Application of machine learning-based algorithms to predict the stress-strain curves of additively manufactured mild steel out of its microstructural characteristics
The study presents a Machine Learning (ML)-based framework designed to forecast the stress-strain relationship of arc-direct energy deposited mild steel. Based on microstructural characteristics previously extracted using microscopy and X-ray diffraction, approximately 1000 new parameter sets are ge...
Saved in:
Published in | Results in engineering Vol. 20; p. 101587 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The study presents a Machine Learning (ML)-based framework designed to forecast the stress-strain relationship of arc-direct energy deposited mild steel. Based on microstructural characteristics previously extracted using microscopy and X-ray diffraction, approximately 1000 new parameter sets are generated by applying the Latin Hypercube Sampling Method (LHSM). For each parameter set, a Representative Volume Element (RVE) is synthetically created via Voronoi Tessellation. Input raw data for ML-based algorithms comprises these parameter sets or RVE-images, while output raw data includes their corresponding stress-strain relationships calculated after a Finite Element (FE) procedure. Input data undergoes preprocessing involving standardization, feature selection, and image resizing. Similarly, the stress-strain curves, initially unsuitable for training traditional ML algorithms, are preprocessed using cubic splines and occasionally Principal Component Analysis (PCA). The later part of the study focuses on employing multiple ML algorithms, utilizing two main models. The first model predicts stressstrain curves based on microstructural parameters, while the second model does so solely from RVE images. The most accurate prediction yields a Root Mean Squared Error of around 5 MPa, approximately 1% of the yield stress. This outcome suggests that ML models offer precise and efficient methods for characterizing dual-phase steels, establishing a framework for accurate results in material analysis. |
---|---|
AbstractList | The study presents a Machine Learning (ML)-based framework designed to forecast the stress-strain relationship of arc-direct energy deposited mild steel. Based on microstructural characteristics previously extracted using microscopy and X-ray diffraction, approximately 1000 new parameter sets are generated by applying the Latin Hypercube Sampling Method (LHSM). For each parameter set, a Representative Volume Element (RVE) is synthetically created via Voronoi Tessellation. Input raw data for ML-based algorithms comprises these parameter sets or RVE-images, while output raw data includes their corresponding stress-strain relationships calculated after a Finite Element (FE) procedure. Input data undergoes preprocessing involving standardization, feature selection, and image resizing. Similarly, the stress-strain curves, initially unsuitable for training traditional ML algorithms, are preprocessed using cubic splines and occasionally Principal Component Analysis (PCA). The later part of the study focuses on employing multiple ML algorithms, utilizing two main models. The first model predicts stress-strain curves based on microstructural parameters, while the second model does so solely from RVE images. The most accurate prediction yields a Root Mean Squared Error of around 5 MPa, approximately 1% of the yield stress. This outcome suggests that ML models offer precise and efficient methods for characterizing dual-phase steels, establishing a framework for accurate results in material analysis. The study presents a Machine Learning (ML)-based framework designed to forecast the stress-strain relationship of arc-direct energy deposited mild steel. Based on microstructural characteristics previously extracted using microscopy and X-ray diffraction, approximately 1000 new parameter sets are generated by applying the Latin Hypercube Sampling Method (LHSM). For each parameter set, a Representative Volume Element (RVE) is synthetically created via Voronoi Tessellation. Input raw data for ML-based algorithms comprises these parameter sets or RVE-images, while output raw data includes their corresponding stress-strain relationships calculated after a Finite Element (FE) procedure. Input data undergoes preprocessing involving standardization, feature selection, and image resizing. Similarly, the stress-strain curves, initially unsuitable for training traditional ML algorithms, are preprocessed using cubic splines and occasionally Principal Component Analysis (PCA). The later part of the study focuses on employing multiple ML algorithms, utilizing two main models. The first model predicts stressstrain curves based on microstructural parameters, while the second model does so solely from RVE images. The most accurate prediction yields a Root Mean Squared Error of around 5 MPa, approximately 1% of the yield stress. This outcome suggests that ML models offer precise and efficient methods for characterizing dual-phase steels, establishing a framework for accurate results in material analysis. |
ArticleNumber | 101587 |
Author | Lahmer, Tom Shaik, Umar Arif Antoni-Zdziobek, Annie Lizarazu, Jorge Harirchian, Ehsan Shareef, Mohammed |
Author_xml | – sequence: 1 givenname: Jorge orcidid: 0000-0003-4591-7544 surname: Lizarazu fullname: Lizarazu, Jorge – sequence: 2 givenname: Ehsan orcidid: 0000-0003-0113-2120 surname: Harirchian fullname: Harirchian, Ehsan – sequence: 3 givenname: Umar Arif surname: Shaik fullname: Shaik, Umar Arif – sequence: 4 givenname: Mohammed surname: Shareef fullname: Shareef, Mohammed – sequence: 5 givenname: Annie surname: Antoni-Zdziobek fullname: Antoni-Zdziobek, Annie – sequence: 6 givenname: Tom surname: Lahmer fullname: Lahmer, Tom |
BackLink | https://hal.science/hal-04319395$$DView record in HAL |
BookMark | eNpVkc1q3DAUhU1JoWmaN-hC2y481Y8tWcshtE1gIJt0La71M9agsQZJHsgD9T0rx6W0q3s5nPNxuedjczPH2TbNZ4J3BBP-9bRLfrbzcUcxZavUD-Jdc0t7iVtCGb75Z__Q3Od8whjToRqZuG1-7S-X4DUUH2cUHTqDnioOBQtp9vOxHSFbgyAcY_JlOmdUIroka7wuqEwW5ZJszm0d4Gekl3S1eQWBMb74qw2vlTkvDnRZagydfTA1ZG1AcSmr05dcVZ1iZSyrCwLSE6SasMnn4nX-1Lx3ELK9_zPvmp_fv708PLaH5x9PD_tDq5kUpXUDobyjtAM5UkG5FMQMwLV0veS91EA4MU5qii3vjdAa40GIjnODR8GJYHfN08Y1EU7qkvwZ0quK4NWbENNRQaoHBavkYIyl1sme4q4fNTgHg-hGNvQDYVRX1peNNUH4D_W4P6hVwx0jksn-Sqq327zrF3Ky7m-AYLW2rE5qa1mtLautZfYbwa6iEw |
CitedBy_id | crossref_primary_10_3390_ma17071659 crossref_primary_10_1016_j_rineng_2024_102264 |
Cites_doi | 10.1016/j.actamat.2018.12.045 10.1007/s11837-020-04155-y 10.1002/aisy.202170080 10.1016/j.actamat.2020.03.016 10.5402/2012/208760 10.1016/j.matpr.2018.06.356 10.1016/j.rineng.2023.101428 10.1016/j.rineng.2023.101390 10.1016/j.cma.2011.01.002 10.1016/j.matdes.2021.110178 10.1038/nmeth.2089 10.3390/ma16020583 10.1155/2014/482672 10.1016/j.rineng.2023.101434 10.1073/pnas.2111505119 10.1080/0951192X.2023.2228259 10.3390/su15129715 10.1007/s40964-020-00111-z 10.1016/j.rineng.2023.101416 10.1126/sciadv.abd7416 10.1007/s10845-022-02029-5 10.3390/app13042033 10.1016/j.prostr.2023.01.259 10.1080/19648189.2021.1892829 10.1186/s40192-015-0042-z 10.1038/s41524-022-00938-w 10.1063/1.4946894 10.1038/s41524-020-0341-6 10.1111/mice.12932 10.1002/srin.201500438 |
ContentType | Journal Article |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES DOA |
DOI | 10.1016/j.rineng.2023.101587 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2590-1230 |
ExternalDocumentID | oai_doaj_org_article_98dde2ef952045bcaffa874b3858132c oai_HAL_hal_04319395v1 10_1016_j_rineng_2023_101587 |
GroupedDBID | 0R~ 0SF 6I. AAEDW AALRI AAXUO AAYXX ADBBV ADVLN AEXQZ AFJKZ AFTJW AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV CITATION EBS FDB GROUPED_DOAJ M41 M~E NCXOZ OK1 ROL SSZ 1XC VOOES |
ID | FETCH-LOGICAL-c397t-f81264224a9b2726971d8a6c9f59659ca161df9c20e65d7cc00877466d0b76173 |
IEDL.DBID | DOA |
ISSN | 2590-1230 |
IngestDate | Mon Dec 16 09:31:59 EST 2024 Wed Dec 18 07:31:39 EST 2024 Thu Sep 26 17:41:10 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mild steel Arc-direct energy deposition Dual phase steel Arc-direct energy deposition Mild steel Dual phase steel Machine learning Stress-strain curve Machine learning Stress-strain curve |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c397t-f81264224a9b2726971d8a6c9f59659ca161df9c20e65d7cc00877466d0b76173 |
ORCID | 0000-0003-4591-7544 0000-0003-0113-2120 |
OpenAccessLink | https://doaj.org/article/98dde2ef952045bcaffa874b3858132c |
ParticipantIDs | doaj_primary_oai_doaj_org_article_98dde2ef952045bcaffa874b3858132c hal_primary_oai_HAL_hal_04319395v1 crossref_primary_10_1016_j_rineng_2023_101587 |
PublicationCentury | 2000 |
PublicationDate | 2023-12-00 2023-12 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-00 |
PublicationDecade | 2020 |
PublicationTitle | Results in engineering |
PublicationYear | 2023 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – sequence: 0 name: Elsevier B.V – sequence: 0 name: Elsevier |
References | Rodriguez (10.1016/j.rineng.2023.101587_br0370) 2003; vol. 426 Liu (10.1016/j.rineng.2023.101587_br0260) 2015; 4 Rezvan (10.1016/j.rineng.2023.101587_br0100) 2023; 13 Kumar (10.1016/j.rineng.2023.101587_br0200) 2023; 34 Ward (10.1016/j.rineng.2023.101587_br0090) 2016; 2 Meng (10.1016/j.rineng.2023.101587_br0180) 2020; 72 Liu (10.1016/j.rineng.2023.101587_br0250) 2020; 190 Kumar (10.1016/j.rineng.2023.101587_br0300) 2020; 6 Schneider (10.1016/j.rineng.2023.101587_br0350) 2012; 9 Wong (10.1016/j.rineng.2023.101587_br0010) 2012; 1 Zheng (10.1016/j.rineng.2023.101587_br0390) 2021; 211 Li (10.1016/j.rineng.2023.101587_br0230) 2022; 30 Yang (10.1016/j.rineng.2023.101587_br0270) 2021; 7 Harirchian (10.1016/j.rineng.2023.101587_br0150) 2022; 26 Chiew (10.1016/j.rineng.2023.101587_br0070) 2023; 20 Ruggieri (10.1016/j.rineng.2023.101587_br0120) 2023; 44 Deng (10.1016/j.rineng.2023.101587_br0330) 2022; 34 Jiang (10.1016/j.rineng.2023.101587_br0190) 2023 Zhao (10.1016/j.rineng.2023.101587_br0220) 2014; 2014 Agrawal (10.1016/j.rineng.2023.101587_br0040) 2016; 4 Yang (10.1016/j.rineng.2023.101587_br0240) 2019; 9 Khan (10.1016/j.rineng.2023.101587_br0060) 2023; 20 Maurizi (10.1016/j.rineng.2023.101587_br0320) 2022; 8 Tian (10.1016/j.rineng.2023.101587_br0170) 2021; 3 Vineela (10.1016/j.rineng.2023.101587_br0210) 2018; 5 Işık (10.1016/j.rineng.2023.101587_br0160) 2023; 15 Cunningham (10.1016/j.rineng.2023.101587_br0020) 2018; 22 Harirchian (10.1016/j.rineng.2023.101587_br0140) 2021; 43 Harrou (10.1016/j.rineng.2023.101587_br0050) 2023 Fei (10.1016/j.rineng.2023.101587_br0110) 2023; 16 Bastek (10.1016/j.rineng.2023.101587_br0310) 2022; 119 Lizarazu (10.1016/j.rineng.2023.101587_br0030) 2020; 5 Quey (10.1016/j.rineng.2023.101587_br0360) 2011; 200 Malek (10.1016/j.rineng.2023.101587_br0130) 2023; 38 Yang (10.1016/j.rineng.2023.101587_br0280) 2019; 166 Zheng (10.1016/j.rineng.2023.101587_br0290) 2023 Ma (10.1016/j.rineng.2023.101587_br0380) 2016; 87 Yassin (10.1016/j.rineng.2023.101587_br0080) 2023; 20 |
References_xml | – volume: 166 start-page: 335 year: 2019 ident: 10.1016/j.rineng.2023.101587_br0280 article-title: Establishing structure-property localization linkages for elastic deformation of three-dimensional high contrast composites using deep learning approaches publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.12.045 contributor: fullname: Yang – volume: 72 start-page: 2363 issue: 6 year: 2020 ident: 10.1016/j.rineng.2023.101587_br0180 article-title: Machine learning in additive manufacturing: a review publication-title: JOM doi: 10.1007/s11837-020-04155-y contributor: fullname: Meng – volume: 22 start-page: 672 year: 2018 ident: 10.1016/j.rineng.2023.101587_br0020 article-title: Invited review article: strategies and processes for high quality wire arc additive manufacturing publication-title: Addit. Manuf. contributor: fullname: Cunningham – volume: 3 year: 2021 ident: 10.1016/j.rineng.2023.101587_br0170 article-title: Data-driven approaches toward smarter additive manufacturing publication-title: Adv. Intell. Syst. doi: 10.1002/aisy.202170080 contributor: fullname: Tian – volume: 30 year: 2022 ident: 10.1016/j.rineng.2023.101587_br0230 article-title: Compressive strength prediction of basalt fiber reinforced concrete via random forest algorithm publication-title: Mater. Today Commun. contributor: fullname: Li – volume: 190 start-page: 105 year: 2020 ident: 10.1016/j.rineng.2023.101587_br0250 article-title: A machine learning approach to fracture mechanics problems publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.03.016 contributor: fullname: Liu – volume: vol. 426 start-page: 4525 year: 2003 ident: 10.1016/j.rineng.2023.101587_br0370 article-title: Unified formulation to predict the tensile curves of steels with different microstructures contributor: fullname: Rodriguez – volume: 1 start-page: 1 year: 2012 ident: 10.1016/j.rineng.2023.101587_br0010 article-title: A review of additive manufacturing publication-title: ISRN Mech. Eng. doi: 10.5402/2012/208760 contributor: fullname: Wong – volume: 5 start-page: 19908 issue: 9 year: 2018 ident: 10.1016/j.rineng.2023.101587_br0210 article-title: Artificial neural network based prediction of tensile strength of hybrid composites publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2018.06.356 contributor: fullname: Vineela – year: 2023 ident: 10.1016/j.rineng.2023.101587_br0050 article-title: Energy consumption prediction in water treatment plants using deep learning with data augmentation publication-title: Results Eng. doi: 10.1016/j.rineng.2023.101428 contributor: fullname: Harrou – volume: 20 year: 2023 ident: 10.1016/j.rineng.2023.101587_br0060 article-title: Optimization of colloidal nano-silica based cementitious mortar composites using RSM and ANN approaches publication-title: Results Eng. doi: 10.1016/j.rineng.2023.101390 contributor: fullname: Khan – volume: 200 start-page: 1729 issue: 17 year: 2011 ident: 10.1016/j.rineng.2023.101587_br0360 article-title: Large-scale 3d random polycrystals for the finite element method: generation, meshing and remeshing publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2011.01.002 contributor: fullname: Quey – volume: 211 year: 2021 ident: 10.1016/j.rineng.2023.101587_br0390 article-title: Controllable inverse design of auxetic metamaterials using deep learning publication-title: Mater. Des. doi: 10.1016/j.matdes.2021.110178 contributor: fullname: Zheng – volume: 9 start-page: 671 issue: 7 year: 2012 ident: 10.1016/j.rineng.2023.101587_br0350 article-title: NIH image to ImageJ: 25 years of image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2089 contributor: fullname: Schneider – volume: 16 start-page: 583 issue: 2 year: 2023 ident: 10.1016/j.rineng.2023.101587_br0110 article-title: Ensemble machine-learning-based prediction models for the compressive strength of recycled powder mortar publication-title: Materials doi: 10.3390/ma16020583 contributor: fullname: Fei – volume: 2014 year: 2014 ident: 10.1016/j.rineng.2023.101587_br0220 article-title: Simulating the stress-strain relationship of geomaterials by support vector machine publication-title: Math. Probl. Eng. doi: 10.1155/2014/482672 contributor: fullname: Zhao – volume: 20 year: 2023 ident: 10.1016/j.rineng.2023.101587_br0080 article-title: Intelligent learning algorithms integrated with feature engineering for sustainable groundwater salinization modelling: eastern province of Saudi Arabia publication-title: Results Eng. doi: 10.1016/j.rineng.2023.101434 contributor: fullname: Yassin – volume: 119 issue: 1 year: 2022 ident: 10.1016/j.rineng.2023.101587_br0310 article-title: Inverting the structure–property map of truss metamaterials by deep learning publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2111505119 contributor: fullname: Bastek – start-page: 1 year: 2023 ident: 10.1016/j.rineng.2023.101587_br0190 article-title: A survey of machine learning in additive manufacturing technologies publication-title: Int. J. Comput. Integr. Manuf. doi: 10.1080/0951192X.2023.2228259 contributor: fullname: Jiang – volume: 15 start-page: 9715 issue: 12 year: 2023 ident: 10.1016/j.rineng.2023.101587_br0160 article-title: A hybrid artificial neural network—particle swarm optimization algorithm model for the determination of target displacements in mid-rise regular reinforced-concrete buildings publication-title: Sustainability doi: 10.3390/su15129715 contributor: fullname: Işık – volume: 5 start-page: 295 issue: 3 year: 2020 ident: 10.1016/j.rineng.2023.101587_br0030 article-title: Experimental characterization and numerical analysis of additively manufactured mild steel under monotonic loading conditions publication-title: Prog. Addit. Manuf. doi: 10.1007/s40964-020-00111-z contributor: fullname: Lizarazu – volume: 20 year: 2023 ident: 10.1016/j.rineng.2023.101587_br0070 article-title: Assessment and ann model development of natural light transmittance of light-transmitting concrete publication-title: Results Eng. doi: 10.1016/j.rineng.2023.101416 contributor: fullname: Chiew – volume: 43 year: 2021 ident: 10.1016/j.rineng.2023.101587_br0140 article-title: A review on application of soft computing techniques for the rapid visual safety evaluation and damage classification of existing buildings publication-title: J. Build. Eng. contributor: fullname: Harirchian – volume: 7 issue: 15 year: 2021 ident: 10.1016/j.rineng.2023.101587_br0270 article-title: Deep learning model to predict complex stress and strain fields in hierarchical composites publication-title: Sci. Adv. doi: 10.1126/sciadv.abd7416 contributor: fullname: Yang – volume: 2 issue: 1 year: 2016 ident: 10.1016/j.rineng.2023.101587_br0090 article-title: A general-purpose machine learning framework for predicting properties of inorganic materials publication-title: Comput. Mater. contributor: fullname: Ward – volume: 34 start-page: 21 issue: 1 year: 2023 ident: 10.1016/j.rineng.2023.101587_br0200 article-title: Machine learning techniques in additive manufacturing: a state of the art review on design, processes and production control publication-title: J. Intell. Manuf. doi: 10.1007/s10845-022-02029-5 contributor: fullname: Kumar – volume: 13 start-page: 2033 issue: 4 year: 2023 ident: 10.1016/j.rineng.2023.101587_br0100 article-title: Application of machine learning to predict the mechanical characteristics of concrete containing recycled plastic-based materials publication-title: Appl. Sci. doi: 10.3390/app13042033 contributor: fullname: Rezvan – volume: 44 start-page: 2028 year: 2023 ident: 10.1016/j.rineng.2023.101587_br0120 article-title: Using machine learning approaches to perform defect detection of existing bridges publication-title: Procedia Struct. Integr. doi: 10.1016/j.prostr.2023.01.259 contributor: fullname: Ruggieri – volume: 34 issue: 41 year: 2022 ident: 10.1016/j.rineng.2023.101587_br0330 article-title: Inverse design of mechanical metamaterials with target nonlinear response via a neural accelerated evolution strategy publication-title: Adv. Mater. contributor: fullname: Deng – volume: 26 start-page: 5279 issue: 11 year: 2022 ident: 10.1016/j.rineng.2023.101587_br0150 article-title: Ml-ehsapp: a prototype for machine learning-based earthquake hazard safety assessment of structures by using a smartphone app publication-title: Eur. J. Environ. Civ. Eng. doi: 10.1080/19648189.2021.1892829 contributor: fullname: Harirchian – year: 2023 ident: 10.1016/j.rineng.2023.101587_br0290 article-title: Deep learning in mechanical metamaterials: from prediction and generation to inverse design publication-title: Adv. Mater. contributor: fullname: Zheng – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.rineng.2023.101587_br0240 article-title: Predicting the Young's modulus of silicate glasses using high-throughput molecular dynamics simulations and machine learning publication-title: Sci. Rep. contributor: fullname: Yang – volume: 4 start-page: 192 issue: 1 year: 2015 ident: 10.1016/j.rineng.2023.101587_br0260 article-title: Machine learning approaches for elastic localization linkages in high-contrast composite materials publication-title: Integr. Mater. Manuf. Innov. doi: 10.1186/s40192-015-0042-z contributor: fullname: Liu – volume: 8 start-page: 247 issue: 1 year: 2022 ident: 10.1016/j.rineng.2023.101587_br0320 article-title: Inverse design of truss lattice materials with superior buckling resistance publication-title: npj Comput. Mater. doi: 10.1038/s41524-022-00938-w contributor: fullname: Maurizi – volume: 4 issue: 5 year: 2016 ident: 10.1016/j.rineng.2023.101587_br0040 article-title: Perspective: materials informatics and big data: realization of the “fourth paradigm” of science in materials science publication-title: APL Mater. doi: 10.1063/1.4946894 contributor: fullname: Agrawal – volume: 6 start-page: 73 issue: 1 year: 2020 ident: 10.1016/j.rineng.2023.101587_br0300 article-title: Inverse-designed spinodoid metamaterials publication-title: npj Comput. Mater. doi: 10.1038/s41524-020-0341-6 contributor: fullname: Kumar – volume: 38 start-page: 1000 issue: 8 year: 2023 ident: 10.1016/j.rineng.2023.101587_br0130 article-title: Methodology to integrate augmented reality and pattern recognition for crack detection publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12932 contributor: fullname: Malek – volume: 87 start-page: 1489 issue: 11 year: 2016 ident: 10.1016/j.rineng.2023.101587_br0380 article-title: Effect of particle size and carbide band on the flow behavior of ferrite–cementite steel publication-title: Steel Res. Int. doi: 10.1002/srin.201500438 contributor: fullname: Ma |
SSID | ssj0002810137 |
Score | 2.3119547 |
Snippet | The study presents a Machine Learning (ML)-based framework designed to forecast the stress-strain relationship of arc-direct energy deposited mild steel. Based... |
SourceID | doaj hal crossref |
SourceType | Open Website Open Access Repository Aggregation Database |
StartPage | 101587 |
SubjectTerms | Arc-direct energy deposition Dual phase steel Engineering Sciences Machine learning Materials Mild steel Stress-strain curve |
Title | Application of machine learning-based algorithms to predict the stress-strain curves of additively manufactured mild steel out of its microstructural characteristics |
URI | https://hal.science/hal-04319395 https://doaj.org/article/98dde2ef952045bcaffa874b3858132c |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1FeshCroUkdJx4LalUhykSlbpHtOH2oTaomrcTCv-F_cue00E4sLBlOthP7Lr47--47Qu4VFnyXacC01IJxP9FMSTwO45FSkWe8ZoD5zr030e3zl0Ew2Cr1hTFhFTxwtXCPMoIf0LepDBA4XRuVpioKucYLLfCkjNt9G_6WMzVxR0YeYultcuVcQBdm02XDB6wXjqQAo-i2dJGD7AcNM9qcqDoN0zkih2vTkLaqTzomezY7IQdbgIGn5Kv1e99M85TOXCikpevaD0OGSimhajrMwekfzQpa5nS-wMuYkoKpR6vUEFa4yhDULBcrW-BAGFaEG9_0A8bMlpjusIRudDaeJtDJ2inNlyW2HJcFUHFCDnkWUTuo2UV9PiP9Tvv9ucvWhRaYAXOkZCloefBDfK6k9kNfyNBLIiUM8BDxBo0CszBJpfEbVgRJaAwC2YVciKShQzCBmuekluWZvSC0KYXiNrW-wSwpLrXVsmE8mIXgiZFBnbDNksfzCk8j3gSaTeKKRTGyKK5YVCdPyJeftoiG7QggI_FaRuK_ZKRO7oCrO2N0W68x0hBbSDZlsPIu_-NNV2QfP76Kd7kmNeCEvQGrpdS3TkDh2ftsfwOCv_AE |
link.rule.ids | 230,314,780,784,864,885,2102,27924,27925 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+machine+learning-based+algorithms+to+predict+the+stress-strain+curves+of+additively+manufactured+mild+steel+out+of+its+microstructural+characteristics&rft.jtitle=Results+in+engineering&rft.au=Lizarazu%2C+Jorge&rft.au=Harirchian%2C+Ehsan&rft.au=Shaik%2C+Umar+Arif&rft.au=Shareef%2C+Mohammed&rft.date=2023-12-01&rft.pub=Elsevier+B.V&rft.issn=2590-1230&rft.eissn=2590-1230&rft.volume=20&rft_id=info:doi/10.1016%2Fj.rineng.2023.101587&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04319395v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1230&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1230&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1230&client=summon |