Systematic variation in the temperature dependence of bacterial carbon use efficiency
Carbon use efficiency (CUE) is a key characteristic of microbial physiology and underlies community‐level responses to changing environments. Yet, we currently lack general empirical insights into variation in microbial CUE at the level of individual taxa. Here, through experiments with 29 strains o...
Saved in:
Published in | Ecology letters Vol. 24; no. 10; pp. 2123 - 2133 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Paris
Blackwell Publishing Ltd
01.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Carbon use efficiency (CUE) is a key characteristic of microbial physiology and underlies community‐level responses to changing environments. Yet, we currently lack general empirical insights into variation in microbial CUE at the level of individual taxa. Here, through experiments with 29 strains of environmentally isolated bacteria, we find that bacterial CUE typically responds either positively to temperature, or has no discernible response, within biologically meaningful temperature ranges. Using a global data synthesis, we show that these results are generalisable across most culturable groups of bacteria. This variation in the thermal responses of bacterial CUE is taxonomically structured, and stems from the fact that relative to respiration rates, bacterial population growth rates typically respond more strongly to temperature, and are also subject to weaker evolutionary constraints. Our results provide new insights into microbial physiology, and a basis for more accurately modelling the effects of thermal fluctuations on complex microbial communities.
Carbon use efficiency (CUE) is a key characteristic of microbial physiology and underlies community‐level responses to changing environments, however we currently lack an understanding of how CUE varies with temperature. Combining new empirical data with those of a data synthesis, we find that bacterial CUE typically responds either positively to temperature, or has no discernible response, within biologically meaningful temperature ranges. |
---|---|
AbstractList | Carbon use efficiency (CUE) is a key characteristic of microbial physiology and underlies community‐level responses to changing environments. Yet, we currently lack general empirical insights into variation in microbial CUE at the level of individual taxa. Here, through experiments with 29 strains of environmentally isolated bacteria, we find that bacterial CUE typically responds either positively to temperature, or has no discernible response, within biologically meaningful temperature ranges. Using a global data synthesis, we show that these results are generalisable across most culturable groups of bacteria. This variation in the thermal responses of bacterial CUE is taxonomically structured, and stems from the fact that relative to respiration rates, bacterial population growth rates typically respond more strongly to temperature, and are also subject to weaker evolutionary constraints. Our results provide new insights into microbial physiology, and a basis for more accurately modelling the effects of thermal fluctuations on complex microbial communities. Carbon use efficiency (CUE) is a key characteristic of microbial physiology and underlies community‐level responses to changing environments. Yet, we currently lack general empirical insights into variation in microbial CUE at the level of individual taxa. Here, through experiments with 29 strains of environmentally isolated bacteria, we find that bacterial CUE typically responds either positively to temperature, or has no discernible response, within biologically meaningful temperature ranges. Using a global data synthesis, we show that these results are generalisable across most culturable groups of bacteria. This variation in the thermal responses of bacterial CUE is taxonomically structured, and stems from the fact that relative to respiration rates, bacterial population growth rates typically respond more strongly to temperature, and are also subject to weaker evolutionary constraints. Our results provide new insights into microbial physiology, and a basis for more accurately modelling the effects of thermal fluctuations on complex microbial communities. Carbon use efficiency (CUE) is a key characteristic of microbial physiology and underlies community‐level responses to changing environments. Yet, we currently lack general empirical insights into variation in microbial CUE at the level of individual taxa. Here, through experiments with 29 strains of environmentally isolated bacteria, we find that bacterial CUE typically responds either positively to temperature, or has no discernible response, within biologically meaningful temperature ranges. Using a global data synthesis, we show that these results are generalisable across most culturable groups of bacteria. This variation in the thermal responses of bacterial CUE is taxonomically structured, and stems from the fact that relative to respiration rates, bacterial population growth rates typically respond more strongly to temperature, and are also subject to weaker evolutionary constraints. Our results provide new insights into microbial physiology, and a basis for more accurately modelling the effects of thermal fluctuations on complex microbial communities. Carbon use efficiency (CUE) is a key characteristic of microbial physiology and underlies community‐level responses to changing environments, however we currently lack an understanding of how CUE varies with temperature. Combining new empirical data with those of a data synthesis, we find that bacterial CUE typically responds either positively to temperature, or has no discernible response, within biologically meaningful temperature ranges. Carbon use efficiency (CUE) is a key characteristic of microbial physiology and underlies community-level responses to changing environments. Yet, we currently lack general empirical insights into variation in microbial CUE at the level of individual taxa. Here, through experiments with 29 strains of environmentally isolated bacteria, we find that bacterial CUE typically responds either positively to temperature, or has no discernible response, within biologically meaningful temperature ranges. Using a global data synthesis, we show that these results are generalisable across most culturable groups of bacteria. This variation in the thermal responses of bacterial CUE is taxonomically structured, and stems from the fact that relative to respiration rates, bacterial population growth rates typically respond more strongly to temperature, and are also subject to weaker evolutionary constraints. Our results provide new insights into microbial physiology, and a basis for more accurately modelling the effects of thermal fluctuations on complex microbial communities.Carbon use efficiency (CUE) is a key characteristic of microbial physiology and underlies community-level responses to changing environments. Yet, we currently lack general empirical insights into variation in microbial CUE at the level of individual taxa. Here, through experiments with 29 strains of environmentally isolated bacteria, we find that bacterial CUE typically responds either positively to temperature, or has no discernible response, within biologically meaningful temperature ranges. Using a global data synthesis, we show that these results are generalisable across most culturable groups of bacteria. This variation in the thermal responses of bacterial CUE is taxonomically structured, and stems from the fact that relative to respiration rates, bacterial population growth rates typically respond more strongly to temperature, and are also subject to weaker evolutionary constraints. Our results provide new insights into microbial physiology, and a basis for more accurately modelling the effects of thermal fluctuations on complex microbial communities. |
Author | Bardgett, Richard Bell, Thomas Pawar, Samrāt Clegg, Tom Smith, Thomas P. |
Author_xml | – sequence: 1 givenname: Thomas P. orcidid: 0000-0002-4038-9722 surname: Smith fullname: Smith, Thomas P. email: thomas.smith1@imperial.ac.uk organization: Imperial College London – sequence: 2 givenname: Tom surname: Clegg fullname: Clegg, Tom organization: Imperial College London – sequence: 3 givenname: Thomas surname: Bell fullname: Bell, Thomas organization: Imperial College London – sequence: 4 givenname: Samrāt surname: Pawar fullname: Pawar, Samrāt organization: Imperial College London – sequence: 5 givenname: Richard surname: Bardgett fullname: Bardgett, Richard |
BookMark | eNqF0c9LwzAUB_AgCm7Tg_9BwIsetuVHkzZHGfMHDDw4wVtJX18xo2tn0ir7742beBioIZAH-XwfJG9Ijpu2QUIuOJvwuKZY44TLLGFHZMATzcdMJNnxTy1fTskwhBVjXJiUD8jz0zZ0uLadA_puvYtF21DX0O4VabzYoLdd75GWuMGmxAaQthUtLHQYdU3B-iIm-oAUq8qBi2R7Rk4qWwc8_z5HZHk7X87ux4vHu4fZzWIM0mRsnJgShVIJT0WlwVaqUDaFTIKWaaFSY41AMJxDyQA0NxITbRIFJZSl0EKOyNW-7ca3bz2GLl-7AFjXtsG2D7nQUsetjPyfKsWETplMIr08oKu29018R1QpE4opwaO63ivwbQgeq3zj3dr6bc5Z_jWKPI4i340i2umBBdftfrrz1tV_JT5cjdvfW-fzxXyf-AT8YZux |
CitedBy_id | crossref_primary_10_1111_gcb_16600 crossref_primary_10_1016_j_pocean_2024_103316 crossref_primary_10_1093_icb_icad060 crossref_primary_10_1038_s41598_024_82497_2 crossref_primary_10_3390_w14081203 crossref_primary_10_1038_s41561_024_01393_6 crossref_primary_10_1073_pnas_2302190120 crossref_primary_10_1111_mmi_15236 crossref_primary_10_1111_ele_14093 crossref_primary_10_1086_731997 crossref_primary_10_1016_j_catena_2024_108145 crossref_primary_10_3390_sci6020028 crossref_primary_10_1002_lno_12740 crossref_primary_10_1016_j_jtherbio_2025_104063 crossref_primary_10_1038_s42003_022_03030_7 crossref_primary_10_3389_fmars_2023_1331680 crossref_primary_10_1016_j_agee_2025_109582 crossref_primary_10_1038_s41467_024_50593_6 crossref_primary_10_7554_eLife_80867 crossref_primary_10_1016_j_soilbio_2024_109315 crossref_primary_10_1016_j_scitotenv_2023_163236 crossref_primary_10_1038_s41586_024_07850_x crossref_primary_10_7554_eLife_84662 crossref_primary_10_1007_s42832_022_0137_3 crossref_primary_10_1007_s11356_021_18407_0 crossref_primary_10_1038_s41467_024_52160_5 crossref_primary_10_1111_gcb_16971 crossref_primary_10_1016_j_soilbio_2024_109394 crossref_primary_10_1111_gcb_17465 crossref_primary_10_1111_gcb_17565 crossref_primary_10_1016_j_catena_2024_108632 |
Cites_doi | 10.1038/s41467-019-11488-z 10.1139/m74-207 10.1890/06-1641 10.1046/j.1462-2920.1999.00061.x 10.1890/15-2110.1 10.1016/0169-5347(89)90211-5 10.1093/icb/icx041 10.1007/s11104-016-3104-x 10.1126/science.291.5512.2398 10.3389/fmicb.2016.02083 10.1038/nclimate1796 10.1038/ngeo846 10.1029/2004GB002390 10.1016/j.soilbio.2019.03.008 10.1038/nclimate2361 10.1016/j.soilbio.2008.07.002 10.1128/mBio.02293-19 10.1002/bit.260320112 10.1016/S0167-7012(02)00128-8 10.1073/pnas.1800222115 10.1111/j.1574-6941.2012.01389.x 10.1111/1462-2920.15120 10.1890/03-9000 10.1016/j.soilbio.2011.05.018 10.1111/ele.12916 10.1128/AEM.69.6.3593-3599.2003 10.1016/j.femsec.2004.10.002 10.1134/S0001437010040089 10.1016/j.soilbio.2015.01.025 10.1016/j.soilbio.2020.107969 10.1002/elsc.200900027 10.1128/AEM.00405-07 10.1038/ncomms11965 10.1073/pnas.0707200104 10.1111/ele.12113 10.1038/s41467-020-17502-z 10.1073/pnas.1805518115 10.1111/evo.13946 10.1111/gcb.14738 10.1146/annurev.ecolsys.29.1.503 10.1007/s10533-016-0191-y 10.1016/j.soilbio.2018.09.036 10.3389/fmicb.2014.00571 10.1029/2018GB006077 10.1371/journal.pbio.3000894 10.1111/j.1574-6941.2010.00912.x 10.1016/S0038-0717(03)00015-4 10.3354/ame043243 10.1111/j.1365-2672.1996.tb03517.x 10.1002/bit.260221202 10.1016/j.soilbio.2018.10.006 10.5194/bg-13-3319-2016 10.1086/684590 10.5194/bg-15-5929-2018 10.1038/s41467-019-13109-1 10.1016/0022-5193(81)90246-0 10.1111/j.1469-8137.2012.04225.x 10.1111/ele.12932 10.1073/pnas.1015178108 10.1098/rsif.2017.0502 10.1038/s41396-019-0356-5 10.1007/s10533-014-0058-z 10.1029/2019GB006507 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by John Wiley & Sons Ltd. 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 The Authors. Ecology Letters published by John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2021 The Authors. published by John Wiley & Sons Ltd. – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 The Authors. Ecology Letters published by John Wiley & Sons Ltd. |
DBID | 24P AAYXX CITATION 7SN 7SS 7U9 C1K H94 M7N 7X8 7S9 L.6 |
DOI | 10.1111/ele.13840 |
DatabaseName | Wiley Online Library Open Access CrossRef Ecology Abstracts Entomology Abstracts (Full archive) Virology and AIDS Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts AIDS and Cancer Research Abstracts Virology and AIDS Abstracts Ecology Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef MEDLINE - Academic Entomology Abstracts |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1461-0248 |
EndPage | 2133 |
ExternalDocumentID | 10_1111_ele_13840 ELE13840 |
Genre | letter Correspondence |
GrantInformation_xml | – fundername: Natural Environment Research Council funderid: NE/M020843/1; NE/S000348/1 – fundername: Biotechnology and Biological Sciences Research Council funderid: BB/J014575/1 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29G 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOD ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ N~3 O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ UB1 W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 ZY4 ZZTAW ~02 ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7SN 7SS 7U9 AAMMB AEFGJ AGXDD AIDQK AIDYY C1K H94 M7N 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c3980-49de2554172f6caf5b5a7c83c637b579a92ec911cd0cc6193e46945cdcdd2623 |
IEDL.DBID | DR2 |
ISSN | 1461-023X 1461-0248 |
IngestDate | Fri Jul 11 18:33:37 EDT 2025 Fri Jul 11 05:46:14 EDT 2025 Fri Jul 25 10:42:24 EDT 2025 Tue Jul 01 02:29:51 EDT 2025 Thu Apr 24 23:01:31 EDT 2025 Wed Jan 22 16:29:24 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3980-49de2554172f6caf5b5a7c83c637b579a92ec911cd0cc6193e46945cdcdd2623 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Correspondence-1 |
ORCID | 0000-0002-4038-9722 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fele.13840 |
PQID | 2570250521 |
PQPubID | 32390 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2636636593 proquest_miscellaneous_2550267034 proquest_journals_2570250521 crossref_primary_10_1111_ele_13840 crossref_citationtrail_10_1111_ele_13840 wiley_primary_10_1111_ele_13840_ELE13840 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2021 2021-10-00 20211001 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
PublicationDecade | 2020 |
PublicationPlace | Paris |
PublicationPlace_xml | – name: Paris |
PublicationTitle | Ecology letters |
PublicationYear | 2021 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2007; 104 2013; 3 2019; 10 2019; 13 1988; 32 2016; 187 2020; 11 2019; 128 2007; 73 2003; 52 1981; 88 2014; 5 2014; 4 2013; 16 2015; 83 2001; 291 2019; 25 2016; 86 2010; 3 2010; 73 2020b; 74 2004; 85 1998; 29 2012; 81 1989; 4 2019; 33 2015; 122 1980; 22 2003; 35 2018b; 6 2016; 127 2020; 34 1999; 1 2018; 21 2016; 13 2017; 414 2012; 196 2016; 7 2005; 19 2011; 108 1974; 20 2017; 14 2006; 43 2020 2018; 115 2017; 57 2020; 150 2018a; 6 2003; 69 2005; 52 2009; 9 2011; 43 1996; 81 2020; 22 2020a; 18 2008; 40 2007; 88 2018; 15 2019; 134 2010; 50 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Jin Q. (e_1_2_8_28_1) 2018; 6 Jin Q. (e_1_2_8_29_1) 2018; 6 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 128 start-page: 79 year: 2019 end-page: 88 article-title: Clarifying the interpretation of carbon use efficiency in soil through methods comparison publication-title: Soil Biology and Biochemistry – volume: 88 start-page: 719 year: 1981 end-page: 731 article-title: Non‐linear regression of biological temperature‐dependent rate models based on absolute reaction‐rate theory publication-title: Journal of theoretical biology – volume: 108 start-page: 10591 year: 2011 end-page: 10596 article-title: Systematic variation in the temperature dependence of physiological and ecological traits publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 88 start-page: 817 year: 2007 end-page: 822 article-title: Resource limitation of bacterial production distorts the tem perature dependence of oceanic carbon cycling publication-title: Ecology – volume: 115 start-page: E7361 year: 2018 end-page: E7368 article-title: Role of carbon allocation efficiency in the temperature dependence of autotroph growth rates publication-title: Proceedings of the National Academy of Sciences – volume: 10 start-page: 5124 year: 2019 article-title: Community‐level respiration of prokaryotic microbes may rise with global warming publication-title: Nature Communications – volume: 15 start-page: 5929 issue: 19 year: 2018 end-page: 5949 article-title: Reviews and syntheses: Carbon use efficiency from organisms to ecosystems – definitions, theories, and empirical evidence publication-title: Biogeosciences – volume: 86 start-page: 172 year: 2016 end-page: 189 article-title: Stoichiometry of microbial carbon use efficiency in soils publication-title: Ecological Monographs – volume: 9 start-page: 285 year: 2009 end-page: 290 article-title: The Auxiliary Substrate Concept: From simple considerations to heuristically valuable knowledge publication-title: Engineering in Life Sciences – volume: 150 start-page: 107969 year: 2020 article-title: Physical mechanisms for soil moisture effects on microbial carbon‐use efficiency in a sandy loam soil in the western United States publication-title: Soil Biology and Biochemistry – volume: 187 start-page: E41 year: 2016 end-page: E52 article-title: Real versus artificial variation in the thermal sensitivity of biological traits publication-title: The American Naturalist – volume: 134 start-page: 25 year: 2019 end-page: 35 article-title: Testing the dependence of microbial growth and carbon use efficiency on nitrogen availability, pH, and organic matter quality publication-title: Soil Biology and Biochemistry – volume: 85 start-page: 1771 year: 2004 end-page: 1789 article-title: Toward a metabolic theory of ecology publication-title: Ecology – volume: 32 start-page: 86 year: 1988 end-page: 94 article-title: Biochemical limits to microbial growth yields: An analysis of mixed subtrate utilization publication-title: Biotechnology and Bioengineering – volume: 10 start-page: 3568 year: 2019 article-title: Microbial carbon use efficiency predicted from genome‐scale metabolic models publication-title: Nature Communications – volume: 73 start-page: 6722 year: 2007 end-page: 6729 article-title: New and fast method to quantify respiration rates of bacterial and plankton communities in freshwater ecosystems by using optical oxygen sensor spots publication-title: Applied and Environmental Microbiology – volume: 52 start-page: 19 year: 2003 end-page: 28 article-title: Direct estimate of active bacteria: CTC use and limitations publication-title: Journal of Microbiological Methods – volume: 43 start-page: 243 year: 2006 end-page: 254 article-title: Temperature regulation of bacterial production, respiration, and growth efficiency in a temperate salt‐marsh estuary publication-title: Aquatic Microbial Ecology – volume: 18 year: 2020a article-title: Adaptive evolution shapes the present‐day distribution of the thermal sensitivity of population growth rate publication-title: PLOS Biology – volume: 22 start-page: 2457 issue: 12 year: 1980 end-page: 2514 article-title: Application of macroscopic principles to microbial metabolism publication-title: Biotechnology and Bioengineering – volume: 115 start-page: 10989 year: 2018 end-page: 10994 article-title: Changes in temperature alter the relationship between biodiversity and ecosystem functioning publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 13 start-page: 3319 year: 2016 end-page: 3329 article-title: Temperature‐mediated changes in microbial carbon use efficiency and 13C discrimination publication-title: Biogeosciences – volume: 128 start-page: 45 year: 2019 end-page: 55 article-title: Growth explains microbial carbon use efficiency across soils differing in land use and geology publication-title: Soil Biology and Biochemistry – volume: 81 start-page: 610 year: 2012 end-page: 617 article-title: A theoretical reassessment of microbial maintenance and implications for microbial ecology modeling publication-title: FEMS Microbiology Ecology – volume: 21 start-page: 1 issue: 5 year: 2018 end-page: 10 article-title: Metabolic traits predict the effects of warming on phytoplankton competition publication-title: Ecology Letters – volume: 122 start-page: 175 year: 2015 end-page: 190 article-title: Scaling microbial biomass, metabolism and resource supply publication-title: Biogeochemistry – volume: 1 start-page: 457 year: 1999 end-page: 467 article-title: Effect of temperature on sulphate reduction, growth rate and growth yield in five psychrophilic sulphate‐reducing bacteria from Arctic sediments publication-title: Environmental Microbiology – volume: 414 start-page: 113 year: 2017 end-page: 125 article-title: The effect of temperature and substrate quality on the carbon use efficiency of saprotrophic decomposition publication-title: Plant and Soil – volume: 35 start-page: 549 year: 2003 end-page: 563 article-title: The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: A theoretical model publication-title: Soil Biology and Biochemistry – volume: 25 start-page: 3354 year: 2019 end-page: 3364 article-title: Increasing microbial carbon use efficiency with warming predicts soil heterotrophic respiration globally publication-title: Global Change Biology – volume: 5 start-page: 1 year: 2014 end-page: 9 article-title: Modeling adaptation of carbon use efficiency in microbial communities publication-title: Frontiers in Microbiology – volume: 14 start-page: 20170502 year: 2017 article-title: Mathematical modelling of microbes: Metabolism, gene expression and growth publication-title: Journal of the Royal Society Interface – volume: 83 start-page: 184 year: 2015 end-page: 199 article-title: Microbial hotspots and hot moments in soil: Concept & review publication-title: Soil Biology and Biochemistry – volume: 33 start-page: 620 year: 2019 end-page: 648 article-title: A Mechanistic model of microbially mediated soil biogeochemical processes: A reality check publication-title: Global Biogeochemical Cycles – volume: 57 start-page: 103 year: 2017 end-page: 111 article-title: Scaling from metabolism to population growth rate to understand how acclimation temperature alters thermal performance publication-title: Integrative and Comparative Biology – volume: 7 start-page: 1 year: 2016 end-page: 10 article-title: Carbon availability modifies temperature responses of heterotrophic microbial respiration, carbon uptake affinity, and stable carbon isotope discrimination publication-title: Frontiers in Microbiology – volume: 22 start-page: 3494 year: 2020 end-page: 3504 article-title: Trait‐based approach to bacterial growth efficiency publication-title: Environmental Microbiology – volume: 29 start-page: 503 year: 1998 end-page: 541 article-title: Bacterial growth efficiency in natural aquatic systems publication-title: Annual Review of Ecology and Systematics – volume: 81 start-page: 341 year: 1996 end-page: 347 article-title: Growth, respiration and survival of Legionella pneumophila at high temperatures publication-title: Journal of Applied Bacteriology – volume: 291 start-page: 2398 year: 2001 end-page: 2400 article-title: Biogenic carbon cycling in the upper Ocean: Effects of microbial respiration publication-title: Science – volume: 16 start-page: 930 year: 2013 end-page: 939 article-title: Carbon use efficiency of microbial communities: Stoichiometry, methodology and modelling publication-title: Ecology Letters – volume: 52 start-page: 49 year: 2005 end-page: 58 article-title: Comparison of temperature effects on soil respiration and bacterial and fungal growth rates publication-title: FEMS Microbiology Ecology – volume: 19 start-page: 1 issue: 4 year: 2005 end-page: 16 article-title: Empirical and mechanistic models for the particle export ratio publication-title: Global Biogeochemical Cycles – volume: 3 start-page: 395 year: 2013 end-page: 398 article-title: The temperature response of soil microbial efficiency and its feedback to climate publication-title: Nature Climate Change – volume: 6 start-page: 1 year: 2018b end-page: 16 article-title: pH as a primary control in environmental microbiology: 2 publication-title: Kinetic Perspective. Frontiers in Environmental Science – volume: 21 start-page: 516 year: 2018 end-page: 524 article-title: Elevated success of multispecies bacterial invasions impacts community composition during ecological succession publication-title: Ecology Letters – volume: 69 start-page: 3593 year: 2003 end-page: 3599 article-title: A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil publication-title: Applied and Environmental Microbiology – volume: 50 start-page: 522 year: 2010 end-page: 530 article-title: Relationships between the cell volume and the carbon content of bacteria publication-title: Oceanology – volume: 11 start-page: 3684 year: 2020 article-title: Microbial diversity drives carbon use efficiency in a model soil publication-title: Nature Communications – volume: 74 start-page: 775 issue: 4 year: 2020b end-page: 790 article-title: Phytoplankton thermal responses adapt in the absence of hard thermodynamic constraints publication-title: Evolution – volume: 4 start-page: 903 year: 2014 end-page: 906 article-title: Accelerated microbial turnover but constant growth efficiency with warming in soil publication-title: Nature Climate Change – volume: 34 start-page: 1 year: 2020 end-page: 12 article-title: Compensatory thermal adaptation of soil microbial respiration rates in global croplands publication-title: Global Biogeochemical Cycles – volume: 11 start-page: e02293 year: 2020 end-page: e2319 article-title: Carbon use efficiency and its temperature sensitivity Covary in soil bacteria publication-title: mBio – volume: 7 start-page: 11965 year: 2016 article-title: Microbial interactions lead to rapid micro‐scale successions on model marine particles publication-title: Nature Communications – volume: 40 start-page: 2722 year: 2008 end-page: 2728 article-title: Patterns of substrate utilization during long‐term incubations at different temperatures publication-title: Soil Biology and Biochemistry – year: 2020 – volume: 196 start-page: 79 year: 2012 end-page: 91 article-title: Environmental and stoichio metric controls on microbial carbon‐use efficiency in soils publication-title: New Phytologist – volume: 73 start-page: 430 year: 2010 end-page: 440 article-title: The effect of resource quantity and resource stoichiometry on microbial carbon‐use‐efficiency publication-title: FEMS Microbiology Ecology – volume: 43 start-page: 2023 year: 2011 end-page: 2031 article-title: Effect of temperature on metabolic activity of intact microbial communities: Evidence for altered metabolic pathway activity but not for increased maintenance respiration and reduced carbon use efficiency publication-title: Soil Biology and Biochemistry – volume: 13 start-page: 1602 year: 2019 end-page: 1617 article-title: Interactions in self‐assembled microbial communities saturate with diversity publication-title: ISME Journal – volume: 3 start-page: 336 year: 2010 end-page: 340 article-title: Soil‐carbon response to warming dependent on microbial physiology publication-title: Nature Geoscience – volume: 127 start-page: 173 year: 2016 end-page: 188 article-title: Microbial carbon use efficiency: accounting for population, community, and ecosystem‐scale controls over the fate of metabolized organic matter publication-title: Biogeochemistry – volume: 6 start-page: 1 year: 2018a end-page: 15 article-title: pH as a primary control in environmental microbiology: 1. Thermodynamic perspective publication-title: Frontiers in Environmental Science – volume: 104 start-page: 20404 year: 2007 end-page: 20409 article-title: The power of species sorting: Local factors drive bacterial community composition over a wide range of spatial scales publication-title: Proceedings of the National Academy of Sciences – volume: 20 start-page: 1341 year: 1974 end-page: 1345 article-title: The effects of temperature upon the reproduction and respiration of a marine obligate psychrophile publication-title: Canadian Journal of Microbiology – volume: 4 start-page: 131 year: 1989 end-page: 135 article-title: Evolution of thermal sensitivity of ectotherm performance publication-title: Trends in Ecology & Evolution – ident: e_1_2_8_52_1 doi: 10.1038/s41467-019-11488-z – ident: e_1_2_8_10_1 doi: 10.1139/m74-207 – ident: e_1_2_8_37_1 doi: 10.1890/06-1641 – ident: e_1_2_8_31_1 doi: 10.1046/j.1462-2920.1999.00061.x – ident: e_1_2_8_58_1 doi: 10.1890/15-2110.1 – ident: e_1_2_8_27_1 doi: 10.1016/0169-5347(89)90211-5 – ident: e_1_2_8_38_1 doi: 10.1093/icb/icx041 – ident: e_1_2_8_43_1 doi: 10.1007/s11104-016-3104-x – ident: e_1_2_8_49_1 doi: 10.1126/science.291.5512.2398 – ident: e_1_2_8_41_1 doi: 10.3389/fmicb.2016.02083 – ident: e_1_2_8_20_1 doi: 10.1038/nclimate1796 – ident: e_1_2_8_3_1 doi: 10.1038/ngeo846 – ident: e_1_2_8_18_1 doi: 10.1029/2004GB002390 – ident: e_1_2_8_55_1 doi: 10.1016/j.soilbio.2019.03.008 – ident: e_1_2_8_26_1 doi: 10.1038/nclimate2361 – volume: 6 start-page: 1 year: 2018 ident: e_1_2_8_28_1 article-title: pH as a primary control in environmental microbiology: 1. Thermodynamic perspective publication-title: Frontiers in Environmental Science – ident: e_1_2_8_60_1 doi: 10.1016/j.soilbio.2008.07.002 – ident: e_1_2_8_46_1 doi: 10.1128/mBio.02293-19 – ident: e_1_2_8_25_1 doi: 10.1002/bit.260320112 – ident: e_1_2_8_11_1 doi: 10.1016/S0167-7012(02)00128-8 – ident: e_1_2_8_22_1 doi: 10.1073/pnas.1800222115 – ident: e_1_2_8_62_1 doi: 10.1111/j.1574-6941.2012.01389.x – ident: e_1_2_8_42_1 doi: 10.1111/1462-2920.15120 – ident: e_1_2_8_7_1 doi: 10.1890/03-9000 – ident: e_1_2_8_16_1 doi: 10.1016/j.soilbio.2011.05.018 – ident: e_1_2_8_48_1 doi: 10.1111/ele.12916 – ident: e_1_2_8_9_1 doi: 10.1128/AEM.69.6.3593-3599.2003 – ident: e_1_2_8_45_1 doi: 10.1016/j.femsec.2004.10.002 – ident: e_1_2_8_51_1 doi: 10.1134/S0001437010040089 – ident: e_1_2_8_35_1 doi: 10.1016/j.soilbio.2015.01.025 – ident: e_1_2_8_8_1 doi: 10.1016/j.soilbio.2020.107969 – ident: e_1_2_8_5_1 doi: 10.1002/elsc.200900027 – ident: e_1_2_8_63_1 doi: 10.1128/AEM.00405-07 – ident: e_1_2_8_12_1 doi: 10.1038/ncomms11965 – ident: e_1_2_8_61_1 doi: 10.1073/pnas.0707200104 – ident: e_1_2_8_56_1 doi: 10.1111/ele.12113 – ident: e_1_2_8_17_1 doi: 10.1038/s41467-020-17502-z – ident: e_1_2_8_21_1 doi: 10.1073/pnas.1805518115 – ident: e_1_2_8_33_1 doi: 10.1111/evo.13946 – ident: e_1_2_8_64_1 doi: 10.1111/gcb.14738 – ident: e_1_2_8_14_1 doi: 10.1146/annurev.ecolsys.29.1.503 – ident: e_1_2_8_24_1 doi: 10.1007/s10533-016-0191-y – ident: e_1_2_8_23_1 doi: 10.1016/j.soilbio.2018.09.036 – ident: e_1_2_8_47_1 – ident: e_1_2_8_2_1 doi: 10.3389/fmicb.2014.00571 – ident: e_1_2_8_19_1 doi: 10.1029/2018GB006077 – volume: 6 start-page: 1 year: 2018 ident: e_1_2_8_29_1 article-title: pH as a primary control in environmental microbiology: 2 publication-title: Kinetic Perspective. Frontiers in Environmental Science – ident: e_1_2_8_32_1 doi: 10.1371/journal.pbio.3000894 – ident: e_1_2_8_30_1 doi: 10.1111/j.1574-6941.2010.00912.x – ident: e_1_2_8_53_1 doi: 10.1016/S0038-0717(03)00015-4 – ident: e_1_2_8_4_1 doi: 10.3354/ame043243 – ident: e_1_2_8_34_1 doi: 10.1111/j.1365-2672.1996.tb03517.x – ident: e_1_2_8_50_1 doi: 10.1002/bit.260221202 – ident: e_1_2_8_67_1 doi: 10.1016/j.soilbio.2018.10.006 – ident: e_1_2_8_36_1 doi: 10.5194/bg-13-3319-2016 – ident: e_1_2_8_44_1 doi: 10.1086/684590 – ident: e_1_2_8_39_1 doi: 10.5194/bg-15-5929-2018 – ident: e_1_2_8_59_1 doi: 10.1038/s41467-019-13109-1 – ident: e_1_2_8_54_1 doi: 10.1016/0022-5193(81)90246-0 – ident: e_1_2_8_40_1 doi: 10.1111/j.1469-8137.2012.04225.x – ident: e_1_2_8_6_1 doi: 10.1111/ele.12932 – ident: e_1_2_8_15_1 doi: 10.1073/pnas.1015178108 – ident: e_1_2_8_13_1 doi: 10.1098/rsif.2017.0502 – ident: e_1_2_8_66_1 doi: 10.1038/s41396-019-0356-5 – ident: e_1_2_8_57_1 doi: 10.1007/s10533-014-0058-z – ident: e_1_2_8_65_1 doi: 10.1029/2019GB006507 |
SSID | ssj0012971 |
Score | 2.5132716 |
Snippet | Carbon use efficiency (CUE) is a key characteristic of microbial physiology and underlies community‐level responses to changing environments. Yet, we currently... Carbon use efficiency (CUE) is a key characteristic of microbial physiology and underlies community-level responses to changing environments. Yet, we currently... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2123 |
SubjectTerms | Bacteria Carbon carbon use efficiency Changing environments community Environmental changes Growth rate maximum growth rate microbe Microbial activity microbial physiology Microorganisms Physiology Population growth respiration temperature Temperature dependence Variation |
Title | Systematic variation in the temperature dependence of bacterial carbon use efficiency |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fele.13840 https://www.proquest.com/docview/2570250521 https://www.proquest.com/docview/2550267034 https://www.proquest.com/docview/2636636593 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB5UEHzxFteLKD740mW3Odrik8iKiIp4wD4IJZmmIEpX3F1Bf72T9PBARXwLdErTTib5vnTyDcCuEFJknGOAVvBAZFIHcR6aII51HBlMuuXWwNm5Or4RJ33Zn4D9-ixMqQ_RbLi5yPDztQtwbYYfgpxm5XaXEz-h-dflajlAdNlIR9EyVpItoYguh7xfqQq5LJ7mzs9r0TvA_AhT_TpzNAe3dQ_L9JL79nhk2vj6Rbzxn68wD7MV_mQH5YBZgAlbLMJ0WZHyhVo9r2L9sgQ3V43GM3smQu09yO4KRoiROUGrSo2Z1WV00bJBzkyp_kyPQP1k6I7x0DLrdSrcIc9luD7qXR8eB1UNhgB5EncCkWSWWIcgnJMr1Lk0UkcYc1Q8MjJKdBJa8mgXsw4ikTFuiW8LiRlmWUjQagWmikFhV4EJE0lh4o7hytIIyQwaoyJMlMkJdWjVgr3aGSlW-uSuTMZDWvMU-lyp_1wt2GlMH0tRju-MNmqPplVcDlNXs8-BvrDbgu3mMkWU-02iCzsYOxvpynJ1uPjFRnGCakomnLrtXfxzR9Leac831v5uug4zoUue8VmDGzA1ehrbTUI_I7MFk6G42PKD_Q0WNQCx |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH5inSa4jMFAdCvDoB12SdXEP5JIu0woqBuFAxSplymKXxwJgVIELVL56_fs_KCggabdLOVZcfz87O9z7O8BfBVCipxz9NAI7olcZl5UBNqLoiwKNcZ-tTVwcqqGF-LXRE5W4HtzF6bSh2g33GxkuPnaBrjdkF6KcpqW-z4ngvIG3tqM3o5QnbXiUbSQVXRLKCLMAZ_UukL2HE9b9elq9Agxl4GqW2mO1uF308bqgMlVfz7TfXx4Jt_4vx_xAd7XEJT9qMbMBqyYchPeVUkpF1RKnJD14iNcnLcyz-yeOLVzIrssGYFGZjWtakFm1mTSRcOmBdOVADS9ArNbTTXmd4YZJ1Vh73luwfgoGR8OvToNg4c8jgaeiHNDxEMQ1CkUZoXUMgsx4qh4qGUYZ3FgyKk-5gNE4mPcEOUWEnPM84DQ1TZ0ymlpdoAJHUqho4HmytAgyTVqrUKMlS4IeGSqC98ab6RYS5TbTBnXaUNVqLtS111dOGhNbypdjr8Z9RqXpnVo3qU2bZ_FfYHfhf32MQWV_VOSlWY6tzbSZuYacPGKjeKE1pSMOTXb-fjlhqTJKHGFT_9uugerw_HJKB39PD3-DGuBPUvjDhH2oDO7nZtdAkMz_cWN-T8KpwP1 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB_UoviirR94autWfPAlRy77kYQ-Fb3DWiviB9yDELKzGxAlJ3on6F_v7OajWlopvi1klmx2ZnZ_s5n9DcCOEFIYzjFAK3ggjMyDpIh0kCR5EmtMe9XRwK9jdXAhDodyOAXfmrswFT9Ee-DmPMOv187Bb03xwslpVe72OMUn0_BBqDBxJr1_2nJH0T5WRVtCUbwc8WFNK-TSeNqurzej3wjzJU71G81gES6bIVb5JdfdyVh38ekP9sZ3fsNHWKgBKPteWcwnmLLlEsxWJSkfqdX3NNaPy3Bx1pI8sweKqL0K2VXJCDIyx2hV0zGzpo4uWjYqmK7on-kVmN9p6jG5t8x6ogp3y3MFzgf9872DoC7CECBPkzAQqbEUdggCOoXCvJBa5jEmHBWPtYzTPI0sqbSHJkSkaIxbCriFRIPGRIStVmGmHJV2DZjQsRQ6CTVXlkzEaNRaxZgqXRDsyFUHdhtlZFgTlLs6GTdZE6jQdGV-ujqw3YreVqwcfxPabDSa1Y55n7mifQ71Rb0OfG0fk0u5_yR5aUcTJyNdXa6QizdkFCespmTKadhexf8eSNY_6vvG-v-LbsHcyf4gO_px_HMD5iOXSOMzCDdhZnw3sZ8JCY31F2_xzxmLAq0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+variation+in+the+temperature+dependence+of+bacterial+carbon+use+efficiency&rft.jtitle=Ecology+letters&rft.au=Smith%2C+Thomas+P&rft.au=Clegg%2C+Tom&rft.au=Bell%2C+Thomas&rft.au=Pawar%2C+Samr%C4%81t&rft.date=2021-10-01&rft.issn=1461-0248&rft.eissn=1461-0248&rft.volume=24&rft.issue=10&rft.spage=2123&rft_id=info:doi/10.1111%2Fele.13840&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon |