Multiboundary wormholes and holographic entanglement

The AdS/CFT correspondence relates quantum entanglement between boundary conformal field theories and geometric connections in the dual asymptotically anti-de Sitter spacetime. We consider entangled states in the -fold tensor product of a 1 + 1 dimensional CFT Hilbert space defined by the Euclidean...

Full description

Saved in:
Bibliographic Details
Published inClassical and quantum gravity Vol. 31; no. 18; pp. 185015 - 55
Main Authors Balasubramanian, Vijay, Hayden, Patrick, Maloney, Alexander, Marolf, Donald, Ross, Simon F
Format Journal Article
LanguageEnglish
Published IOP Publishing 21.09.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The AdS/CFT correspondence relates quantum entanglement between boundary conformal field theories and geometric connections in the dual asymptotically anti-de Sitter spacetime. We consider entangled states in the -fold tensor product of a 1 + 1 dimensional CFT Hilbert space defined by the Euclidean path integral over a Riemann surface with n holes. In one region of moduli space, the dual bulk state is a black hole with n asymptotically AdS3 regions connected by a common wormhole, while in other regions the bulk fragments into disconnected components. We study the entanglement structure and compute the wave function explicitly in the puncture limit of the Riemann surface in terms of CFT n-point functions. We also use AdS minimal surfaces to measure entanglement more generally. In some regions of the moduli space the entanglement is entirely multipartite, though not of the GHZ type. However, even when the bulk is completely connected, there are regions of the moduli space in which the entanglement is instead almost entirely bipartite: significant entanglement occurs only between pairs of CFTs. We develop new tools to analyze intrinsically n-partite entanglement, and use these to show that for some wormholes with n similar sized horizons there is intrinsic entanglement between all n parties, and that the distillable entanglement between the asymptotic regions is at least partite.
AbstractList The AdS/CFT correspondence relates quantum entanglement between boundary conformal field theories and geometric connections in the dual asymptotically anti-de Sitter spacetime. We consider entangled states in the -fold tensor product of a 1 + 1 dimensional CFT Hilbert space defined by the Euclidean path integral over a Riemann surface with n holes. In one region of moduli space, the dual bulk state is a black hole with n asymptotically AdS3 regions connected by a common wormhole, while in other regions the bulk fragments into disconnected components. We study the entanglement structure and compute the wave function explicitly in the puncture limit of the Riemann surface in terms of CFT n-point functions. We also use AdS minimal surfaces to measure entanglement more generally. In some regions of the moduli space the entanglement is entirely multipartite, though not of the GHZ type. However, even when the bulk is completely connected, there are regions of the moduli space in which the entanglement is instead almost entirely bipartite: significant entanglement occurs only between pairs of CFTs. We develop new tools to analyze intrinsically n-partite entanglement, and use these to show that for some wormholes with n similar sized horizons there is intrinsic entanglement between all n parties, and that the distillable entanglement between the asymptotic regions is at least partite.
The AdS/CFT correspondence relates quantum entanglement between boundary conformal field theories and geometric connections in the dual asymptotically anti-de Sitter spacetime. We consider entangled states in the n-fold tensor product of a 1 + 1 dimensional CFT Hilbert space defined by the Euclidean path integral over a Riemann surface with n holes. In one region of moduli space, the dual bulk state is a black hole with n asymptotically AdS sub(3) regions connected by a common wormhole, while in other regions the bulk fragments into disconnected components. We study the entanglement structure and compute the wave function explicitly in the puncture limit of the Riemann surface in terms of CFT n-point functions. We also use AdS minimal surfaces to measure entanglement more generally. In some regions of the moduli space the entanglement is entirely multipartite, though not of the GHZ type. However, even when the bulk is completely connected, there are regions of the moduli space in which the entanglement is instead almost entirely bipartite: significant entanglement occurs only between pairs of CFTs. We develop new tools to analyze intrinsically n-partite entanglement, and use these to show that for some wormholes with n similar sized horizons there is intrinsic entanglement between all n parties, and that the distillable entanglement between the asymptotic regions is at least (n + 1)/2 partite.
Author Balasubramanian, Vijay
Marolf, Donald
Ross, Simon F
Hayden, Patrick
Maloney, Alexander
Author_xml – sequence: 1
  givenname: Vijay
  surname: Balasubramanian
  fullname: Balasubramanian, Vijay
  organization: Initiative for the Theoretical Sciences CUNY Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA
– sequence: 2
  givenname: Patrick
  surname: Hayden
  fullname: Hayden, Patrick
  organization: Stanford University Department of Physics, Palo Alto, CA 94305, USA
– sequence: 3
  givenname: Alexander
  surname: Maloney
  fullname: Maloney, Alexander
  organization: Harvard University Center for the Fundamental Laws of Nature, Cambridge, MA 02138, USA
– sequence: 4
  givenname: Donald
  surname: Marolf
  fullname: Marolf, Donald
  organization: University of California Department of Physics, Santa Barbara, CA 93106, USA
– sequence: 5
  givenname: Simon F
  surname: Ross
  fullname: Ross, Simon F
  email: s.f.ross@durham.ac.uk
  organization: Durham University UK Centre for Particle Theory, Department of Mathematical Sciences, South Road, Durham DH1 3LE
BookMark eNqFkE1LxDAQhoOs4Lr6F6RHL3UzmSZNwYssfsGKFz2H2Ka7WbpJTVrEf2-WigcvCwMzh_cZZp5zMnPeGUKugN4AlXJJmSjyCiUsEZYgU3EK_ITMAQXkAiWbkflf6Iycx7ijFEACm5PiZewG--FH1-jwnX35sN_6zsRMuyZLk98E3W9tnRk3aLfpzD4NF-S01V00l799Qd4f7t9WT_n69fF5dbfOa6zKITfYUqwZM6zgDaZjZGsY12WNvERat7oFZgoDnHKNjaCipIIWFW_TB7owiAtyPe3tg_8cTRzU3sbadJ12xo9RQVkhExVDmaJiitbBxxhMq_pg9-klBVQdNKmDAXUwoBAUSDVpSuDtP7C2gx6sd0PQtjuOswm3vlc7PwaXhByDfgA20n01
CODEN CQGRDG
CitedBy_id crossref_primary_10_1103_PhysRevD_102_046013
crossref_primary_10_21468_SciPostPhys_16_6_152
crossref_primary_10_1007_JHEP05_2018_038
crossref_primary_10_1103_PhysRevD_100_026004
crossref_primary_10_1007_JHEP01_2018_105
crossref_primary_10_1103_PhysRevLett_125_241602
crossref_primary_10_1007_JHEP10_2024_208
crossref_primary_10_1103_PhysRevD_110_026028
crossref_primary_10_1007_JHEP02_2018_072
crossref_primary_10_1007_JHEP08_2019_034
crossref_primary_10_1007_JHEP11_2020_167
crossref_primary_10_1007_JHEP05_2019_116
crossref_primary_10_1007_JHEP01_2017_092
crossref_primary_10_1007_JHEP10_2017_136
crossref_primary_10_1007_JHEP12_2018_005
crossref_primary_10_1002_prop_201500095
crossref_primary_10_1007_JHEP03_2024_118
crossref_primary_10_1002_prop_201500094
crossref_primary_10_1007_JHEP07_2016_100
crossref_primary_10_1007_JHEP08_2016_077
crossref_primary_10_1140_epjc_s10052_022_10376_z
crossref_primary_10_1007_s00220_016_2796_3
crossref_primary_10_1007_JHEP05_2019_127
crossref_primary_10_1007_JHEP09_2018_114
crossref_primary_10_1103_PhysRevB_105_125125
crossref_primary_10_1007_JHEP02_2021_152
crossref_primary_10_1007_JHEP11_2019_040
crossref_primary_10_4236_jqis_2016_61001
crossref_primary_10_1002_prop_201600036
crossref_primary_10_1007_JHEP07_2021_022
crossref_primary_10_1007_JHEP07_2023_227
crossref_primary_10_1007_JHEP10_2014_060
crossref_primary_10_1007_JHEP02_2015_005
crossref_primary_10_1007_JHEP10_2018_048
crossref_primary_10_1007_JHEP08_2020_032
crossref_primary_10_1007_JHEP05_2022_162
crossref_primary_10_1007_JHEP10_2019_240
crossref_primary_10_1007_JHEP01_2021_177
crossref_primary_10_1007_JHEP03_2025_037
crossref_primary_10_1007_JHEP07_2016_048
crossref_primary_10_1007_JHEP03_2021_214
crossref_primary_10_1007_JHEP10_2014_192
crossref_primary_10_1007_JHEP10_2016_068
crossref_primary_10_1007_JHEP05_2023_109
crossref_primary_10_1007_JHEP11_2020_155
crossref_primary_10_1007_JHEP11_2019_069
crossref_primary_10_1103_PhysRevD_107_026016
crossref_primary_10_1103_PhysRevLett_133_131601
crossref_primary_10_1007_s10701_021_00489_y
crossref_primary_10_1007_JHEP02_2018_163
crossref_primary_10_1007_JHEP04_2015_031
crossref_primary_10_1007_JHEP04_2024_051
crossref_primary_10_1140_epjc_s10052_016_4326_z
crossref_primary_10_1103_PhysRevB_107_155124
crossref_primary_10_1103_PhysRevD_98_025019
crossref_primary_10_1007_JHEP06_2015_157
crossref_primary_10_1007_JHEP04_2021_083
crossref_primary_10_1007_JHEP05_2018_080
crossref_primary_10_1016_j_physletb_2020_135891
crossref_primary_10_1103_PhysRevD_99_086016
crossref_primary_10_1007_JHEP02_2019_110
crossref_primary_10_1007_JHEP10_2019_102
crossref_primary_10_1007_JHEP04_2020_208
crossref_primary_10_1007_JHEP05_2018_008
crossref_primary_10_1007_JHEP04_2024_066
crossref_primary_10_1007_JHEP09_2021_118
crossref_primary_10_1007_JHEP03_2021_116
crossref_primary_10_1007_JHEP10_2018_152
crossref_primary_10_1103_PhysRevB_100_134412
crossref_primary_10_1007_JHEP10_2020_129
crossref_primary_10_1007_JHEP12_2016_145
crossref_primary_10_1007_JHEP02_2019_069
crossref_primary_10_1007_JHEP10_2021_047
crossref_primary_10_1007_JHEP10_2023_030
crossref_primary_10_1103_PhysRevD_95_105007
crossref_primary_10_1007_JHEP09_2015_130
crossref_primary_10_1007_JHEP05_2021_032
crossref_primary_10_1007_JHEP02_2020_152
crossref_primary_10_1007_JHEP04_2021_185
crossref_primary_10_1126_science_aay9560
crossref_primary_10_1007_JHEP04_2023_076
crossref_primary_10_1007_JHEP01_2023_067
crossref_primary_10_1007_JHEP02_2020_149
crossref_primary_10_3389_fspas_2018_00035
crossref_primary_10_1103_PhysRevD_102_066001
crossref_primary_10_1007_JHEP12_2021_091
crossref_primary_10_1007_JHEP12_2014_162
crossref_primary_10_1103_PhysRevResearch_3_043199
crossref_primary_10_1007_s00220_019_03510_8
crossref_primary_10_1007_JHEP09_2016_154
crossref_primary_10_1007_JHEP12_2017_116
crossref_primary_10_1007_s00220_021_04040_y
crossref_primary_10_1103_PhysRevA_108_032404
crossref_primary_10_1002_prop_202200102
crossref_primary_10_1103_PhysRevD_105_026010
crossref_primary_10_1007_JHEP04_2017_061
crossref_primary_10_1103_PhysRevD_102_086009
crossref_primary_10_1007_JHEP10_2017_069
crossref_primary_10_1088_1361_6382_ac8266
crossref_primary_10_1007_JHEP01_2019_232
crossref_primary_10_1007_JHEP08_2022_051
Cites_doi 10.1103/RevModPhys.81.865
10.1002/prop.201300020
10.1103/PhysRevD.53.4133
10.1088/0264-9381/20/11/319
10.4310/ATMP.2000.v4.n4.a5
10.1103/PhysRevLett.78.2275
10.1103/PhysRevD.87.046003
10.1088/0264-9381/16/2/004
10.1007/JHEP02(2010)029
10.1098/rspa.2004.1372
10.1007/s00220-006-1535-6
10.1007/JHEP08(2013)090
10.1103/PhysRevA.53.2046
10.1103/PhysRevA.54.3824
10.1103/PhysRevD.53.R4133
10.1007/JHEP06(2014)044
10.1103/PhysRevD.88.026012
10.1088/0264-9381/15/3/013
10.1103/PhysRevA.63.012307
10.1088/0305-4470/34/35/314
10.1103/PhysrevA.62.062314
10.1088/0305-4470/34/35/305
10.1103/PhysRevD.86.065007
10.1007/BF00417500
10.1088/1367-2630/7/1/229
10.1103/PhysRevA.40.4277
10.1007/JHEP10(2013)220
10.1007/JHEP03(2014)051
10.1063/1.1643788
10.1119/1.16243
10.1103/PhysRevLett.71.1291
10.1103/PhysRevD.89.086004
10.1007/JHEP03(2014)067
10.1007/s00220-006-0118-x
10.1103/PhysRevLett.84.2014
10.1103/PhysRevLett.96.181602
10.1090/surv/137
10.1007/JHEP04(2014)195
10.1103/PhysRevLett.111.171301
10.1007/s10714-010-1034-0
10.1103/PhysRevD.58.024007
10.1007/978-3-642-61590-0
10.1103/PhysRevLett.69.1849
10.1103/PhysRevD.53.5527
10.1007/s00220-010-1163-z
ContentType Journal Article
Copyright 2014 IOP Publishing Ltd
Copyright_xml – notice: 2014 IOP Publishing Ltd
DBID AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1088/0264-9381/31/18/185015
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Physics
DocumentTitleAlternate Multiboundary wormholes and holographic entanglement
EISSN 1361-6382
EndPage 55
ExternalDocumentID 10_1088_0264_9381_31_18_185015
cqg500169
GrantInformation_xml – fundername: U.S. Department of Energy
  funderid: http://dx.doi.org/10.13039/100000015
– fundername: Science and Technology Facilities Council
  funderid: http://dx.doi.org/10.13039/501100000271
– fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: http://dx.doi.org/10.13039/501100000038
GroupedDBID -DZ
-~X
1JI
29B
4.4
5B3
5GY
5PX
5VS
5ZH
6J9
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFO
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
JCGBZ
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
UCJ
W28
XPP
ZMT
AAYXX
ADEQX
AERVB
CITATION
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c397t-e3f03c22e245d33618fe25a7c35730cfaf12e4e1505a3d6067060495f185a4e33
IEDL.DBID IOP
ISSN 0264-9381
IngestDate Fri Jul 11 15:33:01 EDT 2025
Tue Jul 01 00:32:19 EDT 2025
Thu Apr 24 22:58:35 EDT 2025
Wed Aug 21 03:33:17 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-e3f03c22e245d33618fe25a7c35730cfaf12e4e1505a3d6067060495f185a4e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1793269238
PQPubID 23500
PageCount 55
ParticipantIDs proquest_miscellaneous_1793269238
crossref_citationtrail_10_1088_0264_9381_31_18_185015
iop_journals_10_1088_0264_9381_31_18_185015
crossref_primary_10_1088_0264_9381_31_18_185015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-21
PublicationDateYYYYMMDD 2014-09-21
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-21
  day: 21
PublicationDecade 2010
PublicationTitle Classical and quantum gravity
PublicationTitleAbbrev CQG
PublicationTitleAlternate Class. Quantum Grav
PublicationYear 2014
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Maldacena J M (44) 1998; 1998
Hartman T (48)
Hayden P M (55) 2001; 34
Shenker S H (40)
49
Czech B (3) 2012; 29
Seppala M (46) 2011
Maskit B (43) 1987
Belinschi S T (61) 2013
50
Krasnov K (20) 2003; 20
52
53
10
54
11
12
56
13
57
14
15
59
17
18
Eisert J (32)
Marolf D (38) 2013; 30
Wall A C (51)
2
Faulkner T (47)
4
5
7
Dijkgraaf R (65)
Aminneborg S (26) 1998; 15
Gühne O (58) 2005; 7
9
Hubeny V E (6) 2007; 2007
63
64
21
66
23
25
27
29
Barnum H (31) 2001; 34
Yin X (45) 2008; 2008
Maldacena J (1) 2003; 2003
Aminneborg S (28) 1999; 16
Hayden P (62) 2014
30
Bianchi E (8)
Gharibyan H (24)
33
34
35
36
37
39
Balasubramanian V (60)
Swingle B (16)
Headrick M (42) 2014
Susskind L (22)
Krasnov K (19) 2000; 4
41
References_xml – ident: 33
  doi: 10.1103/RevModPhys.81.865
– ident: 4
  doi: 10.1002/prop.201300020
– volume: 30
  issn: 0264-9381
  year: 2013
  ident: 38
  publication-title: Class. Quantum Grav.
– ident: 27
  doi: 10.1103/PhysRevD.53.4133
– ident: 22
– volume: 20
  start-page: 2235
  issn: 0264-9381
  year: 2003
  ident: 20
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/20/11/319
– volume: 4
  start-page: 929
  year: 2000
  ident: 19
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.2000.v4.n4.a5
– ident: 48
– volume: 2008
  start-page: JHEP09(2008)120
  issn: 1126-6708
  year: 2008
  ident: 45
  publication-title: J. High Energy Phys.
– ident: 29
  doi: 10.1103/PhysRevLett.78.2275
– volume: 2007
  start-page: JHEP07(2007)062
  issn: 1126-6708
  year: 2007
  ident: 6
  publication-title: J. High Energy Phys.
– ident: 65
– ident: 23
  doi: 10.1103/PhysRevD.87.046003
– volume: 16
  start-page: 363
  issn: 0264-9381
  year: 1999
  ident: 28
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/16/2/004
– ident: 47
– ident: 64
  doi: 10.1007/JHEP02(2010)029
– ident: 52
  doi: 10.1098/rspa.2004.1372
– year: 2014
  ident: 62
– year: 2011
  ident: 46
  publication-title: Geometry of Riemann Surfaces and Teichmuller Spaces
– ident: 56
  doi: 10.1007/s00220-006-1535-6
– year: 2013
  ident: 61
– ident: 7
  doi: 10.1007/JHEP08(2013)090
– ident: 34
  doi: 10.1103/PhysRevA.53.2046
– ident: 50
  doi: 10.1103/PhysRevA.54.3824
– ident: 25
  doi: 10.1103/PhysRevD.53.R4133
– ident: 11
  doi: 10.1007/JHEP06(2014)044
– ident: 13
  doi: 10.1103/PhysRevD.88.026012
– volume: 15
  start-page: 627
  issn: 0264-9381
  year: 1998
  ident: 26
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/15/3/013
– ident: 30
  doi: 10.1103/PhysRevA.63.012307
– ident: 51
– volume: 34
  start-page: 6891
  issn: 0305-4470
  year: 2001
  ident: 55
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/34/35/314
– year: 2014
  ident: 42
  publication-title: Conf. on New Frontiers in Dynamical Gravity (Cambridge: 2014)
– ident: 60
– ident: 35
  doi: 10.1103/PhysrevA.62.062314
– volume: 34
  start-page: 6787
  issn: 0305-4470
  year: 2001
  ident: 31
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/34/35/305
– ident: 12
  doi: 10.1103/PhysRevD.86.065007
– ident: 17
  doi: 10.1007/BF00417500
– ident: 24
– volume: 7
  start-page: 229
  issn: 1367-2630
  year: 2005
  ident: 58
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/7/1/229
– ident: 49
  doi: 10.1103/PhysRevA.40.4277
– ident: 9
  doi: 10.1007/JHEP10(2013)220
– ident: 15
  doi: 10.1007/JHEP03(2014)051
– ident: 57
  doi: 10.1063/1.1643788
– ident: 18
  doi: 10.1119/1.16243
– ident: 36
  doi: 10.1103/PhysRevLett.71.1291
– ident: 10
  doi: 10.1103/PhysRevD.89.086004
– ident: 39
  doi: 10.1007/JHEP03(2014)067
– ident: 53
  doi: 10.1007/s00220-006-0118-x
– ident: 54
  doi: 10.1103/PhysRevLett.84.2014
– ident: 16
– ident: 40
– volume: 2003
  start-page: JHEP03(2003)021
  issn: 1126-6708
  year: 2003
  ident: 1
  publication-title: J. High Energy Phys.
– ident: 5
  doi: 10.1103/PhysRevLett.96.181602
– ident: 8
– ident: 66
  doi: 10.1090/surv/137
– ident: 14
  doi: 10.1007/JHEP04(2014)195
– ident: 32
– ident: 59
  doi: 10.1103/PhysRevLett.111.171301
– ident: 2
  doi: 10.1007/s10714-010-1034-0
– volume: 29
  issn: 0264-9381
  year: 2012
  ident: 3
  publication-title: Class. Quantum Grav.
– ident: 41
  doi: 10.1103/PhysRevD.58.024007
– year: 1987
  ident: 43
  publication-title: Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete
  doi: 10.1007/978-3-642-61590-0
– volume: 1998
  start-page: JHEP12(1998)005
  issn: 1126-6708
  year: 1998
  ident: 44
  publication-title: J. High Energy Phys.
– ident: 37
  doi: 10.1103/PhysRevLett.69.1849
– ident: 63
  doi: 10.1103/PhysRevD.53.5527
– ident: 21
  doi: 10.1007/s00220-010-1163-z
SSID ssj0011812
Score 2.523073
Snippet The AdS/CFT correspondence relates quantum entanglement between boundary conformal field theories and geometric connections in the dual asymptotically anti-de...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 185015
SubjectTerms Asymptotic properties
black holes
Entanglement
Fragments
Hilbert space
holography
Mathematical analysis
Quantum gravity
Riemann surfaces
Wormholes
Title Multiboundary wormholes and holographic entanglement
URI https://iopscience.iop.org/article/10.1088/0264-9381/31/18/185015
https://www.proquest.com/docview/1793269238
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86EfTBj6k4v6jgm3Rtvrr0UcQxBD8eHPgW2jRRmXRj7RD967007UBFhgh9KCUX0kuT-13zuzuEzrCyWbiM8VMhwEEBo-LHxGhfK84VxsZiBMu2uI0GQ3b9yBs2YRULM57UW38Xbl2iYKfCmhAnAvAamB-DpQkoDrCAi4c2zHyFCjCfNobv7n5-kGANmPvN4mSaIOFf-_lin5ZhDD826cry9DdR2ozZEU5G3VmZdtXHt3SO_3qpLbRR41LvwglsoyWdt9H6zTypa9FGqxVbVBU7iFVhu2lVkWn67r0B7rVldgsvyTPvuUmD_aI8S0zPnxxDfRcN-1cPlwO_Lr_gKwAppa-pCakiRBPGM0ojLIwmPOkpymFbUCYxmGimAVHyhGaRDfiJwN_gBsaeME3pHmrl41zvI68XKhKnOEriWDOW8Rjaa5GlGdEhPFQdxBulS1XnJrclMl5ldUYuhLT6kVY_kmKJhXT66aBgLjdx2TkWSpzDFMh6oRYLW582cy9h2dmzlCTX4xnI9SzwBXQsDv7U4yFaA8jFLOOE4CPUKqczfQywpkxPqg_3E9QV5Us
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5tqVrBoT8UxEJLU6mcUDbrv6xz6KHqdgUsUA5F4uYmjt0iILva7Apt36uvwvN0HCcr0QqhHjhUyiGK7MT2OPON7W9mAN4T7aJwWRtmUuICBUElTKg1odFCaEKssxEc2-I43jvlB2firAW_Fr4wo3Gt-jt46wMF-yGsCXEywlUDDxNEmoiRiEi8BGJaNM5tza0cmvk1rtzKD_t9FPMOpYPPXz_thXVygVAjBE9Dw2yXaUoN5SJnLCbSGirSnmYCJ722qSXUcIP2kkhZHjt3lhitaWHxcyk3bh8UNf9jwRCxnd_gl5PF4YUDTb-149vZOCbf2fZbmPgI-_0XMFRoN3gON804eZLLRWc2zTr65x8hJP-7gXwBz2r7O_joG_kSWqZYhZWjRfDachWeVKxYXb4CXrknZ1Xmqck8wFZeuXTCZZAWefCjCfd9rgNHwC--eyb-Gpw-SAfWYakYFWYDgl5X0yQjcZokhvNcJFjeyDzLqeniQ90G0Qha6ToGu0sFcqkqLoCUyslEOZkoRhSRysukDdGi3thHIbm3xi6KXdUKqby39LtmvilUL-7MKC3MaIb1es7Ax1WA3PynN76Fpyf9gTrcPx5uwTJamdyRbCh5DUvTycy8QUtumm1X_00A3x56fv0Go4lCNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiboundary+wormholes+and+holographic+entanglement&rft.jtitle=Classical+and+quantum+gravity&rft.au=Balasubramanian%2C+Vijay&rft.au=Hayden%2C+Patrick&rft.au=Maloney%2C+Alexander&rft.au=Marolf%2C+Donald&rft.date=2014-09-21&rft.issn=0264-9381&rft.eissn=1361-6382&rft.volume=31&rft.issue=18&rft.spage=1&rft.epage=55&rft_id=info:doi/10.1088%2F0264-9381%2F31%2F18%2F185015&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-9381&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-9381&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-9381&client=summon