS
7U9
C1K
H94
M7N
7X8
7S9
L.6
DOI 10.1111/ele.13840
DatabaseName Wiley Online Library Open Access
CrossRef
Ecology Abstracts
Entomology Abstracts (Full archive)
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
Ecology Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef

MEDLINE - Academic
Entomology Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1461-0248
EndPage 2133
ExternalDocumentID 10_1111_ele_13840
ELE13840
Genre letter
Correspondence
GrantInformation_xml – fundername: Natural Environment Research Council
  funderid: NE/M020843/1; NE/S000348/1
– fundername: Biotechnology and Biological Sciences Research Council
  funderid: BB/J014575/1
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOD
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
N~3
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
UB1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SN
7SS
7U9
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
H94
M7N
7X8
7S9
L.6
ID FETCH-LOGICAL-c3980-49de2554172f6caf5b5a7c83c637b579a92ec911cd0cc6193e46945cdcdd2623
IEDL.DBID DR2
ISSN 1461-023X
1461-0248
IngestDate Fri Jul 11 18:33:37 EDT 2025
Fri Jul 11 05:46:14 EDT 2025
Fri Jul 25 10:42:24 EDT 2025
Tue Jul 01 02:29:51 EDT 2025
Thu Apr 24 23:01:31 EDT 2025
Wed Jan 22 16:29:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3980-49de2554172f6caf5b5a7c83c637b579a92ec911cd0cc6193e46945cdcdd2623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Correspondence-1
ORCID 0000-0002-4038-9722
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fele.13840
PQID 2570250521
PQPubID 32390
PageCount 11
ParticipantIDs proquest_miscellaneous_2636636593
proquest_miscellaneous_2550267034
proquest_journals_2570250521
crossref_primary_10_1111_ele_13840
crossref_citationtrail_10_1111_ele_13840
wiley_primary_10_1111_ele_13840_ELE13840
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationPlace Paris
PublicationPlace_xml – name: Paris
PublicationTitle Ecology letters
PublicationYear 2021
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2007; 104
2013; 3
2019; 10
2019; 13
1988; 32
2016; 187
2020; 11
2019; 128
2007; 73
2003; 52
1981; 88
2014; 5
2014; 4
2013; 16
2015; 83
2001; 291
2019; 25
2016; 86
2010; 3
2010; 73
2020b; 74
2004; 85
1998; 29
2012; 81
1989; 4
2019; 33
2015; 122
1980; 22
2003; 35
2018b; 6
2016; 127
2020; 34
1999; 1
2018; 21
2016; 13
2017; 414
2012; 196
2016; 7
2005; 19
2011; 108
1974; 20
2017; 14
2006; 43
2020
2018; 115
2017; 57
2020; 150
2018a; 6
2003; 69
2005; 52
2009; 9
2011; 43
1996; 81
2020; 22
2020a; 18
2008; 40
2007; 88
2018; 15
2019; 134
2010; 50
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Jin Q. (e_1_2_8_28_1) 2018; 6
Jin Q. (e_1_2_8_29_1) 2018; 6
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 128
  start-page: 79
  year: 2019
  end-page: 88
  article-title: Clarifying the interpretation of carbon use efficiency in soil through methods comparison
  publication-title: Soil Biology and Biochemistry
– volume: 88
  start-page: 719
  year: 1981
  end-page: 731
  article-title: Non‐linear regression of biological temperature‐dependent rate models based on absolute reaction‐rate theory
  publication-title: Journal of theoretical biology
– volume: 108
  start-page: 10591
  year: 2011
  end-page: 10596
  article-title: Systematic variation in the temperature dependence of physiological and ecological traits
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 88
  start-page: 817
  year: 2007
  end-page: 822
  article-title: Resource limitation of bacterial production distorts the tem perature dependence of oceanic carbon cycling
  publication-title: Ecology
– volume: 115
  start-page: E7361
  year: 2018
  end-page: E7368
  article-title: Role of carbon allocation efficiency in the temperature dependence of autotroph growth rates
  publication-title: Proceedings of the National Academy of Sciences
– volume: 10
  start-page: 5124
  year: 2019
  article-title: Community‐level respiration of prokaryotic microbes may rise with global warming
  publication-title: Nature Communications
– volume: 15
  start-page: 5929
  issue: 19
  year: 2018
  end-page: 5949
  article-title: Reviews and syntheses: Carbon use efficiency from organisms to ecosystems – definitions, theories, and empirical evidence
  publication-title: Biogeosciences
– volume: 86
  start-page: 172
  year: 2016
  end-page: 189
  article-title: Stoichiometry of microbial carbon use efficiency in soils
  publication-title: Ecological Monographs
– volume: 9
  start-page: 285
  year: 2009
  end-page: 290
  article-title: The Auxiliary Substrate Concept: From simple considerations to heuristically valuable knowledge
  publication-title: Engineering in Life Sciences
– volume: 150
  start-page: 107969
  year: 2020
  article-title: Physical mechanisms for soil moisture effects on microbial carbon‐use efficiency in a sandy loam soil in the western United States
  publication-title: Soil Biology and Biochemistry
– volume: 187
  start-page: E41
  year: 2016
  end-page: E52
  article-title: Real versus artificial variation in the thermal sensitivity of biological traits
  publication-title: The American Naturalist
– volume: 134
  start-page: 25
  year: 2019
  end-page: 35
  article-title: Testing the dependence of microbial growth and carbon use efficiency on nitrogen availability, pH, and organic matter quality
  publication-title: Soil Biology and Biochemistry
– volume: 85
  start-page: 1771
  year: 2004
  end-page: 1789
  article-title: Toward a metabolic theory of ecology
  publication-title: Ecology
– volume: 32
  start-page: 86
  year: 1988
  end-page: 94
  article-title: Biochemical limits to microbial growth yields: An analysis of mixed subtrate utilization
  publication-title: Biotechnology and Bioengineering
– volume: 10
  start-page: 3568
  year: 2019
  article-title: Microbial carbon use efficiency predicted from genome‐scale metabolic models
  publication-title: Nature Communications
– volume: 73
  start-page: 6722
  year: 2007
  end-page: 6729
  article-title: New and fast method to quantify respiration rates of bacterial and plankton communities in freshwater ecosystems by using optical oxygen sensor spots
  publication-title: Applied and Environmental Microbiology
– volume: 52
  start-page: 19
  year: 2003
  end-page: 28
  article-title: Direct estimate of active bacteria: CTC use and limitations
  publication-title: Journal of Microbiological Methods
– volume: 43
  start-page: 243
  year: 2006
  end-page: 254
  article-title: Temperature regulation of bacterial production, respiration, and growth efficiency in a temperate salt‐marsh estuary
  publication-title: Aquatic Microbial Ecology
– volume: 18
  year: 2020a
  article-title: Adaptive evolution shapes the present‐day distribution of the thermal sensitivity of population growth rate
  publication-title: PLOS Biology
– volume: 22
  start-page: 2457
  issue: 12
  year: 1980
  end-page: 2514
  article-title: Application of macroscopic principles to microbial metabolism
  publication-title: Biotechnology and Bioengineering
– volume: 115
  start-page: 10989
  year: 2018
  end-page: 10994
  article-title: Changes in temperature alter the relationship between biodiversity and ecosystem functioning
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 13
  start-page: 3319
  year: 2016
  end-page: 3329
  article-title: Temperature‐mediated changes in microbial carbon use efficiency and 13C discrimination
  publication-title: Biogeosciences
– volume: 128
  start-page: 45
  year: 2019
  end-page: 55
  article-title: Growth explains microbial carbon use efficiency across soils differing in land use and geology
  publication-title: Soil Biology and Biochemistry
– volume: 81
  start-page: 610
  year: 2012
  end-page: 617
  article-title: A theoretical reassessment of microbial maintenance and implications for microbial ecology modeling
  publication-title: FEMS Microbiology Ecology
– volume: 21
  start-page: 1
  issue: 5
  year: 2018
  end-page: 10
  article-title: Metabolic traits predict the effects of warming on phytoplankton competition
  publication-title: Ecology Letters
– volume: 122
  start-page: 175
  year: 2015
  end-page: 190
  article-title: Scaling microbial biomass, metabolism and resource supply
  publication-title: Biogeochemistry
– volume: 1
  start-page: 457
  year: 1999
  end-page: 467
  article-title: Effect of temperature on sulphate reduction, growth rate and growth yield in five psychrophilic sulphate‐reducing bacteria from Arctic sediments
  publication-title: Environmental Microbiology
– volume: 414
  start-page: 113
  year: 2017
  end-page: 125
  article-title: The effect of temperature and substrate quality on the carbon use efficiency of saprotrophic decomposition
  publication-title: Plant and Soil
– volume: 35
  start-page: 549
  year: 2003
  end-page: 563
  article-title: The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: A theoretical model
  publication-title: Soil Biology and Biochemistry
– volume: 25
  start-page: 3354
  year: 2019
  end-page: 3364
  article-title: Increasing microbial carbon use efficiency with warming predicts soil heterotrophic respiration globally
  publication-title: Global Change Biology
– volume: 5
  start-page: 1
  year: 2014
  end-page: 9
  article-title: Modeling adaptation of carbon use efficiency in microbial communities
  publication-title: Frontiers in Microbiology
– volume: 14
  start-page: 20170502
  year: 2017
  article-title: Mathematical modelling of microbes: Metabolism, gene expression and growth
  publication-title: Journal of the Royal Society Interface
– volume: 83
  start-page: 184
  year: 2015
  end-page: 199
  article-title: Microbial hotspots and hot moments in soil: Concept & review
  publication-title: Soil Biology and Biochemistry
– volume: 33
  start-page: 620
  year: 2019
  end-page: 648
  article-title: A Mechanistic model of microbially mediated soil biogeochemical processes: A reality check
  publication-title: Global Biogeochemical Cycles
– volume: 57
  start-page: 103
  year: 2017
  end-page: 111
  article-title: Scaling from metabolism to population growth rate to understand how acclimation temperature alters thermal performance
  publication-title: Integrative and Comparative Biology
– volume: 7
  start-page: 1
  year: 2016
  end-page: 10
  article-title: Carbon availability modifies temperature responses of heterotrophic microbial respiration, carbon uptake affinity, and stable carbon isotope discrimination
  publication-title: Frontiers in Microbiology
– volume: 22
  start-page: 3494
  year: 2020
  end-page: 3504
  article-title: Trait‐based approach to bacterial growth efficiency
  publication-title: Environmental Microbiology
– volume: 29
  start-page: 503
  year: 1998
  end-page: 541
  article-title: Bacterial growth efficiency in natural aquatic systems
  publication-title: Annual Review of Ecology and Systematics
– volume: 81
  start-page: 341
  year: 1996
  end-page: 347
  article-title: Growth, respiration and survival of Legionella pneumophila at high temperatures
  publication-title: Journal of Applied Bacteriology
– volume: 291
  start-page: 2398
  year: 2001
  end-page: 2400
  article-title: Biogenic carbon cycling in the upper Ocean: Effects of microbial respiration
  publication-title: Science
– volume: 16
  start-page: 930
  year: 2013
  end-page: 939
  article-title: Carbon use efficiency of microbial communities: Stoichiometry, methodology and modelling
  publication-title: Ecology Letters
– volume: 52
  start-page: 49
  year: 2005
  end-page: 58
  article-title: Comparison of temperature effects on soil respiration and bacterial and fungal growth rates
  publication-title: FEMS Microbiology Ecology
– volume: 19
  start-page: 1
  issue: 4
  year: 2005
  end-page: 16
  article-title: Empirical and mechanistic models for the particle export ratio
  publication-title: Global Biogeochemical Cycles
– volume: 3
  start-page: 395
  year: 2013
  end-page: 398
  article-title: The temperature response of soil microbial efficiency and its feedback to climate
  publication-title: Nature Climate Change
– volume: 6
  start-page: 1
  year: 2018b
  end-page: 16
  article-title: pH as a primary control in environmental microbiology: 2
  publication-title: Kinetic Perspective. Frontiers in Environmental Science
– volume: 21
  start-page: 516
  year: 2018
  end-page: 524
  article-title: Elevated success of multispecies bacterial invasions impacts community composition during ecological succession
  publication-title: Ecology Letters
– volume: 69
  start-page: 3593
  year: 2003
  end-page: 3599
  article-title: A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil
  publication-title: Applied and Environmental Microbiology
– volume: 50
  start-page: 522
  year: 2010
  end-page: 530
  article-title: Relationships between the cell volume and the carbon content of bacteria
  publication-title: Oceanology
– volume: 11
  start-page: 3684
  year: 2020
  article-title: Microbial diversity drives carbon use efficiency in a model soil
  publication-title: Nature Communications
– volume: 74
  start-page: 775
  issue: 4
  year: 2020b
  end-page: 790
  article-title: Phytoplankton thermal responses adapt in the absence of hard thermodynamic constraints
  publication-title: Evolution
– volume: 4
  start-page: 903
  year: 2014
  end-page: 906
  article-title: Accelerated microbial turnover but constant growth efficiency with warming in soil
  publication-title: Nature Climate Change
– volume: 34
  start-page: 1
  year: 2020
  end-page: 12
  article-title: Compensatory thermal adaptation of soil microbial respiration rates in global croplands
  publication-title: Global Biogeochemical Cycles
– volume: 11
  start-page: e02293
  year: 2020
  end-page: e2319
  article-title: Carbon use efficiency and its temperature sensitivity Covary in soil bacteria
  publication-title: mBio
– volume: 7
  start-page: 11965
  year: 2016
  article-title: Microbial interactions lead to rapid micro‐scale successions on model marine particles
  publication-title: Nature Communications
– volume: 40
  start-page: 2722
  year: 2008
  end-page: 2728
  article-title: Patterns of substrate utilization during long‐term incubations at different temperatures
  publication-title: Soil Biology and Biochemistry
– year: 2020
– volume: 196
  start-page: 79
  year: 2012
  end-page: 91
  article-title: Environmental and stoichio metric controls on microbial carbon‐use efficiency in soils
  publication-title: New Phytologist
– volume: 73
  start-page: 430
  year: 2010
  end-page: 440
  article-title: The effect of resource quantity and resource stoichiometry on microbial carbon‐use‐efficiency
  publication-title: FEMS Microbiology Ecology
– volume: 43
  start-page: 2023
  year: 2011
  end-page: 2031
  article-title: Effect of temperature on metabolic activity of intact microbial communities: Evidence for altered metabolic pathway activity but not for increased maintenance respiration and reduced carbon use efficiency
  publication-title: Soil Biology and Biochemistry
– volume: 13
  start-page: 1602
  year: 2019
  end-page: 1617
  article-title: Interactions in self‐assembled microbial communities saturate with diversity
  publication-title: ISME Journal
– volume: 3
  start-page: 336
  year: 2010
  end-page: 340
  article-title: Soil‐carbon response to warming dependent on microbial physiology
  publication-title: Nature Geoscience
– volume: 127
  start-page: 173
  year: 2016
  end-page: 188
  article-title: Microbial carbon use efficiency: accounting for population, community, and ecosystem‐scale controls over the fate of metabolized organic matter
  publication-title: Biogeochemistry
– volume: 6
  start-page: 1
  year: 2018a
  end-page: 15
  article-title: pH as a primary control in environmental microbiology: 1. Thermodynamic perspective
  publication-title: Frontiers in Environmental Science
– volume: 104
  start-page: 20404
  year: 2007
  end-page: 20409
  article-title: The power of species sorting: Local factors drive bacterial community composition over a wide range of spatial scales
  publication-title: Proceedings of the National Academy of Sciences
– volume: 20
  start-page: 1341
  year: 1974
  end-page: 1345
  article-title: The effects of temperature upon the reproduction and respiration of a marine obligate psychrophile
  publication-title: Canadian Journal of Microbiology
– volume: 4
  start-page: 131
  year: 1989
  end-page: 135
  article-title: Evolution of thermal sensitivity of ectotherm performance
  publication-title: Trends in Ecology & Evolution
– ident: e_1_2_8_52_1
  doi: 10.1038/s41467-019-11488-z
– ident: e_1_2_8_10_1
  doi: 10.1139/m74-207
– ident: e_1_2_8_37_1
  doi: 10.1890/06-1641
– ident: e_1_2_8_31_1
  doi: 10.1046/j.1462-2920.1999.00061.x
– ident: e_1_2_8_58_1
  doi: 10.1890/15-2110.1
– ident: e_1_2_8_27_1
  doi: 10.1016/0169-5347(89)90211-5
– ident: e_1_2_8_38_1
  doi: 10.1093/icb/icx041
– ident: e_1_2_8_43_1
  doi: 10.1007/s11104-016-3104-x
– ident: e_1_2_8_49_1
  doi: 10.1126/science.291.5512.2398
– ident: e_1_2_8_41_1
  doi: 10.3389/fmicb.2016.02083
– ident: e_1_2_8_20_1
  doi: 10.1038/nclimate1796
– ident: e_1_2_8_3_1
  doi: 10.1038/ngeo846
– ident: e_1_2_8_18_1
  doi: 10.1029/2004GB002390
– ident: e_1_2_8_55_1
  doi: 10.1016/j.soilbio.2019.03.008
– ident: e_1_2_8_26_1
  doi: 10.1038/nclimate2361
– volume: 6
  start-page: 1
  year: 2018
  ident: e_1_2_8_28_1
  article-title: pH as a primary control in environmental microbiology: 1. Thermodynamic perspective
  publication-title: Frontiers in Environmental Science
– ident: e_1_2_8_60_1
  doi: 10.1016/j.soilbio.2008.07.002
– ident: e_1_2_8_46_1
  doi: 10.1128/mBio.02293-19
– ident: e_1_2_8_25_1
  doi: 10.1002/bit.260320112
– ident: e_1_2_8_11_1
  doi: 10.1016/S0167-7012(02)00128-8
– ident: e_1_2_8_22_1
  doi: 10.1073/pnas.1800222115
– ident: e_1_2_8_62_1
  doi: 10.1111/j.1574-6941.2012.01389.x
– ident: e_1_2_8_42_1
  doi: 10.1111/1462-2920.15120
– ident: e_1_2_8_7_1
  doi: 10.1890/03-9000
– ident: e_1_2_8_16_1
  doi: 10.1016/j.soilbio.2011.05.018
– ident: e_1_2_8_48_1
  doi: 10.1111/ele.12916
– ident: e_1_2_8_9_1
  doi: 10.1128/AEM.69.6.3593-3599.2003
– ident: e_1_2_8_45_1
  doi: 10.1016/j.femsec.2004.10.002
– ident: e_1_2_8_51_1
  doi: 10.1134/S0001437010040089
– ident: e_1_2_8_35_1
  doi: 10.1016/j.soilbio.2015.01.025
– ident: e_1_2_8_8_1
  doi: 10.1016/j.soilbio.2020.107969
– ident: e_1_2_8_5_1
  doi: 10.1002/elsc.200900027
– ident: e_1_2_8_63_1
  doi: 10.1128/AEM.00405-07
– ident: e_1_2_8_12_1
  doi: 10.1038/ncomms11965
– ident: e_1_2_8_61_1
  doi: 10.1073/pnas.0707200104
– ident: e_1_2_8_56_1
  doi: 10.1111/ele.12113
– ident: e_1_2_8_17_1
  doi: 10.1038/s41467-020-17502-z
– ident: e_1_2_8_21_1
  doi: 10.1073/pnas.1805518115
– ident: e_1_2_8_33_1
  doi: 10.1111/evo.13946
– ident: e_1_2_8_64_1
  doi: 10.1111/gcb.14738
– ident: e_1_2_8_14_1
  doi: 10.1146/annurev.ecolsys.29.1.503
– ident: e_1_2_8_24_1
  doi: 10.1007/s10533-016-0191-y
– ident: e_1_2_8_23_1
  doi: 10.1016/j.soilbio.2018.09.036
– ident: e_1_2_8_47_1
– ident: e_1_2_8_2_1
  doi: 10.3389/fmicb.2014.00571
– ident: e_1_2_8_19_1
  doi: 10.1029/2018GB006077
– volume: 6
  start-page: 1
  year: 2018
  ident: e_1_2_8_29_1
  article-title: pH as a primary control in environmental microbiology: 2
  publication-title: Kinetic Perspective. Frontiers in Environmental Science
– ident: e_1_2_8_32_1
  doi: 10.1371/journal.pbio.3000894
– ident: e_1_2_8_30_1
  doi: 10.1111/j.1574-6941.2010.00912.x
– ident: e_1_2_8_53_1
  doi: 10.1016/S0038-0717(03)00015-4
– ident: e_1_2_8_4_1
  doi: 10.3354/ame043243
– ident: e_1_2_8_34_1
  doi: 10.1111/j.1365-2672.1996.tb03517.x
– ident: e_1_2_8_50_1
  doi: 10.1002/bit.260221202
– ident: e_1_2_8_67_1
  doi: 10.1016/j.soilbio.2018.10.006
– ident: e_1_2_8_36_1
  doi: 10.5194/bg-13-3319-2016
– ident: e_1_2_8_44_1
  doi: 10.1086/684590
– ident: e_1_2_8_39_1
  doi: 10.5194/bg-15-5929-2018
– ident: e_1_2_8_59_1
  doi: 10.1038/s41467-019-13109-1
– ident: e_1_2_8_54_1
  doi: 10.1016/0022-5193(81)90246-0
– ident: e_1_2_8_40_1
  doi: 10.1111/j.1469-8137.2012.04225.x
– ident: e_1_2_8_6_1
  doi: 10.1111/ele.12932
– ident: e_1_2_8_15_1
  doi: 10.1073/pnas.1015178108
– ident: e_1_2_8_13_1
  doi: 10.1098/rsif.2017.0502
– ident: e_1_2_8_66_1
  doi: 10.1038/s41396-019-0356-5
– ident: e_1_2_8_57_1
  doi: 10.1007/s10533-014-0058-z
– ident: e_1_2_8_65_1
  doi: 10.1029/2019GB006507
SSID ssj0012971
Score 2.5132716
Snippet Carbon use efficiency (CUE) is a key characteristic of microbial physiology and underlies community‐level responses to changing environments. Yet, we currently...
Carbon use efficiency (CUE) is a key characteristic of microbial physiology and underlies community-level responses to changing environments. Yet, we currently...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2123
SubjectTerms Bacteria
Carbon
carbon use efficiency
Changing environments
community
Environmental changes
Growth rate
maximum growth rate
microbe
Microbial activity
microbial physiology
Microorganisms
Physiology
Population growth
respiration
temperature
Temperature dependence
Variation
Title Systematic variation in the temperature dependence of bacterial carbon use efficiency
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fele.13840
https://www.proquest.com/docview/2570250521
https://www.proquest.com/docview/2550267034
https://www.proquest.com/docview/2636636593
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB5UEHzxFteLKD740mW3Odrik8iKiIp4wD4IJZmmIEpX3F1Bf72T9PBARXwLdErTTib5vnTyDcCuEFJknGOAVvBAZFIHcR6aII51HBlMuuXWwNm5Or4RJ33Zn4D9-ixMqQ_RbLi5yPDztQtwbYYfgpxm5XaXEz-h-dflajlAdNlIR9EyVpItoYguh7xfqQq5LJ7mzs9r0TvA_AhT_TpzNAe3dQ_L9JL79nhk2vj6Rbzxn68wD7MV_mQH5YBZgAlbLMJ0WZHyhVo9r2L9sgQ3V43GM3smQu09yO4KRoiROUGrSo2Z1WV00bJBzkyp_kyPQP1k6I7x0DLrdSrcIc9luD7qXR8eB1UNhgB5EncCkWSWWIcgnJMr1Lk0UkcYc1Q8MjJKdBJa8mgXsw4ikTFuiW8LiRlmWUjQagWmikFhV4EJE0lh4o7hytIIyQwaoyJMlMkJdWjVgr3aGSlW-uSuTMZDWvMU-lyp_1wt2GlMH0tRju-MNmqPplVcDlNXs8-BvrDbgu3mMkWU-02iCzsYOxvpynJ1uPjFRnGCakomnLrtXfxzR9Leac831v5uug4zoUue8VmDGzA1ehrbTUI_I7MFk6G42PKD_Q0WNQCx
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH5inSa4jMFAdCvDoB12SdXEP5JIu0woqBuFAxSplymKXxwJgVIELVL56_fs_KCggabdLOVZcfz87O9z7O8BfBVCipxz9NAI7olcZl5UBNqLoiwKNcZ-tTVwcqqGF-LXRE5W4HtzF6bSh2g33GxkuPnaBrjdkF6KcpqW-z4ngvIG3tqM3o5QnbXiUbSQVXRLKCLMAZ_UukL2HE9b9elq9Agxl4GqW2mO1uF308bqgMlVfz7TfXx4Jt_4vx_xAd7XEJT9qMbMBqyYchPeVUkpF1RKnJD14iNcnLcyz-yeOLVzIrssGYFGZjWtakFm1mTSRcOmBdOVADS9ArNbTTXmd4YZJ1Vh73luwfgoGR8OvToNg4c8jgaeiHNDxEMQ1CkUZoXUMgsx4qh4qGUYZ3FgyKk-5gNE4mPcEOUWEnPM84DQ1TZ0ymlpdoAJHUqho4HmytAgyTVqrUKMlS4IeGSqC98ab6RYS5TbTBnXaUNVqLtS111dOGhNbypdjr8Z9RqXpnVo3qU2bZ_FfYHfhf32MQWV_VOSlWY6tzbSZuYacPGKjeKE1pSMOTXb-fjlhqTJKHGFT_9uugerw_HJKB39PD3-DGuBPUvjDhH2oDO7nZtdAkMz_cWN-T8KpwP1
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB_UoviirR94autWfPAlRy77kYQ-Fb3DWiviB9yDELKzGxAlJ3on6F_v7OajWlopvi1klmx2ZnZ_s5n9DcCOEFIYzjFAK3ggjMyDpIh0kCR5EmtMe9XRwK9jdXAhDodyOAXfmrswFT9Ee-DmPMOv187Bb03xwslpVe72OMUn0_BBqDBxJr1_2nJH0T5WRVtCUbwc8WFNK-TSeNqurzej3wjzJU71G81gES6bIVb5JdfdyVh38ekP9sZ3fsNHWKgBKPteWcwnmLLlEsxWJSkfqdX3NNaPy3Bx1pI8sweKqL0K2VXJCDIyx2hV0zGzpo4uWjYqmK7on-kVmN9p6jG5t8x6ogp3y3MFzgf9872DoC7CECBPkzAQqbEUdggCOoXCvJBa5jEmHBWPtYzTPI0sqbSHJkSkaIxbCriFRIPGRIStVmGmHJV2DZjQsRQ6CTVXlkzEaNRaxZgqXRDsyFUHdhtlZFgTlLs6GTdZE6jQdGV-ujqw3YreVqwcfxPabDSa1Y55n7mifQ71Rb0OfG0fk0u5_yR5aUcTJyNdXa6QizdkFCespmTKadhexf8eSNY_6vvG-v-LbsHcyf4gO_px_HMD5iOXSOMzCDdhZnw3sZ8JCY31F2_xzxmLAq0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+variation+in+the+temperature+dependence+of+bacterial+carbon+use+efficiency&rft.jtitle=Ecology+letters&rft.au=Smith%2C+Thomas+P&rft.au=Clegg%2C+Tom&rft.au=Bell%2C+Thomas&rft.au=Pawar%2C+Samr%C4%81t&rft.date=2021-10-01&rft.issn=1461-0248&rft.eissn=1461-0248&rft.volume=24&rft.issue=10&rft.spage=2123&rft_id=info:doi/10.1111%2Fele.13840&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon