Normal Approximation of Compound Hawkes Functionals
We derive quantitative bounds in the Wasserstein distance for the approximation of stochastic integrals with respect to Hawkes processes by a normally distributed random variable. In the case of deterministic and nonnegative integrands, our estimates involve only the third moment of the integrand in...
Saved in:
Published in | Journal of theoretical probability Vol. 37; no. 1; pp. 549 - 581 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2024
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We derive quantitative bounds in the Wasserstein distance for the approximation of stochastic integrals with respect to Hawkes processes by a normally distributed random variable. In the case of deterministic and nonnegative integrands, our estimates involve only the third moment of the integrand in addition to a variance term using a squared norm of the integrand. As a consequence, we are able to observe a “third moment phenomenon” in which the vanishing of the first cumulant can lead to faster convergence rates. Our results are also applied to compound Hawkes processes, and improve on the current literature where estimates may not converge to zero in large time or have been obtained only for specific kernels such as the exponential or Erlang kernels. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0894-9840 1572-9230 |
DOI: | 10.1007/s10959-022-01233-6 |