Application of machine learning-based algorithms to predict the stress-strain curves of additively manufactured mild steel out of its microstructural characteristics

The study presents a Machine Learning (ML)-based framework designed to forecast the stress-strain relationship of arc-direct energy deposited mild steel. Based on microstructural characteristics previously extracted using microscopy and X-ray diffraction, approximately 1000 new parameter sets are ge...

Full description

Saved in:
Bibliographic Details
Published inResults in engineering Vol. 20; p. 101587
Main Authors Lizarazu, Jorge, Harirchian, Ehsan, Shaik, Umar Arif, Shareef, Mohammed, Antoni-Zdziobek, Annie, Lahmer, Tom
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The study presents a Machine Learning (ML)-based framework designed to forecast the stress-strain relationship of arc-direct energy deposited mild steel. Based on microstructural characteristics previously extracted using microscopy and X-ray diffraction, approximately 1000 new parameter sets are generated by applying the Latin Hypercube Sampling Method (LHSM). For each parameter set, a Representative Volume Element (RVE) is synthetically created via Voronoi Tessellation. Input raw data for ML-based algorithms comprises these parameter sets or RVE-images, while output raw data includes their corresponding stress-strain relationships calculated after a Finite Element (FE) procedure. Input data undergoes preprocessing involving standardization, feature selection, and image resizing. Similarly, the stress-strain curves, initially unsuitable for training traditional ML algorithms, are preprocessed using cubic splines and occasionally Principal Component Analysis (PCA). The later part of the study focuses on employing multiple ML algorithms, utilizing two main models. The first model predicts stressstrain curves based on microstructural parameters, while the second model does so solely from RVE images. The most accurate prediction yields a Root Mean Squared Error of around 5 MPa, approximately 1% of the yield stress. This outcome suggests that ML models offer precise and efficient methods for characterizing dual-phase steels, establishing a framework for accurate results in material analysis.
AbstractList The study presents a Machine Learning (ML)-based framework designed to forecast the stress-strain relationship of arc-direct energy deposited mild steel. Based on microstructural characteristics previously extracted using microscopy and X-ray diffraction, approximately 1000 new parameter sets are generated by applying the Latin Hypercube Sampling Method (LHSM). For each parameter set, a Representative Volume Element (RVE) is synthetically created via Voronoi Tessellation. Input raw data for ML-based algorithms comprises these parameter sets or RVE-images, while output raw data includes their corresponding stress-strain relationships calculated after a Finite Element (FE) procedure. Input data undergoes preprocessing involving standardization, feature selection, and image resizing. Similarly, the stress-strain curves, initially unsuitable for training traditional ML algorithms, are preprocessed using cubic splines and occasionally Principal Component Analysis (PCA). The later part of the study focuses on employing multiple ML algorithms, utilizing two main models. The first model predicts stress-strain curves based on microstructural parameters, while the second model does so solely from RVE images. The most accurate prediction yields a Root Mean Squared Error of around 5 MPa, approximately 1% of the yield stress. This outcome suggests that ML models offer precise and efficient methods for characterizing dual-phase steels, establishing a framework for accurate results in material analysis.
The study presents a Machine Learning (ML)-based framework designed to forecast the stress-strain relationship of arc-direct energy deposited mild steel. Based on microstructural characteristics previously extracted using microscopy and X-ray diffraction, approximately 1000 new parameter sets are generated by applying the Latin Hypercube Sampling Method (LHSM). For each parameter set, a Representative Volume Element (RVE) is synthetically created via Voronoi Tessellation. Input raw data for ML-based algorithms comprises these parameter sets or RVE-images, while output raw data includes their corresponding stress-strain relationships calculated after a Finite Element (FE) procedure. Input data undergoes preprocessing involving standardization, feature selection, and image resizing. Similarly, the stress-strain curves, initially unsuitable for training traditional ML algorithms, are preprocessed using cubic splines and occasionally Principal Component Analysis (PCA). The later part of the study focuses on employing multiple ML algorithms, utilizing two main models. The first model predicts stressstrain curves based on microstructural parameters, while the second model does so solely from RVE images. The most accurate prediction yields a Root Mean Squared Error of around 5 MPa, approximately 1% of the yield stress. This outcome suggests that ML models offer precise and efficient methods for characterizing dual-phase steels, establishing a framework for accurate results in material analysis.
ArticleNumber 101587
Author Lahmer, Tom
Shaik, Umar Arif
Antoni-Zdziobek, Annie
Lizarazu, Jorge
Harirchian, Ehsan
Shareef, Mohammed
Author_xml – sequence: 1
  givenname: Jorge
  orcidid: 0000-0003-4591-7544
  surname: Lizarazu
  fullname: Lizarazu, Jorge
– sequence: 2
  givenname: Ehsan
  orcidid: 0000-0003-0113-2120
  surname: Harirchian
  fullname: Harirchian, Ehsan
– sequence: 3
  givenname: Umar Arif
  surname: Shaik
  fullname: Shaik, Umar Arif
– sequence: 4
  givenname: Mohammed
  surname: Shareef
  fullname: Shareef, Mohammed
– sequence: 5
  givenname: Annie
  surname: Antoni-Zdziobek
  fullname: Antoni-Zdziobek, Annie
– sequence: 6
  givenname: Tom
  surname: Lahmer
  fullname: Lahmer, Tom
BackLink https://hal.science/hal-04319395$$DView record in HAL
BookMark eNpVkc1q3DAUhU1JoWmaN-hC2y481Y8tWcshtE1gIJt0La71M9agsQZJHsgD9T0rx6W0q3s5nPNxuedjczPH2TbNZ4J3BBP-9bRLfrbzcUcxZavUD-Jdc0t7iVtCGb75Z__Q3Od8whjToRqZuG1-7S-X4DUUH2cUHTqDnioOBQtp9vOxHSFbgyAcY_JlOmdUIroka7wuqEwW5ZJszm0d4Gekl3S1eQWBMb74qw2vlTkvDnRZagydfTA1ZG1AcSmr05dcVZ1iZSyrCwLSE6SasMnn4nX-1Lx3ELK9_zPvmp_fv708PLaH5x9PD_tDq5kUpXUDobyjtAM5UkG5FMQMwLV0veS91EA4MU5qii3vjdAa40GIjnODR8GJYHfN08Y1EU7qkvwZ0quK4NWbENNRQaoHBavkYIyl1sme4q4fNTgHg-hGNvQDYVRX1peNNUH4D_W4P6hVwx0jksn-Sqq327zrF3Ky7m-AYLW2rE5qa1mtLautZfYbwa6iEw
CitedBy_id crossref_primary_10_3390_ma17071659
crossref_primary_10_1016_j_rineng_2024_102264
Cites_doi 10.1016/j.actamat.2018.12.045
10.1007/s11837-020-04155-y
10.1002/aisy.202170080
10.1016/j.actamat.2020.03.016
10.5402/2012/208760
10.1016/j.matpr.2018.06.356
10.1016/j.rineng.2023.101428
10.1016/j.rineng.2023.101390
10.1016/j.cma.2011.01.002
10.1016/j.matdes.2021.110178
10.1038/nmeth.2089
10.3390/ma16020583
10.1155/2014/482672
10.1016/j.rineng.2023.101434
10.1073/pnas.2111505119
10.1080/0951192X.2023.2228259
10.3390/su15129715
10.1007/s40964-020-00111-z
10.1016/j.rineng.2023.101416
10.1126/sciadv.abd7416
10.1007/s10845-022-02029-5
10.3390/app13042033
10.1016/j.prostr.2023.01.259
10.1080/19648189.2021.1892829
10.1186/s40192-015-0042-z
10.1038/s41524-022-00938-w
10.1063/1.4946894
10.1038/s41524-020-0341-6
10.1111/mice.12932
10.1002/srin.201500438
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOA
DOI 10.1016/j.rineng.2023.101587
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2590-1230
ExternalDocumentID oai_doaj_org_article_98dde2ef952045bcaffa874b3858132c
oai_HAL_hal_04319395v1
10_1016_j_rineng_2023_101587
GroupedDBID 0R~
0SF
6I.
AAEDW
AALRI
AAXUO
AAYXX
ADBBV
ADVLN
AEXQZ
AFJKZ
AFTJW
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
CITATION
EBS
FDB
GROUPED_DOAJ
M41
M~E
NCXOZ
OK1
ROL
SSZ
1XC
VOOES
ID FETCH-LOGICAL-c397t-f81264224a9b2726971d8a6c9f59659ca161df9c20e65d7cc00877466d0b76173
IEDL.DBID DOA
ISSN 2590-1230
IngestDate Mon Dec 16 09:31:59 EST 2024
Wed Dec 18 07:31:39 EST 2024
Thu Sep 26 17:41:10 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Mild steel
Arc-direct energy deposition
Dual phase steel
Arc-direct energy deposition Mild steel Dual phase steel Machine learning Stress-strain curve
Machine learning
Stress-strain curve
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-f81264224a9b2726971d8a6c9f59659ca161df9c20e65d7cc00877466d0b76173
ORCID 0000-0003-4591-7544
0000-0003-0113-2120
OpenAccessLink https://doaj.org/article/98dde2ef952045bcaffa874b3858132c
ParticipantIDs doaj_primary_oai_doaj_org_article_98dde2ef952045bcaffa874b3858132c
hal_primary_oai_HAL_hal_04319395v1
crossref_primary_10_1016_j_rineng_2023_101587
PublicationCentury 2000
PublicationDate 2023-12-00
2023-12
2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-00
PublicationDecade 2020
PublicationTitle Results in engineering
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – sequence: 0
  name: Elsevier B.V
– sequence: 0
  name: Elsevier
References Rodriguez (10.1016/j.rineng.2023.101587_br0370) 2003; vol. 426
Liu (10.1016/j.rineng.2023.101587_br0260) 2015; 4
Rezvan (10.1016/j.rineng.2023.101587_br0100) 2023; 13
Kumar (10.1016/j.rineng.2023.101587_br0200) 2023; 34
Ward (10.1016/j.rineng.2023.101587_br0090) 2016; 2
Meng (10.1016/j.rineng.2023.101587_br0180) 2020; 72
Liu (10.1016/j.rineng.2023.101587_br0250) 2020; 190
Kumar (10.1016/j.rineng.2023.101587_br0300) 2020; 6
Schneider (10.1016/j.rineng.2023.101587_br0350) 2012; 9
Wong (10.1016/j.rineng.2023.101587_br0010) 2012; 1
Zheng (10.1016/j.rineng.2023.101587_br0390) 2021; 211
Li (10.1016/j.rineng.2023.101587_br0230) 2022; 30
Yang (10.1016/j.rineng.2023.101587_br0270) 2021; 7
Harirchian (10.1016/j.rineng.2023.101587_br0150) 2022; 26
Chiew (10.1016/j.rineng.2023.101587_br0070) 2023; 20
Ruggieri (10.1016/j.rineng.2023.101587_br0120) 2023; 44
Deng (10.1016/j.rineng.2023.101587_br0330) 2022; 34
Jiang (10.1016/j.rineng.2023.101587_br0190) 2023
Zhao (10.1016/j.rineng.2023.101587_br0220) 2014; 2014
Agrawal (10.1016/j.rineng.2023.101587_br0040) 2016; 4
Yang (10.1016/j.rineng.2023.101587_br0240) 2019; 9
Khan (10.1016/j.rineng.2023.101587_br0060) 2023; 20
Maurizi (10.1016/j.rineng.2023.101587_br0320) 2022; 8
Tian (10.1016/j.rineng.2023.101587_br0170) 2021; 3
Vineela (10.1016/j.rineng.2023.101587_br0210) 2018; 5
Işık (10.1016/j.rineng.2023.101587_br0160) 2023; 15
Cunningham (10.1016/j.rineng.2023.101587_br0020) 2018; 22
Harirchian (10.1016/j.rineng.2023.101587_br0140) 2021; 43
Harrou (10.1016/j.rineng.2023.101587_br0050) 2023
Fei (10.1016/j.rineng.2023.101587_br0110) 2023; 16
Bastek (10.1016/j.rineng.2023.101587_br0310) 2022; 119
Lizarazu (10.1016/j.rineng.2023.101587_br0030) 2020; 5
Quey (10.1016/j.rineng.2023.101587_br0360) 2011; 200
Malek (10.1016/j.rineng.2023.101587_br0130) 2023; 38
Yang (10.1016/j.rineng.2023.101587_br0280) 2019; 166
Zheng (10.1016/j.rineng.2023.101587_br0290) 2023
Ma (10.1016/j.rineng.2023.101587_br0380) 2016; 87
Yassin (10.1016/j.rineng.2023.101587_br0080) 2023; 20
References_xml – volume: 166
  start-page: 335
  year: 2019
  ident: 10.1016/j.rineng.2023.101587_br0280
  article-title: Establishing structure-property localization linkages for elastic deformation of three-dimensional high contrast composites using deep learning approaches
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.12.045
  contributor:
    fullname: Yang
– volume: 72
  start-page: 2363
  issue: 6
  year: 2020
  ident: 10.1016/j.rineng.2023.101587_br0180
  article-title: Machine learning in additive manufacturing: a review
  publication-title: JOM
  doi: 10.1007/s11837-020-04155-y
  contributor:
    fullname: Meng
– volume: 22
  start-page: 672
  year: 2018
  ident: 10.1016/j.rineng.2023.101587_br0020
  article-title: Invited review article: strategies and processes for high quality wire arc additive manufacturing
  publication-title: Addit. Manuf.
  contributor:
    fullname: Cunningham
– volume: 3
  year: 2021
  ident: 10.1016/j.rineng.2023.101587_br0170
  article-title: Data-driven approaches toward smarter additive manufacturing
  publication-title: Adv. Intell. Syst.
  doi: 10.1002/aisy.202170080
  contributor:
    fullname: Tian
– volume: 30
  year: 2022
  ident: 10.1016/j.rineng.2023.101587_br0230
  article-title: Compressive strength prediction of basalt fiber reinforced concrete via random forest algorithm
  publication-title: Mater. Today Commun.
  contributor:
    fullname: Li
– volume: 190
  start-page: 105
  year: 2020
  ident: 10.1016/j.rineng.2023.101587_br0250
  article-title: A machine learning approach to fracture mechanics problems
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.03.016
  contributor:
    fullname: Liu
– volume: vol. 426
  start-page: 4525
  year: 2003
  ident: 10.1016/j.rineng.2023.101587_br0370
  article-title: Unified formulation to predict the tensile curves of steels with different microstructures
  contributor:
    fullname: Rodriguez
– volume: 1
  start-page: 1
  year: 2012
  ident: 10.1016/j.rineng.2023.101587_br0010
  article-title: A review of additive manufacturing
  publication-title: ISRN Mech. Eng.
  doi: 10.5402/2012/208760
  contributor:
    fullname: Wong
– volume: 5
  start-page: 19908
  issue: 9
  year: 2018
  ident: 10.1016/j.rineng.2023.101587_br0210
  article-title: Artificial neural network based prediction of tensile strength of hybrid composites
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2018.06.356
  contributor:
    fullname: Vineela
– year: 2023
  ident: 10.1016/j.rineng.2023.101587_br0050
  article-title: Energy consumption prediction in water treatment plants using deep learning with data augmentation
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2023.101428
  contributor:
    fullname: Harrou
– volume: 20
  year: 2023
  ident: 10.1016/j.rineng.2023.101587_br0060
  article-title: Optimization of colloidal nano-silica based cementitious mortar composites using RSM and ANN approaches
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2023.101390
  contributor:
    fullname: Khan
– volume: 200
  start-page: 1729
  issue: 17
  year: 2011
  ident: 10.1016/j.rineng.2023.101587_br0360
  article-title: Large-scale 3d random polycrystals for the finite element method: generation, meshing and remeshing
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2011.01.002
  contributor:
    fullname: Quey
– volume: 211
  year: 2021
  ident: 10.1016/j.rineng.2023.101587_br0390
  article-title: Controllable inverse design of auxetic metamaterials using deep learning
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2021.110178
  contributor:
    fullname: Zheng
– volume: 9
  start-page: 671
  issue: 7
  year: 2012
  ident: 10.1016/j.rineng.2023.101587_br0350
  article-title: NIH image to ImageJ: 25 years of image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2089
  contributor:
    fullname: Schneider
– volume: 16
  start-page: 583
  issue: 2
  year: 2023
  ident: 10.1016/j.rineng.2023.101587_br0110
  article-title: Ensemble machine-learning-based prediction models for the compressive strength of recycled powder mortar
  publication-title: Materials
  doi: 10.3390/ma16020583
  contributor:
    fullname: Fei
– volume: 2014
  year: 2014
  ident: 10.1016/j.rineng.2023.101587_br0220
  article-title: Simulating the stress-strain relationship of geomaterials by support vector machine
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2014/482672
  contributor:
    fullname: Zhao
– volume: 20
  year: 2023
  ident: 10.1016/j.rineng.2023.101587_br0080
  article-title: Intelligent learning algorithms integrated with feature engineering for sustainable groundwater salinization modelling: eastern province of Saudi Arabia
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2023.101434
  contributor:
    fullname: Yassin
– volume: 119
  issue: 1
  year: 2022
  ident: 10.1016/j.rineng.2023.101587_br0310
  article-title: Inverting the structure–property map of truss metamaterials by deep learning
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.2111505119
  contributor:
    fullname: Bastek
– start-page: 1
  year: 2023
  ident: 10.1016/j.rineng.2023.101587_br0190
  article-title: A survey of machine learning in additive manufacturing technologies
  publication-title: Int. J. Comput. Integr. Manuf.
  doi: 10.1080/0951192X.2023.2228259
  contributor:
    fullname: Jiang
– volume: 15
  start-page: 9715
  issue: 12
  year: 2023
  ident: 10.1016/j.rineng.2023.101587_br0160
  article-title: A hybrid artificial neural network—particle swarm optimization algorithm model for the determination of target displacements in mid-rise regular reinforced-concrete buildings
  publication-title: Sustainability
  doi: 10.3390/su15129715
  contributor:
    fullname: Işık
– volume: 5
  start-page: 295
  issue: 3
  year: 2020
  ident: 10.1016/j.rineng.2023.101587_br0030
  article-title: Experimental characterization and numerical analysis of additively manufactured mild steel under monotonic loading conditions
  publication-title: Prog. Addit. Manuf.
  doi: 10.1007/s40964-020-00111-z
  contributor:
    fullname: Lizarazu
– volume: 20
  year: 2023
  ident: 10.1016/j.rineng.2023.101587_br0070
  article-title: Assessment and ann model development of natural light transmittance of light-transmitting concrete
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2023.101416
  contributor:
    fullname: Chiew
– volume: 43
  year: 2021
  ident: 10.1016/j.rineng.2023.101587_br0140
  article-title: A review on application of soft computing techniques for the rapid visual safety evaluation and damage classification of existing buildings
  publication-title: J. Build. Eng.
  contributor:
    fullname: Harirchian
– volume: 7
  issue: 15
  year: 2021
  ident: 10.1016/j.rineng.2023.101587_br0270
  article-title: Deep learning model to predict complex stress and strain fields in hierarchical composites
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abd7416
  contributor:
    fullname: Yang
– volume: 2
  issue: 1
  year: 2016
  ident: 10.1016/j.rineng.2023.101587_br0090
  article-title: A general-purpose machine learning framework for predicting properties of inorganic materials
  publication-title: Comput. Mater.
  contributor:
    fullname: Ward
– volume: 34
  start-page: 21
  issue: 1
  year: 2023
  ident: 10.1016/j.rineng.2023.101587_br0200
  article-title: Machine learning techniques in additive manufacturing: a state of the art review on design, processes and production control
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-022-02029-5
  contributor:
    fullname: Kumar
– volume: 13
  start-page: 2033
  issue: 4
  year: 2023
  ident: 10.1016/j.rineng.2023.101587_br0100
  article-title: Application of machine learning to predict the mechanical characteristics of concrete containing recycled plastic-based materials
  publication-title: Appl. Sci.
  doi: 10.3390/app13042033
  contributor:
    fullname: Rezvan
– volume: 44
  start-page: 2028
  year: 2023
  ident: 10.1016/j.rineng.2023.101587_br0120
  article-title: Using machine learning approaches to perform defect detection of existing bridges
  publication-title: Procedia Struct. Integr.
  doi: 10.1016/j.prostr.2023.01.259
  contributor:
    fullname: Ruggieri
– volume: 34
  issue: 41
  year: 2022
  ident: 10.1016/j.rineng.2023.101587_br0330
  article-title: Inverse design of mechanical metamaterials with target nonlinear response via a neural accelerated evolution strategy
  publication-title: Adv. Mater.
  contributor:
    fullname: Deng
– volume: 26
  start-page: 5279
  issue: 11
  year: 2022
  ident: 10.1016/j.rineng.2023.101587_br0150
  article-title: Ml-ehsapp: a prototype for machine learning-based earthquake hazard safety assessment of structures by using a smartphone app
  publication-title: Eur. J. Environ. Civ. Eng.
  doi: 10.1080/19648189.2021.1892829
  contributor:
    fullname: Harirchian
– year: 2023
  ident: 10.1016/j.rineng.2023.101587_br0290
  article-title: Deep learning in mechanical metamaterials: from prediction and generation to inverse design
  publication-title: Adv. Mater.
  contributor:
    fullname: Zheng
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.rineng.2023.101587_br0240
  article-title: Predicting the Young's modulus of silicate glasses using high-throughput molecular dynamics simulations and machine learning
  publication-title: Sci. Rep.
  contributor:
    fullname: Yang
– volume: 4
  start-page: 192
  issue: 1
  year: 2015
  ident: 10.1016/j.rineng.2023.101587_br0260
  article-title: Machine learning approaches for elastic localization linkages in high-contrast composite materials
  publication-title: Integr. Mater. Manuf. Innov.
  doi: 10.1186/s40192-015-0042-z
  contributor:
    fullname: Liu
– volume: 8
  start-page: 247
  issue: 1
  year: 2022
  ident: 10.1016/j.rineng.2023.101587_br0320
  article-title: Inverse design of truss lattice materials with superior buckling resistance
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-022-00938-w
  contributor:
    fullname: Maurizi
– volume: 4
  issue: 5
  year: 2016
  ident: 10.1016/j.rineng.2023.101587_br0040
  article-title: Perspective: materials informatics and big data: realization of the “fourth paradigm” of science in materials science
  publication-title: APL Mater.
  doi: 10.1063/1.4946894
  contributor:
    fullname: Agrawal
– volume: 6
  start-page: 73
  issue: 1
  year: 2020
  ident: 10.1016/j.rineng.2023.101587_br0300
  article-title: Inverse-designed spinodoid metamaterials
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-020-0341-6
  contributor:
    fullname: Kumar
– volume: 38
  start-page: 1000
  issue: 8
  year: 2023
  ident: 10.1016/j.rineng.2023.101587_br0130
  article-title: Methodology to integrate augmented reality and pattern recognition for crack detection
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12932
  contributor:
    fullname: Malek
– volume: 87
  start-page: 1489
  issue: 11
  year: 2016
  ident: 10.1016/j.rineng.2023.101587_br0380
  article-title: Effect of particle size and carbide band on the flow behavior of ferrite–cementite steel
  publication-title: Steel Res. Int.
  doi: 10.1002/srin.201500438
  contributor:
    fullname: Ma
SSID ssj0002810137
Score 2.3119547
Snippet The study presents a Machine Learning (ML)-based framework designed to forecast the stress-strain relationship of arc-direct energy deposited mild steel. Based...
SourceID doaj
hal
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
StartPage 101587
SubjectTerms Arc-direct energy deposition
Dual phase steel
Engineering Sciences
Machine learning
Materials
Mild steel
Stress-strain curve
Title Application of machine learning-based algorithms to predict the stress-strain curves of additively manufactured mild steel out of its microstructural characteristics
URI https://hal.science/hal-04319395
https://doaj.org/article/98dde2ef952045bcaffa874b3858132c
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1FeshCroUkdJx4LalUhykSlbpHtOH2oTaomrcTCv-F_cue00E4sLBlOthP7Lr47--47Qu4VFnyXacC01IJxP9FMSTwO45FSkWe8ZoD5zr030e3zl0Ew2Cr1hTFhFTxwtXCPMoIf0LepDBA4XRuVpioKucYLLfCkjNt9G_6WMzVxR0YeYultcuVcQBdm02XDB6wXjqQAo-i2dJGD7AcNM9qcqDoN0zkih2vTkLaqTzomezY7IQdbgIGn5Kv1e99M85TOXCikpevaD0OGSimhajrMwekfzQpa5nS-wMuYkoKpR6vUEFa4yhDULBcrW-BAGFaEG9_0A8bMlpjusIRudDaeJtDJ2inNlyW2HJcFUHFCDnkWUTuo2UV9PiP9Tvv9ucvWhRaYAXOkZCloefBDfK6k9kNfyNBLIiUM8BDxBo0CszBJpfEbVgRJaAwC2YVciKShQzCBmuekluWZvSC0KYXiNrW-wSwpLrXVsmE8mIXgiZFBnbDNksfzCk8j3gSaTeKKRTGyKK5YVCdPyJeftoiG7QggI_FaRuK_ZKRO7oCrO2N0W68x0hBbSDZlsPIu_-NNV2QfP76Kd7kmNeCEvQGrpdS3TkDh2ftsfwOCv_AE
link.rule.ids 230,314,780,784,864,885,2102,27924,27925
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+machine+learning-based+algorithms+to+predict+the+stress-strain+curves+of+additively+manufactured+mild+steel+out+of+its+microstructural+characteristics&rft.jtitle=Results+in+engineering&rft.au=Lizarazu%2C+Jorge&rft.au=Harirchian%2C+Ehsan&rft.au=Shaik%2C+Umar+Arif&rft.au=Shareef%2C+Mohammed&rft.date=2023-12-01&rft.pub=Elsevier+B.V&rft.issn=2590-1230&rft.eissn=2590-1230&rft.volume=20&rft_id=info:doi/10.1016%2Fj.rineng.2023.101587&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04319395v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1230&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1230&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1230&client=summon