On restoration of degraded fingerprints

The state-of-the-art fingerprint matching systems achieve high accuracy on good quality fingerprints. However, degraded fingerprints obtained due to poor skin conditions of subjects or fingerprints obtained around a crime scene often have noisy background and poor ridge structure. Such degraded fing...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 81; no. 24; pp. 35349 - 35377
Main Authors Joshi, Indu, Utkarsh, Ayush, Singh, Pravendra, Dantcheva, Antitza, Roy, Sumantra Dutta, Kalra, Prem Kumar
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2022
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The state-of-the-art fingerprint matching systems achieve high accuracy on good quality fingerprints. However, degraded fingerprints obtained due to poor skin conditions of subjects or fingerprints obtained around a crime scene often have noisy background and poor ridge structure. Such degraded fingerprints pose problem for the existing fingerprint recognition systems. This paper presents a fingerprint restoration model for a poor quality fingerprint that reconstructs a binarized fingerprint image with an improved ridge structure. In particular, we demonstrate the effectiveness of channel refinement in fingerprint restoration. The state-of-the-art channel refinement mechanisms, such as Squeeze and Excitation (SE) block, in general, create SE- block introduce redundancy among channel weights and degrade the performance of fingerprint enhancement models. We present a lightweight attention mechanism that performs channel refinement by reducing redundancy among channel weights of the convolutional kernels. Restored fingerprints generated after introducing proposed channel refinement unit obtain improved quality scores on standard fingerprint quality assessment tool. Furthermore, restored fingerprints achieve improved fingerprint matching performance. We also illustrate that the idea of introducing a channel refinement unit is generalizable to different deep architectures. Additionally, to quantify the ridge preservation ability of the model, standard metrics: Dice score, Jaccard Similarity, SSIM and PSNR are computed with the ground truth and the output of the model (CR-GAN). An ablation study is conducted to individually quantify the improvement of generator and discriminator sub-networks of CR-GAN through channel refinement. Experiments on the publicly available IIITD- MOLF, Rural Indian Fingerprint Database and a private rural fingerprint database demonstrate the efficacy of the proposed attention mechanism.
AbstractList The state-of-the-art fingerprint matching systems achieve high accuracy on good quality fingerprints. However, degraded fingerprints obtained due to poor skin conditions of subjects or fingerprints obtained around a crime scene often have noisy background and poor ridge structure. Such degraded fingerprints pose problem for the existing fingerprint recognition systems. This paper presents a fingerprint restoration model for a poor quality fingerprint that reconstructs a binarized fingerprint image with an improved ridge structure. In particular, we demonstrate the effectiveness of channel refinement in fingerprint restoration. The state-of-the-art channel refinement mechanisms, such as Squeeze and Excitation (SE) block, in general, create SEblock introduce redundancy among channel weights and degrade the performance of fingerprint enhancement models. We present a lightweight attention mechanism
The state-of-the-art fingerprint matching systems achieve high accuracy on good quality fingerprints. However, degraded fingerprints obtained due to poor skin conditions of subjects or fingerprints obtained around a crime scene often have noisy background and poor ridge structure. Such degraded fingerprints pose problem for the existing fingerprint recognition systems. This paper presents a fingerprint restoration model for a poor quality fingerprint that reconstructs a binarized fingerprint image with an improved ridge structure. In particular, we demonstrate the effectiveness of channel refinement in fingerprint restoration. The state-of-the-art channel refinement mechanisms, such as Squeeze and Excitation (SE) block, in general, create SE- block introduce redundancy among channel weights and degrade the performance of fingerprint enhancement models. We present a lightweight attention mechanism that performs channel refinement by reducing redundancy among channel weights of the convolutional kernels. Restored fingerprints generated after introducing proposed channel refinement unit obtain improved quality scores on standard fingerprint quality assessment tool. Furthermore, restored fingerprints achieve improved fingerprint matching performance. We also illustrate that the idea of introducing a channel refinement unit is generalizable to different deep architectures. Additionally, to quantify the ridge preservation ability of the model, standard metrics: Dice score, Jaccard Similarity, SSIM and PSNR are computed with the ground truth and the output of the model (CR-GAN). An ablation study is conducted to individually quantify the improvement of generator and discriminator sub-networks of CR-GAN through channel refinement. Experiments on the publicly available IIITD- MOLF, Rural Indian Fingerprint Database and a private rural fingerprint database demonstrate the efficacy of the proposed attention mechanism.
Author Kalra, Prem Kumar
Joshi, Indu
Dantcheva, Antitza
Utkarsh, Ayush
Roy, Sumantra Dutta
Singh, Pravendra
Author_xml – sequence: 1
  givenname: Indu
  orcidid: 0000-0002-2755-9416
  surname: Joshi
  fullname: Joshi, Indu
  email: indu.joshi@cse.iitd.ac.in, indu.joshi@inria.fr
  organization: Indian Institute of Technology Delhi, INRIA Sophia Antipolis France
– sequence: 2
  givenname: Ayush
  surname: Utkarsh
  fullname: Utkarsh, Ayush
  organization: Independent Researcher
– sequence: 3
  givenname: Pravendra
  surname: Singh
  fullname: Singh, Pravendra
  organization: Indian Institute of Technology Roorkee
– sequence: 4
  givenname: Antitza
  surname: Dantcheva
  fullname: Dantcheva, Antitza
  organization: INRIA Sophia Antipolis
– sequence: 5
  givenname: Sumantra Dutta
  surname: Roy
  fullname: Roy, Sumantra Dutta
  organization: Indian Institute of Technology Delhi, INRIA Sophia Antipolis France
– sequence: 6
  givenname: Prem Kumar
  surname: Kalra
  fullname: Kalra, Prem Kumar
  organization: Indian Institute of Technology Delhi, INRIA Sophia Antipolis France
BackLink https://hal.science/hal-03966796$$DView record in HAL
BookMark eNp9kM1KAzEURoNUsFZfwNWAC3ERvTdpfmZZilqh0I2uQzqT1Cl1UpOp4NubdhTBRVe5hO8k3z3nZNCG1hFyhXCHAOo-IcKYUWBIEbXklJ-QIQrFqVIMB3nmGqgSgGfkPKU1AErBxkNys2iL6FIXou2a0BbBF7VbRVu7uvBNu3JxG5u2Sxfk1NtNcpc_54i8Pj68TGd0vnh6nk7mtOKl6qhzqpbIrReuLpdorQfrUANf5oI1W3IQJRsrb9GLSmvPuUAOErwoUWlW8xG57d99sxuTv3638csE25jZZG72d8BLKVUpPzFnr_vsNoaPXV7CrMMutrmeYQqlUkJqlVO6T1UxpBSdN1XTHZbtom02BsHsFZpeockKzUGh4Rll_9DfRkch3kNpby4L_Gt1hPoGSZ2Cyg
CitedBy_id crossref_primary_10_1109_LSENS_2022_3193924
crossref_primary_10_3934_math_20231408
crossref_primary_10_1007_s11042_024_20379_5
crossref_primary_10_1109_ACCESS_2024_3397729
crossref_primary_10_1109_LSENS_2022_3203787
crossref_primary_10_3390_s23146591
Cites_doi 10.1109/TIFS.2020.3039058
10.1007/978-3-540-74549-5_11
10.1109/WACV45572.2020.9093305
10.1016/j.patcog.2017.02.012
10.1109/IJCNN48605.2020.9206836
10.1109/ICCV.2019.00338
10.1109/CVPR.2018.00745
10.1049/iet-bmt.2019.0121
10.1007/978-3-642-12595-9_8
10.1109/TIP.2011.2170696
10.1145/2683483.2683485
10.1109/CVPR.2017.683
10.1016/j.patrec.2007.10.004
10.1016/j.image.2017.08.010
10.1007/978-3-319-12484-1_22
10.1109/ICB.2012.6199773
10.1109/WACV.2019.00100
10.1109/WACVW52041.2021.00011
10.1109/LSP.2018.2877008
10.1109/TIP.2003.819861
10.1201/9781003003489-3
10.1016/j.imavis.2019.02.006
10.1109/ETCHB.2010.5559279
10.1109/ACCESS.2021.3093879
10.1109/SIBGRAPI.2018.00041
10.1109/ICCV.2019.00069
10.1007/978-3-030-01234-2_1
10.1109/34.709565
10.1016/S0031-3203(02)00032-8
10.1109/TIFS.2012.2215326
10.1109/TPAMI.2010.52
10.1109/IPTA.2016.7821036
10.1109/CVPR.2017.667
10.1049/iet-ipr.2013.0528
10.1109/IJCNN52387.2021.9533528
10.1109/ACCESS.2015.2428631
10.1016/j.ins.2020.01.031
10.1016/j.patcog.2020.107203
10.1109/LSP.2021.3100263
10.1117/12.851411
10.1109/IJCNN52387.2021.9533712
10.1109/ACCESS.2020.2964035
10.1007/s11042-018-5633-1
10.1049/iet-bmt.2012.0003
10.1109/BTAS.2017.8272727
10.1109/TPAMI.2013.184
10.1016/j.patcog.2006.05.036
10.1007/s11042-020-08750-8
10.1109/TPAMI.2010.228
10.1007/978-3-319-24574-4_28
10.1109/IJCB.2011.6117540
10.1016/B978-0-32-398370-9.00009-3
10.1109/ICB45273.2019.8987279
10.1049/iet-bmt.2016.0088
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
1XC
VOOES
DOI 10.1007/s11042-021-11863-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList

ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 35377
ExternalDocumentID oai_HAL_hal_03966796v1
10_1007_s11042_021_11863_3
GrantInformation_xml – fundername: Raman-Charpak Fellowship 2019
  grantid: Application no- RCF-IN-0077
– fundername: Agence Nationale de la Recherche
  grantid: ANR-18-CE92-0024
  funderid: https://doi.org/10.13039/501100001665
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
1XC
PUEGO
VOOES
ID FETCH-LOGICAL-c397t-ee7d613af5ed9b1aaf0ae1803b110d2b3059247fa1f5c88f33513060f591782d3
IEDL.DBID U2A
ISSN 1380-7501
IngestDate Wed Aug 27 06:44:50 EDT 2025
Fri Jul 25 06:39:18 EDT 2025
Thu Apr 24 23:00:06 EDT 2025
Tue Jul 01 04:13:13 EDT 2025
Fri Feb 21 02:45:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords Biometrics
Deep convolutional neural networks
Attention mechanism
Feature recalibration
Fingerprints
Restoration
Denoising
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-ee7d613af5ed9b1aaf0ae1803b110d2b3059247fa1f5c88f33513060f591782d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2755-9416
OpenAccessLink https://hal.science/hal-03966796
PQID 2716775687
PQPubID 54626
PageCount 29
ParticipantIDs hal_primary_oai_HAL_hal_03966796v1
proquest_journals_2716775687
crossref_citationtrail_10_1007_s11042_021_11863_3
crossref_primary_10_1007_s11042_021_11863_3
springer_journals_10_1007_s11042_021_11863_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221000
2022-10-00
20221001
2022-10
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 20221000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References LiuSLiuMYangZSparse coding based orientation estimation for latent fingerprintsPattern Recogn20176716417610.1016/j.patcog.2017.02.012
GhafoorMTajIAAhmadWJafriNMEfficient 2-fold contextual filtering approach for fingerprint enhancementIET Image Process20148741742510.1049/iet-ipr.2013.0528
XuDBianWChengYLiQLuoYYuQFingerprint enhancement using multi-scale classification dictionaries with reduced dimensionalityIET Biom20209519420410.1049/iet-bmt.2019.0121
SankaranAVatsaMSinghRMultisensor optical and latent fingerprint databaseIEEE Access2015365366510.1109/ACCESS.2015.2428631
KarabulutDTertychnyiPArslanHSOzcinarCNasrollahiKVallsJVilasecaJMoeslundTBAnbarjafariGCycle-consistent generative adversarial neural networks based low quality fingerprint enhancementMultimed Tools Appl20207925185691858910.1007/s11042-020-08750-8
GottschlichCCurved-region-based ridge frequency estimation and curved gabor filters for fingerprint image enhancementIEEE Trans Image Process201121422202227295952310.1109/TIP.2011.2170696
Wang F, Jiang M, Qian C, Yang S, Li C, Zhang H, Wang X, Tang X (2017) Residual attention network for image classification. In: Conference on computer vision and pattern recognition. IEEE, pp 3156–3164
Puri C, Narang K, Tiwari A, Vatsa M, Singh R (2010) On analysis of rural and urban Indian fingerprint images. In: International conference on ethics and policy of biometrics. Springer, pp 55–61
GottschlichCSchönliebCBOriented diffusion filtering for enhancing low-quality fingerprint imagesIET Biom20121210511310.1049/iet-bmt.2012.0003
Li D, Wen G, Kuai Y, Porikli F (2018) End-to-end feature integration for correlation filter tracking with channel attention. IEEE Signal Processing Letters 25(12):1815–1819
Chen L, Zhang H, Xiao J, Nie L, Shao J, Liu W, Chua TS (2017) Sca-cnn: Spatial and channel-wise attention in convolutional networks for image captioning. In: Conference on computer vision and pattern recognition. IEEE, pp 5659–5667
ManickamADevarasanEManogaranGPriyanMKVaratharajanRHsuCHKrishnamoorthiRScore level based latent fingerprint enhancement and matching using SIFT featureMultimed Tools Appl20197833065308510.1007/s11042-018-5633-1
NFIQ 2.0 (2016) NIST Fingerprint image quality. https://www.nist.gov/services-resources/software/development-nfiq-20. Accessed 8 Dec 2020
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Polosukhin I (2017) Attention is all you need. In: Advances in neural information processing systems, pp 5998–6008
Ramos RC, de Lima Borges EVC, Andrezza ILP, Primo JJB, Batista LV, Gomes HM (2018) Analysis and improvements of fingerprint enhancement from gabor iterative filtering. In: SIBGRAPI conference on graphics, patterns and images. IEEE, pp 266–273
Joshi I, Anand A, Roy SD, Kalra PK (2021) On training generative adversarial network for enhancement of latent fingerprints. In: AI and deep learning in biometric security. CRC Press, pp 51–79
Yoon S, Feng J, Jain AK (2010) On latent fingerprint enhancement. In: Biometric technology for human identification VII 7667:766707. International Society for Optics and Photonics
SchuchPSchulzSBuschCSurvey on the impact of fingerprint image enhancementIET Biom20177210211510.1049/iet-bmt.2016.0088
Svoboda J, Monti F, Bronstein MM (2017) Generative convolutional networks for latent fingerprint reconstruction. In: International joint conference on biometrics (IJCB). IEEE, pp 429–436
CappelliRFerraraMMaltoniDFingerprint indexing based on minutia cylinder-codeIEEE Trans Pattern Anal Mach Intell20103351051105710.1109/TPAMI.2010.228
Singh P, Mazumder P, Namboodiri VP (2020) Accuracy booster: performance boosting using feature map re-calibration. In: Winter Conference on Applications of Computer Vision (WACV), pp. 884-893. IEEE
Woo S, Park J, Lee JY, So Kweon I (2018) Cbam: Convolutional block attention module. In: European conference on computer vision (ECCV). IEEE, pp 3–19
Vatsa M, Singh R, Bharadwaj S, Bhatt H, Mashruwala R (2010) Analyzing fingerprints of Indian population using image quality: A UIDAI case study. In: International workshop on emerging techniques and challenges for hand-based biometrics. IEEE, pp 1–5
Bello I, Zoph B, Vaswani A, Shlens J Le Q V (2019) Attention Augmented Convolutional Networks. In: International Conference on Computer Vision, pp. 3286–3295. IEEE
LiJFengJKuoCCJDeep convolutional neural network for latent fingerprint enhancementSig Process Image Commun201860526310.1016/j.image.2017.08.010
Turroni F, Cappelli R, Maltoni D (2012) Fingerprint enhancement using contextual iterative filtering. In: International conference on biometrics (ICB). IEEE, pp 152–157
WangZBovikACSheikhHRSimoncelliEPImage quality assessment: from error visibility to structural similarityIEEE Trans Image Process200413460061210.1109/TIP.2003.819861
LiuMQianPAutomatic segmentation and enhancement of latent fingerprints using deep nested unetsIEEE Trans Inf Forensic Secur2020161709171910.1109/TIFS.2020.3039058
HongLWanYJainAFingerprint image enhancement: algorithm and performance evaluationIEEE Trans Pattern Anal Mach Intell199820877778910.1109/34.709565
Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, Glocker B (2018) Attention u-net: Learning where to look for the pancreas. arXiv:1804.03999
Joshi I, Anand A, Vatsa M, Singh R, Roy SD, Kalra P (2019) Latent fingerprint enhancement using generative adversarial networks. In: Winter conference on applications of computer vision (WACV). IEEE, pp 895–903
Park J, Woo S, Lee JY, Kweon IS (2018) Bam: Bottleneck attention module. arXiv:1807.06514
Medeiros AG, Andrade JP, Serafim PB, Santos AM, Maia JG, Trinta FA, Macedo JA, Fileho PP, Rego PA (2020) A novel approach for automatic enhancement of fingerprint images via deep transfer learning. In: International joint conference on neural networks (IJCNN). IEEE, pp 1–8
Rama RK, Namboodiri AM (2011) Fingerprint enhancement using hierarchical markov random fields. In: International joint conference on biometrics (IJCB). IEEE, pp 1–8
Ansari AH (2011) Generation and storage of large synthetic fingerprint database. Dissertation, Indian Institute of Science Bangalore
Schuch P, Schulz S, Busch C (2016) De-convolutional autoencoder for enhancement of fingerprint samples. In: International conference on image processing theory, tools and applications (IPTA). IEEE, pp 1–7
Sahasrabudhe M, Namboodiri AM (2014) Fingerprint enhancement using unsupervised hierarchical feature learning. In: Indian conference on computer vision graphics and image processing. ACM, pp 1–8
YangXFengJZhouJLocalized dictionaries based orientation field estimation for latent fingerprintsIEEE Trans Pattern Anal Mach Intell201436595596910.1109/TPAMI.2013.184
Ferrara M, Maltoni D, Cappelli R (2014) A two-factor protection scheme for MCC fingerprint templates. In: International conference of the biometrics special interest group (BIOSIG). IEEE, pp 1–8
Qian P, Li A, Liu M (2019) Latent fingerprint enhancement based on denseunet. In: International conference on biometrics (ICB). IEEE, pp 1–6
Joshi I, Utkarsh A, Kothari R, Kurmi VK, Dantcheva A, Roy SD, Kalra PK (2021) Data uncertainty guided noise-aware preprocessing of fingerprints In: International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE
Joshi I, Utkarsh A, Kothari R, Kurmi VK, Dantcheva A, Roy SD, Kalra PK (2022) On Estimating Uncertainty of Fingerprint Enhancement Models. In: Digital Image Enhancement and Reconstruction. Elsevier
GuptaRKhariMGuptaDCrespoRGFingerprint image enhancement and reconstruction using the orientation and phase reconstructionInform Sci2020530201218410208610.1016/j.ins.2020.01.031
Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: Conference on computer vision and pattern recognition. IEEE, pp 7132–7141
(2015) NIST Biometric Image Software. http://www.nist.gov/itl/iad/ig/nbis.cfm. Accessed 4 Dec 2020
Horapong K, Srisutheenon K, Areekul V (2021) Progressive and corrective feedback for latent fingerprint enhancement using boosted spectral filtering and spectral autoencoder. IEEE Access
Mnih V, Heess N, Graves A (2014) Recurrent models of visual attention. In: Advances in neural information processing systems, pp 2204–2212
ChikkerurSCartwrightANGovindarajuVFingerprint enhancement using stft analysisPattern Recogn200740119821110.1016/j.patcog.2006.05.036
Jirachaweng S, Areekul V (2007) Fingerprint enhancement based on discrete cosine transform. In: International conference on biometrics. Springer, pp 96–105
CappelliRFerraraMMaltoniDMinutia cylinder-code: A new representation and matching technique for fingerprint recognitionIEEE Trans Pattern Anal Mach Intell201032122128214110.1109/TPAMI.2010.52
WongWJLaiSHMulti-task CNN for restoring corrupted fingerprint imagesPattern Recogn202010110720310.1016/j.patcog.2020.107203
Joshi I, Kothari R, Utkarsh A, Kurmi VK, Dantcheva A, Roy SD, Kalra PK (2021) Explainable fingerprint roi segmentation using monte carlo dropout. In: Winter conference on applications of computer vision workshops (WACVW). IEEE Computer Society, pp 60–69
Chen C, Feng J, Zhou J (2016) Multi-scale dictionaries based fingerprint orientation field estimation. In: International conference on biometrics (ICB). IEEE, pp 1–8
Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241
Le NT, Wang JW, Le DH, Wang CC, Nguyen TN (2020) Fingerprint enhancement based on tensor of wavelet subbands for classification. IEEE Access 8:6602–6615
FerraraMMaltoniDCappelliRNoninvertible minutia cylinder-code representationIEEE Trans Inf Forensic Sec2012761727173710.1109/TIFS.2012.2215326
Hu J, Shen L, Albanie S, Sun G, Vedaldi A (2018) Gather-excite: Exploiting feature context in convolutional neural networks. In: Advances in neural information processing systems, pp 9401–9411
HsiehCTLaiEWangYCAn effective algorithm for fingerprint image enhancement based on wavelet transformPattern Recogn200336230331210.1016/
11863_CR46
11863_CR45
11863_CR44
M Liu (11863_CR33) 2020; 16
11863_CR43
A Sankaran (11863_CR47) 2015; 3
11863_CR48
11863_CR1
C Gottschlich (11863_CR11) 2012; 1
11863_CR2
A Manickam (11863_CR34) 2019; 78
11863_CR5
11863_CR42
11863_CR6
11863_CR41
11863_CR40
X Yang (11863_CR63) 2014; 36
11863_CR57
11863_CR56
11863_CR55
11863_CR54
11863_CR17
11863_CR16
11863_CR15
J Li (11863_CR31) 2018; 60
11863_CR53
11863_CR52
M Ghafoor (11863_CR10) 2014; 8
11863_CR51
P Schuch (11863_CR49) 2017; 7
M Ferrara (11863_CR8) 2012; 7
R Gupta (11863_CR13) 2020; 530
S Liu (11863_CR32) 2017; 67
WJ Wong (11863_CR61) 2020; 101
W Wang (11863_CR58) 2008; 29
11863_CR24
11863_CR23
11863_CR22
C Gottschlich (11863_CR12) 2011; 21
11863_CR21
11863_CR65
11863_CR27
D Karabulut (11863_CR28) 2020; 79
11863_CR26
11863_CR25
11863_CR60
11863_CR20
11863_CR64
Z Wang (11863_CR59) 2004; 13
S Chikkerur (11863_CR7) 2007; 40
R Cappelli (11863_CR3) 2010; 32
11863_CR18
11863_CR35
RP Sharma (11863_CR50) 2019; 83
11863_CR39
11863_CR38
D Xu (11863_CR62) 2020; 9
11863_CR37
11863_CR36
CT Hsieh (11863_CR19) 2003; 36
11863_CR30
11863_CR9
L Hong (11863_CR14) 1998; 20
R Cappelli (11863_CR4) 2010; 33
11863_CR29
References_xml – reference: Huang Z, Wang X, Huang L, Huang C, Wei Y, Liu W, Vedaldi A (2019) Ccnet: Criss-cross attention for semantic segmentation. In: Conference on computer vision and pattern recognition, pp. 603–612. IEEE
– reference: Qian P, Li A, Liu M (2019) Latent fingerprint enhancement based on denseunet. In: International conference on biometrics (ICB). IEEE, pp 1–6
– reference: WongWJLaiSHMulti-task CNN for restoring corrupted fingerprint imagesPattern Recogn202010110720310.1016/j.patcog.2020.107203
– reference: GottschlichCCurved-region-based ridge frequency estimation and curved gabor filters for fingerprint image enhancementIEEE Trans Image Process201121422202227295952310.1109/TIP.2011.2170696
– reference: Tiwari K, Gupta P (2014) Fingerprint quality of rural population and impact of multiple scanners on recognition. In: Chinese conference on biometric recognition. Springer, pp 199–207
– reference: Woo S, Park J, Lee JY, So Kweon I (2018) Cbam: Convolutional block attention module. In: European conference on computer vision (ECCV). IEEE, pp 3–19
– reference: CappelliRFerraraMMaltoniDFingerprint indexing based on minutia cylinder-codeIEEE Trans Pattern Anal Mach Intell20103351051105710.1109/TPAMI.2010.228
– reference: YangXFengJZhouJLocalized dictionaries based orientation field estimation for latent fingerprintsIEEE Trans Pattern Anal Mach Intell201436595596910.1109/TPAMI.2013.184
– reference: FerraraMMaltoniDCappelliRNoninvertible minutia cylinder-code representationIEEE Trans Inf Forensic Sec2012761727173710.1109/TIFS.2012.2215326
– reference: Ansari AH (2011) Generation and storage of large synthetic fingerprint database. Dissertation, Indian Institute of Science Bangalore
– reference: Joshi I, Utkarsh A, Kothari R, Kurmi VK, Dantcheva A, Roy SD, Kalra PK (2021) Data uncertainty guided noise-aware preprocessing of fingerprints In: International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE
– reference: LiJFengJKuoCCJDeep convolutional neural network for latent fingerprint enhancementSig Process Image Commun201860526310.1016/j.image.2017.08.010
– reference: Le NT, Wang JW, Le DH, Wang CC, Nguyen TN (2020) Fingerprint enhancement based on tensor of wavelet subbands for classification. IEEE Access 8:6602–6615
– reference: Puri C, Narang K, Tiwari A, Vatsa M, Singh R (2010) On analysis of rural and urban Indian fingerprint images. In: International conference on ethics and policy of biometrics. Springer, pp 55–61
– reference: Chen L, Zhang H, Xiao J, Nie L, Shao J, Liu W, Chua TS (2017) Sca-cnn: Spatial and channel-wise attention in convolutional networks for image captioning. In: Conference on computer vision and pattern recognition. IEEE, pp 5659–5667
– reference: Singh P, Mazumder P, Namboodiri VP (2020) Accuracy booster: performance boosting using feature map re-calibration. In: Winter Conference on Applications of Computer Vision (WACV), pp. 884-893. IEEE
– reference: Jirachaweng S, Areekul V (2007) Fingerprint enhancement based on discrete cosine transform. In: International conference on biometrics. Springer, pp 96–105
– reference: Joshi I, Anand A, Vatsa M, Singh R, Roy SD, Kalra P (2019) Latent fingerprint enhancement using generative adversarial networks. In: Winter conference on applications of computer vision (WACV). IEEE, pp 895–903
– reference: Wang F, Jiang M, Qian C, Yang S, Li C, Zhang H, Wang X, Tang X (2017) Residual attention network for image classification. In: Conference on computer vision and pattern recognition. IEEE, pp 3156–3164
– reference: ManickamADevarasanEManogaranGPriyanMKVaratharajanRHsuCHKrishnamoorthiRScore level based latent fingerprint enhancement and matching using SIFT featureMultimed Tools Appl20197833065308510.1007/s11042-018-5633-1
– reference: GhafoorMTajIAAhmadWJafriNMEfficient 2-fold contextual filtering approach for fingerprint enhancementIET Image Process20148741742510.1049/iet-ipr.2013.0528
– reference: Ramos RC, de Lima Borges EVC, Andrezza ILP, Primo JJB, Batista LV, Gomes HM (2018) Analysis and improvements of fingerprint enhancement from gabor iterative filtering. In: SIBGRAPI conference on graphics, patterns and images. IEEE, pp 266–273
– reference: Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, Glocker B (2018) Attention u-net: Learning where to look for the pancreas. arXiv:1804.03999
– reference: Vatsa M, Singh R, Bharadwaj S, Bhatt H, Mashruwala R (2010) Analyzing fingerprints of Indian population using image quality: A UIDAI case study. In: International workshop on emerging techniques and challenges for hand-based biometrics. IEEE, pp 1–5
– reference: XuDBianWChengYLiQLuoYYuQFingerprint enhancement using multi-scale classification dictionaries with reduced dimensionalityIET Biom20209519420410.1049/iet-bmt.2019.0121
– reference: (2015) NIST Biometric Image Software. http://www.nist.gov/itl/iad/ig/nbis.cfm. Accessed 4 Dec 2020
– reference: WangWLiJHuangFFengHDesign and implementation of log-gabor filter in fingerprint image enhancementPattern Recogn Lett200829330130810.1016/j.patrec.2007.10.004
– reference: HongLWanYJainAFingerprint image enhancement: algorithm and performance evaluationIEEE Trans Pattern Anal Mach Intell199820877778910.1109/34.709565
– reference: Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Polosukhin I (2017) Attention is all you need. In: Advances in neural information processing systems, pp 5998–6008
– reference: WangZBovikACSheikhHRSimoncelliEPImage quality assessment: from error visibility to structural similarityIEEE Trans Image Process200413460061210.1109/TIP.2003.819861
– reference: Ferrara M, Maltoni D, Cappelli R (2014) A two-factor protection scheme for MCC fingerprint templates. In: International conference of the biometrics special interest group (BIOSIG). IEEE, pp 1–8
– reference: ChikkerurSCartwrightANGovindarajuVFingerprint enhancement using stft analysisPattern Recogn200740119821110.1016/j.patcog.2006.05.036
– reference: Sahasrabudhe M, Namboodiri AM (2014) Fingerprint enhancement using unsupervised hierarchical feature learning. In: Indian conference on computer vision graphics and image processing. ACM, pp 1–8
– reference: GottschlichCSchönliebCBOriented diffusion filtering for enhancing low-quality fingerprint imagesIET Biom20121210511310.1049/iet-bmt.2012.0003
– reference: GuptaRKhariMGuptaDCrespoRGFingerprint image enhancement and reconstruction using the orientation and phase reconstructionInform Sci2020530201218410208610.1016/j.ins.2020.01.031
– reference: SankaranAVatsaMSinghRMultisensor optical and latent fingerprint databaseIEEE Access2015365366510.1109/ACCESS.2015.2428631
– reference: KarabulutDTertychnyiPArslanHSOzcinarCNasrollahiKVallsJVilasecaJMoeslundTBAnbarjafariGCycle-consistent generative adversarial neural networks based low quality fingerprint enhancementMultimed Tools Appl20207925185691858910.1007/s11042-020-08750-8
– reference: Mnih V, Heess N, Graves A (2014) Recurrent models of visual attention. In: Advances in neural information processing systems, pp 2204–2212
– reference: Rama RK, Namboodiri AM (2011) Fingerprint enhancement using hierarchical markov random fields. In: International joint conference on biometrics (IJCB). IEEE, pp 1–8
– reference: Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241
– reference: Joshi I, Utkarsh A, Kothari R, Kurmi VK, Dantcheva A, Roy SD, Kalra PK (2022) On Estimating Uncertainty of Fingerprint Enhancement Models. In: Digital Image Enhancement and Reconstruction. Elsevier
– reference: Chen C, Feng J, Zhou J (2016) Multi-scale dictionaries based fingerprint orientation field estimation. In: International conference on biometrics (ICB). IEEE, pp 1–8
– reference: Horapong K, Srisutheenon K, Areekul V (2021) Progressive and corrective feedback for latent fingerprint enhancement using boosted spectral filtering and spectral autoencoder. IEEE Access
– reference: Joshi I, Anand A, Roy SD, Kalra PK (2021) On training generative adversarial network for enhancement of latent fingerprints. In: AI and deep learning in biometric security. CRC Press, pp 51–79
– reference: Jia F, Ma L, Yang Y, Zeng T (2021) Pixel-Attention CNN With Color Correlation Loss for Color Image Denoising. IEEE Signal Processing Letters 28:1600–1604
– reference: Li D, Wen G, Kuai Y, Porikli F (2018) End-to-end feature integration for correlation filter tracking with channel attention. IEEE Signal Processing Letters 25(12):1815–1819
– reference: Bello I, Zoph B, Vaswani A, Shlens J Le Q V (2019) Attention Augmented Convolutional Networks. In: International Conference on Computer Vision, pp. 3286–3295. IEEE
– reference: Svoboda J, Monti F, Bronstein MM (2017) Generative convolutional networks for latent fingerprint reconstruction. In: International joint conference on biometrics (IJCB). IEEE, pp 429–436
– reference: Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: Conference on computer vision and pattern recognition. IEEE, pp 7132–7141
– reference: Medeiros AG, Andrade JP, Serafim PB, Santos AM, Maia JG, Trinta FA, Macedo JA, Fileho PP, Rego PA (2020) A novel approach for automatic enhancement of fingerprint images via deep transfer learning. In: International joint conference on neural networks (IJCNN). IEEE, pp 1–8
– reference: HsiehCTLaiEWangYCAn effective algorithm for fingerprint image enhancement based on wavelet transformPattern Recogn200336230331210.1016/S0031-3203(02)00032-8
– reference: NFIQ 2.0 (2016) NIST Fingerprint image quality. https://www.nist.gov/services-resources/software/development-nfiq-20. Accessed 8 Dec 2020
– reference: Yoon S, Feng J, Jain AK (2010) On latent fingerprint enhancement. In: Biometric technology for human identification VII 7667:766707. International Society for Optics and Photonics
– reference: Joshi I, Kothari R, Utkarsh A, Kurmi VK, Dantcheva A, Roy SD, Kalra PK (2021) Explainable fingerprint roi segmentation using monte carlo dropout. In: Winter conference on applications of computer vision workshops (WACVW). IEEE Computer Society, pp 60–69
– reference: LiuMQianPAutomatic segmentation and enhancement of latent fingerprints using deep nested unetsIEEE Trans Inf Forensic Secur2020161709171910.1109/TIFS.2020.3039058
– reference: Hu J, Shen L, Albanie S, Sun G, Vedaldi A (2018) Gather-excite: Exploiting feature context in convolutional neural networks. In: Advances in neural information processing systems, pp 9401–9411
– reference: Park J, Woo S, Lee JY, Kweon IS (2018) Bam: Bottleneck attention module. arXiv:1807.06514
– reference: Roy R, Joshi I, Das A, Dantcheva A (2000) 3D CNN Architectures and Attention Mechanisms for Deepfake Detection. arXiv preprint hal.archives-ouvertes.fr: hal-03524639 (accepted for publication in Handbook of Digital Face Manipulation and Detection, Springer)
– reference: SharmaRPDeySTwo-stage quality adaptive fingerprint image enhancement using fuzzy c-means clustering based fingerprint quality analysisImage Vis Comput20198311610.1016/j.imavis.2019.02.006
– reference: Turroni F, Cappelli R, Maltoni D (2012) Fingerprint enhancement using contextual iterative filtering. In: International conference on biometrics (ICB). IEEE, pp 152–157
– reference: Joshi I, Utkarsh A, Kothari R, Kurmi VK, Dantcheva A, Roy SD, Kalra PK (2021) Sensor-invariant fingerprint roi segmentation using recurrent adversarial learning. In: International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE
– reference: LiuSLiuMYangZSparse coding based orientation estimation for latent fingerprintsPattern Recogn20176716417610.1016/j.patcog.2017.02.012
– reference: Schuch P, Schulz S, Busch C (2016) De-convolutional autoencoder for enhancement of fingerprint samples. In: International conference on image processing theory, tools and applications (IPTA). IEEE, pp 1–7
– reference: SchuchPSchulzSBuschCSurvey on the impact of fingerprint image enhancementIET Biom20177210211510.1049/iet-bmt.2016.0088
– reference: CappelliRFerraraMMaltoniDMinutia cylinder-code: A new representation and matching technique for fingerprint recognitionIEEE Trans Pattern Anal Mach Intell201032122128214110.1109/TPAMI.2010.52
– volume: 16
  start-page: 1709
  year: 2020
  ident: 11863_CR33
  publication-title: IEEE Trans Inf Forensic Secur
  doi: 10.1109/TIFS.2020.3039058
– ident: 11863_CR21
  doi: 10.1007/978-3-540-74549-5_11
– ident: 11863_CR52
  doi: 10.1109/WACV45572.2020.9093305
– volume: 67
  start-page: 164
  year: 2017
  ident: 11863_CR32
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2017.02.012
– ident: 11863_CR35
  doi: 10.1109/IJCNN48605.2020.9206836
– ident: 11863_CR2
  doi: 10.1109/ICCV.2019.00338
– ident: 11863_CR39
– ident: 11863_CR55
– ident: 11863_CR6
– ident: 11863_CR16
  doi: 10.1109/CVPR.2018.00745
– volume: 9
  start-page: 194
  issue: 5
  year: 2020
  ident: 11863_CR62
  publication-title: IET Biom
  doi: 10.1049/iet-bmt.2019.0121
– ident: 11863_CR40
  doi: 10.1007/978-3-642-12595-9_8
– volume: 21
  start-page: 2220
  issue: 4
  year: 2011
  ident: 11863_CR12
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2011.2170696
– ident: 11863_CR46
  doi: 10.1145/2683483.2683485
– ident: 11863_CR57
  doi: 10.1109/CVPR.2017.683
– ident: 11863_CR45
– volume: 29
  start-page: 301
  issue: 3
  year: 2008
  ident: 11863_CR58
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2007.10.004
– volume: 60
  start-page: 52
  year: 2018
  ident: 11863_CR31
  publication-title: Sig Process Image Commun
  doi: 10.1016/j.image.2017.08.010
– ident: 11863_CR53
  doi: 10.1007/978-3-319-12484-1_22
– ident: 11863_CR54
  doi: 10.1109/ICB.2012.6199773
– ident: 11863_CR17
– ident: 11863_CR25
  doi: 10.1109/WACV.2019.00100
– ident: 11863_CR22
  doi: 10.1109/WACVW52041.2021.00011
– ident: 11863_CR38
– ident: 11863_CR30
  doi: 10.1109/LSP.2018.2877008
– ident: 11863_CR1
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 11863_CR59
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2003.819861
– ident: 11863_CR26
  doi: 10.1201/9781003003489-3
– volume: 83
  start-page: 1
  year: 2019
  ident: 11863_CR50
  publication-title: Image Vis Comput
  doi: 10.1016/j.imavis.2019.02.006
– ident: 11863_CR65
– ident: 11863_CR9
– ident: 11863_CR56
  doi: 10.1109/ETCHB.2010.5559279
– ident: 11863_CR15
  doi: 10.1109/ACCESS.2021.3093879
– ident: 11863_CR43
  doi: 10.1109/SIBGRAPI.2018.00041
– ident: 11863_CR18
  doi: 10.1109/ICCV.2019.00069
– ident: 11863_CR60
  doi: 10.1007/978-3-030-01234-2_1
– volume: 20
  start-page: 777
  issue: 8
  year: 1998
  ident: 11863_CR14
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.709565
– volume: 36
  start-page: 303
  issue: 2
  year: 2003
  ident: 11863_CR19
  publication-title: Pattern Recogn
  doi: 10.1016/S0031-3203(02)00032-8
– volume: 7
  start-page: 1727
  issue: 6
  year: 2012
  ident: 11863_CR8
  publication-title: IEEE Trans Inf Forensic Sec
  doi: 10.1109/TIFS.2012.2215326
– volume: 32
  start-page: 2128
  issue: 12
  year: 2010
  ident: 11863_CR3
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.52
– ident: 11863_CR48
  doi: 10.1109/IPTA.2016.7821036
– ident: 11863_CR5
  doi: 10.1109/CVPR.2017.667
– ident: 11863_CR37
– volume: 8
  start-page: 417
  issue: 7
  year: 2014
  ident: 11863_CR10
  publication-title: IET Image Process
  doi: 10.1049/iet-ipr.2013.0528
– ident: 11863_CR27
  doi: 10.1109/IJCNN52387.2021.9533528
– volume: 3
  start-page: 653
  year: 2015
  ident: 11863_CR47
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2015.2428631
– volume: 530
  start-page: 201
  year: 2020
  ident: 11863_CR13
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2020.01.031
– volume: 101
  start-page: 107203
  year: 2020
  ident: 11863_CR61
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2020.107203
– ident: 11863_CR20
  doi: 10.1109/LSP.2021.3100263
– ident: 11863_CR64
  doi: 10.1117/12.851411
– ident: 11863_CR23
  doi: 10.1109/IJCNN52387.2021.9533712
– ident: 11863_CR29
  doi: 10.1109/ACCESS.2020.2964035
– volume: 78
  start-page: 3065
  issue: 3
  year: 2019
  ident: 11863_CR34
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-5633-1
– ident: 11863_CR36
– volume: 1
  start-page: 105
  issue: 2
  year: 2012
  ident: 11863_CR11
  publication-title: IET Biom
  doi: 10.1049/iet-bmt.2012.0003
– ident: 11863_CR51
  doi: 10.1109/BTAS.2017.8272727
– volume: 36
  start-page: 955
  issue: 5
  year: 2014
  ident: 11863_CR63
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.184
– volume: 40
  start-page: 198
  issue: 1
  year: 2007
  ident: 11863_CR7
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2006.05.036
– volume: 79
  start-page: 18569
  issue: 25
  year: 2020
  ident: 11863_CR28
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-08750-8
– volume: 33
  start-page: 1051
  issue: 5
  year: 2010
  ident: 11863_CR4
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.228
– ident: 11863_CR44
  doi: 10.1007/978-3-319-24574-4_28
– ident: 11863_CR42
  doi: 10.1109/IJCB.2011.6117540
– ident: 11863_CR24
  doi: 10.1016/B978-0-32-398370-9.00009-3
– ident: 11863_CR41
  doi: 10.1109/ICB45273.2019.8987279
– volume: 7
  start-page: 102
  issue: 2
  year: 2017
  ident: 11863_CR49
  publication-title: IET Biom
  doi: 10.1049/iet-bmt.2016.0088
SSID ssj0016524
Score 2.3659847
Snippet The state-of-the-art fingerprint matching systems achieve high accuracy on good quality fingerprints. However, degraded fingerprints obtained due to poor skin...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 35349
SubjectTerms 1204: Multimedia Technology for Security and Surveillance in Degraded Vision
Ablation
Background noise
Biometric recognition systems
Computer Communication Networks
Computer Science
Crime
Data Structures and Information Theory
Fingerprint verification
Fingerprinting
Matching
Multimedia Information Systems
Performance degradation
Quality assessment
Redundancy
Restoration
Special Purpose and Application-Based Systems
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_c9qIPfkzF6ZQigg9abJolaZ9kysYQnSIO9lbafOCDbHOr_v1eunSbgqNvbdrQu9xXcnc_gAuu8WJM-LFEFdiSxIqUDH0p0JkwLJVa2Nrhpz7vDVoPQzZ0G24zl1ZZ6sRCUauxtHvkNyE69kIwHonbyadvUaPs6aqD0KhADVVwhMFX7a7Tf3ldnCNw5mBto8BH20hc2cy8eI7Y0hSbooBONqc-_WWaKu82MXLF6_xzUFrYn-4ubDvH0WvPOb0HG3pUh50SlMFzMlqHrZUOg_tw-TzypgV4TMEBb2w8ZdtDKK08U8xjp8tnBzDodt7ue77DRvAlehC5r7VQaIlTw7SKM5KmJkg1iQKa4W-pMEMxxshKmBQJLqPIUMrQWvHAMIzPolDRQ6iOxiN9BJ5mOjPaKNLScStO41gGgSTUcEEkI4Y3gJRkSaRrHG7xKz6SZctjS8oESZkUpExoA64W70zmbTPWjj5Hai8G2o7XvfZjYu8FFOMxEfNv0oBmyYzEydksWa6KBlyXDFo-_n_K4_VfO4HN0NY5FFl7Tajm0y99it5Hnp25JfYDcPnR_A
  priority: 102
  providerName: ProQuest
Title On restoration of degraded fingerprints
URI https://link.springer.com/article/10.1007/s11042-021-11863-3
https://www.proquest.com/docview/2716775687
https://hal.science/hal-03966796
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_c9qIPfkzF6RxFBB-00DRL0j5usjn8mCIO5lNp0wQfpJOt-vd7ydptigrSh0B7bejvcrk7ch8Ap1zhxZhwQ4lbYFsSI1LSd6VAY0KzWCphcofvhnwwal-P2bhICpuV0e7lkaTdqZfJbsSkkpiQAjSKOXVpBWrM-O64ikd-Z3F2wFnRyjbwXNSHpEiV-fkbX9RR5cUEQ65Ymt8OR63O6W_DZmEsOp05d3dgTWV12CobMTiFXNZhY6Wq4C6c3WfO1DaMsag7E-2kpiREqlJH23nMdPlsD0b93tPlwC36IbgSrYbcVUqkqH1jzVQaJiSOtRcrEng0wd9K_QRFF70poWMEWQaBppShhuKeZuiTBX5K96GaTTJ1AI5iKtFKp6StwnYYh6H0PEmo5oJIRjRvAClhiWRRLNz0rHiNlmWODZQRQhlZKCPagPPFO2_zUhl_Up8g2gtCU-V60LmNzD2Pog8mQv5BGtAsmREVsjWLfHTxhGA8EA24KBm0fPz7lIf_Iz-Cdd_kOtjIvSZU8-m7OkYLJE9aUAn6Vy2odfrd7tCMV883PRy7veHDY8sux0-iiNLd
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB4ROLQcgNKipqXUqlr10Fp4vV6vfUAVgqamhPSSSLkt9j7UA3IoMaD-KX4jM46dQKXmhnyz115r3rs7Mx_Ax9jiJYT0U40mMNKMVEqHvpYYTDiRayupdvhsEGej6OdYjFfgrq2FobTK1ibWhtpMNO2R74cY2Esp4kR-u_zjE2oUna62EBozsTi1f29xyTY9ODlG_n4Kw9734VHmN6gCvkbfW_nWSoM-LHfCmrRgee6C3LIk4AV6QhMWqAC4JpEux1_VSeI4F2jn48AJXNkkoeH43Q6sRZynpFFJ78f81CIWDYhuEvjoiVlTpDMr1WNUCEMJERjSx9znjxxh5zelYT6Icf85lq29XW8LNpow1TucydULWLHlNmy2EBBeYxG2Yf1BP8OX8PlX6V3VUDU1v72J8ww1ozDWeK6eh6arpq9g9CQ024HVclLa1-BZYQtnnWGRTaM0T1MdBJpxF0umBXNxF1hLFqWbNuWElnGhFg2WiZQKSalqUirehS_zdy5nTTqWjv6A1J4PpP7a2WFf0b0AeUobazesC7stM1Sj1VO1kMEufG0ZtHj8_ynfLP_ae3iWDc_6qn8yOH0Lz0OqsKjzBXdhtbq6tu8w7qmKvVrYPDh_aum-B3W7DNM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED9BkSb2wFhhWgdj0QTiASLiuLaTh2kCStUCKxUCiTcv8Yf2MLWMBhD_2v66nVOnLUjrG8pb4tjR3fk-4rv7AWxzgxdjIkwVqsCmIm5LqThUAp0JyzJlhKsd_tHjnevm6Q27WYC_VS2MS6usdGKpqPVQuX_kBzE69kIwnogD69Mi-q3299s_oUOQcietFZzGWETOzNMjhm-jb90W8nonjtsnV8ed0CMMhArtcBEaIzTas8wyo9OcZJmNMkOSiOZoFXWc42bA-ETYDD9bJYmllKHO55FlGOUksaY47yIsCYyKohosHZ30-peTMwzOPKRuEoVol4kv2RkX7hFXFuPSI9DB5zSkz8zi4i-XlDnj8b44pC1tX3sVVrzTGhyOpew9LJhBHd5VgBCB1w91eDvT3XANdi8GwV0JXFNyPxjaQLvWFNrowJbruOWK0TpcvwrVPkBtMByYjxAYZnJrrCZNkzbTLE1VFClCLRdEMWJ5A0hFFql803KHnfFbTtstO1JKJKUsSSlpA_Ym79yOW3bMHf0VqT0Z6Lptdw7PpbsXUYwFRcofSAM2K2ZIv8dHciqRDdivGDR9_P8lP82f7Qu8QcmW593e2QYsx67cokwe3IRacXdvPqMTVORbXtoC-PnaAv4P0x4SZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+restoration+of+degraded+fingerprints&rft.jtitle=Multimedia+tools+and+applications&rft.au=Joshi%2C+Indu&rft.au=Utkarsh%2C+Ayush&rft.au=Singh%2C+Pravendra&rft.au=Dantcheva%2C+Antitza&rft.date=2022-10-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=81&rft.issue=24&rft.spage=35349&rft.epage=35377&rft_id=info:doi/10.1007%2Fs11042-021-11863-3&rft.externalDocID=10_1007_s11042_021_11863_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon