On restoration of degraded fingerprints
The state-of-the-art fingerprint matching systems achieve high accuracy on good quality fingerprints. However, degraded fingerprints obtained due to poor skin conditions of subjects or fingerprints obtained around a crime scene often have noisy background and poor ridge structure. Such degraded fing...
Saved in:
Published in | Multimedia tools and applications Vol. 81; no. 24; pp. 35349 - 35377 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.10.2022
Springer Nature B.V Springer Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The state-of-the-art fingerprint matching systems achieve high accuracy on good quality fingerprints. However, degraded fingerprints obtained due to poor skin conditions of subjects or fingerprints obtained around a crime scene often have noisy background and poor ridge structure. Such degraded fingerprints pose problem for the existing fingerprint recognition systems. This paper presents a fingerprint restoration model for a poor quality fingerprint that reconstructs a binarized fingerprint image with an improved ridge structure. In particular, we demonstrate the effectiveness of channel refinement in fingerprint restoration. The state-of-the-art channel refinement mechanisms, such as Squeeze and Excitation (SE) block, in general, create SE- block introduce redundancy among channel weights and degrade the performance of fingerprint enhancement models. We present a lightweight attention mechanism that performs channel refinement by reducing redundancy among channel weights of the convolutional kernels. Restored fingerprints generated after introducing proposed channel refinement unit obtain improved quality scores on standard fingerprint quality assessment tool. Furthermore, restored fingerprints achieve improved fingerprint matching performance. We also illustrate that the idea of introducing a channel refinement unit is generalizable to different deep architectures. Additionally, to quantify the ridge preservation ability of the model, standard metrics: Dice score, Jaccard Similarity, SSIM and PSNR are computed with the ground truth and the output of the model (CR-GAN). An ablation study is conducted to individually quantify the improvement of generator and discriminator sub-networks of CR-GAN through channel refinement. Experiments on the publicly available IIITD- MOLF, Rural Indian Fingerprint Database and a private rural fingerprint database demonstrate the efficacy of the proposed attention mechanism. |
---|---|
AbstractList | The state-of-the-art fingerprint matching systems achieve high accuracy on good quality fingerprints. However, degraded fingerprints obtained due to poor skin conditions of subjects or fingerprints obtained around a crime scene often have noisy background and poor ridge structure. Such degraded fingerprints pose problem for the existing fingerprint recognition systems. This paper presents a fingerprint restoration model for a poor quality fingerprint that reconstructs a binarized fingerprint image with an improved ridge structure. In particular, we demonstrate the effectiveness of channel refinement in fingerprint restoration. The state-of-the-art channel refinement mechanisms, such as Squeeze and Excitation (SE) block, in general, create SEblock introduce redundancy among channel weights and degrade the performance of fingerprint enhancement models. We present a lightweight attention mechanism The state-of-the-art fingerprint matching systems achieve high accuracy on good quality fingerprints. However, degraded fingerprints obtained due to poor skin conditions of subjects or fingerprints obtained around a crime scene often have noisy background and poor ridge structure. Such degraded fingerprints pose problem for the existing fingerprint recognition systems. This paper presents a fingerprint restoration model for a poor quality fingerprint that reconstructs a binarized fingerprint image with an improved ridge structure. In particular, we demonstrate the effectiveness of channel refinement in fingerprint restoration. The state-of-the-art channel refinement mechanisms, such as Squeeze and Excitation (SE) block, in general, create SE- block introduce redundancy among channel weights and degrade the performance of fingerprint enhancement models. We present a lightweight attention mechanism that performs channel refinement by reducing redundancy among channel weights of the convolutional kernels. Restored fingerprints generated after introducing proposed channel refinement unit obtain improved quality scores on standard fingerprint quality assessment tool. Furthermore, restored fingerprints achieve improved fingerprint matching performance. We also illustrate that the idea of introducing a channel refinement unit is generalizable to different deep architectures. Additionally, to quantify the ridge preservation ability of the model, standard metrics: Dice score, Jaccard Similarity, SSIM and PSNR are computed with the ground truth and the output of the model (CR-GAN). An ablation study is conducted to individually quantify the improvement of generator and discriminator sub-networks of CR-GAN through channel refinement. Experiments on the publicly available IIITD- MOLF, Rural Indian Fingerprint Database and a private rural fingerprint database demonstrate the efficacy of the proposed attention mechanism. |
Author | Kalra, Prem Kumar Joshi, Indu Dantcheva, Antitza Utkarsh, Ayush Roy, Sumantra Dutta Singh, Pravendra |
Author_xml | – sequence: 1 givenname: Indu orcidid: 0000-0002-2755-9416 surname: Joshi fullname: Joshi, Indu email: indu.joshi@cse.iitd.ac.in, indu.joshi@inria.fr organization: Indian Institute of Technology Delhi, INRIA Sophia Antipolis France – sequence: 2 givenname: Ayush surname: Utkarsh fullname: Utkarsh, Ayush organization: Independent Researcher – sequence: 3 givenname: Pravendra surname: Singh fullname: Singh, Pravendra organization: Indian Institute of Technology Roorkee – sequence: 4 givenname: Antitza surname: Dantcheva fullname: Dantcheva, Antitza organization: INRIA Sophia Antipolis – sequence: 5 givenname: Sumantra Dutta surname: Roy fullname: Roy, Sumantra Dutta organization: Indian Institute of Technology Delhi, INRIA Sophia Antipolis France – sequence: 6 givenname: Prem Kumar surname: Kalra fullname: Kalra, Prem Kumar organization: Indian Institute of Technology Delhi, INRIA Sophia Antipolis France |
BackLink | https://hal.science/hal-03966796$$DView record in HAL |
BookMark | eNp9kM1KAzEURoNUsFZfwNWAC3ERvTdpfmZZilqh0I2uQzqT1Cl1UpOp4NubdhTBRVe5hO8k3z3nZNCG1hFyhXCHAOo-IcKYUWBIEbXklJ-QIQrFqVIMB3nmGqgSgGfkPKU1AErBxkNys2iL6FIXou2a0BbBF7VbRVu7uvBNu3JxG5u2Sxfk1NtNcpc_54i8Pj68TGd0vnh6nk7mtOKl6qhzqpbIrReuLpdorQfrUANf5oI1W3IQJRsrb9GLSmvPuUAOErwoUWlW8xG57d99sxuTv3638csE25jZZG72d8BLKVUpPzFnr_vsNoaPXV7CrMMutrmeYQqlUkJqlVO6T1UxpBSdN1XTHZbtom02BsHsFZpeockKzUGh4Rll_9DfRkch3kNpby4L_Gt1hPoGSZ2Cyg |
CitedBy_id | crossref_primary_10_1109_LSENS_2022_3193924 crossref_primary_10_3934_math_20231408 crossref_primary_10_1007_s11042_024_20379_5 crossref_primary_10_1109_ACCESS_2024_3397729 crossref_primary_10_1109_LSENS_2022_3203787 crossref_primary_10_3390_s23146591 |
Cites_doi | 10.1109/TIFS.2020.3039058 10.1007/978-3-540-74549-5_11 10.1109/WACV45572.2020.9093305 10.1016/j.patcog.2017.02.012 10.1109/IJCNN48605.2020.9206836 10.1109/ICCV.2019.00338 10.1109/CVPR.2018.00745 10.1049/iet-bmt.2019.0121 10.1007/978-3-642-12595-9_8 10.1109/TIP.2011.2170696 10.1145/2683483.2683485 10.1109/CVPR.2017.683 10.1016/j.patrec.2007.10.004 10.1016/j.image.2017.08.010 10.1007/978-3-319-12484-1_22 10.1109/ICB.2012.6199773 10.1109/WACV.2019.00100 10.1109/WACVW52041.2021.00011 10.1109/LSP.2018.2877008 10.1109/TIP.2003.819861 10.1201/9781003003489-3 10.1016/j.imavis.2019.02.006 10.1109/ETCHB.2010.5559279 10.1109/ACCESS.2021.3093879 10.1109/SIBGRAPI.2018.00041 10.1109/ICCV.2019.00069 10.1007/978-3-030-01234-2_1 10.1109/34.709565 10.1016/S0031-3203(02)00032-8 10.1109/TIFS.2012.2215326 10.1109/TPAMI.2010.52 10.1109/IPTA.2016.7821036 10.1109/CVPR.2017.667 10.1049/iet-ipr.2013.0528 10.1109/IJCNN52387.2021.9533528 10.1109/ACCESS.2015.2428631 10.1016/j.ins.2020.01.031 10.1016/j.patcog.2020.107203 10.1109/LSP.2021.3100263 10.1117/12.851411 10.1109/IJCNN52387.2021.9533712 10.1109/ACCESS.2020.2964035 10.1007/s11042-018-5633-1 10.1049/iet-bmt.2012.0003 10.1109/BTAS.2017.8272727 10.1109/TPAMI.2013.184 10.1016/j.patcog.2006.05.036 10.1007/s11042-020-08750-8 10.1109/TPAMI.2010.228 10.1007/978-3-319-24574-4_28 10.1109/IJCB.2011.6117540 10.1016/B978-0-32-398370-9.00009-3 10.1109/ICB45273.2019.8987279 10.1049/iet-bmt.2016.0088 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U 1XC VOOES |
DOI | 10.1007/s11042-021-11863-3 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 35377 |
ExternalDocumentID | oai_HAL_hal_03966796v1 10_1007_s11042_021_11863_3 |
GrantInformation_xml | – fundername: Raman-Charpak Fellowship 2019 grantid: Application no- RCF-IN-0077 – fundername: Agence Nationale de la Recherche grantid: ANR-18-CE92-0024 funderid: https://doi.org/10.13039/501100001665 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U 1XC PUEGO VOOES |
ID | FETCH-LOGICAL-c397t-ee7d613af5ed9b1aaf0ae1803b110d2b3059247fa1f5c88f33513060f591782d3 |
IEDL.DBID | U2A |
ISSN | 1380-7501 |
IngestDate | Wed Aug 27 06:44:50 EDT 2025 Fri Jul 25 06:39:18 EDT 2025 Thu Apr 24 23:00:06 EDT 2025 Tue Jul 01 04:13:13 EDT 2025 Fri Feb 21 02:45:39 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | Biometrics Deep convolutional neural networks Attention mechanism Feature recalibration Fingerprints Restoration Denoising |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c397t-ee7d613af5ed9b1aaf0ae1803b110d2b3059247fa1f5c88f33513060f591782d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2755-9416 |
OpenAccessLink | https://hal.science/hal-03966796 |
PQID | 2716775687 |
PQPubID | 54626 |
PageCount | 29 |
ParticipantIDs | hal_primary_oai_HAL_hal_03966796v1 proquest_journals_2716775687 crossref_citationtrail_10_1007_s11042_021_11863_3 crossref_primary_10_1007_s11042_021_11863_3 springer_journals_10_1007_s11042_021_11863_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221000 2022-10-00 20221001 2022-10 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 20221000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V Springer Verlag |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer Verlag |
References | LiuSLiuMYangZSparse coding based orientation estimation for latent fingerprintsPattern Recogn20176716417610.1016/j.patcog.2017.02.012 GhafoorMTajIAAhmadWJafriNMEfficient 2-fold contextual filtering approach for fingerprint enhancementIET Image Process20148741742510.1049/iet-ipr.2013.0528 XuDBianWChengYLiQLuoYYuQFingerprint enhancement using multi-scale classification dictionaries with reduced dimensionalityIET Biom20209519420410.1049/iet-bmt.2019.0121 SankaranAVatsaMSinghRMultisensor optical and latent fingerprint databaseIEEE Access2015365366510.1109/ACCESS.2015.2428631 KarabulutDTertychnyiPArslanHSOzcinarCNasrollahiKVallsJVilasecaJMoeslundTBAnbarjafariGCycle-consistent generative adversarial neural networks based low quality fingerprint enhancementMultimed Tools Appl20207925185691858910.1007/s11042-020-08750-8 GottschlichCCurved-region-based ridge frequency estimation and curved gabor filters for fingerprint image enhancementIEEE Trans Image Process201121422202227295952310.1109/TIP.2011.2170696 Wang F, Jiang M, Qian C, Yang S, Li C, Zhang H, Wang X, Tang X (2017) Residual attention network for image classification. In: Conference on computer vision and pattern recognition. IEEE, pp 3156–3164 Puri C, Narang K, Tiwari A, Vatsa M, Singh R (2010) On analysis of rural and urban Indian fingerprint images. In: International conference on ethics and policy of biometrics. Springer, pp 55–61 GottschlichCSchönliebCBOriented diffusion filtering for enhancing low-quality fingerprint imagesIET Biom20121210511310.1049/iet-bmt.2012.0003 Li D, Wen G, Kuai Y, Porikli F (2018) End-to-end feature integration for correlation filter tracking with channel attention. IEEE Signal Processing Letters 25(12):1815–1819 Chen L, Zhang H, Xiao J, Nie L, Shao J, Liu W, Chua TS (2017) Sca-cnn: Spatial and channel-wise attention in convolutional networks for image captioning. In: Conference on computer vision and pattern recognition. IEEE, pp 5659–5667 ManickamADevarasanEManogaranGPriyanMKVaratharajanRHsuCHKrishnamoorthiRScore level based latent fingerprint enhancement and matching using SIFT featureMultimed Tools Appl20197833065308510.1007/s11042-018-5633-1 NFIQ 2.0 (2016) NIST Fingerprint image quality. https://www.nist.gov/services-resources/software/development-nfiq-20. Accessed 8 Dec 2020 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Polosukhin I (2017) Attention is all you need. In: Advances in neural information processing systems, pp 5998–6008 Ramos RC, de Lima Borges EVC, Andrezza ILP, Primo JJB, Batista LV, Gomes HM (2018) Analysis and improvements of fingerprint enhancement from gabor iterative filtering. In: SIBGRAPI conference on graphics, patterns and images. IEEE, pp 266–273 Joshi I, Anand A, Roy SD, Kalra PK (2021) On training generative adversarial network for enhancement of latent fingerprints. In: AI and deep learning in biometric security. CRC Press, pp 51–79 Yoon S, Feng J, Jain AK (2010) On latent fingerprint enhancement. In: Biometric technology for human identification VII 7667:766707. International Society for Optics and Photonics SchuchPSchulzSBuschCSurvey on the impact of fingerprint image enhancementIET Biom20177210211510.1049/iet-bmt.2016.0088 Svoboda J, Monti F, Bronstein MM (2017) Generative convolutional networks for latent fingerprint reconstruction. In: International joint conference on biometrics (IJCB). IEEE, pp 429–436 CappelliRFerraraMMaltoniDFingerprint indexing based on minutia cylinder-codeIEEE Trans Pattern Anal Mach Intell20103351051105710.1109/TPAMI.2010.228 Singh P, Mazumder P, Namboodiri VP (2020) Accuracy booster: performance boosting using feature map re-calibration. In: Winter Conference on Applications of Computer Vision (WACV), pp. 884-893. IEEE Woo S, Park J, Lee JY, So Kweon I (2018) Cbam: Convolutional block attention module. In: European conference on computer vision (ECCV). IEEE, pp 3–19 Vatsa M, Singh R, Bharadwaj S, Bhatt H, Mashruwala R (2010) Analyzing fingerprints of Indian population using image quality: A UIDAI case study. In: International workshop on emerging techniques and challenges for hand-based biometrics. IEEE, pp 1–5 Bello I, Zoph B, Vaswani A, Shlens J Le Q V (2019) Attention Augmented Convolutional Networks. In: International Conference on Computer Vision, pp. 3286–3295. IEEE LiJFengJKuoCCJDeep convolutional neural network for latent fingerprint enhancementSig Process Image Commun201860526310.1016/j.image.2017.08.010 Turroni F, Cappelli R, Maltoni D (2012) Fingerprint enhancement using contextual iterative filtering. In: International conference on biometrics (ICB). IEEE, pp 152–157 WangZBovikACSheikhHRSimoncelliEPImage quality assessment: from error visibility to structural similarityIEEE Trans Image Process200413460061210.1109/TIP.2003.819861 LiuMQianPAutomatic segmentation and enhancement of latent fingerprints using deep nested unetsIEEE Trans Inf Forensic Secur2020161709171910.1109/TIFS.2020.3039058 HongLWanYJainAFingerprint image enhancement: algorithm and performance evaluationIEEE Trans Pattern Anal Mach Intell199820877778910.1109/34.709565 Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, Glocker B (2018) Attention u-net: Learning where to look for the pancreas. arXiv:1804.03999 Joshi I, Anand A, Vatsa M, Singh R, Roy SD, Kalra P (2019) Latent fingerprint enhancement using generative adversarial networks. In: Winter conference on applications of computer vision (WACV). IEEE, pp 895–903 Park J, Woo S, Lee JY, Kweon IS (2018) Bam: Bottleneck attention module. arXiv:1807.06514 Medeiros AG, Andrade JP, Serafim PB, Santos AM, Maia JG, Trinta FA, Macedo JA, Fileho PP, Rego PA (2020) A novel approach for automatic enhancement of fingerprint images via deep transfer learning. In: International joint conference on neural networks (IJCNN). IEEE, pp 1–8 Rama RK, Namboodiri AM (2011) Fingerprint enhancement using hierarchical markov random fields. In: International joint conference on biometrics (IJCB). IEEE, pp 1–8 Ansari AH (2011) Generation and storage of large synthetic fingerprint database. Dissertation, Indian Institute of Science Bangalore Schuch P, Schulz S, Busch C (2016) De-convolutional autoencoder for enhancement of fingerprint samples. In: International conference on image processing theory, tools and applications (IPTA). IEEE, pp 1–7 Sahasrabudhe M, Namboodiri AM (2014) Fingerprint enhancement using unsupervised hierarchical feature learning. In: Indian conference on computer vision graphics and image processing. ACM, pp 1–8 YangXFengJZhouJLocalized dictionaries based orientation field estimation for latent fingerprintsIEEE Trans Pattern Anal Mach Intell201436595596910.1109/TPAMI.2013.184 Ferrara M, Maltoni D, Cappelli R (2014) A two-factor protection scheme for MCC fingerprint templates. In: International conference of the biometrics special interest group (BIOSIG). IEEE, pp 1–8 Qian P, Li A, Liu M (2019) Latent fingerprint enhancement based on denseunet. In: International conference on biometrics (ICB). IEEE, pp 1–6 Joshi I, Utkarsh A, Kothari R, Kurmi VK, Dantcheva A, Roy SD, Kalra PK (2021) Data uncertainty guided noise-aware preprocessing of fingerprints In: International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE Joshi I, Utkarsh A, Kothari R, Kurmi VK, Dantcheva A, Roy SD, Kalra PK (2022) On Estimating Uncertainty of Fingerprint Enhancement Models. In: Digital Image Enhancement and Reconstruction. Elsevier GuptaRKhariMGuptaDCrespoRGFingerprint image enhancement and reconstruction using the orientation and phase reconstructionInform Sci2020530201218410208610.1016/j.ins.2020.01.031 Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: Conference on computer vision and pattern recognition. IEEE, pp 7132–7141 (2015) NIST Biometric Image Software. http://www.nist.gov/itl/iad/ig/nbis.cfm. Accessed 4 Dec 2020 Horapong K, Srisutheenon K, Areekul V (2021) Progressive and corrective feedback for latent fingerprint enhancement using boosted spectral filtering and spectral autoencoder. IEEE Access Mnih V, Heess N, Graves A (2014) Recurrent models of visual attention. In: Advances in neural information processing systems, pp 2204–2212 ChikkerurSCartwrightANGovindarajuVFingerprint enhancement using stft analysisPattern Recogn200740119821110.1016/j.patcog.2006.05.036 Jirachaweng S, Areekul V (2007) Fingerprint enhancement based on discrete cosine transform. In: International conference on biometrics. Springer, pp 96–105 CappelliRFerraraMMaltoniDMinutia cylinder-code: A new representation and matching technique for fingerprint recognitionIEEE Trans Pattern Anal Mach Intell201032122128214110.1109/TPAMI.2010.52 WongWJLaiSHMulti-task CNN for restoring corrupted fingerprint imagesPattern Recogn202010110720310.1016/j.patcog.2020.107203 Joshi I, Kothari R, Utkarsh A, Kurmi VK, Dantcheva A, Roy SD, Kalra PK (2021) Explainable fingerprint roi segmentation using monte carlo dropout. In: Winter conference on applications of computer vision workshops (WACVW). IEEE Computer Society, pp 60–69 Chen C, Feng J, Zhou J (2016) Multi-scale dictionaries based fingerprint orientation field estimation. In: International conference on biometrics (ICB). IEEE, pp 1–8 Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241 Le NT, Wang JW, Le DH, Wang CC, Nguyen TN (2020) Fingerprint enhancement based on tensor of wavelet subbands for classification. IEEE Access 8:6602–6615 FerraraMMaltoniDCappelliRNoninvertible minutia cylinder-code representationIEEE Trans Inf Forensic Sec2012761727173710.1109/TIFS.2012.2215326 Hu J, Shen L, Albanie S, Sun G, Vedaldi A (2018) Gather-excite: Exploiting feature context in convolutional neural networks. In: Advances in neural information processing systems, pp 9401–9411 HsiehCTLaiEWangYCAn effective algorithm for fingerprint image enhancement based on wavelet transformPattern Recogn200336230331210.1016/ 11863_CR46 11863_CR45 11863_CR44 M Liu (11863_CR33) 2020; 16 11863_CR43 A Sankaran (11863_CR47) 2015; 3 11863_CR48 11863_CR1 C Gottschlich (11863_CR11) 2012; 1 11863_CR2 A Manickam (11863_CR34) 2019; 78 11863_CR5 11863_CR42 11863_CR6 11863_CR41 11863_CR40 X Yang (11863_CR63) 2014; 36 11863_CR57 11863_CR56 11863_CR55 11863_CR54 11863_CR17 11863_CR16 11863_CR15 J Li (11863_CR31) 2018; 60 11863_CR53 11863_CR52 M Ghafoor (11863_CR10) 2014; 8 11863_CR51 P Schuch (11863_CR49) 2017; 7 M Ferrara (11863_CR8) 2012; 7 R Gupta (11863_CR13) 2020; 530 S Liu (11863_CR32) 2017; 67 WJ Wong (11863_CR61) 2020; 101 W Wang (11863_CR58) 2008; 29 11863_CR24 11863_CR23 11863_CR22 C Gottschlich (11863_CR12) 2011; 21 11863_CR21 11863_CR65 11863_CR27 D Karabulut (11863_CR28) 2020; 79 11863_CR26 11863_CR25 11863_CR60 11863_CR20 11863_CR64 Z Wang (11863_CR59) 2004; 13 S Chikkerur (11863_CR7) 2007; 40 R Cappelli (11863_CR3) 2010; 32 11863_CR18 11863_CR35 RP Sharma (11863_CR50) 2019; 83 11863_CR39 11863_CR38 D Xu (11863_CR62) 2020; 9 11863_CR37 11863_CR36 CT Hsieh (11863_CR19) 2003; 36 11863_CR30 11863_CR9 L Hong (11863_CR14) 1998; 20 R Cappelli (11863_CR4) 2010; 33 11863_CR29 |
References_xml | – reference: Huang Z, Wang X, Huang L, Huang C, Wei Y, Liu W, Vedaldi A (2019) Ccnet: Criss-cross attention for semantic segmentation. In: Conference on computer vision and pattern recognition, pp. 603–612. IEEE – reference: Qian P, Li A, Liu M (2019) Latent fingerprint enhancement based on denseunet. In: International conference on biometrics (ICB). IEEE, pp 1–6 – reference: WongWJLaiSHMulti-task CNN for restoring corrupted fingerprint imagesPattern Recogn202010110720310.1016/j.patcog.2020.107203 – reference: GottschlichCCurved-region-based ridge frequency estimation and curved gabor filters for fingerprint image enhancementIEEE Trans Image Process201121422202227295952310.1109/TIP.2011.2170696 – reference: Tiwari K, Gupta P (2014) Fingerprint quality of rural population and impact of multiple scanners on recognition. In: Chinese conference on biometric recognition. Springer, pp 199–207 – reference: Woo S, Park J, Lee JY, So Kweon I (2018) Cbam: Convolutional block attention module. In: European conference on computer vision (ECCV). IEEE, pp 3–19 – reference: CappelliRFerraraMMaltoniDFingerprint indexing based on minutia cylinder-codeIEEE Trans Pattern Anal Mach Intell20103351051105710.1109/TPAMI.2010.228 – reference: YangXFengJZhouJLocalized dictionaries based orientation field estimation for latent fingerprintsIEEE Trans Pattern Anal Mach Intell201436595596910.1109/TPAMI.2013.184 – reference: FerraraMMaltoniDCappelliRNoninvertible minutia cylinder-code representationIEEE Trans Inf Forensic Sec2012761727173710.1109/TIFS.2012.2215326 – reference: Ansari AH (2011) Generation and storage of large synthetic fingerprint database. Dissertation, Indian Institute of Science Bangalore – reference: Joshi I, Utkarsh A, Kothari R, Kurmi VK, Dantcheva A, Roy SD, Kalra PK (2021) Data uncertainty guided noise-aware preprocessing of fingerprints In: International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE – reference: LiJFengJKuoCCJDeep convolutional neural network for latent fingerprint enhancementSig Process Image Commun201860526310.1016/j.image.2017.08.010 – reference: Le NT, Wang JW, Le DH, Wang CC, Nguyen TN (2020) Fingerprint enhancement based on tensor of wavelet subbands for classification. IEEE Access 8:6602–6615 – reference: Puri C, Narang K, Tiwari A, Vatsa M, Singh R (2010) On analysis of rural and urban Indian fingerprint images. In: International conference on ethics and policy of biometrics. Springer, pp 55–61 – reference: Chen L, Zhang H, Xiao J, Nie L, Shao J, Liu W, Chua TS (2017) Sca-cnn: Spatial and channel-wise attention in convolutional networks for image captioning. In: Conference on computer vision and pattern recognition. IEEE, pp 5659–5667 – reference: Singh P, Mazumder P, Namboodiri VP (2020) Accuracy booster: performance boosting using feature map re-calibration. In: Winter Conference on Applications of Computer Vision (WACV), pp. 884-893. IEEE – reference: Jirachaweng S, Areekul V (2007) Fingerprint enhancement based on discrete cosine transform. In: International conference on biometrics. Springer, pp 96–105 – reference: Joshi I, Anand A, Vatsa M, Singh R, Roy SD, Kalra P (2019) Latent fingerprint enhancement using generative adversarial networks. In: Winter conference on applications of computer vision (WACV). IEEE, pp 895–903 – reference: Wang F, Jiang M, Qian C, Yang S, Li C, Zhang H, Wang X, Tang X (2017) Residual attention network for image classification. In: Conference on computer vision and pattern recognition. IEEE, pp 3156–3164 – reference: ManickamADevarasanEManogaranGPriyanMKVaratharajanRHsuCHKrishnamoorthiRScore level based latent fingerprint enhancement and matching using SIFT featureMultimed Tools Appl20197833065308510.1007/s11042-018-5633-1 – reference: GhafoorMTajIAAhmadWJafriNMEfficient 2-fold contextual filtering approach for fingerprint enhancementIET Image Process20148741742510.1049/iet-ipr.2013.0528 – reference: Ramos RC, de Lima Borges EVC, Andrezza ILP, Primo JJB, Batista LV, Gomes HM (2018) Analysis and improvements of fingerprint enhancement from gabor iterative filtering. In: SIBGRAPI conference on graphics, patterns and images. IEEE, pp 266–273 – reference: Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, Glocker B (2018) Attention u-net: Learning where to look for the pancreas. arXiv:1804.03999 – reference: Vatsa M, Singh R, Bharadwaj S, Bhatt H, Mashruwala R (2010) Analyzing fingerprints of Indian population using image quality: A UIDAI case study. In: International workshop on emerging techniques and challenges for hand-based biometrics. IEEE, pp 1–5 – reference: XuDBianWChengYLiQLuoYYuQFingerprint enhancement using multi-scale classification dictionaries with reduced dimensionalityIET Biom20209519420410.1049/iet-bmt.2019.0121 – reference: (2015) NIST Biometric Image Software. http://www.nist.gov/itl/iad/ig/nbis.cfm. Accessed 4 Dec 2020 – reference: WangWLiJHuangFFengHDesign and implementation of log-gabor filter in fingerprint image enhancementPattern Recogn Lett200829330130810.1016/j.patrec.2007.10.004 – reference: HongLWanYJainAFingerprint image enhancement: algorithm and performance evaluationIEEE Trans Pattern Anal Mach Intell199820877778910.1109/34.709565 – reference: Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Polosukhin I (2017) Attention is all you need. In: Advances in neural information processing systems, pp 5998–6008 – reference: WangZBovikACSheikhHRSimoncelliEPImage quality assessment: from error visibility to structural similarityIEEE Trans Image Process200413460061210.1109/TIP.2003.819861 – reference: Ferrara M, Maltoni D, Cappelli R (2014) A two-factor protection scheme for MCC fingerprint templates. In: International conference of the biometrics special interest group (BIOSIG). IEEE, pp 1–8 – reference: ChikkerurSCartwrightANGovindarajuVFingerprint enhancement using stft analysisPattern Recogn200740119821110.1016/j.patcog.2006.05.036 – reference: Sahasrabudhe M, Namboodiri AM (2014) Fingerprint enhancement using unsupervised hierarchical feature learning. In: Indian conference on computer vision graphics and image processing. ACM, pp 1–8 – reference: GottschlichCSchönliebCBOriented diffusion filtering for enhancing low-quality fingerprint imagesIET Biom20121210511310.1049/iet-bmt.2012.0003 – reference: GuptaRKhariMGuptaDCrespoRGFingerprint image enhancement and reconstruction using the orientation and phase reconstructionInform Sci2020530201218410208610.1016/j.ins.2020.01.031 – reference: SankaranAVatsaMSinghRMultisensor optical and latent fingerprint databaseIEEE Access2015365366510.1109/ACCESS.2015.2428631 – reference: KarabulutDTertychnyiPArslanHSOzcinarCNasrollahiKVallsJVilasecaJMoeslundTBAnbarjafariGCycle-consistent generative adversarial neural networks based low quality fingerprint enhancementMultimed Tools Appl20207925185691858910.1007/s11042-020-08750-8 – reference: Mnih V, Heess N, Graves A (2014) Recurrent models of visual attention. In: Advances in neural information processing systems, pp 2204–2212 – reference: Rama RK, Namboodiri AM (2011) Fingerprint enhancement using hierarchical markov random fields. In: International joint conference on biometrics (IJCB). IEEE, pp 1–8 – reference: Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241 – reference: Joshi I, Utkarsh A, Kothari R, Kurmi VK, Dantcheva A, Roy SD, Kalra PK (2022) On Estimating Uncertainty of Fingerprint Enhancement Models. In: Digital Image Enhancement and Reconstruction. Elsevier – reference: Chen C, Feng J, Zhou J (2016) Multi-scale dictionaries based fingerprint orientation field estimation. In: International conference on biometrics (ICB). IEEE, pp 1–8 – reference: Horapong K, Srisutheenon K, Areekul V (2021) Progressive and corrective feedback for latent fingerprint enhancement using boosted spectral filtering and spectral autoencoder. IEEE Access – reference: Joshi I, Anand A, Roy SD, Kalra PK (2021) On training generative adversarial network for enhancement of latent fingerprints. In: AI and deep learning in biometric security. CRC Press, pp 51–79 – reference: Jia F, Ma L, Yang Y, Zeng T (2021) Pixel-Attention CNN With Color Correlation Loss for Color Image Denoising. IEEE Signal Processing Letters 28:1600–1604 – reference: Li D, Wen G, Kuai Y, Porikli F (2018) End-to-end feature integration for correlation filter tracking with channel attention. IEEE Signal Processing Letters 25(12):1815–1819 – reference: Bello I, Zoph B, Vaswani A, Shlens J Le Q V (2019) Attention Augmented Convolutional Networks. In: International Conference on Computer Vision, pp. 3286–3295. IEEE – reference: Svoboda J, Monti F, Bronstein MM (2017) Generative convolutional networks for latent fingerprint reconstruction. In: International joint conference on biometrics (IJCB). IEEE, pp 429–436 – reference: Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: Conference on computer vision and pattern recognition. IEEE, pp 7132–7141 – reference: Medeiros AG, Andrade JP, Serafim PB, Santos AM, Maia JG, Trinta FA, Macedo JA, Fileho PP, Rego PA (2020) A novel approach for automatic enhancement of fingerprint images via deep transfer learning. In: International joint conference on neural networks (IJCNN). IEEE, pp 1–8 – reference: HsiehCTLaiEWangYCAn effective algorithm for fingerprint image enhancement based on wavelet transformPattern Recogn200336230331210.1016/S0031-3203(02)00032-8 – reference: NFIQ 2.0 (2016) NIST Fingerprint image quality. https://www.nist.gov/services-resources/software/development-nfiq-20. Accessed 8 Dec 2020 – reference: Yoon S, Feng J, Jain AK (2010) On latent fingerprint enhancement. In: Biometric technology for human identification VII 7667:766707. International Society for Optics and Photonics – reference: Joshi I, Kothari R, Utkarsh A, Kurmi VK, Dantcheva A, Roy SD, Kalra PK (2021) Explainable fingerprint roi segmentation using monte carlo dropout. In: Winter conference on applications of computer vision workshops (WACVW). IEEE Computer Society, pp 60–69 – reference: LiuMQianPAutomatic segmentation and enhancement of latent fingerprints using deep nested unetsIEEE Trans Inf Forensic Secur2020161709171910.1109/TIFS.2020.3039058 – reference: Hu J, Shen L, Albanie S, Sun G, Vedaldi A (2018) Gather-excite: Exploiting feature context in convolutional neural networks. In: Advances in neural information processing systems, pp 9401–9411 – reference: Park J, Woo S, Lee JY, Kweon IS (2018) Bam: Bottleneck attention module. arXiv:1807.06514 – reference: Roy R, Joshi I, Das A, Dantcheva A (2000) 3D CNN Architectures and Attention Mechanisms for Deepfake Detection. arXiv preprint hal.archives-ouvertes.fr: hal-03524639 (accepted for publication in Handbook of Digital Face Manipulation and Detection, Springer) – reference: SharmaRPDeySTwo-stage quality adaptive fingerprint image enhancement using fuzzy c-means clustering based fingerprint quality analysisImage Vis Comput20198311610.1016/j.imavis.2019.02.006 – reference: Turroni F, Cappelli R, Maltoni D (2012) Fingerprint enhancement using contextual iterative filtering. In: International conference on biometrics (ICB). IEEE, pp 152–157 – reference: Joshi I, Utkarsh A, Kothari R, Kurmi VK, Dantcheva A, Roy SD, Kalra PK (2021) Sensor-invariant fingerprint roi segmentation using recurrent adversarial learning. In: International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE – reference: LiuSLiuMYangZSparse coding based orientation estimation for latent fingerprintsPattern Recogn20176716417610.1016/j.patcog.2017.02.012 – reference: Schuch P, Schulz S, Busch C (2016) De-convolutional autoencoder for enhancement of fingerprint samples. In: International conference on image processing theory, tools and applications (IPTA). IEEE, pp 1–7 – reference: SchuchPSchulzSBuschCSurvey on the impact of fingerprint image enhancementIET Biom20177210211510.1049/iet-bmt.2016.0088 – reference: CappelliRFerraraMMaltoniDMinutia cylinder-code: A new representation and matching technique for fingerprint recognitionIEEE Trans Pattern Anal Mach Intell201032122128214110.1109/TPAMI.2010.52 – volume: 16 start-page: 1709 year: 2020 ident: 11863_CR33 publication-title: IEEE Trans Inf Forensic Secur doi: 10.1109/TIFS.2020.3039058 – ident: 11863_CR21 doi: 10.1007/978-3-540-74549-5_11 – ident: 11863_CR52 doi: 10.1109/WACV45572.2020.9093305 – volume: 67 start-page: 164 year: 2017 ident: 11863_CR32 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2017.02.012 – ident: 11863_CR35 doi: 10.1109/IJCNN48605.2020.9206836 – ident: 11863_CR2 doi: 10.1109/ICCV.2019.00338 – ident: 11863_CR39 – ident: 11863_CR55 – ident: 11863_CR6 – ident: 11863_CR16 doi: 10.1109/CVPR.2018.00745 – volume: 9 start-page: 194 issue: 5 year: 2020 ident: 11863_CR62 publication-title: IET Biom doi: 10.1049/iet-bmt.2019.0121 – ident: 11863_CR40 doi: 10.1007/978-3-642-12595-9_8 – volume: 21 start-page: 2220 issue: 4 year: 2011 ident: 11863_CR12 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2011.2170696 – ident: 11863_CR46 doi: 10.1145/2683483.2683485 – ident: 11863_CR57 doi: 10.1109/CVPR.2017.683 – ident: 11863_CR45 – volume: 29 start-page: 301 issue: 3 year: 2008 ident: 11863_CR58 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2007.10.004 – volume: 60 start-page: 52 year: 2018 ident: 11863_CR31 publication-title: Sig Process Image Commun doi: 10.1016/j.image.2017.08.010 – ident: 11863_CR53 doi: 10.1007/978-3-319-12484-1_22 – ident: 11863_CR54 doi: 10.1109/ICB.2012.6199773 – ident: 11863_CR17 – ident: 11863_CR25 doi: 10.1109/WACV.2019.00100 – ident: 11863_CR22 doi: 10.1109/WACVW52041.2021.00011 – ident: 11863_CR38 – ident: 11863_CR30 doi: 10.1109/LSP.2018.2877008 – ident: 11863_CR1 – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 11863_CR59 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2003.819861 – ident: 11863_CR26 doi: 10.1201/9781003003489-3 – volume: 83 start-page: 1 year: 2019 ident: 11863_CR50 publication-title: Image Vis Comput doi: 10.1016/j.imavis.2019.02.006 – ident: 11863_CR65 – ident: 11863_CR9 – ident: 11863_CR56 doi: 10.1109/ETCHB.2010.5559279 – ident: 11863_CR15 doi: 10.1109/ACCESS.2021.3093879 – ident: 11863_CR43 doi: 10.1109/SIBGRAPI.2018.00041 – ident: 11863_CR18 doi: 10.1109/ICCV.2019.00069 – ident: 11863_CR60 doi: 10.1007/978-3-030-01234-2_1 – volume: 20 start-page: 777 issue: 8 year: 1998 ident: 11863_CR14 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.709565 – volume: 36 start-page: 303 issue: 2 year: 2003 ident: 11863_CR19 publication-title: Pattern Recogn doi: 10.1016/S0031-3203(02)00032-8 – volume: 7 start-page: 1727 issue: 6 year: 2012 ident: 11863_CR8 publication-title: IEEE Trans Inf Forensic Sec doi: 10.1109/TIFS.2012.2215326 – volume: 32 start-page: 2128 issue: 12 year: 2010 ident: 11863_CR3 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2010.52 – ident: 11863_CR48 doi: 10.1109/IPTA.2016.7821036 – ident: 11863_CR5 doi: 10.1109/CVPR.2017.667 – ident: 11863_CR37 – volume: 8 start-page: 417 issue: 7 year: 2014 ident: 11863_CR10 publication-title: IET Image Process doi: 10.1049/iet-ipr.2013.0528 – ident: 11863_CR27 doi: 10.1109/IJCNN52387.2021.9533528 – volume: 3 start-page: 653 year: 2015 ident: 11863_CR47 publication-title: IEEE Access doi: 10.1109/ACCESS.2015.2428631 – volume: 530 start-page: 201 year: 2020 ident: 11863_CR13 publication-title: Inform Sci doi: 10.1016/j.ins.2020.01.031 – volume: 101 start-page: 107203 year: 2020 ident: 11863_CR61 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2020.107203 – ident: 11863_CR20 doi: 10.1109/LSP.2021.3100263 – ident: 11863_CR64 doi: 10.1117/12.851411 – ident: 11863_CR23 doi: 10.1109/IJCNN52387.2021.9533712 – ident: 11863_CR29 doi: 10.1109/ACCESS.2020.2964035 – volume: 78 start-page: 3065 issue: 3 year: 2019 ident: 11863_CR34 publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-5633-1 – ident: 11863_CR36 – volume: 1 start-page: 105 issue: 2 year: 2012 ident: 11863_CR11 publication-title: IET Biom doi: 10.1049/iet-bmt.2012.0003 – ident: 11863_CR51 doi: 10.1109/BTAS.2017.8272727 – volume: 36 start-page: 955 issue: 5 year: 2014 ident: 11863_CR63 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2013.184 – volume: 40 start-page: 198 issue: 1 year: 2007 ident: 11863_CR7 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2006.05.036 – volume: 79 start-page: 18569 issue: 25 year: 2020 ident: 11863_CR28 publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-08750-8 – volume: 33 start-page: 1051 issue: 5 year: 2010 ident: 11863_CR4 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2010.228 – ident: 11863_CR44 doi: 10.1007/978-3-319-24574-4_28 – ident: 11863_CR42 doi: 10.1109/IJCB.2011.6117540 – ident: 11863_CR24 doi: 10.1016/B978-0-32-398370-9.00009-3 – ident: 11863_CR41 doi: 10.1109/ICB45273.2019.8987279 – volume: 7 start-page: 102 issue: 2 year: 2017 ident: 11863_CR49 publication-title: IET Biom doi: 10.1049/iet-bmt.2016.0088 |
SSID | ssj0016524 |
Score | 2.3659847 |
Snippet | The state-of-the-art fingerprint matching systems achieve high accuracy on good quality fingerprints. However, degraded fingerprints obtained due to poor skin... |
SourceID | hal proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 35349 |
SubjectTerms | 1204: Multimedia Technology for Security and Surveillance in Degraded Vision Ablation Background noise Biometric recognition systems Computer Communication Networks Computer Science Crime Data Structures and Information Theory Fingerprint verification Fingerprinting Matching Multimedia Information Systems Performance degradation Quality assessment Redundancy Restoration Special Purpose and Application-Based Systems |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_c9qIPfkzF6ZQigg9abJolaZ9kysYQnSIO9lbafOCDbHOr_v1eunSbgqNvbdrQu9xXcnc_gAuu8WJM-LFEFdiSxIqUDH0p0JkwLJVa2Nrhpz7vDVoPQzZ0G24zl1ZZ6sRCUauxtHvkNyE69kIwHonbyadvUaPs6aqD0KhADVVwhMFX7a7Tf3ldnCNw5mBto8BH20hc2cy8eI7Y0hSbooBONqc-_WWaKu82MXLF6_xzUFrYn-4ubDvH0WvPOb0HG3pUh50SlMFzMlqHrZUOg_tw-TzypgV4TMEBb2w8ZdtDKK08U8xjp8tnBzDodt7ue77DRvAlehC5r7VQaIlTw7SKM5KmJkg1iQKa4W-pMEMxxshKmBQJLqPIUMrQWvHAMIzPolDRQ6iOxiN9BJ5mOjPaKNLScStO41gGgSTUcEEkI4Y3gJRkSaRrHG7xKz6SZctjS8oESZkUpExoA64W70zmbTPWjj5Hai8G2o7XvfZjYu8FFOMxEfNv0oBmyYzEydksWa6KBlyXDFo-_n_K4_VfO4HN0NY5FFl7Tajm0y99it5Hnp25JfYDcPnR_A priority: 102 providerName: ProQuest |
Title | On restoration of degraded fingerprints |
URI | https://link.springer.com/article/10.1007/s11042-021-11863-3 https://www.proquest.com/docview/2716775687 https://hal.science/hal-03966796 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_c9qIPfkzF6RxFBB-00DRL0j5usjn8mCIO5lNp0wQfpJOt-vd7ydptigrSh0B7bejvcrk7ch8Ap1zhxZhwQ4lbYFsSI1LSd6VAY0KzWCphcofvhnwwal-P2bhICpuV0e7lkaTdqZfJbsSkkpiQAjSKOXVpBWrM-O64ikd-Z3F2wFnRyjbwXNSHpEiV-fkbX9RR5cUEQ65Ymt8OR63O6W_DZmEsOp05d3dgTWV12CobMTiFXNZhY6Wq4C6c3WfO1DaMsag7E-2kpiREqlJH23nMdPlsD0b93tPlwC36IbgSrYbcVUqkqH1jzVQaJiSOtRcrEng0wd9K_QRFF70poWMEWQaBppShhuKeZuiTBX5K96GaTTJ1AI5iKtFKp6StwnYYh6H0PEmo5oJIRjRvAClhiWRRLNz0rHiNlmWODZQRQhlZKCPagPPFO2_zUhl_Up8g2gtCU-V60LmNzD2Pog8mQv5BGtAsmREVsjWLfHTxhGA8EA24KBm0fPz7lIf_Iz-Cdd_kOtjIvSZU8-m7OkYLJE9aUAn6Vy2odfrd7tCMV883PRy7veHDY8sux0-iiNLd |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB4ROLQcgNKipqXUqlr10Fp4vV6vfUAVgqamhPSSSLkt9j7UA3IoMaD-KX4jM46dQKXmhnyz115r3rs7Mx_Ax9jiJYT0U40mMNKMVEqHvpYYTDiRayupdvhsEGej6OdYjFfgrq2FobTK1ibWhtpMNO2R74cY2Esp4kR-u_zjE2oUna62EBozsTi1f29xyTY9ODlG_n4Kw9734VHmN6gCvkbfW_nWSoM-LHfCmrRgee6C3LIk4AV6QhMWqAC4JpEux1_VSeI4F2jn48AJXNkkoeH43Q6sRZynpFFJ78f81CIWDYhuEvjoiVlTpDMr1WNUCEMJERjSx9znjxxh5zelYT6Icf85lq29XW8LNpow1TucydULWLHlNmy2EBBeYxG2Yf1BP8OX8PlX6V3VUDU1v72J8ww1ozDWeK6eh6arpq9g9CQ024HVclLa1-BZYQtnnWGRTaM0T1MdBJpxF0umBXNxF1hLFqWbNuWElnGhFg2WiZQKSalqUirehS_zdy5nTTqWjv6A1J4PpP7a2WFf0b0AeUobazesC7stM1Sj1VO1kMEufG0ZtHj8_ynfLP_ae3iWDc_6qn8yOH0Lz0OqsKjzBXdhtbq6tu8w7qmKvVrYPDh_aum-B3W7DNM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED9BkSb2wFhhWgdj0QTiASLiuLaTh2kCStUCKxUCiTcv8Yf2MLWMBhD_2v66nVOnLUjrG8pb4tjR3fk-4rv7AWxzgxdjIkwVqsCmIm5LqThUAp0JyzJlhKsd_tHjnevm6Q27WYC_VS2MS6usdGKpqPVQuX_kBzE69kIwnogD69Mi-q3299s_oUOQcietFZzGWETOzNMjhm-jb90W8nonjtsnV8ed0CMMhArtcBEaIzTas8wyo9OcZJmNMkOSiOZoFXWc42bA-ETYDD9bJYmllKHO55FlGOUksaY47yIsCYyKohosHZ30-peTMwzOPKRuEoVol4kv2RkX7hFXFuPSI9DB5zSkz8zi4i-XlDnj8b44pC1tX3sVVrzTGhyOpew9LJhBHd5VgBCB1w91eDvT3XANdi8GwV0JXFNyPxjaQLvWFNrowJbruOWK0TpcvwrVPkBtMByYjxAYZnJrrCZNkzbTLE1VFClCLRdEMWJ5A0hFFql803KHnfFbTtstO1JKJKUsSSlpA_Ym79yOW3bMHf0VqT0Z6Lptdw7PpbsXUYwFRcofSAM2K2ZIv8dHciqRDdivGDR9_P8lP82f7Qu8QcmW593e2QYsx67cokwe3IRacXdvPqMTVORbXtoC-PnaAv4P0x4SZQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+restoration+of+degraded+fingerprints&rft.jtitle=Multimedia+tools+and+applications&rft.au=Joshi%2C+Indu&rft.au=Utkarsh%2C+Ayush&rft.au=Singh%2C+Pravendra&rft.au=Dantcheva%2C+Antitza&rft.date=2022-10-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=81&rft.issue=24&rft.spage=35349&rft.epage=35377&rft_id=info:doi/10.1007%2Fs11042-021-11863-3&rft.externalDocID=10_1007_s11042_021_11863_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |