Multiboundary wormholes and holographic entanglement
The AdS/CFT correspondence relates quantum entanglement between boundary conformal field theories and geometric connections in the dual asymptotically anti-de Sitter spacetime. We consider entangled states in the -fold tensor product of a 1 + 1 dimensional CFT Hilbert space defined by the Euclidean...
Saved in:
Published in | Classical and quantum gravity Vol. 31; no. 18; pp. 185015 - 55 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
21.09.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The AdS/CFT correspondence relates quantum entanglement between boundary conformal field theories and geometric connections in the dual asymptotically anti-de Sitter spacetime. We consider entangled states in the -fold tensor product of a 1 + 1 dimensional CFT Hilbert space defined by the Euclidean path integral over a Riemann surface with n holes. In one region of moduli space, the dual bulk state is a black hole with n asymptotically AdS3 regions connected by a common wormhole, while in other regions the bulk fragments into disconnected components. We study the entanglement structure and compute the wave function explicitly in the puncture limit of the Riemann surface in terms of CFT n-point functions. We also use AdS minimal surfaces to measure entanglement more generally. In some regions of the moduli space the entanglement is entirely multipartite, though not of the GHZ type. However, even when the bulk is completely connected, there are regions of the moduli space in which the entanglement is instead almost entirely bipartite: significant entanglement occurs only between pairs of CFTs. We develop new tools to analyze intrinsically n-partite entanglement, and use these to show that for some wormholes with n similar sized horizons there is intrinsic entanglement between all n parties, and that the distillable entanglement between the asymptotic regions is at least partite. |
---|---|
AbstractList | The AdS/CFT correspondence relates quantum entanglement between boundary conformal field theories and geometric connections in the dual asymptotically anti-de Sitter spacetime. We consider entangled states in the -fold tensor product of a 1 + 1 dimensional CFT Hilbert space defined by the Euclidean path integral over a Riemann surface with n holes. In one region of moduli space, the dual bulk state is a black hole with n asymptotically AdS3 regions connected by a common wormhole, while in other regions the bulk fragments into disconnected components. We study the entanglement structure and compute the wave function explicitly in the puncture limit of the Riemann surface in terms of CFT n-point functions. We also use AdS minimal surfaces to measure entanglement more generally. In some regions of the moduli space the entanglement is entirely multipartite, though not of the GHZ type. However, even when the bulk is completely connected, there are regions of the moduli space in which the entanglement is instead almost entirely bipartite: significant entanglement occurs only between pairs of CFTs. We develop new tools to analyze intrinsically n-partite entanglement, and use these to show that for some wormholes with n similar sized horizons there is intrinsic entanglement between all n parties, and that the distillable entanglement between the asymptotic regions is at least partite. The AdS/CFT correspondence relates quantum entanglement between boundary conformal field theories and geometric connections in the dual asymptotically anti-de Sitter spacetime. We consider entangled states in the n-fold tensor product of a 1 + 1 dimensional CFT Hilbert space defined by the Euclidean path integral over a Riemann surface with n holes. In one region of moduli space, the dual bulk state is a black hole with n asymptotically AdS sub(3) regions connected by a common wormhole, while in other regions the bulk fragments into disconnected components. We study the entanglement structure and compute the wave function explicitly in the puncture limit of the Riemann surface in terms of CFT n-point functions. We also use AdS minimal surfaces to measure entanglement more generally. In some regions of the moduli space the entanglement is entirely multipartite, though not of the GHZ type. However, even when the bulk is completely connected, there are regions of the moduli space in which the entanglement is instead almost entirely bipartite: significant entanglement occurs only between pairs of CFTs. We develop new tools to analyze intrinsically n-partite entanglement, and use these to show that for some wormholes with n similar sized horizons there is intrinsic entanglement between all n parties, and that the distillable entanglement between the asymptotic regions is at least (n + 1)/2 partite. |
Author | Balasubramanian, Vijay Marolf, Donald Ross, Simon F Hayden, Patrick Maloney, Alexander |
Author_xml | – sequence: 1 givenname: Vijay surname: Balasubramanian fullname: Balasubramanian, Vijay organization: Initiative for the Theoretical Sciences CUNY Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA – sequence: 2 givenname: Patrick surname: Hayden fullname: Hayden, Patrick organization: Stanford University Department of Physics, Palo Alto, CA 94305, USA – sequence: 3 givenname: Alexander surname: Maloney fullname: Maloney, Alexander organization: Harvard University Center for the Fundamental Laws of Nature, Cambridge, MA 02138, USA – sequence: 4 givenname: Donald surname: Marolf fullname: Marolf, Donald organization: University of California Department of Physics, Santa Barbara, CA 93106, USA – sequence: 5 givenname: Simon F surname: Ross fullname: Ross, Simon F email: s.f.ross@durham.ac.uk organization: Durham University UK Centre for Particle Theory, Department of Mathematical Sciences, South Road, Durham DH1 3LE |
BookMark | eNqFkE1LxDAQhoOs4Lr6F6RHL3UzmSZNwYssfsGKFz2H2Ka7WbpJTVrEf2-WigcvCwMzh_cZZp5zMnPeGUKugN4AlXJJmSjyCiUsEZYgU3EK_ITMAQXkAiWbkflf6Iycx7ijFEACm5PiZewG--FH1-jwnX35sN_6zsRMuyZLk98E3W9tnRk3aLfpzD4NF-S01V00l799Qd4f7t9WT_n69fF5dbfOa6zKITfYUqwZM6zgDaZjZGsY12WNvERat7oFZgoDnHKNjaCipIIWFW_TB7owiAtyPe3tg_8cTRzU3sbadJ12xo9RQVkhExVDmaJiitbBxxhMq_pg9-klBVQdNKmDAXUwoBAUSDVpSuDtP7C2gx6sd0PQtjuOswm3vlc7PwaXhByDfgA20n01 |
CODEN | CQGRDG |
CitedBy_id | crossref_primary_10_1103_PhysRevD_102_046013 crossref_primary_10_21468_SciPostPhys_16_6_152 crossref_primary_10_1007_JHEP05_2018_038 crossref_primary_10_1103_PhysRevD_100_026004 crossref_primary_10_1007_JHEP01_2018_105 crossref_primary_10_1103_PhysRevLett_125_241602 crossref_primary_10_1007_JHEP10_2024_208 crossref_primary_10_1103_PhysRevD_110_026028 crossref_primary_10_1007_JHEP02_2018_072 crossref_primary_10_1007_JHEP08_2019_034 crossref_primary_10_1007_JHEP11_2020_167 crossref_primary_10_1007_JHEP05_2019_116 crossref_primary_10_1007_JHEP01_2017_092 crossref_primary_10_1007_JHEP10_2017_136 crossref_primary_10_1007_JHEP12_2018_005 crossref_primary_10_1002_prop_201500095 crossref_primary_10_1007_JHEP03_2024_118 crossref_primary_10_1002_prop_201500094 crossref_primary_10_1007_JHEP07_2016_100 crossref_primary_10_1007_JHEP08_2016_077 crossref_primary_10_1140_epjc_s10052_022_10376_z crossref_primary_10_1007_s00220_016_2796_3 crossref_primary_10_1007_JHEP05_2019_127 crossref_primary_10_1007_JHEP09_2018_114 crossref_primary_10_1103_PhysRevB_105_125125 crossref_primary_10_1007_JHEP02_2021_152 crossref_primary_10_1007_JHEP11_2019_040 crossref_primary_10_4236_jqis_2016_61001 crossref_primary_10_1002_prop_201600036 crossref_primary_10_1007_JHEP07_2021_022 crossref_primary_10_1007_JHEP07_2023_227 crossref_primary_10_1007_JHEP10_2014_060 crossref_primary_10_1007_JHEP02_2015_005 crossref_primary_10_1007_JHEP10_2018_048 crossref_primary_10_1007_JHEP08_2020_032 crossref_primary_10_1007_JHEP05_2022_162 crossref_primary_10_1007_JHEP10_2019_240 crossref_primary_10_1007_JHEP01_2021_177 crossref_primary_10_1007_JHEP03_2025_037 crossref_primary_10_1007_JHEP07_2016_048 crossref_primary_10_1007_JHEP03_2021_214 crossref_primary_10_1007_JHEP10_2014_192 crossref_primary_10_1007_JHEP10_2016_068 crossref_primary_10_1007_JHEP05_2023_109 crossref_primary_10_1007_JHEP11_2020_155 crossref_primary_10_1007_JHEP11_2019_069 crossref_primary_10_1103_PhysRevD_107_026016 crossref_primary_10_1103_PhysRevLett_133_131601 crossref_primary_10_1007_s10701_021_00489_y crossref_primary_10_1007_JHEP02_2018_163 crossref_primary_10_1007_JHEP04_2015_031 crossref_primary_10_1007_JHEP04_2024_051 crossref_primary_10_1140_epjc_s10052_016_4326_z crossref_primary_10_1103_PhysRevB_107_155124 crossref_primary_10_1103_PhysRevD_98_025019 crossref_primary_10_1007_JHEP06_2015_157 crossref_primary_10_1007_JHEP04_2021_083 crossref_primary_10_1007_JHEP05_2018_080 crossref_primary_10_1016_j_physletb_2020_135891 crossref_primary_10_1103_PhysRevD_99_086016 crossref_primary_10_1007_JHEP02_2019_110 crossref_primary_10_1007_JHEP10_2019_102 crossref_primary_10_1007_JHEP04_2020_208 crossref_primary_10_1007_JHEP05_2018_008 crossref_primary_10_1007_JHEP04_2024_066 crossref_primary_10_1007_JHEP09_2021_118 crossref_primary_10_1007_JHEP03_2021_116 crossref_primary_10_1007_JHEP10_2018_152 crossref_primary_10_1103_PhysRevB_100_134412 crossref_primary_10_1007_JHEP10_2020_129 crossref_primary_10_1007_JHEP12_2016_145 crossref_primary_10_1007_JHEP02_2019_069 crossref_primary_10_1007_JHEP10_2021_047 crossref_primary_10_1007_JHEP10_2023_030 crossref_primary_10_1103_PhysRevD_95_105007 crossref_primary_10_1007_JHEP09_2015_130 crossref_primary_10_1007_JHEP05_2021_032 crossref_primary_10_1007_JHEP02_2020_152 crossref_primary_10_1007_JHEP04_2021_185 crossref_primary_10_1126_science_aay9560 crossref_primary_10_1007_JHEP04_2023_076 crossref_primary_10_1007_JHEP01_2023_067 crossref_primary_10_1007_JHEP02_2020_149 crossref_primary_10_3389_fspas_2018_00035 crossref_primary_10_1103_PhysRevD_102_066001 crossref_primary_10_1007_JHEP12_2021_091 crossref_primary_10_1007_JHEP12_2014_162 crossref_primary_10_1103_PhysRevResearch_3_043199 crossref_primary_10_1007_s00220_019_03510_8 crossref_primary_10_1007_JHEP09_2016_154 crossref_primary_10_1007_JHEP12_2017_116 crossref_primary_10_1007_s00220_021_04040_y crossref_primary_10_1103_PhysRevA_108_032404 crossref_primary_10_1002_prop_202200102 crossref_primary_10_1103_PhysRevD_105_026010 crossref_primary_10_1007_JHEP04_2017_061 crossref_primary_10_1103_PhysRevD_102_086009 crossref_primary_10_1007_JHEP10_2017_069 crossref_primary_10_1088_1361_6382_ac8266 crossref_primary_10_1007_JHEP01_2019_232 crossref_primary_10_1007_JHEP08_2022_051 |
Cites_doi | 10.1103/RevModPhys.81.865 10.1002/prop.201300020 10.1103/PhysRevD.53.4133 10.1088/0264-9381/20/11/319 10.4310/ATMP.2000.v4.n4.a5 10.1103/PhysRevLett.78.2275 10.1103/PhysRevD.87.046003 10.1088/0264-9381/16/2/004 10.1007/JHEP02(2010)029 10.1098/rspa.2004.1372 10.1007/s00220-006-1535-6 10.1007/JHEP08(2013)090 10.1103/PhysRevA.53.2046 10.1103/PhysRevA.54.3824 10.1103/PhysRevD.53.R4133 10.1007/JHEP06(2014)044 10.1103/PhysRevD.88.026012 10.1088/0264-9381/15/3/013 10.1103/PhysRevA.63.012307 10.1088/0305-4470/34/35/314 10.1103/PhysrevA.62.062314 10.1088/0305-4470/34/35/305 10.1103/PhysRevD.86.065007 10.1007/BF00417500 10.1088/1367-2630/7/1/229 10.1103/PhysRevA.40.4277 10.1007/JHEP10(2013)220 10.1007/JHEP03(2014)051 10.1063/1.1643788 10.1119/1.16243 10.1103/PhysRevLett.71.1291 10.1103/PhysRevD.89.086004 10.1007/JHEP03(2014)067 10.1007/s00220-006-0118-x 10.1103/PhysRevLett.84.2014 10.1103/PhysRevLett.96.181602 10.1090/surv/137 10.1007/JHEP04(2014)195 10.1103/PhysRevLett.111.171301 10.1007/s10714-010-1034-0 10.1103/PhysRevD.58.024007 10.1007/978-3-642-61590-0 10.1103/PhysRevLett.69.1849 10.1103/PhysRevD.53.5527 10.1007/s00220-010-1163-z |
ContentType | Journal Article |
Copyright | 2014 IOP Publishing Ltd |
Copyright_xml | – notice: 2014 IOP Publishing Ltd |
DBID | AAYXX CITATION 7U5 8FD H8D L7M |
DOI | 10.1088/0264-9381/31/18/185015 |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Physics |
DocumentTitleAlternate | Multiboundary wormholes and holographic entanglement |
EISSN | 1361-6382 |
EndPage | 55 |
ExternalDocumentID | 10_1088_0264_9381_31_18_185015 cqg500169 |
GrantInformation_xml | – fundername: U.S. Department of Energy funderid: http://dx.doi.org/10.13039/100000015 – fundername: Science and Technology Facilities Council funderid: http://dx.doi.org/10.13039/501100000271 – fundername: Natural Sciences and Engineering Research Council of Canada funderid: http://dx.doi.org/10.13039/501100000038 |
GroupedDBID | -DZ -~X 1JI 29B 4.4 5B3 5GY 5PX 5VS 5ZH 6J9 7.M 7.Q AAGCD AAGID AAJIO AAJKP AALHV AATNI ABCXL ABHWH ABJNI ABQJV ABVAM ACAFW ACGFO ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO JCGBZ KOT LAP M45 N5L N9A NT- NT. P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 UCJ W28 XPP ZMT AAYXX ADEQX AERVB CITATION 7U5 8FD H8D L7M |
ID | FETCH-LOGICAL-c397t-e3f03c22e245d33618fe25a7c35730cfaf12e4e1505a3d6067060495f185a4e33 |
IEDL.DBID | IOP |
ISSN | 0264-9381 |
IngestDate | Fri Jul 11 15:33:01 EDT 2025 Tue Jul 01 00:32:19 EDT 2025 Thu Apr 24 22:58:35 EDT 2025 Wed Aug 21 03:33:17 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c397t-e3f03c22e245d33618fe25a7c35730cfaf12e4e1505a3d6067060495f185a4e33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1793269238 |
PQPubID | 23500 |
PageCount | 55 |
ParticipantIDs | proquest_miscellaneous_1793269238 crossref_citationtrail_10_1088_0264_9381_31_18_185015 iop_journals_10_1088_0264_9381_31_18_185015 crossref_primary_10_1088_0264_9381_31_18_185015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-09-21 |
PublicationDateYYYYMMDD | 2014-09-21 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-21 day: 21 |
PublicationDecade | 2010 |
PublicationTitle | Classical and quantum gravity |
PublicationTitleAbbrev | CQG |
PublicationTitleAlternate | Class. Quantum Grav |
PublicationYear | 2014 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Maldacena J M (44) 1998; 1998 Hartman T (48) Hayden P M (55) 2001; 34 Shenker S H (40) 49 Czech B (3) 2012; 29 Seppala M (46) 2011 Maskit B (43) 1987 Belinschi S T (61) 2013 50 Krasnov K (20) 2003; 20 52 53 10 54 11 12 56 13 57 14 15 59 17 18 Eisert J (32) Marolf D (38) 2013; 30 Wall A C (51) 2 Faulkner T (47) 4 5 7 Dijkgraaf R (65) Aminneborg S (26) 1998; 15 Gühne O (58) 2005; 7 9 Hubeny V E (6) 2007; 2007 63 64 21 66 23 25 27 29 Barnum H (31) 2001; 34 Yin X (45) 2008; 2008 Maldacena J (1) 2003; 2003 Aminneborg S (28) 1999; 16 Hayden P (62) 2014 30 Bianchi E (8) Gharibyan H (24) 33 34 35 36 37 39 Balasubramanian V (60) Swingle B (16) Headrick M (42) 2014 Susskind L (22) Krasnov K (19) 2000; 4 41 |
References_xml | – ident: 33 doi: 10.1103/RevModPhys.81.865 – ident: 4 doi: 10.1002/prop.201300020 – volume: 30 issn: 0264-9381 year: 2013 ident: 38 publication-title: Class. Quantum Grav. – ident: 27 doi: 10.1103/PhysRevD.53.4133 – ident: 22 – volume: 20 start-page: 2235 issn: 0264-9381 year: 2003 ident: 20 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/20/11/319 – volume: 4 start-page: 929 year: 2000 ident: 19 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.2000.v4.n4.a5 – ident: 48 – volume: 2008 start-page: JHEP09(2008)120 issn: 1126-6708 year: 2008 ident: 45 publication-title: J. High Energy Phys. – ident: 29 doi: 10.1103/PhysRevLett.78.2275 – volume: 2007 start-page: JHEP07(2007)062 issn: 1126-6708 year: 2007 ident: 6 publication-title: J. High Energy Phys. – ident: 65 – ident: 23 doi: 10.1103/PhysRevD.87.046003 – volume: 16 start-page: 363 issn: 0264-9381 year: 1999 ident: 28 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/16/2/004 – ident: 47 – ident: 64 doi: 10.1007/JHEP02(2010)029 – ident: 52 doi: 10.1098/rspa.2004.1372 – year: 2014 ident: 62 – year: 2011 ident: 46 publication-title: Geometry of Riemann Surfaces and Teichmuller Spaces – ident: 56 doi: 10.1007/s00220-006-1535-6 – year: 2013 ident: 61 – ident: 7 doi: 10.1007/JHEP08(2013)090 – ident: 34 doi: 10.1103/PhysRevA.53.2046 – ident: 50 doi: 10.1103/PhysRevA.54.3824 – ident: 25 doi: 10.1103/PhysRevD.53.R4133 – ident: 11 doi: 10.1007/JHEP06(2014)044 – ident: 13 doi: 10.1103/PhysRevD.88.026012 – volume: 15 start-page: 627 issn: 0264-9381 year: 1998 ident: 26 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/15/3/013 – ident: 30 doi: 10.1103/PhysRevA.63.012307 – ident: 51 – volume: 34 start-page: 6891 issn: 0305-4470 year: 2001 ident: 55 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/34/35/314 – year: 2014 ident: 42 publication-title: Conf. on New Frontiers in Dynamical Gravity (Cambridge: 2014) – ident: 60 – ident: 35 doi: 10.1103/PhysrevA.62.062314 – volume: 34 start-page: 6787 issn: 0305-4470 year: 2001 ident: 31 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/34/35/305 – ident: 12 doi: 10.1103/PhysRevD.86.065007 – ident: 17 doi: 10.1007/BF00417500 – ident: 24 – volume: 7 start-page: 229 issn: 1367-2630 year: 2005 ident: 58 publication-title: New J. Phys. doi: 10.1088/1367-2630/7/1/229 – ident: 49 doi: 10.1103/PhysRevA.40.4277 – ident: 9 doi: 10.1007/JHEP10(2013)220 – ident: 15 doi: 10.1007/JHEP03(2014)051 – ident: 57 doi: 10.1063/1.1643788 – ident: 18 doi: 10.1119/1.16243 – ident: 36 doi: 10.1103/PhysRevLett.71.1291 – ident: 10 doi: 10.1103/PhysRevD.89.086004 – ident: 39 doi: 10.1007/JHEP03(2014)067 – ident: 53 doi: 10.1007/s00220-006-0118-x – ident: 54 doi: 10.1103/PhysRevLett.84.2014 – ident: 16 – ident: 40 – volume: 2003 start-page: JHEP03(2003)021 issn: 1126-6708 year: 2003 ident: 1 publication-title: J. High Energy Phys. – ident: 5 doi: 10.1103/PhysRevLett.96.181602 – ident: 8 – ident: 66 doi: 10.1090/surv/137 – ident: 14 doi: 10.1007/JHEP04(2014)195 – ident: 32 – ident: 59 doi: 10.1103/PhysRevLett.111.171301 – ident: 2 doi: 10.1007/s10714-010-1034-0 – volume: 29 issn: 0264-9381 year: 2012 ident: 3 publication-title: Class. Quantum Grav. – ident: 41 doi: 10.1103/PhysRevD.58.024007 – year: 1987 ident: 43 publication-title: Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete doi: 10.1007/978-3-642-61590-0 – volume: 1998 start-page: JHEP12(1998)005 issn: 1126-6708 year: 1998 ident: 44 publication-title: J. High Energy Phys. – ident: 37 doi: 10.1103/PhysRevLett.69.1849 – ident: 63 doi: 10.1103/PhysRevD.53.5527 – ident: 21 doi: 10.1007/s00220-010-1163-z |
SSID | ssj0011812 |
Score | 2.523073 |
Snippet | The AdS/CFT correspondence relates quantum entanglement between boundary conformal field theories and geometric connections in the dual asymptotically anti-de... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 185015 |
SubjectTerms | Asymptotic properties black holes Entanglement Fragments Hilbert space holography Mathematical analysis Quantum gravity Riemann surfaces Wormholes |
Title | Multiboundary wormholes and holographic entanglement |
URI | https://iopscience.iop.org/article/10.1088/0264-9381/31/18/185015 https://www.proquest.com/docview/1793269238 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86EfTBj6k4v6jgm3Rtvrr0UcQxBD8eHPgW2jRRmXRj7RD967007UBFhgh9KCUX0kuT-13zuzuEzrCyWbiM8VMhwEEBo-LHxGhfK84VxsZiBMu2uI0GQ3b9yBs2YRULM57UW38Xbl2iYKfCmhAnAvAamB-DpQkoDrCAi4c2zHyFCjCfNobv7n5-kGANmPvN4mSaIOFf-_lin5ZhDD826cry9DdR2ozZEU5G3VmZdtXHt3SO_3qpLbRR41LvwglsoyWdt9H6zTypa9FGqxVbVBU7iFVhu2lVkWn67r0B7rVldgsvyTPvuUmD_aI8S0zPnxxDfRcN-1cPlwO_Lr_gKwAppa-pCakiRBPGM0ojLIwmPOkpymFbUCYxmGimAVHyhGaRDfiJwN_gBsaeME3pHmrl41zvI68XKhKnOEriWDOW8Rjaa5GlGdEhPFQdxBulS1XnJrclMl5ldUYuhLT6kVY_kmKJhXT66aBgLjdx2TkWSpzDFMh6oRYLW582cy9h2dmzlCTX4xnI9SzwBXQsDv7U4yFaA8jFLOOE4CPUKqczfQywpkxPqg_3E9QV5Us |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5tqVrBoT8UxEJLU6mcUDbrv6xz6KHqdgUsUA5F4uYmjt0iILva7Apt36uvwvN0HCcr0QqhHjhUyiGK7MT2OPON7W9mAN4T7aJwWRtmUuICBUElTKg1odFCaEKssxEc2-I43jvlB2firAW_Fr4wo3Gt-jt46wMF-yGsCXEywlUDDxNEmoiRiEi8BGJaNM5tza0cmvk1rtzKD_t9FPMOpYPPXz_thXVygVAjBE9Dw2yXaUoN5SJnLCbSGirSnmYCJ722qSXUcIP2kkhZHjt3lhitaWHxcyk3bh8UNf9jwRCxnd_gl5PF4YUDTb-149vZOCbf2fZbmPgI-_0XMFRoN3gON804eZLLRWc2zTr65x8hJP-7gXwBz2r7O_joG_kSWqZYhZWjRfDachWeVKxYXb4CXrknZ1Xmqck8wFZeuXTCZZAWefCjCfd9rgNHwC--eyb-Gpw-SAfWYakYFWYDgl5X0yQjcZokhvNcJFjeyDzLqeniQ90G0Qha6ToGu0sFcqkqLoCUyslEOZkoRhSRysukDdGi3thHIbm3xi6KXdUKqby39LtmvilUL-7MKC3MaIb1es7Ax1WA3PynN76Fpyf9gTrcPx5uwTJamdyRbCh5DUvTycy8QUtumm1X_00A3x56fv0Go4lCNQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiboundary+wormholes+and+holographic+entanglement&rft.jtitle=Classical+and+quantum+gravity&rft.au=Balasubramanian%2C+Vijay&rft.au=Hayden%2C+Patrick&rft.au=Maloney%2C+Alexander&rft.au=Marolf%2C+Donald&rft.date=2014-09-21&rft.issn=0264-9381&rft.eissn=1361-6382&rft.volume=31&rft.issue=18&rft.spage=1&rft.epage=55&rft_id=info:doi/10.1088%2F0264-9381%2F31%2F18%2F185015&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-9381&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-9381&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-9381&client=summon |