A benchmark dataset and workflow for landslide susceptibility zonation

Landslide susceptibility shows the spatial likelihood of landslide occurrence in a specific geographical area and is a relevant tool for mitigating the impact of landslides worldwide. As such, it is the subject of countless scientific studies. Many methods exist for generating a susceptibility map,...

Full description

Saved in:
Bibliographic Details
Published inEarth-science reviews Vol. 258; p. 104927
Main Authors Alvioli, Massimiliano, Loche, Marco, Jacobs, Liesbet, Grohmann, Carlos H., Abraham, Minu Treesa, Gupta, Kunal, Satyam, Neelima, Scaringi, Gianvito, Bornaetxea, Txomin, Rossi, Mauro, Marchesini, Ivan, Lombardo, Luigi, Moreno, Mateo, Steger, Stefan, Camera, Corrado A.S., Bajni, Greta, Samodra, Guruh, Wahyudi, Erwin Eko, Susyanto, Nanang, Sinčić, Marko, Gazibara, Sanja Bernat, Sirbu, Flavius, Torizin, Jewgenij, Schüßler, Nick, Mirus, Benjamin B., Woodard, Jacob B., Aguilera, Héctor, Rivera-Rivera, Jhonatan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Landslide susceptibility shows the spatial likelihood of landslide occurrence in a specific geographical area and is a relevant tool for mitigating the impact of landslides worldwide. As such, it is the subject of countless scientific studies. Many methods exist for generating a susceptibility map, mostly falling under the definition of statistical or machine learning. These models try to solve a classification problem: given a collection of spatial variables, and their combination associated with landslide presence or absence, a model should be trained, tested to reproduce the target outcome, and eventually applied to unseen data. Contrary to many fields of science that use machine learning for specific tasks, no reference data exist to assess the performance of a given method for landslide susceptibility. Here, we propose a benchmark dataset consisting of 7360 slope units encompassing an area of about 4,100km2 in Central Italy. Using the dataset, we tried to answer two open questions in landslide research: (1) what effect does the human variability have in creating susceptibility models; (2) how can we develop a reproducible workflow for allowing meaningful model comparisons within the landslide susceptibility research community. With these questions in mind, we released a preliminary version of the dataset, along with a “call for collaboration,” aimed at collecting different calculations using the proposed data, and leaving the freedom of implementation to the respondents. Contributions were different in many respects, including classification methods, use of predictors, implementation of training/validation, and performance assessment. That feedback suggested refining the initial dataset, and constraining the implementation workflow. This resulted in a final benchmark dataset and landslide susceptibility maps obtained with many classification methods. Values of area under the receiver operating characteristic curve obtained with the final benchmark dataset were rather similar, as an effect of constraints on training, cross–validation, and use of data. Brier score results show larger variability, instead, ascribed to different model predictive abilities. Correlation plots show similarities between results of different methods applied by the same group, ascribed to a residual implementation dependence. We stress that the experiment did not intend to select the “best” method but only to establish a first benchmark dataset and workflow, that may be useful as a standard reference for calculations by other scholars. The experiment, to our knowledge, is the first of its kind for landslide susceptibility modeling. The data and workflow presented here comparatively assess the performance of independent methods for landslide susceptibility and we suggest the benchmark approach as a best practice for quantitative research in geosciences.
AbstractList Landslide susceptibility shows the spatial likelihood of landslide occurrence in a specific geographical area and is a relevant tool for mitigating the impact of landslides worldwide. As such, it is the subject of countless scientific studies. Many methods exist for generating a susceptibility map, mostly falling under the definition of statistical or machine learning. These models try to solve a classification problem: given a collection of spatial variables, and their combination associated with landslide presence or absence, a model should be trained, tested to reproduce the target outcome, and eventually applied to unseen data. Contrary to many fields of science that use machine learning for specific tasks, no reference data exist to assess the performance of a given method for landslide susceptibility. Here, we propose a benchmark dataset consisting of 7360 slope units encompassing an area of about 4,100km2 in Central Italy. Using the dataset, we tried to answer two open questions in landslide research: (1) what effect does the human variability have in creating susceptibility models; (2) how can we develop a reproducible workflow for allowing meaningful model comparisons within the landslide susceptibility research community. With these questions in mind, we released a preliminary version of the dataset, along with a “call for collaboration,” aimed at collecting different calculations using the proposed data, and leaving the freedom of implementation to the respondents. Contributions were different in many respects, including classification methods, use of predictors, implementation of training/validation, and performance assessment. That feedback suggested refining the initial dataset, and constraining the implementation workflow. This resulted in a final benchmark dataset and landslide susceptibility maps obtained with many classification methods. Values of area under the receiver operating characteristic curve obtained with the final benchmark dataset were rather similar, as an effect of constraints on training, cross–validation, and use of data. Brier score results show larger variability, instead, ascribed to different model predictive abilities. Correlation plots show similarities between results of different methods applied by the same group, ascribed to a residual implementation dependence. We stress that the experiment did not intend to select the “best” method but only to establish a first benchmark dataset and workflow, that may be useful as a standard reference for calculations by other scholars. The experiment, to our knowledge, is the first of its kind for landslide susceptibility modeling. The data and workflow presented here comparatively assess the performance of independent methods for landslide susceptibility and we suggest the benchmark approach as a best practice for quantitative research in geosciences.
Landslide susceptibility shows the spatial likelihood of landslide occurrence in a specific geographical area and is a relevant tool for mitigating the impact of landslides worldwide. As such, it is the subject of countless scientific studies. Many methods exist for generating a susceptibility map, mostly falling under the definition of statistical or machine learning. These models try to solve a classification problem: given a collection of spatial variables, and their combination associated with landslide presence or absence, a model should be trained, tested to reproduce the target outcome, and eventually applied to unseen data. Contrary to many fields of science that use machine learning for specific tasks, no reference data exist to assess the performance of a given method for landslide susceptibility. Here, we propose a benchmark dataset consisting of 7360 slope units encompassing an area of about 4,100km2 in Central Italy. Using the dataset, we tried to answer two open questions in landslide research: (1) what effect does the human variability have in creating susceptibility models; (2) how can we develop a reproducible workflow for allowing meaningful model comparisons within the landslide susceptibility research community. With these questions in mind, we released a preliminary version of the dataset, along with a “call for collaboration,” aimed at collecting different calculations using the proposed data, and leaving the freedom of implementation to the respondents. Contributions were different in many respects, including classification methods, use of predictors, implementation of training/validation, and performance assessment. That feedback suggested refining the initial dataset, and constraining the implementation workflow. This resulted in a final benchmark dataset and landslide susceptibility maps obtained with many classification methods. Values of area under the receiver operating characteristic curve obtained with the final benchmark dataset were rather similar, as an effect of constraints on training, cross–validation, and use of data. Brier score results show larger variability, instead, ascribed to different model predictive abilities. Correlation plots show similarities between results of different methods applied by the same group, ascribed to a residual implementation dependence. We stress that the experiment did not intend to select the “best” method but only to establish a first benchmark dataset and workflow, that may be useful as a standard reference for calculations by other scholars. The experiment, to our knowledge, is the first of its kind for landslide susceptibility modeling. The data and workflow presented here comparatively assess the performance of independent methods for landslide susceptibility and we suggest the benchmark approach as a best practice for quantitative research in geosciences.
ArticleNumber 104927
Author Rossi, Mauro
Samodra, Guruh
Camera, Corrado A.S.
Schüßler, Nick
Susyanto, Nanang
Steger, Stefan
Wahyudi, Erwin Eko
Satyam, Neelima
Woodard, Jacob B.
Gazibara, Sanja Bernat
Moreno, Mateo
Scaringi, Gianvito
Bajni, Greta
Gupta, Kunal
Grohmann, Carlos H.
Rivera-Rivera, Jhonatan
Loche, Marco
Abraham, Minu Treesa
Marchesini, Ivan
Torizin, Jewgenij
Jacobs, Liesbet
Alvioli, Massimiliano
Mirus, Benjamin B.
Sinčić, Marko
Sirbu, Flavius
Bornaetxea, Txomin
Lombardo, Luigi
Aguilera, Héctor
Author_xml – sequence: 1
  givenname: Massimiliano
  surname: Alvioli
  fullname: Alvioli, Massimiliano
  email: massimiliano.alvioli@irpi.cnr.it
  organization: Consiglio Nazionale delle Ricerche, Istituto di Ricerca per la Protezione Idrogeologica, via Madonna Alta 126, I-06128 Perugia, Italy
– sequence: 2
  givenname: Marco
  surname: Loche
  fullname: Loche, Marco
  organization: Institute of Hydrogeology, Engineering Geology and Applied Geophysics, Charles University, Albertov 6, 128 43 Prague, Czech Republic
– sequence: 3
  givenname: Liesbet
  surname: Jacobs
  fullname: Jacobs, Liesbet
  organization: Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
– sequence: 4
  givenname: Carlos H.
  surname: Grohmann
  fullname: Grohmann, Carlos H.
  organization: Institute of Astronomy, Geophysics and Atmospheric Sciences, Universidade de São Paulo, Rua do Matão 1226, 05508-090, São Paulo, SP, Brazil
– sequence: 5
  givenname: Minu Treesa
  surname: Abraham
  fullname: Abraham, Minu Treesa
  organization: Methods for Model–based Development in Computational Engineering, RWTH Aachen, 52062, Germany
– sequence: 6
  givenname: Kunal
  surname: Gupta
  fullname: Gupta, Kunal
  organization: Department of Civil Engineering, Indian Institute of Technology, Indore, India
– sequence: 7
  givenname: Neelima
  surname: Satyam
  fullname: Satyam, Neelima
  organization: Department of Civil Engineering, Indian Institute of Technology, Indore, India
– sequence: 8
  givenname: Gianvito
  surname: Scaringi
  fullname: Scaringi, Gianvito
  organization: Institute of Hydrogeology, Engineering Geology and Applied Geophysics, Charles University, Albertov 6, 128 43 Prague, Czech Republic
– sequence: 9
  givenname: Txomin
  surname: Bornaetxea
  fullname: Bornaetxea, Txomin
  organization: Consiglio Nazionale delle Ricerche, Istituto di Ricerca per la Protezione Idrogeologica, via Madonna Alta 126, I-06128 Perugia, Italy
– sequence: 10
  givenname: Mauro
  surname: Rossi
  fullname: Rossi, Mauro
  organization: Consiglio Nazionale delle Ricerche, Istituto di Ricerca per la Protezione Idrogeologica, via Madonna Alta 126, I-06128 Perugia, Italy
– sequence: 11
  givenname: Ivan
  surname: Marchesini
  fullname: Marchesini, Ivan
  organization: Consiglio Nazionale delle Ricerche, Istituto di Ricerca per la Protezione Idrogeologica, via Madonna Alta 126, I-06128 Perugia, Italy
– sequence: 12
  givenname: Luigi
  surname: Lombardo
  fullname: Lombardo, Luigi
  organization: Faculty of Geo–Information Science and Earth Observation (ITC), University of Twente, PO Box 217, Enschede AE 7500, the Netherlands
– sequence: 13
  givenname: Mateo
  surname: Moreno
  fullname: Moreno, Mateo
  organization: Faculty of Geo–Information Science and Earth Observation (ITC), University of Twente, PO Box 217, Enschede AE 7500, the Netherlands
– sequence: 14
  givenname: Stefan
  surname: Steger
  fullname: Steger, Stefan
  organization: GeoSphere Austria, Vienna, Austria
– sequence: 15
  givenname: Corrado A.S.
  surname: Camera
  fullname: Camera, Corrado A.S.
  organization: Dipartimento di Scienze della Terra "A. Desio", Università degli Studi di Milano, Milan, Italy
– sequence: 16
  givenname: Greta
  surname: Bajni
  fullname: Bajni, Greta
  organization: Dipartimento di Scienze della Terra "A. Desio", Università degli Studi di Milano, Milan, Italy
– sequence: 17
  givenname: Guruh
  surname: Samodra
  fullname: Samodra, Guruh
  organization: Department of Environmental Geography, Faculty of Geography, Universitas Gadjah Mada, Indonesia
– sequence: 18
  givenname: Erwin Eko
  surname: Wahyudi
  fullname: Wahyudi, Erwin Eko
  organization: Department of Computer Science and Electronics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Indonesia
– sequence: 19
  givenname: Nanang
  surname: Susyanto
  fullname: Susyanto, Nanang
  organization: Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Indonesia
– sequence: 20
  givenname: Marko
  surname: Sinčić
  fullname: Sinčić, Marko
  organization: Department of Geology and Geological Engineering, Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
– sequence: 21
  givenname: Sanja Bernat
  surname: Gazibara
  fullname: Gazibara, Sanja Bernat
  organization: Department of Geology and Geological Engineering, Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
– sequence: 22
  givenname: Flavius
  surname: Sirbu
  fullname: Sirbu, Flavius
  organization: Institute for Advance Environmental Research, West University of Timisoara, Oituz 4, 300086 Timişoara, Romania
– sequence: 23
  givenname: Jewgenij
  surname: Torizin
  fullname: Torizin, Jewgenij
  organization: Federal Institute for Geosciences and Natural Resources, Hannover, Germany
– sequence: 24
  givenname: Nick
  surname: Schüßler
  fullname: Schüßler, Nick
  organization: Federal Institute for Geosciences and Natural Resources, Hannover, Germany
– sequence: 25
  givenname: Benjamin B.
  surname: Mirus
  fullname: Mirus, Benjamin B.
  organization: U.S. Geological Survey, Geologic Hazards Science Center, Golden, CO, United States of America
– sequence: 26
  givenname: Jacob B.
  surname: Woodard
  fullname: Woodard, Jacob B.
  organization: U.S. Geological Survey, Geologic Hazards Science Center, Golden, CO, United States of America
– sequence: 27
  givenname: Héctor
  surname: Aguilera
  fullname: Aguilera, Héctor
  organization: Geological Survey of Spain (IGME-CSIC), Rios Rosas 23, 28003 Madrid, Spain
– sequence: 28
  givenname: Jhonatan
  surname: Rivera-Rivera
  fullname: Rivera-Rivera, Jhonatan
  organization: Geological Survey of Spain (IGME-CSIC), Rios Rosas 23, 28003 Madrid, Spain
BookMark eNqNkLtOAzEURF0EiQT4BlzSbLC9TxcUUUQAKRIN1JYfd4WTzTrYTqLw9TgsoqCB6uqOZkajM0Gj3vWA0DUlU0podbuagvRBWw_7KSOsSGrBWT1CY0IoyxpWsnM0CWFF0k94PUaLGVbQ67eN9GtsZJQBIpa9wQfn123nDrh1HndJCZ01gMMuaNhGq2xn4xF_uF5G6_pLdNbKLsDV971Ar4v7l_ljtnx-eJrPlpnOeR0zw3LJc9KmUbpmkvOaK2C5aghREoqmqTU1VdkAmFxTRstSE9WWoIwxrGhUfoFuht6td-87CFFsbBrUpYHgdkHktCxoRZqiSta7waq9C8FDK7SNX2Ojl7YTlIgTM7ESP8zEiZkYmKV8_Su_9TZhOv4jORuSkEjsLXiRTAkymGTVURhn_-z4BKTlkUc
CitedBy_id crossref_primary_10_1126_sciadv_adt1541
crossref_primary_10_1016_j_geomorph_2025_109728
crossref_primary_10_1016_j_jag_2025_104365
crossref_primary_10_1016_j_ecolind_2025_113313
crossref_primary_10_3390_geosciences14100280
crossref_primary_10_3390_rs17030381
crossref_primary_10_1016_j_envsoft_2024_106217
Cites_doi 10.1016/S0169-555X(99)00078-1
10.1093/bioinformatics/bti623
10.1007/s11069-023-06092-w
10.1016/j.cageo.2015.04.007
10.1016/j.ecolmodel.2019.108815
10.5194/nhess-14-259-2014
10.1016/0045-7949(91)90469-3
10.1016/j.ocemod.2021.101943
10.1016/j.geomorph.2020.107041
10.1023/A:1010933404324
10.1007/s00477-021-02165-z
10.1016/j.envsoft.2019.104565
10.5194/gmd-15-5651-2022
10.1007/s10064-020-01733-x
10.25080/Majora-92bf1922-00a
10.1007/s00254-007-0882-8
10.5194/nhess-24-823-2024
10.1016/j.scitotenv.2023.165289
10.1080/00036840110058482
10.1007/s10346-023-02091-x
10.5194/essd-14-4129-2022
10.1371/journal.pone.0169748
10.1007/s00477-020-01893-y
10.1016/j.geomorph.2006.04.007
10.1038/s41598-021-00780-y
10.1016/j.ecolmodel.2013.08.011
10.1016/j.enggeo.2010.09.009
10.1007/s10346-011-0283-7
10.1016/j.scitotenv.2021.145935
10.1016/j.enggeo.2005.02.002
10.1007/s42452-020-3060-1
10.1016/j.jsg.2016.03.005
10.1016/j.catena.2018.03.003
10.1038/s41598-023-28991-5
10.1016/j.enggeo.2022.106586
10.1002/gj.4666
10.5194/gmd-9-3533-2016
10.18637/jss.v063.i19
10.3390/rs12030346
10.1016/j.catena.2018.12.035
10.1016/j.jsg.2016.03.003
10.1016/S0098-3004(97)00117-9
10.1016/j.ecolmodel.2019.06.002
10.4113/jom.2009.1041
10.1016/j.scitotenv.2021.147360
10.1016/j.cageo.2023.105364
10.1016/j.catena.2020.104580
10.1007/s11069-022-05554-x
10.5194/nhess-18-2455-2018
10.1016/j.jsames.2024.104805
10.1016/j.geomorph.2022.108401
10.5194/nhess-6-687-2006
10.1186/1471-2105-12-77
10.1007/s10346-013-0391-7
10.3390/geosciences11100425
10.1016/j.geomorph.2017.12.007
10.1007/s11629-021-7254-9
10.1016/j.earscirev.2022.104125
10.1016/j.enggeo.2019.105237
10.1145/1007730.1007735
10.1017/CBO9780511802843
10.1016/j.geomorph.2016.03.015
10.1016/S0013-7952(03)00143-1
10.1016/j.geomorph.2017.10.018
10.1016/S0304-3800(02)00193-X
10.1016/j.catena.2020.105067
10.1016/j.geomorph.2020.107084
10.1080/17538947.2016.1169561
10.1016/j.gsf.2023.101645
10.1038/s41586-020-2649-2
10.1016/S0013-7952(00)00041-7
10.1007/s11069-023-06103-w
10.1016/j.patrec.2005.10.010
10.1007/s11004-023-10105-6
10.1016/j.earscirev.2012.02.001
10.5194/nhess-13-3339-2013
10.1016/j.geomorph.2010.09.004
10.1016/j.geomorph.2009.10.002
10.5194/nhess-14-95-2014
10.1007/s10346-014-0550-5
10.1080/10106049.2018.1559885
10.1016/j.geomorph.2020.107124
10.1023/B:NHAZ.0000007172.62651.2b
10.1007/s10346-010-0213-0
10.1007/s11069-023-06153-0
10.1016/j.cageo.2017.03.022
10.1016/j.geomorph.2021.107804
10.1007/s00477-022-02215-0
10.1007/s10064-024-03730-w
10.1016/j.catena.2020.104630
10.1002/bjs.10895
10.1080/10106049.2022.2087753
10.1016/j.gsf.2023.101765
10.1002/esp.3290160505
10.1007/s00477-021-02020-1
10.1007/s10064-023-03163-x
10.1038/323533a0
10.1016/j.earscirev.2020.103225
10.5194/gmd-9-3975-2016
10.1186/s40677-020-00152-0
10.1111/j.1469-1809.1936.tb02137.x
10.1016/j.scitotenv.2023.169166
10.1016/j.geomorph.2011.03.001
10.1016/j.earscirev.2018.03.001
10.1016/j.enggeo.2018.07.019
10.1007/s12517-015-2150-7
10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
10.1016/j.geomorph.2004.09.025
10.1016/j.enggeo.2011.09.006
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.earscirev.2024.104927
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geology
ExternalDocumentID 10_1016_j_earscirev_2024_104927
S0012825224002551
GeographicLocations Italy
GeographicLocations_xml – name: Italy
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
186
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
9M8
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACGOD
ACIWK
ACLVX
ACRLP
ACRPL
ACSBN
ADBBV
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGNAY
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PQQKQ
PZZ
Q38
R2-
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SSE
SSZ
T5K
TAE
TN5
UQL
VH1
WH7
WUQ
XJT
ZCA
ZKB
ZMT
~02
~G-
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
ADXHL
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
BNPGV
CITATION
EFKBS
7S9
L.6
SSH
ID FETCH-LOGICAL-c397t-d23a930f492c72a9979be23b800bae4887c1d658eed3c12155c0bf5ebddd248b3
IEDL.DBID .~1
ISSN 0012-8252
IngestDate Wed Jul 02 04:37:15 EDT 2025
Thu Apr 24 23:03:47 EDT 2025
Tue Aug 05 11:59:07 EDT 2025
Sat Mar 01 15:46:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Benchmark dataset
Statistical modeling
Landslide inventory
Landslide susceptibility mapping
Machine learning
Spatial analysis
Geomorphometry
Landslide susceptibility
Slope units
Geomorphological mapping
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-d23a930f492c72a9979be23b800bae4887c1d658eed3c12155c0bf5ebddd248b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0012825224002551
PQID 3154160846
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3154160846
crossref_citationtrail_10_1016_j_earscirev_2024_104927
crossref_primary_10_1016_j_earscirev_2024_104927
elsevier_sciencedirect_doi_10_1016_j_earscirev_2024_104927
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationTitle Earth-science reviews
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Loche, Alvioli, Marchesini, Bakka, Lombardo (bb0480) 2022; 232
Erener, Sivas, Selcuk-Kestel, Düzgün (bb0250) 2017; 104
Wei, Simko (bb0765) 2021
Fang, Wang, van Westen, Lombardo (bb0265) 2024; 126
Rolain, Alvioli, Nguyen, Nguyen, Jacobs, Kervyn (bb0615) 2023; 118
Mela, Kopalle (bb0530) 2002; 34
Yong, Jinlong, Guo, Bin, Tao, Hao, Li, Qinghua (bb0795) 2022; 36
Camera, Bajni, Corno, Raffa, Stevenazzi, Apuani (bb0165) 2021; 786
Lombardo, Tanyas (bb0495) 2022; 36
Openshaw (bb0560) 1984
Schlögel, Marchesini, Alvioli, Reichenbach, Rossi, Malet (bb0660) 2018; 301
Loche, Alvioli, Marchesini, Lombardo (bb0485) 2023
Guzzetti, Reichenbach, Ardizzone, Cardinali, Galli (bb0305) 2006; 81
GitHub (bb0280) 2022
Aguilera, Lombardo, Tanyas, Lipani (bb0010) 2022; 36
Amato, Eisank, Castro-Camilo, Lombardo (bb0050) 2019; 260
Kirby, Grilli, Horrillo, Liu, Nicolsky, Abadie, Ataie-Ashtiani, Castro, Clous, Escalante, Fine, González-Vida, Løvholt, Lynett, Ma, Macías, Ortega, Shi, Yavari-Ramshe, Zhang (bb0410) 2022; 170
Kingma, Ba (bb0405) 2017
Mirus, Woodard (bb0545) 2023
Bordoni, Galanti, Bartelletti, Persichillo, Barsanti, Giannecchini, D’Amato Avanzi, Cevasco, Brandolini, Galve, Meisina (bb0095) 2020; 193
Wang, Cheng, Marconcini, Bachofer, Liu, Xiong, Lombardo (bb0755) 2022; 301
Petschko, Brenning, Bell, Goetz, Glade (bb0570) 2014; 14
Buiter, Schreurs, Albertz, Gerya, Kaus, Landry, le Pourhiet, Mishin, Egholm, Cooke, Maillot, Thieulot, Crook, May, Souloumiac, Beaumont (bb0155) 2016; 92
Lee, Sameen, Pradhan, Park (bb0435) 2018; 303
Alvioli, Guzzetti, Marchesini (bb0045) 2020; 358
Amato, Fiorucci, Martino, Lombardo, Palombi (bb0055) 2023; 82
Budimir, Atkinson, Lewis (bb0150) 2015; 12
Goetz, Guthrie, Brenning (bb0285) 2011; 129
Tien Bui, Thai Pham, Quoc Nguyen, Hoang (bb0735) 2016; 9
McKinney (bb0525) 2010
Liu, Zhang, Li, Huang, Wang (bb0470) 2022; 37
Shcheglovitova, Anderson (bb0680) 2013; 269
Jia, Alvioli, Gariano, Marchesini, Guzzetti, Tang (bb0380) 2021; 389
Akgun (bb0020) 2012; 9
Camera, Bajni (bb0160) 2023
Ivakhnenko, Lapa (bb0365) 1967; vol. 8
Scaringi, Loche (bb0650) 2023
Jacobs, Kervyn, Reichenbach, Rossi, Marchesini, Alvioli, Dewitte (bb0370) 2020; 356
Dahal, Lombardo (bb0205) 2023; 176
Dias, Grohmann (bb0235) 2024; 135
Di Napoli, Tanyas, Castro-Camilo, Calcaterra, Cevasco, Di Martire, Pepe, Brandolini, Lombardo (bb0230) 2023; 119
Merghadi, Yunus, Dou, Whiteley, ThaiPham, Bui, Avtar, Abderrahmane (bb0535) 2020; 207
Ermini, Catani, Casagli (bb0255) 2005; 66
Alvioli, Marchesini, Reichenbach, Rossi, Ardizzone, Fiorucci, Guzzetti (bb0040) 2016; 9
Joliffe (bb0385) 2002
Chung, Fabbri (bb0200) 2003; 30
Sahin (bb0635) 2020; 2
Jordahl, Van den Bossche, Fleischmann, Wasserman, McBride, Gerard, Tratner, Perry, Garcia Badaracco, Farmer, Hjelle, Snow, Cochran, Gillies, Culbertson, Bartos, Eubank, Maxalbert, Bilogur, Rey, Ren, Arribas-Bel, Wasser, Wolf, Journois, Wilson, Greenhall, Holdgraf, Filipe, Leblanc (bb0390) 2020
Ranstam, Cook (bb0595) 2018; 105
Rumelhart, Hinton, Williams (bb0630) 1986; 323
Rabby, Li, Hilafu (bb0590) 2023; 13
Huang, Xiong, Jiang, Yao, Fan, Catani, Chang, Zhou, Huang, Liu (bb0355) 2024; 104700
Gong (bb0295) 2006
Aguilera, Rivera Rivera, Guardiola-Albert, Béjar-Pizarro (bb0015) 2023
Fawcett (bb0270) 2006; 27
Schreurs, Buiter, Boutelier, Burberry, Callot, Cavozzi, Cerca, Chen, Cristallini, Cruden, Cruz, Daniel, Da Poian, Garcia, Gomes, Grall, Guillot, Guzmán, Hidayah, Hilley, Klinkmüller, Koyi, Lu, Maillot, Meriaux, Nilfouroushan, Pan, Pillot, Portillo, Rosenau, Schellart, Schlische, Take, Vendeville, Vergnaud, Vettori, Wang, Withjack, Yagupsky, Yamada (bb0670) 2016; 92
Breiman (bb0125) 2011; 45
Dahal, Tanyas, van Westen, van der Meijde, Mai, Huser, Lombardo (bb0210) 2024; 24
Das, Sarkar, Kanungo (bb0215) 2022; 115
Süzen, Doyuran (bb0725) 2004; 71
Chung, Fabbri (bb0195) 1999; 65
Wang, Dahal, Fang, van Westen, Yin, Lombardo (bb0760) 2024; 15
Beigaitė, Mechenich, Žliobaitė (bb0080) 2022
Leoni, Barchiesi, Catallo, Dramis, Fubelli, Lucifora, Mattei, Pezzo, Puglisi (bb0440) 2009; 5
Rossi, Bornaetxea, Reichenbach (bb0625) 2022; 15
Satyam, Abraham, Gupta (bb0645) 2023
Brabb, Pampeyan, Bonilla (bb0115) 1972
Liang, Wang, Khan (bb0450) 2021; 35
Zeng, Wu, Peduto, Glade, Hayakawa, Yin (bb0800) 2023; 14
Bornaetxea, Rossi, Marchesini, Alvioli (bb0100) 2018; 18
Akgun, Dag, Bulut (bb0025) 2008; 54
Pokharel, Alvioli, Lim (bb0575) 2021; 11
Mărgărint, Grozavu, Patriche (bb0515) 2013; 13
Wood (bb0775) 2017
Thai Pham, Prakash, Dou, Singh, Phan Trong, Trung Tran, Minh Le, Van Phong, Dang Kim, Shirzadi, Tien Bui (bb0730) 2020; 35
Regmi, Giardino, Vitek (bb0600) 2010; 115
Liaw, Wiener (bb0455) 2002; 2
Kuhn, Wickham (bb0420) 2020
Luzi, Pergalani, Terlien (bb0510) 2000; 58
Shano, Raghuvanshi, Meten (bb0675) 2020; 7
Torizin, Schüßler (bb0740) 2023
Samodra, Wahyudi, Susyanto (bb0640) 2023
Hong, Miao, Liu, Zhu (bb0335) 2019; 176
Marjanović, Kovačević, Bajat, Voženílek (bb0520) 2011; 123
Reichenbach, Rossi, Malamud, Mihir, Guzzetti (bb0605) 2018; 180
Steger, Mair, Kofler, Pittore, Zebisch, Schneiderbauer (bb0715) 2021; 776
R Core Team (bb0585)
Carrara, Cardinali, Detti, Guzzetti, Pasqui, Reichenbach (bb0170) 1991; 16
Ho (bb0330) 1995
Lindgren, Rue (bb0465) 2015; 63
Brier (bb0140) 1950; 78
UCI (bb0750) 2024
Steger, Schmaltz, Glade (bb0710) 2020; 354
Bajni, Camera, Brenning, Apuani (bb0065) 2022; 415
Hengl, de Jesus, Heuvelink, Gonzalez, Kilibarda, Blagotić, Shangguan, Wright, Geng, Bauer-Marschallinger (bb0325) 2017; 12
Allen (bb0035) 1997
Sin Yin, Othman, Chong Khoo (bb0685) 2010
Bornaetxea, Yazdani, Rossi (bb0110) 2023
Bragagnolo, da Silva, Grzybowski (bb0120) 2020; 123
Lima, Steger, Glade, Murillo-García (bb0460) 2022; 19
Huang, Zhao (bb0345) 2018; 165
Kassambara, Mundt (bb0395) 2020
Robin, Turck, Hainard, Tiberti, Lisacek, Sanchez, Müller (bb0610) 2011; 12
Yeon, Han, Ryu (bb0785) 2010; 116
Trigila, Iadanza, Spizzichino (bb0745) 2010; 7
Lucchese, de Oliveira, Pedrollo (bb0500) 2021; 198
Harris, Millman, van der Walt, Gommers, Virtanen, Cournapeau, Wieser, Taylor, Berg, Smith, Kern, Picus, Hoyer, van Kerkwijk, Brett, Haldane, del Río, Wiebe, Peterson, Gérard-Marchant, Sheppard, Reddy, Weckesser, Abbasi, Gohlke, Oliphant (bb0315) 2020; 585
Leung, Wong, Kwan, Petley (bb0445) 2024; 83
Liu, Wang, Zhang, He, Pijush (bb0475) 2023; 58
Davison, Hinkley (bb0225) 1997
Bajni, Camera, Apuani (bb0070) 2023
Atkinson, Massari (bb0060) 1998; 24
Rossi, Reichenbach (bb0620) 2016; 9
Lee, Evangelista (bb0430) 2006; 6
Ali (bb0030) 2020
Batista, Prati, Monard (bb0075) 2004; 6
Chen, Guestrin (bb0185) 2016
Sterlacchini, Ballabio, Blahut, Masetti, Sorichetta (bb0720) 2011; 125
Lee (bb0425) 2019; 35
Yesilnacar, Topal (bb0790) 2005; 79
Dias, Hölbling, Grohmann (bb0240) 2021; 11
Moreno, Steger (bb0550) 2023
Brenning (bb0130) 2008
Guzzetti, Carrara, Cardinali, Reichenbach (bb0300) 1999; 31
Wood, Augustin (bb0780) 2002; 157
Agterberg, Bonham-Carter, Wright (bb0005) 1990
Schloerke, Cook, Larmarange, Briatte, Marbach, Thoen, Elberg, Toomet, Crowley, Hofmann, Wickham (bb0655) 2022
Brenning (bb0135) 2012
Chalkias, Polykretis, Karymbalis, Soldati, Ghinoi, Ferentinou (bb0180) 2020; 79
Sinčić, Bernat Gazibara, Krkač, Lukačić, Mihalić Arbanas (bb0690) 2023
Hosmer, Lemeshow, Sturdivant (bb0340) 2013
Schratz, Muenchow, Iturritxa, Richter, Brenning (bb0665) 2019; 406
Fang, Wang, van Westen, Lombardo (bb0260) 2023; 56
Elia, Castellaro, Dahal, Lombardo (bb0245) 2023; 898
Kavzoglu, Sahin, Colkesen (bb0400) 2014; 11
Bucci, Santangelo, Fongo, Alvioli, Cardinali, Melelli, Marchesini (bb0145) 2022; 14
Goetz, Brenning, Petschko, Leopold (bb0290) 2015; 81
Lombardo, Mai (bb0490) 2018; 244
Zuur, Ieno, Walker, Saveliev, Smith (bb0805) 2009
Meyer, Reudenbach, Wöllauer, Nauss (bb0540) 2019; 411
Bivand, Keitt, Rowlingson, Pebesma, Sumner, Hijmans, Baston, Rouault, Warmerdam, Ooms, Rundel (bb0085) 2023
James, Witten, Hastie, Tibshirani (bb0375) 2013
Huang, Cao, Guo, Jiang, Li, Guo (bb0350) 2020; 191
Bornaetxea, Remondo, Bonachea, Valenzuela (bb0105) 2023; 118
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (bb0565) 2011; 12
Prakash, Manconi, Loew (bb0580) 2020; 12
Bonham-Carter, Agterberg, Wright (bb0090) 1990
Chen, Chai, Sun, Wang, Ding, Hong (bb0190) 2016; 9
Moreno, Lombardo, Crespi, Zellner, Mair, Pittore, van Westen, Steger (bb0555) 2024; 912
Davis, Goadrich (bb0220) 2006
Kuhn, Silge (bb0415) 2022
ISRIC (bb0360) 2024
Sing, Sander, Beerenwinkel, Lengauer (bb0695) 2005; 21
Wislocki, Bentley (bb0770) 1991; 40
Fisher (bb0275) 1936; 7
Sirbu (bb0700) 2023
Luckman (bb0505) 1987
Carrara, Cardinali, Guzzetti, Reichenbach (bb0175) 1995
Heckmann, Gegg, Gegg, Becht (bb0320) 2014; 14
Guzzetti, Mondini, Cardinali, Fiorucci, Santangelo, Chang (bb0310) 2012; 112
Steger, Brenning, Bell, Petschko, Glade (bb0705) 2016; 262
Bivand (10.1016/j.earscirev.2024.104927_bb0085)
Bordoni (10.1016/j.earscirev.2024.104927_bb0095) 2020; 193
Hosmer (10.1016/j.earscirev.2024.104927_bb0340) 2013
Chalkias (10.1016/j.earscirev.2024.104927_bb0180) 2020; 79
Robin (10.1016/j.earscirev.2024.104927_bb0610) 2011; 12
Jia (10.1016/j.earscirev.2024.104927_bb0380) 2021; 389
Bornaetxea (10.1016/j.earscirev.2024.104927_bb0110) 2023
Kuhn (10.1016/j.earscirev.2024.104927_bb0415) 2022
Torizin (10.1016/j.earscirev.2024.104927_bb0740) 2023
Bajni (10.1016/j.earscirev.2024.104927_bb0065) 2022; 415
Schloerke (10.1016/j.earscirev.2024.104927_bb0655)
Wang (10.1016/j.earscirev.2024.104927_bb0755) 2022; 301
Wei (10.1016/j.earscirev.2024.104927_bb0765)
McKinney (10.1016/j.earscirev.2024.104927_bb0525) 2010
Pedregosa (10.1016/j.earscirev.2024.104927_bb0565) 2011; 12
Shano (10.1016/j.earscirev.2024.104927_bb0675) 2020; 7
Yesilnacar (10.1016/j.earscirev.2024.104927_bb0790) 2005; 79
Erener (10.1016/j.earscirev.2024.104927_bb0250) 2017; 104
Goetz (10.1016/j.earscirev.2024.104927_bb0290) 2015; 81
Wood (10.1016/j.earscirev.2024.104927_bb0780) 2002; 157
Lindgren (10.1016/j.earscirev.2024.104927_bb0465) 2015; 63
Breiman (10.1016/j.earscirev.2024.104927_bb0125) 2011; 45
Liang (10.1016/j.earscirev.2024.104927_bb0450) 2021; 35
Prakash (10.1016/j.earscirev.2024.104927_bb0580) 2020; 12
Alvioli (10.1016/j.earscirev.2024.104927_bb0040) 2016; 9
Bornaetxea (10.1016/j.earscirev.2024.104927_bb0105) 2023; 118
Hengl (10.1016/j.earscirev.2024.104927_bb0325) 2017; 12
Tien Bui (10.1016/j.earscirev.2024.104927_bb0735) 2016; 9
Loche (10.1016/j.earscirev.2024.104927_bb0485) 2023
Yong (10.1016/j.earscirev.2024.104927_bb0795) 2022; 36
Bucci (10.1016/j.earscirev.2024.104927_bb0145) 2022; 14
R Core Team (10.1016/j.earscirev.2024.104927_bb0585)
Ho (10.1016/j.earscirev.2024.104927_bb0330) 1995
Scaringi (10.1016/j.earscirev.2024.104927_bb0650) 2023
Ali (10.1016/j.earscirev.2024.104927_bb0030) 2020
Guzzetti (10.1016/j.earscirev.2024.104927_bb0300) 1999; 31
Lee (10.1016/j.earscirev.2024.104927_bb0425) 2019; 35
Joliffe (10.1016/j.earscirev.2024.104927_bb0385) 2002
Bragagnolo (10.1016/j.earscirev.2024.104927_bb0120) 2020; 123
Ermini (10.1016/j.earscirev.2024.104927_bb0255) 2005; 66
Dias (10.1016/j.earscirev.2024.104927_bb0240) 2021; 11
GitHub (10.1016/j.earscirev.2024.104927_bb0280)
Regmi (10.1016/j.earscirev.2024.104927_bb0600) 2010; 115
Batista (10.1016/j.earscirev.2024.104927_bb0075) 2004; 6
Bonham-Carter (10.1016/j.earscirev.2024.104927_bb0090) 1990
Shcheglovitova (10.1016/j.earscirev.2024.104927_bb0680) 2013; 269
Lima (10.1016/j.earscirev.2024.104927_bb0460) 2022; 19
Dias (10.1016/j.earscirev.2024.104927_bb0235) 2024; 135
Satyam (10.1016/j.earscirev.2024.104927_bb0645) 2023
Kirby (10.1016/j.earscirev.2024.104927_bb0410) 2022; 170
Lee (10.1016/j.earscirev.2024.104927_bb0430) 2006; 6
Sinčić (10.1016/j.earscirev.2024.104927_bb0690) 2023
Trigila (10.1016/j.earscirev.2024.104927_bb0745) 2010; 7
Mirus (10.1016/j.earscirev.2024.104927_bb0545) 2023
Sahin (10.1016/j.earscirev.2024.104927_bb0635) 2020; 2
Steger (10.1016/j.earscirev.2024.104927_bb0715) 2021; 776
Fang (10.1016/j.earscirev.2024.104927_bb0260) 2023; 56
Fang (10.1016/j.earscirev.2024.104927_bb0265) 2024; 126
Liu (10.1016/j.earscirev.2024.104927_bb0470) 2022; 37
Moreno (10.1016/j.earscirev.2024.104927_bb0555) 2024; 912
Kingma (10.1016/j.earscirev.2024.104927_bb0405) 2017
Dahal (10.1016/j.earscirev.2024.104927_bb0210) 2024; 24
Liu (10.1016/j.earscirev.2024.104927_bb0475) 2023; 58
Budimir (10.1016/j.earscirev.2024.104927_bb0150) 2015; 12
Samodra (10.1016/j.earscirev.2024.104927_bb0640) 2023
Carrara (10.1016/j.earscirev.2024.104927_bb0170) 1991; 16
Davis (10.1016/j.earscirev.2024.104927_bb0220) 2006
Jacobs (10.1016/j.earscirev.2024.104927_bb0370) 2020; 356
Jordahl (10.1016/j.earscirev.2024.104927_bb0390) 2020
Loche (10.1016/j.earscirev.2024.104927_bb0480) 2022; 232
Ivakhnenko (10.1016/j.earscirev.2024.104927_bb0365) 1967; vol. 8
Liaw (10.1016/j.earscirev.2024.104927_bb0455) 2002; 2
Fawcett (10.1016/j.earscirev.2024.104927_bb0270) 2006; 27
Steger (10.1016/j.earscirev.2024.104927_bb0710) 2020; 354
Huang (10.1016/j.earscirev.2024.104927_bb0355) 2024; 104700
Alvioli (10.1016/j.earscirev.2024.104927_bb0045) 2020; 358
Ranstam (10.1016/j.earscirev.2024.104927_bb0595) 2018; 105
UCI (10.1016/j.earscirev.2024.104927_bb0750) 2024
Fisher (10.1016/j.earscirev.2024.104927_bb0275) 1936; 7
Schratz (10.1016/j.earscirev.2024.104927_bb0665) 2019; 406
Thai Pham (10.1016/j.earscirev.2024.104927_bb0730) 2020; 35
Harris (10.1016/j.earscirev.2024.104927_bb0315) 2020; 585
Hong (10.1016/j.earscirev.2024.104927_bb0335) 2019; 176
Petschko (10.1016/j.earscirev.2024.104927_bb0570) 2014; 14
Di Napoli (10.1016/j.earscirev.2024.104927_bb0230) 2023; 119
Sterlacchini (10.1016/j.earscirev.2024.104927_bb0720) 2011; 125
Zuur (10.1016/j.earscirev.2024.104927_bb0805) 2009
Chen (10.1016/j.earscirev.2024.104927_bb0190) 2016; 9
Reichenbach (10.1016/j.earscirev.2024.104927_bb0605) 2018; 180
Zeng (10.1016/j.earscirev.2024.104927_bb0800) 2023; 14
Lucchese (10.1016/j.earscirev.2024.104927_bb0500) 2021; 198
Merghadi (10.1016/j.earscirev.2024.104927_bb0535) 2020; 207
Rossi (10.1016/j.earscirev.2024.104927_bb0620) 2016; 9
Mela (10.1016/j.earscirev.2024.104927_bb0530) 2002; 34
Akgun (10.1016/j.earscirev.2024.104927_bb0020) 2012; 9
Chung (10.1016/j.earscirev.2024.104927_bb0200) 2003; 30
Steger (10.1016/j.earscirev.2024.104927_bb0705) 2016; 262
Luckman (10.1016/j.earscirev.2024.104927_bb0505) 1987
Amato (10.1016/j.earscirev.2024.104927_bb0050) 2019; 260
Brabb (10.1016/j.earscirev.2024.104927_bb0115) 1972
Elia (10.1016/j.earscirev.2024.104927_bb0245) 2023; 898
Meyer (10.1016/j.earscirev.2024.104927_bb0540) 2019; 411
Lombardo (10.1016/j.earscirev.2024.104927_bb0490) 2018; 244
Brier (10.1016/j.earscirev.2024.104927_bb0140) 1950; 78
Davison (10.1016/j.earscirev.2024.104927_bb0225) 1997
Pokharel (10.1016/j.earscirev.2024.104927_bb0575) 2021; 11
Beigaitė (10.1016/j.earscirev.2024.104927_bb0080) 2022
Huang (10.1016/j.earscirev.2024.104927_bb0345) 2018; 165
Gong (10.1016/j.earscirev.2024.104927_bb0295) 2006
Yeon (10.1016/j.earscirev.2024.104927_bb0785) 2010; 116
Agterberg (10.1016/j.earscirev.2024.104927_bb0005) 1990
Goetz (10.1016/j.earscirev.2024.104927_bb0285) 2011; 129
Guzzetti (10.1016/j.earscirev.2024.104927_bb0305) 2006; 81
Guzzetti (10.1016/j.earscirev.2024.104927_bb0310) 2012; 112
Camera (10.1016/j.earscirev.2024.104927_bb0165) 2021; 786
Aguilera (10.1016/j.earscirev.2024.104927_bb0015) 2023
Akgun (10.1016/j.earscirev.2024.104927_bb0025) 2008; 54
Chung (10.1016/j.earscirev.2024.104927_bb0195) 1999; 65
James (10.1016/j.earscirev.2024.104927_bb0375) 2013
Wood (10.1016/j.earscirev.2024.104927_bb0775) 2017
Sing (10.1016/j.earscirev.2024.104927_bb0695) 2005; 21
Schreurs (10.1016/j.earscirev.2024.104927_bb0670) 2016; 92
Mărgărint (10.1016/j.earscirev.2024.104927_bb0515) 2013; 13
Camera (10.1016/j.earscirev.2024.104927_bb0160) 2023
Kavzoglu (10.1016/j.earscirev.2024.104927_bb0400) 2014; 11
Leoni (10.1016/j.earscirev.2024.104927_bb0440) 2009; 5
Huang (10.1016/j.earscirev.2024.104927_bb0350) 2020; 191
Kuhn (10.1016/j.earscirev.2024.104927_bb0420)
Wislocki (10.1016/j.earscirev.2024.104927_bb0770) 1991; 40
Brenning (10.1016/j.earscirev.2024.104927_bb0135) 2012
Rumelhart (10.1016/j.earscirev.2024.104927_bb0630) 1986; 323
Sirbu (10.1016/j.earscirev.2024.104927_bb0700) 2023
Heckmann (10.1016/j.earscirev.2024.104927_bb0320) 2014; 14
Lee (10.1016/j.earscirev.2024.104927_bb0435) 2018; 303
Lombardo (10.1016/j.earscirev.2024.104927_bb0495) 2022; 36
Aguilera (10.1016/j.earscirev.2024.104927_bb0010) 2022; 36
Rossi (10.1016/j.earscirev.2024.104927_bb0625) 2022; 15
Buiter (10.1016/j.earscirev.2024.104927_bb0155) 2016; 92
ISRIC (10.1016/j.earscirev.2024.104927_bb0360) 2024
Dahal (10.1016/j.earscirev.2024.104927_bb0205) 2023; 176
Atkinson (10.1016/j.earscirev.2024.104927_bb0060) 1998; 24
Allen (10.1016/j.earscirev.2024.104927_bb0035) 1997
Rabby (10.1016/j.earscirev.2024.104927_bb0590) 2023; 13
Sin Yin (10.1016/j.earscirev.2024.104927_bb0685) 2010
Amato (10.1016/j.earscirev.2024.104927_bb0055) 2023; 82
Chen (10.1016/j.earscirev.2024.104927_bb0185) 2016
Brenning (10.1016/j.earscirev.2024.104927_bb0130) 2008
Leung (10.1016/j.earscirev.2024.104927_bb0445) 2024; 83
Wang (10.1016/j.earscirev.2024.104927_bb0760) 2024; 15
Das (10.1016/j.earscirev.2024.104927_bb0215) 2022; 115
Moreno (10.1016/j.earscirev.2024.104927_bb0550) 2023
Rolain (10.1016/j.earscirev.2024.104927_bb0615) 2023; 118
Kassambara (10.1016/j.earscirev.2024.104927_bb0395)
Schlögel (10.1016/j.earscirev.2024.104927_bb0660) 2018; 301
Openshaw (10.1016/j.earscirev.2024.104927_bb0560) 1984
Bajni (10.1016/j.earscirev.2024.104927_bb0070) 2023
Bornaetxea (10.1016/j.earscirev.2024.104927_bb0100) 2018; 18
Marjanović (10.1016/j.earscirev.2024.104927_bb0520) 2011; 123
Carrara (10.1016/j.earscirev.2024.104927_bb0175) 1995
Süzen (10.1016/j.earscirev.2024.104927_bb0725) 2004; 71
Luzi (10.1016/j.earscirev.2024.104927_bb0510) 2000; 58
References_xml – volume: 92
  start-page: 116
  year: 2016
  end-page: 139
  ident: bb0670
  article-title: Benchmarking analogue models of brittle thrust wedges
  publication-title: J. Struct. Geol.
– volume: 92
  start-page: 140
  year: 2016
  end-page: 177
  ident: bb0155
  article-title: Benchmarking numerical models of brittle thrust wedges
  publication-title: J. Struct. Geol.
– volume: 191
  year: 2020
  ident: bb0350
  article-title: Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping
  publication-title: Catena
– volume: 13
  start-page: 3339
  year: 2013
  end-page: 3355
  ident: bb0515
  article-title: Assessing the spatial variability of coefficients of landslide predictors in different regions of Romania using logistic regression
  publication-title: Nat. Hazards Earth Syst. Sci.
– volume: 358
  year: 2020
  ident: bb0045
  article-title: Parameter–free delineation of slope units and terrain subdivision of Italy
  publication-title: Geomorphology
– volume: 11
  start-page: 425
  year: 2014
  end-page: 439
  ident: bb0400
  article-title: Landslide susceptibility mapping using GIS–based multi–criteria decision analysis, support vector machines, and logistic regression
  publication-title: Landslides
– year: 2020
  ident: bb0390
  article-title: Geopandas/Geopandas: v0.8.1
– volume: 66
  start-page: 327
  year: 2005
  end-page: 343
  ident: bb0255
  article-title: Artificial neural networks applied to landslide susceptibility assessment
  publication-title: Geomorphology
– year: 2020
  ident: bb0420
  article-title: Tidymodels: A Collection of Packages for Modeling and Machine Learning Using Tidyverse Principles
– volume: 40
  start-page: 169
  year: 1991
  end-page: 172
  ident: bb0770
  article-title: An expert system for landslide hazard and risk assessment
  publication-title: Comput. Struct.
– volume: 6
  start-page: 687
  year: 2006
  end-page: 695
  ident: bb0430
  article-title: Earthquake–induced landslide–susceptibility mapping using an artificial neural network
  publication-title: Nat. Hazards Earth Syst. Sci.
– volume: 123
  start-page: 225
  year: 2011
  end-page: 234
  ident: bb0520
  article-title: Landslide susceptibility assessment using SVM machine learning algorithm
  publication-title: Eng. Geol.
– volume: 786
  year: 2021
  ident: bb0165
  article-title: Introducing intense rainfall and snowmelt variables to implement a process–related non–stationary shallow landslide susceptibility analysis
  publication-title: Sci. Total Environ.
– volume: 13
  start-page: 1740
  year: 2023
  ident: bb0590
  article-title: An objective absence data sampling method for landslide susceptibility mapping
  publication-title: Sci. Rep.
– year: 2023
  ident: bb0740
  article-title: Exploring the benchmark dataset for tasks related to landslide susceptibility assessment
  publication-title: EGU General Assembly 2023
– start-page: 23
  year: 2008
  end-page: 32
  ident: bb0130
  article-title: Statistical geocomputing combining R and SAGA: The example of landslide susceptibility analysis with generalized additive models
  publication-title: SAGA – Second out. Universität Hamburg Institut für Geographie. Volume 19 of Hamburger Beiträge zur Physischen Geographie und Landschaftsökologie
– volume: 118
  start-page: 2513
  year: 2023
  end-page: 2542
  ident: bb0105
  article-title: Exploring available landslide inventories for susceptibility analysis in Gipuzkoa province (Spain)
  publication-title: Nat. Hazards
– volume: 14
  year: 2023
  ident: bb0800
  article-title: Ensemble learning framework for landslide susceptibility mapping: different basic classifier and ensemble strategy
  publication-title: Geosci. Front.
– volume: 115
  start-page: 172
  year: 2010
  end-page: 187
  ident: bb0600
  article-title: Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA
  publication-title: Geomorphology
– volume: 21
  start-page: 3940
  year: 2005
  end-page: 3941
  ident: bb0695
  article-title: ROCR: visualizing classifier performance in R
  publication-title: Bioinformatics
– volume: 354
  year: 2020
  ident: bb0710
  article-title: The (f)utility to account for pre–failure topography in data–driven landslide susceptibility modelling
  publication-title: Geomorphology
– volume: 898
  year: 2023
  ident: bb0245
  article-title: Assessing multi–hazard susceptibility to cryospheric hazards: lesson learnt from an Alaskan example
  publication-title: Sci. Total Environ.
– volume: 2
  start-page: 1308
  year: 2020
  ident: bb0635
  article-title: Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, gradient boosting machine, and random forest
  publication-title: SN Appl. Sci.
– year: 2022
  ident: bb0415
  article-title: Tidy Modeling with R: A Framework for Modeling in the Tidyverse
– volume: 82
  start-page: 160
  year: 2023
  ident: bb0055
  article-title: Earthquake–triggered landslide susceptibility in Italy by means of artificial neural network
  publication-title: Bull. Eng. Geol. Environ.
– start-page: 205
  year: 2006
  end-page: 218
  ident: bb0295
  article-title: Appendix B: Cross–Validation, the Jackknife, and the Bootstrap: Excess Error Estimation in Forward Logistic Regression
– volume: 193
  year: 2020
  ident: bb0095
  article-title: The influence of the inventory on the determination of the rainfall–induced shallow landslides susceptibility using generalized additive models
  publication-title: CATENA
– volume: 301
  year: 2022
  ident: bb0755
  article-title: Space–time susceptibility modeling of hydro-morphological processes at the chinese national scale
  publication-title: Eng. Geol.
– volume: 389
  year: 2021
  ident: bb0380
  article-title: A global landslide non–susceptibility map
  publication-title: Geomorphology
– year: 2023
  ident: bb0550
  article-title: Slope unit size matters - why should the areal extent of slope units be considered in data–driven landslide susceptibility models?
  publication-title: EGU General Assembly 2023
– volume: 776
  year: 2021
  ident: bb0715
  article-title: Correlation does not imply geomorphic causation in data–driven landslide susceptibility modelling — benefits of exploring landslide data collection effects
  publication-title: Sci. Total Environ.
– volume: 65
  start-page: 1389
  year: 1999
  end-page: 1399
  ident: bb0195
  article-title: Probabilistic prediction models for landslide hazard mapping
  publication-title: Photogramm. Eng. Remote. Sens.
– start-page: 5372
  year: 2012
  end-page: 5375
  ident: bb0135
  article-title: Spatial cross–validation and bootstrap for the assessment of prediction rules in remote sensing: The R package sperrorest
  publication-title: 2012 IEEE International Geoscience and Remote Sensing Symposium
– volume: 232
  year: 2022
  ident: bb0480
  article-title: Landslide susceptibility maps of Italy: lesson learnt from dealing with multiple landslide types and the uneven spatial distribution of the national inventory
  publication-title: Earth Sci. Rev.
– volume: 585
  start-page: 357
  year: 2020
  end-page: 362
  ident: bb0315
  article-title: Array programming with Numpy
  publication-title: Nature
– volume: 56
  start-page: 1335
  year: 2023
  end-page: 1354
  ident: bb0260
  article-title: Space–time landslide susceptibility modeling based on data–driven methods
  publication-title: Math. Geosci.
– volume: 135
  year: 2024
  ident: bb0235
  article-title: Standards for shallow landslide identification in Brazil: Spatial trends and inventory mapping
  publication-title: J. S. Am. Earth Sci.
– volume: 207
  year: 2020
  ident: bb0535
  article-title: Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance
  publication-title: Earth Sci. Rev.
– volume: 411
  year: 2019
  ident: bb0540
  article-title: Importance of spatial predictor variable selection in machine learning applications - moving from data reproduction to spatial prediction
  publication-title: Ecol. Model.
– volume: 176
  year: 2023
  ident: bb0205
  article-title: Explainable artificial intelligence in geoscience: a glimpse into the future of landslide susceptibility modeling
  publication-title: Comput. Geosci.
– volume: 6
  start-page: 20
  year: 2004
  end-page: 29
  ident: bb0075
  article-title: A study of the behavior of several methods for balancing machine learning training data
  publication-title: ACM SIGKDD Explor. Newslett.
– volume: vol. 8
  year: 1967
  ident: bb0365
  article-title: Cybernetics and forecasting techniques
  publication-title: Modern Analytic and Computational Methods in Science and Mathematics
– year: 2022
  ident: bb0280
  article-title: Awesome Public Datasets
– volume: 9
  start-page: 1
  year: 2016
  end-page: 16
  ident: bb0190
  article-title: A GIS–based comparative study of frequency ratio, statistical index and weights–of–evidence models in landslide susceptibility mapping
  publication-title: Arab. J. Geosci.
– start-page: 538
  year: 2010
  end-page: 547
  ident: bb0685
  article-title: Dichotomous Logistic Regression with Leave–One–Out Validation
– year: 2023
  ident: bb0015
  article-title: Ensemble learning on the benchmark dataset for landslide susceptibility zonation in Central Italy
  publication-title: EGU General Assembly 2023
– year: 2013
  ident: bb0340
  article-title: Applied logistic regression
  publication-title: Wiley Series in Probability and Statistics
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bb0565
  article-title: Scikit–learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 27
  start-page: 861
  year: 2006
  end-page: 874
  ident: bb0270
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recogn. Lett.
– year: 2023
  ident: bb0645
  article-title: Resolution of data, type of inventory and data splitting in machine learning-based landslide susceptibility mapping
  publication-title: EGU General Assembly 2023
– volume: 34
  start-page: 667
  year: 2002
  end-page: 677
  ident: bb0530
  article-title: The impact of collinearity on regression analysis: the asymmetric effect of negative and positive correlations
  publication-title: Appl. Econ.
– volume: 303
  start-page: 284
  year: 2018
  end-page: 298
  ident: bb0435
  article-title: Modeling landslide susceptibility in data-scarce environments using optimized data mining and statistical methods
  publication-title: Geomorphology
– volume: 9
  start-page: 1077
  year: 2016
  end-page: 1097
  ident: bb0735
  article-title: Spatial prediction of rainfall–induced shallow landslides using hybrid integration approach of Least–Squares Support Vector Machines and differential evolution optimization: a case study in Central Vietnam
  publication-title: Int. J. Digit. Earth
– year: 2017
  ident: bb0775
  article-title: Generalized Additive Models – An Introduction with R
  publication-title: Mathematics & Statistics
– volume: 19
  start-page: 1670
  year: 2022
  end-page: 1698
  ident: bb0460
  article-title: Literature review and bibliometric analysis on data-driven assessment of landslide susceptibility
  publication-title: J. Mt. Sci.
– volume: 170
  year: 2022
  ident: bb0410
  article-title: Validation and inter–comparison of models for landslide tsunami generation
  publication-title: Ocean Model
– volume: 35
  start-page: 1267
  year: 2020
  end-page: 1292
  ident: bb0730
  article-title: A novel hybrid approach of landslide susceptibility modelling using rotation forest ensemble and different base classifiers
  publication-title: Geocarto Int.
– volume: 912
  year: 2024
  ident: bb0555
  article-title: Space–time data–driven modeling of precipitation–induced shallow landslides in South Tyrol, Italy
  publication-title: Sci. Total Environ.
– volume: 14
  start-page: 95
  year: 2014
  end-page: 118
  ident: bb0570
  article-title: Assessing the quality of landslide susceptibility maps–case study Lower Austria
  publication-title: Nat. Hazards Earth Syst. Sci.
– start-page: 135
  year: 1995
  end-page: 175
  ident: bb0175
  article-title: GIS technology in mapping landslide hazard
  publication-title: Geographical Information Systems in Assessing Natural Hazards
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: bb0630
  article-title: Learning representations by back–propagating errors
  publication-title: Nature
– volume: 36
  start-page: 2229
  year: 2022
  end-page: 2242
  ident: bb0495
  article-title: From scenario–based seismic hazard to scenario–based landslide hazard: fast–forwarding to the future via statistical simulations
  publication-title: Stoch. Env. Res. Risk A.
– year: 2022
  ident: bb0655
  article-title: R Package ’GGally’: A Plotting System Based on the Grammar of Graphics
– volume: 36
  start-page: 2399
  year: 2022
  end-page: 2417
  ident: bb0795
  article-title: Review of landslide susceptibility assessment based on knowledge mapping
  publication-title: Stoch. Env. Res. Risk A.
– volume: 12
  year: 2017
  ident: bb0325
  article-title: SoilGrids250m: Global gridded soil information based on machine learning
  publication-title: PLoS One
– volume: 83
  start-page: 249
  year: 2024
  ident: bb0445
  article-title: The use of digital technology for rock mass discontinuity mapping: review of benchmarking exercise
  publication-title: Bull. Eng. Geol. Environ.
– volume: 356
  year: 2020
  ident: bb0370
  article-title: Regional susceptibility assessments with heterogeneous landslide information: Slope unit- vs. pixel-based approach
  publication-title: Geomorphology
– volume: 118
  start-page: 2227
  year: 2023
  end-page: 2244
  ident: bb0615
  article-title: Influence of landslide inventory timespan and data selection on slope unit–based susceptibility models
  publication-title: Nat. Hazards
– year: 2002
  ident: bb0385
  article-title: Principal Component Analysis
– volume: 35
  start-page: 179
  year: 2019
  end-page: 193
  ident: bb0425
  article-title: Current and future status of GIS–based landslide susceptibility mapping: a literature review
  publication-title: Korean J. Remote Sens.
– year: 2009
  ident: bb0805
  article-title: Mixed Effects Models and Extensions in Ecology with R
– volume: 71
  start-page: 303
  year: 2004
  end-page: 321
  ident: bb0725
  article-title: Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu catchment, Turkey
  publication-title: Eng. Geol.
– year: 2023
  ident: bb0700
  article-title: Landslide susceptibility model based on random forest classification
  publication-title: EGU General Assembly 2023
– volume: 18
  start-page: 2455
  year: 2018
  end-page: 2469
  ident: bb0100
  article-title: Effective surveyed area and its role in statistical landslide susceptibility assessments
  publication-title: Nat. Hazards Earth Syst. Sci.
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: bb0455
  article-title: Classification and regression by randomForest
  publication-title: R News
– year: 2020
  ident: bb0030
  article-title: PyCaret: an open source, low-code machine learning library in Python
– volume: 7
  start-page: 179
  year: 1936
  end-page: 188
  ident: bb0275
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Ann. Eugenics
– year: 2017
  ident: bb0405
  article-title: Adam: A method for stochastic optimization
– volume: 198
  year: 2021
  ident: bb0500
  article-title: Investigation of the influence of nonoccurrence sampling on landslide susceptibility assessment using artificial neural networks
  publication-title: Catena
– ident: bb0585
  article-title: R: A Language and Environment for Statistical Computing
– volume: 105
  start-page: 1348
  year: 2018
  ident: bb0595
  article-title: Lasso regression
  publication-title: Br. J. Surg.
– volume: 35
  start-page: 1243
  year: 2021
  end-page: 1256
  ident: bb0450
  article-title: Application and comparison of different ensemble learning machines combining with a novel sampling strategy for shallow landslide susceptibility mapping
  publication-title: Stoch. Env. Res. Risk A.
– year: 1984
  ident: bb0560
  article-title: The modifiable areal unit problem
  publication-title: Concepts and Techniques in Modern Geography N. 38, Geo Books – Norwick
– volume: 81
  start-page: 1
  year: 2015
  end-page: 11
  ident: bb0290
  article-title: Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling
  publication-title: Comput. Geosci.
– volume: 9
  start-page: 3975
  year: 2016
  end-page: 3991
  ident: bb0040
  article-title: Automatic delineation of geomorphological slope units with r.slopeunits v1.0 and their optimization for landslide susceptibility modeling
  publication-title: Geosci. Model Dev.
– volume: 112
  start-page: 42
  year: 2012
  end-page: 66
  ident: bb0310
  article-title: Landslide inventory maps: New tools for an old problem
  publication-title: Earth Sci. Rev.
– volume: 14
  start-page: 259
  year: 2014
  end-page: 278
  ident: bb0320
  article-title: Sample size matters: investigating the effect of sample size on a logistic regression susceptibility model for debris flows
  publication-title: Nat. Hazards Earth Syst. Sci.
– volume: 11
  year: 2021
  ident: bb0575
  article-title: Assessment of earthquake–induced landslide inventories and susceptibility maps using slope unit–based logistic regression and geospatial statistics
  publication-title: Sci. Rep.
– start-page: 127
  year: 2022
  end-page: 140
  ident: bb0080
  article-title: Spatial cross–validation for globally distributed data
  publication-title: Discovery Science
– volume: 116
  start-page: 274
  year: 2010
  end-page: 283
  ident: bb0785
  article-title: Landslide susceptibility mapping in Injae, Korea, using a decision tree
  publication-title: Eng. Geol.
– volume: 11
  year: 2021
  ident: bb0240
  article-title: Landslide susceptibility mapping in Brazil: a review
  publication-title: Geosciences
– volume: 126
  year: 2024
  ident: bb0265
  article-title: Landslide hazard spatiotemporal prediction based on data-driven models: estimating where, when and how large landslide may be
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 9
  start-page: 93
  year: 2012
  end-page: 106
  ident: bb0020
  article-title: A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at İzmir, Turkey
  publication-title: Landslides
– start-page: 233
  year: 2006
  end-page: 240
  ident: bb0220
  article-title: The relationship between precision–recall and ROC curves
  publication-title: Proceedings of the 23rd International Conference on Machine Learning
– start-page: 278
  year: 1995
  end-page: 282
  ident: bb0330
  article-title: Random decision forests
  publication-title: Proceedings of 3rd International Conference on Document Analysis and Recognition
– year: 2023
  ident: bb0545
  article-title: Bayesian logistic regression and optimized XGBoost models for landslide susceptibility assessment
  publication-title: EGU General Assembly 2023
– year: 2021
  ident: bb0765
  article-title: R Package ‘Corrplot’: Visualization of a Correlation Matrix
– volume: 260
  year: 2019
  ident: bb0050
  article-title: Accounting for covariate distributions in slope–unit–based landslide susceptibility models. A case study in the alpine environment
  publication-title: Eng. Geol.
– start-page: 56
  year: 2010
  end-page: 61
  ident: bb0525
  article-title: Data structures for statistical computing in Python
  publication-title: Proceedings of the 9th Python in Science Conference
– volume: 16
  start-page: 427
  year: 1991
  end-page: 445
  ident: bb0170
  article-title: GIS techniques and statistical models in evaluating landslide hazard
  publication-title: Earth Surf. Process. Landf.
– volume: 45
  start-page: 5
  year: 2011
  end-page: 32
  ident: bb0125
  article-title: Random forests
  publication-title: Mach. Learn.
– year: 2023
  ident: bb0070
  article-title: A novel dynamic rockfall susceptibility model including precipitation, temperature and snowmelt predictors: a case study in Aosta Valley
  publication-title: Landslides
– volume: 115
  start-page: 23
  year: 2022
  end-page: 72
  ident: bb0215
  article-title: A critical review on landslide susceptibility zonation: recent trends, techniques, and practices in Indian Himalaya
  publication-title: Nat. Hazards
– volume: 79
  start-page: 251
  year: 2005
  end-page: 266
  ident: bb0790
  article-title: Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey)
  publication-title: Eng. Geol.
– year: 2023
  ident: bb0650
  article-title: Landslide susceptibility mapping via binomial generalized additive model
  publication-title: EGU General Assembly 2023
– volume: 15
  start-page: 5651
  year: 2022
  end-page: 5666
  ident: bb0625
  article-title: LAND–SUITE V1.0: a suite of tools for statistically based landslide susceptibility zonation
  publication-title: Geosci. Model Dev.
– volume: 7
  start-page: 455
  year: 2010
  end-page: 470
  ident: bb0745
  article-title: Quality assessment of the Italian landslide inventory using GIS processing
  publication-title: Landslides
– volume: 262
  start-page: 8
  year: 2016
  end-page: 23
  ident: bb0705
  article-title: Exploring discrepancies between quantitative validation results and the geomorphic plausibility of statistical landslide susceptibility maps
  publication-title: Geomorphology
– volume: 58
  start-page: 2283
  year: 2023
  end-page: 2301
  ident: bb0475
  article-title: A comprehensive review of machine learning–based methods in landslide susceptibility mapping
  publication-title: Geol. J.
– year: 2023
  ident: bb0110
  article-title: Application of the LAND–SUITE software with a benchmark dataset for landslide susceptibility zonation
  publication-title: EGU General Assembly 2023
– volume: 15
  year: 2024
  ident: bb0760
  article-title: From spatio-temporal landslide susceptibility to landslide risk forecast
  publication-title: Geosci. Front.
– year: 1987
  ident: bb0505
  article-title: Slope Stability Assessment under Uncertainty: A First Order Stochastic Approach
– volume: 123
  year: 2020
  ident: bb0120
  article-title: Landslide susceptibility mapping with r.landslide: a free open–source GIS–integrated tool based on artificial neural networks
  publication-title: Environ. Model Softw.
– volume: 54
  start-page: 1127
  year: 2008
  end-page: 1143
  ident: bb0025
  article-title: Landslide susceptibility mapping for a landslide–prone area (Findikli, NE of Turkey) by likelihood–frequency ratio and weighted linear combination models
  publication-title: Environ. Geol.
– year: 1972
  ident: bb0115
  article-title: MG 1972. Landslide susceptibility in San Mateo County, California
– volume: 12
  start-page: 77
  year: 2011
  ident: bb0610
  article-title: pROC: an open–source package for R and S+ to analyze and compare ROC curves
  publication-title: BMC Bioinformatics
– start-page: 171
  year: 1990
  end-page: 183
  ident: bb0090
  article-title: Weights of evidence modelling: A new approach to mapping mineral potential
  publication-title: Statistical Applications in the Earth Sciences
– volume: 269
  start-page: 9
  year: 2013
  end-page: 17
  ident: bb0680
  article-title: Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes
  publication-title: Ecol. Model.
– year: 1997
  ident: bb0225
  article-title: Bootstrap Methods and their Application
  publication-title: Cambridge Series in Statistical and Probabilistic Mathematics
– volume: 81
  start-page: 166
  year: 2006
  end-page: 184
  ident: bb0305
  article-title: Estimating the quality of landslide susceptibility models
  publication-title: Geomorphology
– volume: 301
  start-page: 10
  year: 2018
  end-page: 20
  ident: bb0660
  article-title: Optimizing landslide susceptibility zonation: Effects of DEM spatial resolution and slope unit delineation on logistic regression models
  publication-title: Geomorphology
– volume: 24
  start-page: 823
  year: 2024
  end-page: 845
  ident: bb0210
  article-title: Space–time landslide hazard modeling via ensemble neural networks
  publication-title: Nat. Hazards Earth Syst. Sci.
– volume: 180
  start-page: 60
  year: 2018
  end-page: 91
  ident: bb0605
  article-title: A review of statistically–based landslide susceptibility models
  publication-title: Earth Sci. Rev.
– start-page: 785
  year: 2016
  end-page: 794
  ident: bb0185
  article-title: XGBoost: a scalable tree boosting system
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– year: 2023
  ident: bb0485
  article-title: Landslide susceptibility within the binomial generalized additive model
  publication-title: EGU General Assembly 2023
– volume: 36
  start-page: 2031
  year: 2022
  end-page: 2048
  ident: bb0010
  article-title: On the prediction of landslide occurrences and sizes via Hierarchical Neural Networks
  publication-title: Stoch. Env. Res. Risk A.
– volume: 63
  start-page: 1
  year: 2015
  end-page: 25
  ident: bb0465
  article-title: Bayesian spatial modelling with R-INLA
  publication-title: J. Stat. Softw.
– volume: 125
  start-page: 51
  year: 2011
  end-page: 61
  ident: bb0720
  article-title: Spatial agreement of predicted patterns in landslide susceptibility maps
  publication-title: Geomorphology
– year: 2023
  ident: bb0085
  article-title: rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library
– volume: 104
  start-page: 62
  year: 2017
  end-page: 74
  ident: bb0250
  article-title: Analysis of training sample selection strategies for regression-based quantitative landslide susceptibility mapping methods
  publication-title: Comput. Geosci.
– volume: 165
  start-page: 520
  year: 2018
  end-page: 529
  ident: bb0345
  article-title: Review on landslide susceptibility mapping using support vector machines
  publication-title: Catena
– year: 2020
  ident: bb0395
  article-title: Factoextra: Extract and Visualize the Results of Multivariate Data Analyses
– volume: 129
  start-page: 376
  year: 2011
  end-page: 386
  ident: bb0285
  article-title: Integrating physical and empirical landslide susceptibility models using generalized additive models
  publication-title: Geomorphology
– year: 2013
  ident: bb0375
  article-title: An Introduction to Statistical Learning with Applications in R
– volume: 244
  start-page: 14
  year: 2018
  end-page: 24
  ident: bb0490
  article-title: Presenting logistic regression–based landslide susceptibility results
  publication-title: Eng. Geol.
– volume: 24
  start-page: 373
  year: 1998
  end-page: 385
  ident: bb0060
  article-title: Generalised linear modelling of susceptibility to landsliding in the Central Apennines, Italy
  publication-title: Comput. Geosci.
– volume: 30
  start-page: 451
  year: 2003
  end-page: 472
  ident: bb0200
  article-title: Validation of spatial prediction models for landslide hazard mapping
  publication-title: Nat. Hazards
– volume: 37
  start-page: 14309
  year: 2022
  end-page: 14334
  ident: bb0470
  article-title: A bibliometric analysis of the landslide susceptibility research (1999–2021)
  publication-title: Geocarto Int.
– volume: 406
  start-page: 109
  year: 2019
  end-page: 120
  ident: bb0665
  article-title: Hyperparameter tuning and performance assessment of statistical and machine–learning algorithms using spatial data
  publication-title: Ecol. Model.
– volume: 415
  year: 2022
  ident: bb0065
  article-title: Assessing the utility of regionalized rock–mass geomechanical properties in rockfall susceptibility modelling in an alpine environment
  publication-title: Geomorphology
– volume: 31
  start-page: 181
  year: 1999
  end-page: 216
  ident: bb0300
  article-title: Landslide hazard evaluation: a review of current techniques and their application in a multi–scale study, Central Italy
  publication-title: Geomorphology
– volume: 157
  start-page: 157
  year: 2002
  end-page: 177
  ident: bb0780
  article-title: GAMs with integrated model selection using penalized regression splines and applications to environmental modelling
  publication-title: Ecol. Model.
– volume: 7
  year: 2020
  ident: bb0675
  article-title: Landslide susceptibility evaluation and hazard zonation techniques – a review
  publication-title: Geoenviron. Disasters
– volume: 12
  start-page: 346
  year: 2020
  ident: bb0580
  article-title: Mapping landslides on eo data: Performance of deep learning models vs. traditional machine learning models
  publication-title: Remote Sens.
– volume: 79
  start-page: 2799
  year: 2020
  end-page: 2814
  ident: bb0180
  article-title: Exploring spatial non–stationarity in the relationships between landslide susceptibility and conditioning factors: a local modeling approach using geographically weighted regression
  publication-title: Bull. Eng. Geol. Environ.
– year: 2024
  ident: bb0360
  article-title: Wosis, world soil profile database
– year: 2023
  ident: bb0640
  article-title: Cross validation technique preference for landslide susceptibility zoning based on slope unit and machine learning workflow
  publication-title: EGU General Assembly 2023
– volume: 5
  start-page: 87
  year: 2009
  end-page: 93
  ident: bb0440
  article-title: GIS methodology to assess landslide susceptibility: application to a river catchment of Central Italy
  publication-title: J. Maps
– volume: 78
  start-page: 1
  year: 1950
  end-page: 3
  ident: bb0140
  article-title: Verification of forecasts expressed in terms of probability
  publication-title: Mon. Weather Rev.
– volume: 104700
  year: 2024
  ident: bb0355
  article-title: Modelling landslide susceptibility prediction: a review and construction of semi–supervised imbalanced theory
  publication-title: Earth Sci. Rev.
– volume: 9
  start-page: 3533
  year: 2016
  end-page: 3543
  ident: bb0620
  article-title: LAND–SE: a software for statistically based landslide susceptibility zonation, version 1.0
  publication-title: Geosci. Model Dev.
– volume: 12
  start-page: 419
  year: 2015
  end-page: 436
  ident: bb0150
  article-title: A systematic review of landslide probability mapping using logistic regression
  publication-title: Landslides
– volume: 176
  start-page: 45
  year: 2019
  end-page: 64
  ident: bb0335
  article-title: Exploring the effects of the design and quantity of absence data on the performance of random forest–based landslide susceptibility mapping
  publication-title: Catena
– volume: 14
  start-page: 4129
  year: 2022
  end-page: 4151
  ident: bb0145
  article-title: A new digital lithological map of Italy at 1:100,000 scale for geo–mechanical modelling
  publication-title: Earth Syst. Sci. Data
– year: 2024
  ident: bb0750
  article-title: Machine learning repository
– start-page: 1
  year: 1990
  end-page: 21
  ident: bb0005
  article-title: Statistical pattern integration for mineral exploration
  publication-title: Computer Applications in Resource Estimation
– year: 1997
  ident: bb0035
  article-title: Understanding Regression Analysis
– year: 2023
  ident: bb0160
  article-title: Comparison of the effectiveness of application of gams for landslide susceptibility modelling in Apennine and Alpine areas
  publication-title: EGU General Assembly 2023
– volume: 119
  start-page: 1513
  year: 2023
  end-page: 1530
  ident: bb0230
  article-title: On the estimation of landslide intensity, hazard and density via data–driven models
  publication-title: Nat. Hazards
– volume: 58
  start-page: 313
  year: 2000
  end-page: 336
  ident: bb0510
  article-title: Slope vulnerability to earthquakes at subregional scale, using probabilistic techniques and geographic information systems
  publication-title: Eng. Geol.
– year: 2023
  ident: bb0690
  article-title: A slope units based landslide susceptibility analyses using weight of evidence and random forest
  publication-title: EGU General Assembly 2023
– volume: 31
  start-page: 181
  year: 1999
  ident: 10.1016/j.earscirev.2024.104927_bb0300
  article-title: Landslide hazard evaluation: a review of current techniques and their application in a multi–scale study, Central Italy
  publication-title: Geomorphology
  doi: 10.1016/S0169-555X(99)00078-1
– volume: 21
  start-page: 3940
  year: 2005
  ident: 10.1016/j.earscirev.2024.104927_bb0695
  article-title: ROCR: visualizing classifier performance in R
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti623
– volume: 118
  start-page: 2227
  year: 2023
  ident: 10.1016/j.earscirev.2024.104927_bb0615
  article-title: Influence of landslide inventory timespan and data selection on slope unit–based susceptibility models
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-023-06092-w
– volume: 81
  start-page: 1
  year: 2015
  ident: 10.1016/j.earscirev.2024.104927_bb0290
  article-title: Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2015.04.007
– volume: 411
  year: 2019
  ident: 10.1016/j.earscirev.2024.104927_bb0540
  article-title: Importance of spatial predictor variable selection in machine learning applications - moving from data reproduction to spatial prediction
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2019.108815
– volume: 14
  start-page: 259
  year: 2014
  ident: 10.1016/j.earscirev.2024.104927_bb0320
  article-title: Sample size matters: investigating the effect of sample size on a logistic regression susceptibility model for debris flows
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-14-259-2014
– volume: 40
  start-page: 169
  year: 1991
  ident: 10.1016/j.earscirev.2024.104927_bb0770
  article-title: An expert system for landslide hazard and risk assessment
  publication-title: Comput. Struct.
  doi: 10.1016/0045-7949(91)90469-3
– start-page: 171
  year: 1990
  ident: 10.1016/j.earscirev.2024.104927_bb0090
  article-title: Weights of evidence modelling: A new approach to mapping mineral potential
– volume: 170
  year: 2022
  ident: 10.1016/j.earscirev.2024.104927_bb0410
  article-title: Validation and inter–comparison of models for landslide tsunami generation
  publication-title: Ocean Model
  doi: 10.1016/j.ocemod.2021.101943
– volume: 354
  year: 2020
  ident: 10.1016/j.earscirev.2024.104927_bb0710
  article-title: The (f)utility to account for pre–failure topography in data–driven landslide susceptibility modelling
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2020.107041
– year: 2024
  ident: 10.1016/j.earscirev.2024.104927_bb0750
– start-page: 205
  year: 2006
  ident: 10.1016/j.earscirev.2024.104927_bb0295
– volume: 45
  start-page: 5
  year: 2011
  ident: 10.1016/j.earscirev.2024.104927_bb0125
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 36
  start-page: 2399
  year: 2022
  ident: 10.1016/j.earscirev.2024.104927_bb0795
  article-title: Review of landslide susceptibility assessment based on knowledge mapping
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-021-02165-z
– volume: 123
  year: 2020
  ident: 10.1016/j.earscirev.2024.104927_bb0120
  article-title: Landslide susceptibility mapping with r.landslide: a free open–source GIS–integrated tool based on artificial neural networks
  publication-title: Environ. Model Softw.
  doi: 10.1016/j.envsoft.2019.104565
– volume: 15
  start-page: 5651
  year: 2022
  ident: 10.1016/j.earscirev.2024.104927_bb0625
  article-title: LAND–SUITE V1.0: a suite of tools for statistically based landslide susceptibility zonation
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-15-5651-2022
– volume: 79
  start-page: 2799
  year: 2020
  ident: 10.1016/j.earscirev.2024.104927_bb0180
  article-title: Exploring spatial non–stationarity in the relationships between landslide susceptibility and conditioning factors: a local modeling approach using geographically weighted regression
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-020-01733-x
– start-page: 56
  year: 2010
  ident: 10.1016/j.earscirev.2024.104927_bb0525
  article-title: Data structures for statistical computing in Python
  doi: 10.25080/Majora-92bf1922-00a
– volume: 54
  start-page: 1127
  year: 2008
  ident: 10.1016/j.earscirev.2024.104927_bb0025
  article-title: Landslide susceptibility mapping for a landslide–prone area (Findikli, NE of Turkey) by likelihood–frequency ratio and weighted linear combination models
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-007-0882-8
– volume: 24
  start-page: 823
  year: 2024
  ident: 10.1016/j.earscirev.2024.104927_bb0210
  article-title: Space–time landslide hazard modeling via ensemble neural networks
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-24-823-2024
– volume: 898
  year: 2023
  ident: 10.1016/j.earscirev.2024.104927_bb0245
  article-title: Assessing multi–hazard susceptibility to cryospheric hazards: lesson learnt from an Alaskan example
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2023.165289
– year: 2023
  ident: 10.1016/j.earscirev.2024.104927_bb0690
  article-title: A slope units based landslide susceptibility analyses using weight of evidence and random forest
– volume: 34
  start-page: 667
  year: 2002
  ident: 10.1016/j.earscirev.2024.104927_bb0530
  article-title: The impact of collinearity on regression analysis: the asymmetric effect of negative and positive correlations
  publication-title: Appl. Econ.
  doi: 10.1080/00036840110058482
– start-page: 538
  year: 2010
  ident: 10.1016/j.earscirev.2024.104927_bb0685
– year: 2013
  ident: 10.1016/j.earscirev.2024.104927_bb0375
– start-page: 278
  year: 1995
  ident: 10.1016/j.earscirev.2024.104927_bb0330
  article-title: Random decision forests
– year: 2017
  ident: 10.1016/j.earscirev.2024.104927_bb0405
– ident: 10.1016/j.earscirev.2024.104927_bb0765
– start-page: 233
  year: 2006
  ident: 10.1016/j.earscirev.2024.104927_bb0220
  article-title: The relationship between precision–recall and ROC curves
– year: 2023
  ident: 10.1016/j.earscirev.2024.104927_bb0070
  article-title: A novel dynamic rockfall susceptibility model including precipitation, temperature and snowmelt predictors: a case study in Aosta Valley
  publication-title: Landslides
  doi: 10.1007/s10346-023-02091-x
– volume: 14
  start-page: 4129
  year: 2022
  ident: 10.1016/j.earscirev.2024.104927_bb0145
  article-title: A new digital lithological map of Italy at 1:100,000 scale for geo–mechanical modelling
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-14-4129-2022
– volume: 12
  year: 2017
  ident: 10.1016/j.earscirev.2024.104927_bb0325
  article-title: SoilGrids250m: Global gridded soil information based on machine learning
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0169748
– volume: 35
  start-page: 1243
  year: 2021
  ident: 10.1016/j.earscirev.2024.104927_bb0450
  article-title: Application and comparison of different ensemble learning machines combining with a novel sampling strategy for shallow landslide susceptibility mapping
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-020-01893-y
– volume: 81
  start-page: 166
  year: 2006
  ident: 10.1016/j.earscirev.2024.104927_bb0305
  article-title: Estimating the quality of landslide susceptibility models
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2006.04.007
– volume: 11
  year: 2021
  ident: 10.1016/j.earscirev.2024.104927_bb0575
  article-title: Assessment of earthquake–induced landslide inventories and susceptibility maps using slope unit–based logistic regression and geospatial statistics
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-00780-y
– volume: 269
  start-page: 9
  year: 2013
  ident: 10.1016/j.earscirev.2024.104927_bb0680
  article-title: Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2013.08.011
– volume: 116
  start-page: 274
  year: 2010
  ident: 10.1016/j.earscirev.2024.104927_bb0785
  article-title: Landslide susceptibility mapping in Injae, Korea, using a decision tree
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2010.09.009
– volume: 9
  start-page: 93
  year: 2012
  ident: 10.1016/j.earscirev.2024.104927_bb0020
  article-title: A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at İzmir, Turkey
  publication-title: Landslides
  doi: 10.1007/s10346-011-0283-7
– volume: 776
  year: 2021
  ident: 10.1016/j.earscirev.2024.104927_bb0715
  article-title: Correlation does not imply geomorphic causation in data–driven landslide susceptibility modelling — benefits of exploring landslide data collection effects
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.145935
– volume: 79
  start-page: 251
  year: 2005
  ident: 10.1016/j.earscirev.2024.104927_bb0790
  article-title: Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey)
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2005.02.002
– year: 1997
  ident: 10.1016/j.earscirev.2024.104927_bb0035
– volume: 2
  start-page: 1308
  year: 2020
  ident: 10.1016/j.earscirev.2024.104927_bb0635
  article-title: Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, gradient boosting machine, and random forest
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-020-3060-1
– volume: 92
  start-page: 116
  year: 2016
  ident: 10.1016/j.earscirev.2024.104927_bb0670
  article-title: Benchmarking analogue models of brittle thrust wedges
  publication-title: J. Struct. Geol.
  doi: 10.1016/j.jsg.2016.03.005
– volume: 165
  start-page: 520
  year: 2018
  ident: 10.1016/j.earscirev.2024.104927_bb0345
  article-title: Review on landslide susceptibility mapping using support vector machines
  publication-title: Catena
  doi: 10.1016/j.catena.2018.03.003
– volume: 13
  start-page: 1740
  year: 2023
  ident: 10.1016/j.earscirev.2024.104927_bb0590
  article-title: An objective absence data sampling method for landslide susceptibility mapping
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-28991-5
– volume: 301
  year: 2022
  ident: 10.1016/j.earscirev.2024.104927_bb0755
  article-title: Space–time susceptibility modeling of hydro-morphological processes at the chinese national scale
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2022.106586
– volume: 58
  start-page: 2283
  year: 2023
  ident: 10.1016/j.earscirev.2024.104927_bb0475
  article-title: A comprehensive review of machine learning–based methods in landslide susceptibility mapping
  publication-title: Geol. J.
  doi: 10.1002/gj.4666
– ident: 10.1016/j.earscirev.2024.104927_bb0395
– volume: 9
  start-page: 3533
  year: 2016
  ident: 10.1016/j.earscirev.2024.104927_bb0620
  article-title: LAND–SE: a software for statistically based landslide susceptibility zonation, version 1.0
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-9-3533-2016
– year: 2023
  ident: 10.1016/j.earscirev.2024.104927_bb0550
  article-title: Slope unit size matters - why should the areal extent of slope units be considered in data–driven landslide susceptibility models?
– ident: 10.1016/j.earscirev.2024.104927_bb0280
– year: 2020
  ident: 10.1016/j.earscirev.2024.104927_bb0030
– volume: 63
  start-page: 1
  year: 2015
  ident: 10.1016/j.earscirev.2024.104927_bb0465
  article-title: Bayesian spatial modelling with R-INLA
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v063.i19
– volume: 12
  start-page: 346
  year: 2020
  ident: 10.1016/j.earscirev.2024.104927_bb0580
  article-title: Mapping landslides on eo data: Performance of deep learning models vs. traditional machine learning models
  publication-title: Remote Sens.
  doi: 10.3390/rs12030346
– year: 2023
  ident: 10.1016/j.earscirev.2024.104927_bb0700
  article-title: Landslide susceptibility model based on random forest classification
– start-page: 23
  year: 2008
  ident: 10.1016/j.earscirev.2024.104927_bb0130
  article-title: Statistical geocomputing combining R and SAGA: The example of landslide susceptibility analysis with generalized additive models
– volume: 176
  start-page: 45
  year: 2019
  ident: 10.1016/j.earscirev.2024.104927_bb0335
  article-title: Exploring the effects of the design and quantity of absence data on the performance of random forest–based landslide susceptibility mapping
  publication-title: Catena
  doi: 10.1016/j.catena.2018.12.035
– volume: 92
  start-page: 140
  year: 2016
  ident: 10.1016/j.earscirev.2024.104927_bb0155
  article-title: Benchmarking numerical models of brittle thrust wedges
  publication-title: J. Struct. Geol.
  doi: 10.1016/j.jsg.2016.03.003
– year: 2017
  ident: 10.1016/j.earscirev.2024.104927_bb0775
  article-title: Generalized Additive Models – An Introduction with R
– year: 2023
  ident: 10.1016/j.earscirev.2024.104927_bb0740
  article-title: Exploring the benchmark dataset for tasks related to landslide susceptibility assessment
– volume: 24
  start-page: 373
  year: 1998
  ident: 10.1016/j.earscirev.2024.104927_bb0060
  article-title: Generalised linear modelling of susceptibility to landsliding in the Central Apennines, Italy
  publication-title: Comput. Geosci.
  doi: 10.1016/S0098-3004(97)00117-9
– year: 1987
  ident: 10.1016/j.earscirev.2024.104927_bb0505
– volume: 406
  start-page: 109
  year: 2019
  ident: 10.1016/j.earscirev.2024.104927_bb0665
  article-title: Hyperparameter tuning and performance assessment of statistical and machine–learning algorithms using spatial data
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2019.06.002
– ident: 10.1016/j.earscirev.2024.104927_bb0085
– volume: 65
  start-page: 1389
  year: 1999
  ident: 10.1016/j.earscirev.2024.104927_bb0195
  article-title: Probabilistic prediction models for landslide hazard mapping
  publication-title: Photogramm. Eng. Remote. Sens.
– start-page: 127
  year: 2022
  ident: 10.1016/j.earscirev.2024.104927_bb0080
  article-title: Spatial cross–validation for globally distributed data
– volume: 5
  start-page: 87
  year: 2009
  ident: 10.1016/j.earscirev.2024.104927_bb0440
  article-title: GIS methodology to assess landslide susceptibility: application to a river catchment of Central Italy
  publication-title: J. Maps
  doi: 10.4113/jom.2009.1041
– start-page: 135
  year: 1995
  ident: 10.1016/j.earscirev.2024.104927_bb0175
  article-title: GIS technology in mapping landslide hazard
– volume: 786
  year: 2021
  ident: 10.1016/j.earscirev.2024.104927_bb0165
  article-title: Introducing intense rainfall and snowmelt variables to implement a process–related non–stationary shallow landslide susceptibility analysis
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.147360
– year: 1972
  ident: 10.1016/j.earscirev.2024.104927_bb0115
– volume: 176
  year: 2023
  ident: 10.1016/j.earscirev.2024.104927_bb0205
  article-title: Explainable artificial intelligence in geoscience: a glimpse into the future of landslide susceptibility modeling
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2023.105364
– year: 2023
  ident: 10.1016/j.earscirev.2024.104927_bb0640
  article-title: Cross validation technique preference for landslide susceptibility zoning based on slope unit and machine learning workflow
– volume: 191
  year: 2020
  ident: 10.1016/j.earscirev.2024.104927_bb0350
  article-title: Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping
  publication-title: Catena
  doi: 10.1016/j.catena.2020.104580
– volume: 115
  start-page: 23
  year: 2022
  ident: 10.1016/j.earscirev.2024.104927_bb0215
  article-title: A critical review on landslide susceptibility zonation: recent trends, techniques, and practices in Indian Himalaya
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-022-05554-x
– year: 2023
  ident: 10.1016/j.earscirev.2024.104927_bb0545
  article-title: Bayesian logistic regression and optimized XGBoost models for landslide susceptibility assessment
– volume: 18
  start-page: 2455
  year: 2018
  ident: 10.1016/j.earscirev.2024.104927_bb0100
  article-title: Effective surveyed area and its role in statistical landslide susceptibility assessments
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-18-2455-2018
– volume: 135
  year: 2024
  ident: 10.1016/j.earscirev.2024.104927_bb0235
  article-title: Standards for shallow landslide identification in Brazil: Spatial trends and inventory mapping
  publication-title: J. S. Am. Earth Sci.
  doi: 10.1016/j.jsames.2024.104805
– ident: 10.1016/j.earscirev.2024.104927_bb0420
– volume: 415
  year: 2022
  ident: 10.1016/j.earscirev.2024.104927_bb0065
  article-title: Assessing the utility of regionalized rock–mass geomechanical properties in rockfall susceptibility modelling in an alpine environment
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2022.108401
– volume: 6
  start-page: 687
  year: 2006
  ident: 10.1016/j.earscirev.2024.104927_bb0430
  article-title: Earthquake–induced landslide–susceptibility mapping using an artificial neural network
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-6-687-2006
– volume: 12
  start-page: 77
  year: 2011
  ident: 10.1016/j.earscirev.2024.104927_bb0610
  article-title: pROC: an open–source package for R and S+ to analyze and compare ROC curves
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-77
– year: 2002
  ident: 10.1016/j.earscirev.2024.104927_bb0385
– volume: 11
  start-page: 425
  year: 2014
  ident: 10.1016/j.earscirev.2024.104927_bb0400
  article-title: Landslide susceptibility mapping using GIS–based multi–criteria decision analysis, support vector machines, and logistic regression
  publication-title: Landslides
  doi: 10.1007/s10346-013-0391-7
– year: 1984
  ident: 10.1016/j.earscirev.2024.104927_bb0560
  article-title: The modifiable areal unit problem
– volume: 11
  year: 2021
  ident: 10.1016/j.earscirev.2024.104927_bb0240
  article-title: Landslide susceptibility mapping in Brazil: a review
  publication-title: Geosciences
  doi: 10.3390/geosciences11100425
– volume: 303
  start-page: 284
  year: 2018
  ident: 10.1016/j.earscirev.2024.104927_bb0435
  article-title: Modeling landslide susceptibility in data-scarce environments using optimized data mining and statistical methods
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2017.12.007
– volume: 104700
  year: 2024
  ident: 10.1016/j.earscirev.2024.104927_bb0355
  article-title: Modelling landslide susceptibility prediction: a review and construction of semi–supervised imbalanced theory
  publication-title: Earth Sci. Rev.
– volume: 19
  start-page: 1670
  year: 2022
  ident: 10.1016/j.earscirev.2024.104927_bb0460
  article-title: Literature review and bibliometric analysis on data-driven assessment of landslide susceptibility
  publication-title: J. Mt. Sci.
  doi: 10.1007/s11629-021-7254-9
– volume: 232
  year: 2022
  ident: 10.1016/j.earscirev.2024.104927_bb0480
  article-title: Landslide susceptibility maps of Italy: lesson learnt from dealing with multiple landslide types and the uneven spatial distribution of the national inventory
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2022.104125
– volume: 260
  year: 2019
  ident: 10.1016/j.earscirev.2024.104927_bb0050
  article-title: Accounting for covariate distributions in slope–unit–based landslide susceptibility models. A case study in the alpine environment
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2019.105237
– year: 2020
  ident: 10.1016/j.earscirev.2024.104927_bb0390
– volume: 6
  start-page: 20
  year: 2004
  ident: 10.1016/j.earscirev.2024.104927_bb0075
  article-title: A study of the behavior of several methods for balancing machine learning training data
  publication-title: ACM SIGKDD Explor. Newslett.
  doi: 10.1145/1007730.1007735
– year: 2023
  ident: 10.1016/j.earscirev.2024.104927_bb0645
  article-title: Resolution of data, type of inventory and data splitting in machine learning-based landslide susceptibility mapping
– year: 2023
  ident: 10.1016/j.earscirev.2024.104927_bb0650
  article-title: Landslide susceptibility mapping via binomial generalized additive model
– year: 1997
  ident: 10.1016/j.earscirev.2024.104927_bb0225
  article-title: Bootstrap Methods and their Application
  doi: 10.1017/CBO9780511802843
– volume: 262
  start-page: 8
  year: 2016
  ident: 10.1016/j.earscirev.2024.104927_bb0705
  article-title: Exploring discrepancies between quantitative validation results and the geomorphic plausibility of statistical landslide susceptibility maps
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2016.03.015
– volume: 2
  start-page: 18
  year: 2002
  ident: 10.1016/j.earscirev.2024.104927_bb0455
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 71
  start-page: 303
  year: 2004
  ident: 10.1016/j.earscirev.2024.104927_bb0725
  article-title: Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu catchment, Turkey
  publication-title: Eng. Geol.
  doi: 10.1016/S0013-7952(03)00143-1
– year: 2023
  ident: 10.1016/j.earscirev.2024.104927_bb0110
  article-title: Application of the LAND–SUITE software with a benchmark dataset for landslide susceptibility zonation
– volume: 301
  start-page: 10
  year: 2018
  ident: 10.1016/j.earscirev.2024.104927_bb0660
  article-title: Optimizing landslide susceptibility zonation: Effects of DEM spatial resolution and slope unit delineation on logistic regression models
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2017.10.018
– volume: 157
  start-page: 157
  year: 2002
  ident: 10.1016/j.earscirev.2024.104927_bb0780
  article-title: GAMs with integrated model selection using penalized regression splines and applications to environmental modelling
  publication-title: Ecol. Model.
  doi: 10.1016/S0304-3800(02)00193-X
– volume: 35
  start-page: 179
  year: 2019
  ident: 10.1016/j.earscirev.2024.104927_bb0425
  article-title: Current and future status of GIS–based landslide susceptibility mapping: a literature review
  publication-title: Korean J. Remote Sens.
– volume: 198
  year: 2021
  ident: 10.1016/j.earscirev.2024.104927_bb0500
  article-title: Investigation of the influence of nonoccurrence sampling on landslide susceptibility assessment using artificial neural networks
  publication-title: Catena
  doi: 10.1016/j.catena.2020.105067
– volume: 356
  year: 2020
  ident: 10.1016/j.earscirev.2024.104927_bb0370
  article-title: Regional susceptibility assessments with heterogeneous landslide information: Slope unit- vs. pixel-based approach
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2020.107084
– volume: 9
  start-page: 1077
  year: 2016
  ident: 10.1016/j.earscirev.2024.104927_bb0735
  article-title: Spatial prediction of rainfall–induced shallow landslides using hybrid integration approach of Least–Squares Support Vector Machines and differential evolution optimization: a case study in Central Vietnam
  publication-title: Int. J. Digit. Earth
  doi: 10.1080/17538947.2016.1169561
– volume: 14
  year: 2023
  ident: 10.1016/j.earscirev.2024.104927_bb0800
  article-title: Ensemble learning framework for landslide susceptibility mapping: different basic classifier and ensemble strategy
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2023.101645
– volume: 585
  start-page: 357
  year: 2020
  ident: 10.1016/j.earscirev.2024.104927_bb0315
  article-title: Array programming with Numpy
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– year: 2009
  ident: 10.1016/j.earscirev.2024.104927_bb0805
– volume: 58
  start-page: 313
  year: 2000
  ident: 10.1016/j.earscirev.2024.104927_bb0510
  article-title: Slope vulnerability to earthquakes at subregional scale, using probabilistic techniques and geographic information systems
  publication-title: Eng. Geol.
  doi: 10.1016/S0013-7952(00)00041-7
– volume: 118
  start-page: 2513
  year: 2023
  ident: 10.1016/j.earscirev.2024.104927_bb0105
  article-title: Exploring available landslide inventories for susceptibility analysis in Gipuzkoa province (Spain)
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-023-06103-w
– volume: 126
  year: 2024
  ident: 10.1016/j.earscirev.2024.104927_bb0265
  article-title: Landslide hazard spatiotemporal prediction based on data-driven models: estimating where, when and how large landslide may be
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 27
  start-page: 861
  year: 2006
  ident: 10.1016/j.earscirev.2024.104927_bb0270
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– volume: 56
  start-page: 1335
  year: 2023
  ident: 10.1016/j.earscirev.2024.104927_bb0260
  article-title: Space–time landslide susceptibility modeling based on data–driven methods
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-023-10105-6
– volume: 112
  start-page: 42
  year: 2012
  ident: 10.1016/j.earscirev.2024.104927_bb0310
  article-title: Landslide inventory maps: New tools for an old problem
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2012.02.001
– volume: 13
  start-page: 3339
  year: 2013
  ident: 10.1016/j.earscirev.2024.104927_bb0515
  article-title: Assessing the spatial variability of coefficients of landslide predictors in different regions of Romania using logistic regression
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-13-3339-2013
– year: 2023
  ident: 10.1016/j.earscirev.2024.104927_bb0160
  article-title: Comparison of the effectiveness of application of gams for landslide susceptibility modelling in Apennine and Alpine areas
– volume: 125
  start-page: 51
  year: 2011
  ident: 10.1016/j.earscirev.2024.104927_bb0720
  article-title: Spatial agreement of predicted patterns in landslide susceptibility maps
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2010.09.004
– volume: 115
  start-page: 172
  year: 2010
  ident: 10.1016/j.earscirev.2024.104927_bb0600
  article-title: Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2009.10.002
– volume: 14
  start-page: 95
  year: 2014
  ident: 10.1016/j.earscirev.2024.104927_bb0570
  article-title: Assessing the quality of landslide susceptibility maps–case study Lower Austria
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-14-95-2014
– volume: 12
  start-page: 419
  year: 2015
  ident: 10.1016/j.earscirev.2024.104927_bb0150
  article-title: A systematic review of landslide probability mapping using logistic regression
  publication-title: Landslides
  doi: 10.1007/s10346-014-0550-5
– volume: 35
  start-page: 1267
  year: 2020
  ident: 10.1016/j.earscirev.2024.104927_bb0730
  article-title: A novel hybrid approach of landslide susceptibility modelling using rotation forest ensemble and different base classifiers
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2018.1559885
– volume: 358
  year: 2020
  ident: 10.1016/j.earscirev.2024.104927_bb0045
  article-title: Parameter–free delineation of slope units and terrain subdivision of Italy
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2020.107124
– volume: 30
  start-page: 451
  year: 2003
  ident: 10.1016/j.earscirev.2024.104927_bb0200
  article-title: Validation of spatial prediction models for landslide hazard mapping
  publication-title: Nat. Hazards
  doi: 10.1023/B:NHAZ.0000007172.62651.2b
– volume: 7
  start-page: 455
  year: 2010
  ident: 10.1016/j.earscirev.2024.104927_bb0745
  article-title: Quality assessment of the Italian landslide inventory using GIS processing
  publication-title: Landslides
  doi: 10.1007/s10346-010-0213-0
– volume: 119
  start-page: 1513
  year: 2023
  ident: 10.1016/j.earscirev.2024.104927_bb0230
  article-title: On the estimation of landslide intensity, hazard and density via data–driven models
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-023-06153-0
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.earscirev.2024.104927_bb0565
  article-title: Scikit–learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 104
  start-page: 62
  year: 2017
  ident: 10.1016/j.earscirev.2024.104927_bb0250
  article-title: Analysis of training sample selection strategies for regression-based quantitative landslide susceptibility mapping methods
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2017.03.022
– volume: 389
  year: 2021
  ident: 10.1016/j.earscirev.2024.104927_bb0380
  article-title: A global landslide non–susceptibility map
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2021.107804
– start-page: 1
  year: 1990
  ident: 10.1016/j.earscirev.2024.104927_bb0005
  article-title: Statistical pattern integration for mineral exploration
– volume: 36
  start-page: 2031
  year: 2022
  ident: 10.1016/j.earscirev.2024.104927_bb0010
  article-title: On the prediction of landslide occurrences and sizes via Hierarchical Neural Networks
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-022-02215-0
– ident: 10.1016/j.earscirev.2024.104927_bb0585
– year: 2013
  ident: 10.1016/j.earscirev.2024.104927_bb0340
  article-title: Applied logistic regression
– ident: 10.1016/j.earscirev.2024.104927_bb0655
– volume: 83
  start-page: 249
  year: 2024
  ident: 10.1016/j.earscirev.2024.104927_bb0445
  article-title: The use of digital technology for rock mass discontinuity mapping: review of benchmarking exercise
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-024-03730-w
– volume: 193
  year: 2020
  ident: 10.1016/j.earscirev.2024.104927_bb0095
  article-title: The influence of the inventory on the determination of the rainfall–induced shallow landslides susceptibility using generalized additive models
  publication-title: CATENA
  doi: 10.1016/j.catena.2020.104630
– volume: 105
  start-page: 1348
  year: 2018
  ident: 10.1016/j.earscirev.2024.104927_bb0595
  article-title: Lasso regression
  publication-title: Br. J. Surg.
  doi: 10.1002/bjs.10895
– volume: 37
  start-page: 14309
  year: 2022
  ident: 10.1016/j.earscirev.2024.104927_bb0470
  article-title: A bibliometric analysis of the landslide susceptibility research (1999–2021)
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2022.2087753
– volume: 15
  year: 2024
  ident: 10.1016/j.earscirev.2024.104927_bb0760
  article-title: From spatio-temporal landslide susceptibility to landslide risk forecast
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2023.101765
– volume: 16
  start-page: 427
  year: 1991
  ident: 10.1016/j.earscirev.2024.104927_bb0170
  article-title: GIS techniques and statistical models in evaluating landslide hazard
  publication-title: Earth Surf. Process. Landf.
  doi: 10.1002/esp.3290160505
– volume: 36
  start-page: 2229
  year: 2022
  ident: 10.1016/j.earscirev.2024.104927_bb0495
  article-title: From scenario–based seismic hazard to scenario–based landslide hazard: fast–forwarding to the future via statistical simulations
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-021-02020-1
– volume: 82
  start-page: 160
  year: 2023
  ident: 10.1016/j.earscirev.2024.104927_bb0055
  article-title: Earthquake–triggered landslide susceptibility in Italy by means of artificial neural network
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-023-03163-x
– start-page: 785
  year: 2016
  ident: 10.1016/j.earscirev.2024.104927_bb0185
  article-title: XGBoost: a scalable tree boosting system
– year: 2024
  ident: 10.1016/j.earscirev.2024.104927_bb0360
– volume: 323
  start-page: 533
  year: 1986
  ident: 10.1016/j.earscirev.2024.104927_bb0630
  article-title: Learning representations by back–propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– year: 2023
  ident: 10.1016/j.earscirev.2024.104927_bb0015
  article-title: Ensemble learning on the benchmark dataset for landslide susceptibility zonation in Central Italy
– year: 2023
  ident: 10.1016/j.earscirev.2024.104927_bb0485
  article-title: Landslide susceptibility within the binomial generalized additive model
– volume: 207
  year: 2020
  ident: 10.1016/j.earscirev.2024.104927_bb0535
  article-title: Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2020.103225
– volume: 9
  start-page: 3975
  year: 2016
  ident: 10.1016/j.earscirev.2024.104927_bb0040
  article-title: Automatic delineation of geomorphological slope units with r.slopeunits v1.0 and their optimization for landslide susceptibility modeling
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-9-3975-2016
– volume: 7
  year: 2020
  ident: 10.1016/j.earscirev.2024.104927_bb0675
  article-title: Landslide susceptibility evaluation and hazard zonation techniques – a review
  publication-title: Geoenviron. Disasters
  doi: 10.1186/s40677-020-00152-0
– volume: 7
  start-page: 179
  year: 1936
  ident: 10.1016/j.earscirev.2024.104927_bb0275
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Ann. Eugenics
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– volume: 912
  year: 2024
  ident: 10.1016/j.earscirev.2024.104927_bb0555
  article-title: Space–time data–driven modeling of precipitation–induced shallow landslides in South Tyrol, Italy
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2023.169166
– volume: 129
  start-page: 376
  year: 2011
  ident: 10.1016/j.earscirev.2024.104927_bb0285
  article-title: Integrating physical and empirical landslide susceptibility models using generalized additive models
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2011.03.001
– volume: 180
  start-page: 60
  year: 2018
  ident: 10.1016/j.earscirev.2024.104927_bb0605
  article-title: A review of statistically–based landslide susceptibility models
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2018.03.001
– start-page: 5372
  year: 2012
  ident: 10.1016/j.earscirev.2024.104927_bb0135
  article-title: Spatial cross–validation and bootstrap for the assessment of prediction rules in remote sensing: The R package sperrorest
– volume: vol. 8
  year: 1967
  ident: 10.1016/j.earscirev.2024.104927_bb0365
  article-title: Cybernetics and forecasting techniques
– volume: 244
  start-page: 14
  year: 2018
  ident: 10.1016/j.earscirev.2024.104927_bb0490
  article-title: Presenting logistic regression–based landslide susceptibility results
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2018.07.019
– volume: 9
  start-page: 1
  year: 2016
  ident: 10.1016/j.earscirev.2024.104927_bb0190
  article-title: A GIS–based comparative study of frequency ratio, statistical index and weights–of–evidence models in landslide susceptibility mapping
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-015-2150-7
– volume: 78
  start-page: 1
  year: 1950
  ident: 10.1016/j.earscirev.2024.104927_bb0140
  article-title: Verification of forecasts expressed in terms of probability
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
– volume: 66
  start-page: 327
  year: 2005
  ident: 10.1016/j.earscirev.2024.104927_bb0255
  article-title: Artificial neural networks applied to landslide susceptibility assessment
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2004.09.025
– volume: 123
  start-page: 225
  year: 2011
  ident: 10.1016/j.earscirev.2024.104927_bb0520
  article-title: Landslide susceptibility assessment using SVM machine learning algorithm
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2011.09.006
– year: 2022
  ident: 10.1016/j.earscirev.2024.104927_bb0415
SSID ssj0001097
Score 2.5083048
SecondaryResourceType review_article
Snippet Landslide susceptibility shows the spatial likelihood of landslide occurrence in a specific geographical area and is a relevant tool for mitigating the impact...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104927
SubjectTerms Benchmark dataset
data collection
Geomorphological mapping
Geomorphometry
humans
Italy
Landslide inventory
Landslide susceptibility
Landslide susceptibility mapping
landslides
Machine learning
quantitative analysis
Slope units
Spatial analysis
Statistical modeling
Title A benchmark dataset and workflow for landslide susceptibility zonation
URI https://dx.doi.org/10.1016/j.earscirev.2024.104927
https://www.proquest.com/docview/3154160846
Volume 258
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KIngRn1gfZQWvsXlsksZbKdb6KiIWelt2sxus1rS0KVIP_nZnNkmlIvTgKSTsJstkduZj55sZQs6Zo2zGPGaxBItqR5FAEkBkMVdI6WDupcKjgYdu0Omx277fr5BWmQuDtMrC9uc23Vjr4km9kGZ9PBhgjq-DiZeGBQnA2GSwsxC1_OLrh-aBEdbcGsPOh9FLHC9QJng1NntxwVdhvDPC9jJ_e6hftto4oPY22SqQI23mi9shFZ3uko1r05l3vkfaTSph9S_vYvJGkfc51RkVqaLIvEqGow8K8JSazN7hQGk6nU0No8WQY-f0c5QfC-6TXvvqudWxiiYJVgxQIrOU64nIsxNYeRy6IorCSGrXkwAEpdCwPcPYUQAzwBd6MZaS8GNbJr6WSimXNaR3QNbSUaoPCU1sZQvPbugkVkz5QkgnCDDOpuOkIRxRJUEpGB4XFcSxkcWQl1SxV76QKEeJ8lyiVWIvJo7zIhqrp1yWkudL-sDB1K-efFb-Kw67BUMgItWj2ZR7gBidwAbQdfSfDxyTTbzLcxJPyFo2melTACeZrBntq5H1Zuvp_hGvN3ed7je3DubJ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4QjdGL8RnxuSZeK31sC_VGiIgKnCDhttntbiOKLaElBg_-dmf6wGBMOHhtu-1mdmfm6843M4TcMEuZjDnMYCEW1fZ9gSQA32C2kNLC3EuFRwO9vtcZsqeRO6qQVpkLg7TKwvbnNj2z1sWVWiHN2nQ8xhxfCxMvMxYkAGP4BdpkoL7YxuD264fngSHW3ByD6sPjKyQv2E3wbuz2YoOzwoCnj_1l_nZRv4x15oHae2S3gI60mc9un1R0dEC2HrLWvItD0m5SCdN_eRezN4rEz0SnVESKIvUqnMQfFPApzVJ7J2OlaTJPMkpLxo5d0M84Pxc8IsP2_aDVMYouCUYAWCI1lO0I3zFDmHlQt4Xv132pbUcCEpRCg37WA0sBzgBn6ARYS8INTBm6WiqlbNaQzjHZiOJInxAamsoUjtnQYaCYcoWQludhoE0HYUNYokq8UjA8KEqIYyeLCS-5Yq98KVGOEuW5RKvEXA6c5lU01g-5KyXPVzYEB1u_fvB1uVYc1AVjICLS8TzhDkBGyzMBdZ3-5wNXZLsz6HV597H_fEZ28E6eoHhONtLZXF8AUknlZbYTvwHVf-bC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+benchmark+dataset+and+workflow+for+landslide+susceptibility+zonation&rft.jtitle=Earth-science+reviews&rft.au=Alvioli%2C+Massimiliano&rft.au=Loche%2C+Marco&rft.au=Jacobs%2C+Liesbet&rft.au=Grohmann%2C+Carlos+H.&rft.date=2024-11-01&rft.pub=Elsevier+B.V&rft.issn=0012-8252&rft.volume=258&rft_id=info:doi/10.1016%2Fj.earscirev.2024.104927&rft.externalDocID=S0012825224002551
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-8252&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-8252&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-8252&client=summon