A survey on bipartite graphs embedding
Research on graph representation learning (a.k.a. embedding) has received great attention in recent years and shows effective results for various types of networks. Nevertheless, few initiatives have been focused on the particular case of embeddings for bipartite graphs. In this paper, we first defi...
Saved in:
Published in | Social Network Analysis and Mining Vol. 13; no. 1; p. 54 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Vienna
Springer Vienna
21.03.2023
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Research on graph representation learning (a.k.a. embedding) has received great attention in recent years and shows effective results for various types of networks. Nevertheless, few initiatives have been focused on the particular case of embeddings for bipartite graphs. In this paper, we first define the graph embedding problem in the case of bipartite graphs. Next, we propose a taxonomy of approaches used to tackle this problem and draw a description of state-of-the-art methods. Then, we establish their pros and cons with respect to conventional network embeddings. Finally, we provide a description of available resources to lead experiments on the subject. |
---|---|
AbstractList | Research on graph representation learning (a.k.a. embedding) has received great attention in recent years and shows effective results for various types of networks. Nevertheless, few initiatives have been focused on the particular case of embeddings for bipartite graphs. In this paper, we first define the graph embedding problem in the case of bipartite graphs. Next, we propose a taxonomy of approaches used to tackle this problem and draw a description of state-of-the-art methods. Then, we establish their pros and cons with respect to conventional network embeddings. Finally, we provide a description of available resources to lead experiments on the subject. |
Author | Giamphy, Edward Guillaume, Jean-Loup Doucet, Antoine Sanchis, Kevin |
Author_xml | – sequence: 1 givenname: Edward surname: Giamphy fullname: Giamphy, Edward email: edward.giamphy@preligens.com organization: AI Research, Preligens, L3i, La Rochelle University – sequence: 2 givenname: Jean-Loup surname: Guillaume fullname: Guillaume, Jean-Loup organization: L3i, La Rochelle University – sequence: 3 givenname: Antoine surname: Doucet fullname: Doucet, Antoine organization: L3i, La Rochelle University – sequence: 4 givenname: Kevin surname: Sanchis fullname: Sanchis, Kevin organization: AI Research, Preligens |
BackLink | https://hal.science/hal-04089238$$DView record in HAL |
BookMark | eNpFkE1LAzEQhoNUsNb-AU8LguBhdZLZzcexFLVCwYueQzZJ2y3t7pq0hfbXm7qipxleHt4ZnmsyaNrGE3JL4ZECiKdIkQmZA8McKJQyP12QIZVc5WXB1eBvL-GKjGNcAyQMUQEfkvtJFvfh4I9Z22RV3Zmwq3c-WwbTrWLmt5V3rm6WN-RyYTbRj3_niHy-PH9MZ_n8_fVtOpnnFpXY5dYZoQCZRZuOSGulK0XhlLdYuYWDqihFxZBxx62gwgsoGRVGSrZImeA4Ig9978psdBfqrQlH3ZpazyZzfc6gAKkYygNN7F3PdqH92vu40-t2H5r0nmaKKk6BIyYKeyqmumbpwz9FQZ_96d6fTv70jz99wm9cR2IJ |
CitedBy_id | crossref_primary_10_1016_j_neunet_2025_107194 crossref_primary_10_3390_e26110992 crossref_primary_10_1016_j_artmed_2024_103028 crossref_primary_10_1016_j_neucom_2023_127016 crossref_primary_10_1145_3633518 crossref_primary_10_3389_frai_2023_1256352 crossref_primary_10_1016_j_asoc_2024_111230 crossref_primary_10_1016_j_eswa_2024_126322 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | C6C 0-V 3V. 7XB 88J 8BJ 8FE 8FG 8FK ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FQK GNUQQ HCIFZ JBE JQ2 K7- M2R P5Z P62 PHGZM PHGZT PKEHL POGQB PQEST PQGLB PQQKQ PQUKI PRQQA Q9U 1XC VOOES |
DOI | 10.1007/s13278-023-01058-z |
DatabaseName | Springer Nature OA Free Journals ProQuest Social Sciences Premium Collection【Remote access available】 ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Social Science Database (Alumni Edition) International Bibliography of the Social Sciences (IBSS) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea International Bibliography of the Social Sciences ProQuest Central Student SciTech Premium Collection International Bibliography of the Social Sciences ProQuest Computer Science Collection Computer Science Database Social Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest Sociology & Social Sciences Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Social Sciences ProQuest Central Basic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Social Science Journals (Alumni Edition) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Sociology & Social Sciences Collection ProQuest Central ProQuest One Applied & Life Sciences International Bibliography of the Social Sciences (IBSS) ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection Social Science Premium Collection ProQuest One Social Sciences ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Social Science Journals ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Computer Science Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Law Computer Science |
EISSN | 1869-5469 |
ExternalDocumentID | oai_HAL_hal_04089238v1 10_1007_s13278_023_01058_z |
GroupedDBID | C6C 0-V 0R~ 0VY 203 30V 3V. 4.4 406 408 409 7XB 8BJ 8FE 8FG 8FK 96X AACDK AAHNG AAIAL AAJBT AAJKR AAJSJ AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAZMS ABBRH ABBXA ABDBE ABDZT ABECU ABEEZ ABFSG ABFTD ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABXPI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACSTC ACULB ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AEZWR AFBBN AFDZB AFGXO AFHIU AFKRA AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHPBZ AHWEU AHYZX AIAKS AIIXL AILAN AITGF AIXLP AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS ALSLI AMKLP AMXSW AMYLF AMYQR ANMIH ARAPS ASPBG ATHPR AUKKA AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC BENPR BGLVJ BGNMA CCPQU CSCUP DNIVK DPUIP DWQXO EBLON EBS EIOEI ESBYG FEDTE FERAY FFXSO FIGPU FNLPD FQK FRRFC FYJPI GGCAI GGRSB GJIRD GNUQQ GQ8 HCIFZ HG6 HMJXF HQYDN HRMNR HVGLF I0C IKXTQ ITM IWAJR IZIGR J-C JBE JBSCW JCJTX JQ2 JZLTJ K7- KOV LLZTM M2R M4Y NPVJJ NQJWS NU0 O93 O9J P62 PHGZM PHGZT PKEHL POGQB PQEST PQGLB PQQKQ PQUKI PRQQA PT4 Q9U RLLFE ROL RSV S27 SCO SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VFIZW W48 WK8 ZMTXR ~A9 1XC 2VQ AAAVM AARHV AAYZH AEBTG AFLOW AHSBF AJBLW EJD FINBP FSGXE HF~ HZ~ O9- RIG S1Z VOOES |
ID | FETCH-LOGICAL-c397t-cda79032c3c0008cc8d574d9ec3bdfd0b457b2326d6c717e705217a882f26d763 |
IEDL.DBID | BENPR |
ISSN | 1869-5450 |
IngestDate | Fri May 09 12:13:20 EDT 2025 Fri Jul 25 23:28:05 EDT 2025 Fri Feb 21 02:41:01 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Representation learning Survey Machine learning Benchmark Graph embeddings Graph-based pattern representations Bipartite graph Data mining |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c397t-cda79032c3c0008cc8d574d9ec3bdfd0b457b2326d6c717e705217a882f26d763 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6160-3356 0000-0002-4615-1563 |
OpenAccessLink | https://doi.org/10.1007/s13278-023-01058-z |
PQID | 2919610633 |
PQPubID | 2044166 |
ParticipantIDs | hal_primary_oai_HAL_hal_04089238v1 proquest_journals_2919610633 springer_journals_10_1007_s13278_023_01058_z |
PublicationCentury | 2000 |
PublicationDate | 2023-03-21 |
PublicationDateYYYYMMDD | 2023-03-21 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Vienna |
PublicationPlace_xml | – name: Vienna – name: Heidelberg |
PublicationTitle | Social Network Analysis and Mining |
PublicationTitleAbbrev | Soc. Netw. Anal. Min |
PublicationYear | 2023 |
Publisher | Springer Vienna Springer Nature B.V Springer |
Publisher_xml | – name: Springer Vienna – name: Springer Nature B.V – name: Springer |
References | Asghar N (2016) Yelp dataset challenge: review rating prediction. arXiv . arxiv:1605.05362 Shlens J (2014) Notes on Kullback-Leibler Divergence and Likelihood. arXiv . arxiv:1404.2000 Hamilton WL, Ying R, Leskovec J (2017) Representation learning on graphs: methods and applications. arXiv preprint arXiv:1709.05584 He C (2019) Heterogeneous graph convolutional networks for bipartite graph embedding He C, Xie T, Rong Y, Huang W, Huang J, Ren X, Shahabi C Adversarial Representation Learning on Large-Scale Bipartite Graphs Huang W, Li Y, Fang Y, Fan J, Yang H (2020) Biane: Bipartite attributed network embedding. In: Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval, pp 149–158 Li C, Jia K, Shen D, Shi CJR, Yang H (2019) Hierarchical representation learning for bipartite graphs. In: proceedings of the twenty-eighth international joint conference on artificial intelligence, IJCAI-19, pp 2873–2879. international joint conferences on artificial intelligence organization, ??? . https://doi.org/10.24963/ijcai.2019/398 Cheng H-T, Koc L, Harmsen J, Shaked T, Chandra T, Aradhye H, Anderson G, Corrado G, Chai W, Ispir M, Anil R, Haque Z, Hong L, Jain V, Liu X, Shah H (2016) Wide & deep learning for recommender systems Yang J, Leskovec J Defining and evaluating network communities based on ground-truth. arXiv arxiv:1205.6233 Rumelhart DE, Mcclelland J (1986) Parallel distributed processing: explorations in the microstructure of cognition. Vol 1. Foundations HarperFMKonstanJAThe movielens datasets: history and contextACM Trans Interact Intell Syst20155411910.1145/2827872 Tang J, Gao H, Liu H, Das Sarma A (2012) Etrust: Understanding trust evolution in an online world. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining. KDD ’12, pp. 253–261. association for computing machinery, New York, NY, USA . https://doi.org/10.1145/2339530.2339574 Celma O (2010) Music recommendation and discovery in the long tail. Springer, ??? Giles CL, Bollacker KD, Lawrence S (1998) Citeseer: an automatic citation indexing system. In: DL ’98 GuillaumeJ-LLatapyMBipartite structure of all complex networksInf Process Lett2004905215221205465610.1016/j.ipl.2004.03.007 NewmanMEJStrogatzSHWattsDJRandom graphs with arbitrary degree distributions and their applicationsPhys Rev E200164210.1103/physreve.64.026118 Matthias, F, Jan Eric, L: Fast graph representation learning with pytorch geometric. https://github.com/pyg-team/pytorch_geometric HamiltonWLGraph representation learningSynthesis Lectures Artif Intell Mach Learn2020143115910.1007/978-3-031-01588-5 Tang J, Zhang J, Yao L, Li J, Zhang L, Su Z (2008) Arnetminer: Extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining. KDD ’08, pp 990–998. association for computing machinery, New York, NY, USA . https://doi.org/10.1145/1401890.1402008 Xu Y, Cohen SB (2018) Stock movement prediction from tweets and historical prices. In: Proceedings of the 56th annual meeting of the association for computational linguistics (Volume 1: Long Papers), pp 1970–1979. association for computational linguistics, Melbourne, Australia . https://doi.org/10.18653/v1/P18-1183 Bertin-Mahieux T, Ellis DPW, Whitman B, Lamere P (2011) The million song dataset. In: Proceedings of the 12th international conference on music information retrieval (ISMIR 2011) Hamilton WL, Ying R, Leskovec J (2018) Representation learning on graphs: methods and applications Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv . arxiv:1609.02907 Cai H, Zheng VW, Chang KC-C (2017) A comprehensive survey of graph embedding: problems, techniques and applications. arXiv . arxiv:1709.07604 Ha D, Dai A, Le QV (2016) HyperNetworks. arXiv. arxiv:1609.09106 Baltrunas L, Church K, Karatzoglou A, Oliver N (2015) Frappe: understanding the usage and perception of mobile app recommendations in-the-wild. arXiv . arxiv:1505.03014 MinSGaoZPengJWangLQinKFangBStgsn - a spatial-temporal graph neural network framework for time-evolving social networksKnowl-Based Syst202121410.1016/j.knosys.2021.106746 BobadillaJOrtegaFHernandoAGutiérrezARecommender systems surveyKnowl-Based Syst20134610913210.1016/j.knosys.2013.03.012 GardnerTSdi BernardoDLorenzDCollinsJJInferring genetic networks and identifying compound mode of action via expression profilingScience2003301562910210510.1126/science.1081900 SenPNamataGBilgicMGetoorLGalligherBEliassi-RadTCollective classification in network dataAI Mag20082939310.1609/aimag.v29i3.2157 West R, Leskovec J (2012) Human wayfinding in information networks. In: proceedings of the 21st international conference on world wide web. WWW ’12, pp 619–628. association for computing machinery, New York, NY, USA . https://doi.org/10.1145/2187836.2187920 Grattarola D, Alippi C (2020) Graph neural networks in tensorflow and keras with spektral. arXiv . arxiv:2006.12138 BasileAOYahiATatonettiNPArtificial intelligence for drug toxicity and safetyTrends Pharmacol Sci201940962463510.1016/j.tips.2019.07.005 ChakrabartiDFaloutsosCGraph mining: laws generators and algorithmsACM Comput Surv2006381210.1145/1132952.1132954 Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector space. arXiv . arxiv:1301.3781 Wang M, Zheng D, Ye Z, Gan Q, Li M, Song X, Zhou J, Ma C, Yu L, Gai Y, Xiao T, He T, Karypis G, Li J, Zhang Z (2019) Deep graph library: a graph-centric, highly-performant package for graph neural networks. arXiv. arxiv:1909.01315 WuZPanSChenFLongGZhangCYuPSA comprehensive survey on graph neural networksIEEE Trans Neural Netw Learn Syst2021321424420549510.1109/tnnls.2020.2978386 Liu Z, Nguyen T-K, Fang Y (2021) Tail-gnn: Tail-node graph neural networks. In: Proceedings of the 27th ACM SIGKDD conference on knowledge discovery and data mining. KDD ’21, pp 1109–1119. association for computing machinery, New York, NY, USA . https://doi.org/10.1145/3447548.3467276 Tencent records the watching behaviors of users on movies in QQlive. https://v.qq.com Gao C, Zheng Y, Li N, Li Y, Qin Y, Piao J, Quan Y, Chang J, Jin D, He X, Li Y (2021) A survey of graph neural networks for recommender systems: challenges, methods, and directions. arXiv . arxiv:2109.12843 McFee B, Bertin-Mahieux T, Ellis DPW, Lanckriet GRG (2012) The million song dataset challenge. In: Proceedings of the 21st international conference on world wide web. WWW ’12 Companion, pp 909–916. association for computing machinery, New York, NY, USA . https://doi.org/10.1145/2187980.2188222 Sybrandt J, Safro I FOBE and HOBE: First- and High-Order Bipartite Embeddings Leskovec J, Lang KJ, Dasgupta A, Mahoney MW (2008) Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. arXiv . arxiv:0810.1355 Wang H, Chen B, Li W-J (2013) Collaborative topic regression with social regularization for tag recommendation. In: IJCAI Grover, A, Leskovec, J (2016) node2vec: scalable feature learning for networks. arXiv . arxiv:1607.00653 Yang C, Xiao Y, Zhang Y, Sun Y, Han J: Heterogeneous network representation learning: a unified framework with survey and benchmark. arXiv (2020). arxiv:2004.00216 LeskovecJAdamicLAHubermanBAThe dynamics of viral marketingACM Trans Web200711510.1145/1232722.1232727 Barros CDT, Mendonça MRF, Vieira AB, Ziviani A (2021) A survey on embedding dynamic graphs. arXiv . arxiv:2101.01229 Perozzi B, Al-Rfou R, Skiena S (2014) DeepWalk. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data Mining. ACM, ??? . https://doi.org/10.1145/2623330.2623732 Yu L, Zhang C, Pei S, Sun G, Zhang X (2018) Walkranker: A unified pairwise ranking model with multiple relations for item recommendation. In: McIlraith, S.A, Weinberger, K.Q (eds.) proceedings of the thirty-second AAAI conference on artificial intelligence, (AAAI-18), the 30th Innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on educational advances in artificial intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pp 2596–2603. AAAI Press, ??? . https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16520 He C, Xie T, Rong Y, Huang W, Huang J, Ren X, Shahabi C (2020) Cascade-BGNN: toward efficient self-supervised representation learning on large-scale bipartite graphs Wang M, Zhang J, Liu J, Hu W, Wang S, Li X, Liu W (2017) PDD Graph: bridging electronic medical records and biomedical knowledge graphs via entity linking. arXiv . arxiv:1707.05340 Godwin J, Keck T, Battaglia P, Bapst V, Kipf T, Li Y, Stachenfeld K, Veličković P, Sanchez-Gonzalez A Jraph: a library for graph neural networks In jax. http://github.com/deepmind/jraph Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and phrases and their compositionality. In: Burges, C.J, Bottou, L, Welling, M, Ghahramani, Z, Weinberger, K.Q (eds.) Advances in neural information processing systems, vol. 26. Curran Associates, Inc., ??? . https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf Backstrom L, Huttenlocher D, Kleinberg J, Lan X (2006) Group formation in large social networks: Membership, growth, and evolution. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining. KDD ’06, pp 44–54. Association for Computing Machinery, New York, NY, USA . https://doi.org/10.1145/1150402.1150412 Gao M, He X, Chen L, Liu T, Zhang J, Zhou A (2019) Learning vertex representations for bipartite networks. arXiv . arXiv:1901.09676 Stauffer M, Tschachtli T, Fischer A, Riesen K (2017). A survey on applications of bipartite graph edit distance. https://doi.org/10.1007/978-3-319-58961-9_22 Hegeman T, Iosup A (2018) Survey of Graph Analysis Applications. arXiv. arxiv:1807.00382 Dwivedi VP, Luu AT, Laurent T, Bengio Y, Bresson X (2022) Gra |
References_xml | – reference: BobadillaJOrtegaFHernandoAGutiérrezARecommender systems surveyKnowl-Based Syst20134610913210.1016/j.knosys.2013.03.012 – reference: Xu Y, Cohen SB (2018) Stock movement prediction from tweets and historical prices. In: Proceedings of the 56th annual meeting of the association for computational linguistics (Volume 1: Long Papers), pp 1970–1979. association for computational linguistics, Melbourne, Australia . https://doi.org/10.18653/v1/P18-1183 – reference: Stauffer M, Tschachtli T, Fischer A, Riesen K (2017). A survey on applications of bipartite graph edit distance. https://doi.org/10.1007/978-3-319-58961-9_22 – reference: Sybrandt J, Safro I FOBE and HOBE: First- and High-Order Bipartite Embeddings – reference: Baltrunas L, Church K, Karatzoglou A, Oliver N (2015) Frappe: understanding the usage and perception of mobile app recommendations in-the-wild. arXiv . arxiv:1505.03014 – reference: Liu Z, Nguyen T-K, Fang Y (2021) Tail-gnn: Tail-node graph neural networks. In: Proceedings of the 27th ACM SIGKDD conference on knowledge discovery and data mining. KDD ’21, pp 1109–1119. association for computing machinery, New York, NY, USA . https://doi.org/10.1145/3447548.3467276 – reference: Cheng H-T, Koc L, Harmsen J, Shaked T, Chandra T, Aradhye H, Anderson G, Corrado G, Chai W, Ispir M, Anil R, Haque Z, Hong L, Jain V, Liu X, Shah H (2016) Wide & deep learning for recommender systems – reference: BasileAOYahiATatonettiNPArtificial intelligence for drug toxicity and safetyTrends Pharmacol Sci201940962463510.1016/j.tips.2019.07.005 – reference: He C, Xie T, Rong Y, Huang W, Huang J, Ren X, Shahabi C (2020) Cascade-BGNN: toward efficient self-supervised representation learning on large-scale bipartite graphs – reference: Graph Nets, https://www.deepmind.com/open-source/graph-nets – reference: West R, Leskovec J (2012) Human wayfinding in information networks. In: proceedings of the 21st international conference on world wide web. WWW ’12, pp 619–628. association for computing machinery, New York, NY, USA . https://doi.org/10.1145/2187836.2187920 – reference: Bertin-Mahieux T, Ellis DPW, Whitman B, Lamere P (2011) The million song dataset. In: Proceedings of the 12th international conference on music information retrieval (ISMIR 2011) – reference: WuZPanSChenFLongGZhangCYuPSA comprehensive survey on graph neural networksIEEE Trans Neural Netw Learn Syst2021321424420549510.1109/tnnls.2020.2978386 – reference: Hegeman T, Iosup A (2018) Survey of Graph Analysis Applications. arXiv. arxiv:1807.00382 – reference: He R, McAuley J (2016) Ups and downs. In: Proceedings of the 25th international conference on world wide web. international world wide web conferences steering committee, ??? . https://doi.org/10.1145/2872427.2883037 – reference: Celma O (2010) Music recommendation and discovery in the long tail. Springer, ??? – reference: He C (2019) Heterogeneous graph convolutional networks for bipartite graph embedding – reference: Giles CL, Bollacker KD, Lawrence S (1998) Citeseer: an automatic citation indexing system. In: DL ’98 – reference: Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and phrases and their compositionality. In: Burges, C.J, Bottou, L, Welling, M, Ghahramani, Z, Weinberger, K.Q (eds.) Advances in neural information processing systems, vol. 26. Curran Associates, Inc., ??? . https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf – reference: Tang J, Zhang J, Yao L, Li J, Zhang L, Su Z (2008) Arnetminer: Extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining. KDD ’08, pp 990–998. association for computing machinery, New York, NY, USA . https://doi.org/10.1145/1401890.1402008 – reference: NewmanMEJStrogatzSHWattsDJRandom graphs with arbitrary degree distributions and their applicationsPhys Rev E200164210.1103/physreve.64.026118 – reference: Leskovec J, Lang KJ, Dasgupta A, Mahoney MW (2008) Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. arXiv . arxiv:0810.1355 – reference: Bennett J, Lanning S (2007) The netflix prize – reference: West R, Pineau J, Precup D (2009) Wikispeedia: An online game for inferring semantic distances between concepts. In: IJCAI – reference: Jiang M, Cui P, Yuan NJ, Xie X, Yang S (2016) Little is much: Bridging cross-platform behaviors through overlapped crowds. In: Proceedings of the thirtieth AAAI conference on artificial intelligence. AAAI’16, pp 13–19. AAAI Press, ??? – reference: Shlens J (2014) Notes on Kullback-Leibler Divergence and Likelihood. arXiv . arxiv:1404.2000 – reference: Harper FM, Konstan JA (2015) The movielens datasets: history and context. ACM Trans Interact Intell Syst, 5(4) . https://doi.org/10.1145/2827872 – reference: Dwivedi VP, Luu AT, Laurent T, Bengio Y, Bresson X (2022) Graph neural networks with learnable structural and positional representations. In: International conference on learning representations . https://openreview.net/forum?id=wTTjnvGphYj – reference: Yu L, Zhang C, Pei S, Sun G, Zhang X (2018) Walkranker: A unified pairwise ranking model with multiple relations for item recommendation. In: McIlraith, S.A, Weinberger, K.Q (eds.) proceedings of the thirty-second AAAI conference on artificial intelligence, (AAAI-18), the 30th Innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on educational advances in artificial intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pp 2596–2603. AAAI Press, ??? . https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16520 – reference: Matthias, F, Jan Eric, L: Fast graph representation learning with pytorch geometric. https://github.com/pyg-team/pytorch_geometric – reference: Gao M, Chen L, He X, Zhou A (2018) Bine: bipartite network embedding. In: The 41st International ACM SIGIR conference on research & development in information retrieval, pp 715–724 – reference: Malkov YA, Yashunin DA (2016) Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small World graphs. arXiv . arxiv:1603.09320 – reference: SenPNamataGBilgicMGetoorLGalligherBEliassi-RadTCollective classification in network dataAI Mag20082939310.1609/aimag.v29i3.2157 – reference: Asghar N (2016) Yelp dataset challenge: review rating prediction. arXiv . arxiv:1605.05362 – reference: Rumelhart DE, Mcclelland J (1986) Parallel distributed processing: explorations in the microstructure of cognition. Vol 1. Foundations, – reference: Barros CDT, Mendonça MRF, Vieira AB, Ziviani A (2021) A survey on embedding dynamic graphs. arXiv . arxiv:2101.01229 – reference: Wang M, Zhang J, Liu J, Hu W, Wang S, Li X, Liu W (2017) PDD Graph: bridging electronic medical records and biomedical knowledge graphs via entity linking. arXiv . arxiv:1707.05340 – reference: ChenJSafroIAlgebraic distance on graphsSIAM J Sci Comput201133634683490286202210.1137/090775087 – reference: Chen C-M, Wang C-J, Tsai M-F, Yang Y-H (2019) Collaborative similarity embedding for recommender systems. arXiv . arxiv:1902.06188 – reference: ChakrabartiDFaloutsosCGraph mining: laws generators and algorithmsACM Comput Surv2006381210.1145/1132952.1132954 – reference: Grover, A, Leskovec, J (2016) node2vec: scalable feature learning for networks. arXiv . arxiv:1607.00653 – reference: Tencent records the watching behaviors of users on movies in QQlive. https://v.qq.com/ – reference: Godwin J, Keck T, Battaglia P, Bapst V, Kipf T, Li Y, Stachenfeld K, Veličković P, Sanchez-Gonzalez A Jraph: a library for graph neural networks In jax. http://github.com/deepmind/jraph – reference: Gao C, Zheng Y, Li N, Li Y, Qin Y, Piao J, Quan Y, Chang J, Jin D, He X, Li Y (2021) A survey of graph neural networks for recommender systems: challenges, methods, and directions. arXiv . arxiv:2109.12843 – reference: MinSGaoZPengJWangLQinKFangBStgsn - a spatial-temporal graph neural network framework for time-evolving social networksKnowl-Based Syst202121410.1016/j.knosys.2021.106746 – reference: Tang J, Gao H, Liu H, Das Sarma A (2012) Etrust: Understanding trust evolution in an online world. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining. KDD ’12, pp. 253–261. association for computing machinery, New York, NY, USA . https://doi.org/10.1145/2339530.2339574 – reference: GardnerTSdi BernardoDLorenzDCollinsJJInferring genetic networks and identifying compound mode of action via expression profilingScience2003301562910210510.1126/science.1081900 – reference: Hamilton WL, Ying R, Leskovec J (2017) Representation learning on graphs: methods and applications. arXiv preprint arXiv:1709.05584 – reference: Li C, Shi M, Qu B, Li X (2021) Deep attributed network representation learning via attribute enhanced neighborhood. arXiv . arxiv:2104.05234 – reference: Ha D, Dai A, Le QV (2016) HyperNetworks. arXiv. arxiv:1609.09106 – reference: Backstrom L, Huttenlocher D, Kleinberg J, Lan X (2006) Group formation in large social networks: Membership, growth, and evolution. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining. KDD ’06, pp 44–54. Association for Computing Machinery, New York, NY, USA . https://doi.org/10.1145/1150402.1150412 – reference: Grattarola D, Alippi C (2020) Graph neural networks in tensorflow and keras with spektral. arXiv . arxiv:2006.12138 – reference: Zhang Y, Xiong Y, Kong X, Zhu Y (2017) Learning node embeddings in interaction graphs. In: Proceedings of the 2017 ACM on conference on information and knowledge management. CIKM ’17, pp 397–406. Association for Computing Machinery, New York, NY, USA . https://doi.org/10.1145/3132847.3132918 – reference: McCallumANigamKRennieJDMSeymoreKAutomating the construction of internet portals with machine learningInf Retrieval2004312716310.1023/A:1009953814988 – reference: Li C, Jia K, Shen D, Shi CJR, Yang H (2019) Hierarchical representation learning for bipartite graphs. In: proceedings of the twenty-eighth international joint conference on artificial intelligence, IJCAI-19, pp 2873–2879. international joint conferences on artificial intelligence organization, ??? . https://doi.org/10.24963/ijcai.2019/398 – reference: McFee B, Bertin-Mahieux T, Ellis DPW, Lanckriet GRG (2012) The million song dataset challenge. In: Proceedings of the 21st international conference on world wide web. WWW ’12 Companion, pp 909–916. association for computing machinery, New York, NY, USA . https://doi.org/10.1145/2187980.2188222 – reference: Wang H, Chen B, Li W-J (2013) Collaborative topic regression with social regularization for tag recommendation. In: IJCAI – reference: He C, Xie T, Rong Y, Huang W, Huang J, Ren X, Shahabi C Adversarial Representation Learning on Large-Scale Bipartite Graphs – reference: Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector space. arXiv . arxiv:1301.3781 – reference: Hamilton WL, Ying R, Leskovec J (2018) Representation learning on graphs: methods and applications – reference: Perozzi B, Al-Rfou R, Skiena S (2014) DeepWalk. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data Mining. ACM, ??? . https://doi.org/10.1145/2623330.2623732 – reference: Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv . arxiv:1609.02907 – reference: Cai H, Zheng VW, Chang KC-C (2017) A comprehensive survey of graph embedding: problems, techniques and applications. arXiv . arxiv:1709.07604 – reference: Gao M, He X, Chen L, Liu T, Zhang J, Zhou A (2019) Learning vertex representations for bipartite networks. arXiv . arXiv:1901.09676 – reference: HarperFMKonstanJAThe movielens datasets: history and contextACM Trans Interact Intell Syst20155411910.1145/2827872 – reference: Arsov N, Mirceva G (2019) Network Embedding: An Overview. arXiv. arxiv:1911.11726 – reference: Wang M, Zheng D, Ye Z, Gan Q, Li M, Song X, Zhou J, Ma C, Yu L, Gai Y, Xiao T, He T, Karypis G, Li J, Zhang Z (2019) Deep graph library: a graph-centric, highly-performant package for graph neural networks. arXiv. arxiv:1909.01315 – reference: LeskovecJAdamicLAHubermanBAThe dynamics of viral marketingACM Trans Web200711510.1145/1232722.1232727 – reference: HamiltonWLGraph representation learningSynthesis Lectures Artif Intell Mach Learn2020143115910.1007/978-3-031-01588-5 – reference: Huang W, Li Y, Fang Y, Fan J, Yang H (2020) Biane: Bipartite attributed network embedding. In: Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval, pp 149–158 – reference: Yang J, Leskovec J Defining and evaluating network communities based on ground-truth. arXiv arxiv:1205.6233 – reference: GuillaumeJ-LLatapyMBipartite structure of all complex networksInf Process Lett2004905215221205465610.1016/j.ipl.2004.03.007 – reference: Yang C, Xiao Y, Zhang Y, Sun Y, Han J: Heterogeneous network representation learning: a unified framework with survey and benchmark. arXiv (2020). arxiv:2004.00216 |
SSID | ssj0001033906 |
Score | 2.363221 |
SecondaryResourceType | review_article |
Snippet | Research on graph representation learning (a.k.a. embedding) has received great attention in recent years and shows effective results for various types of... |
SourceID | hal proquest springer |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 54 |
SubjectTerms | Algorithms Applications of Graph Theory and Complex Networks Classification Codes Computer Science Data Mining and Knowledge Discovery Economics Embedding Game Theory Graphical representations Graphs Humanities Information Retrieval Law Machine Learning Methodology of the Social Sciences Review Paper Social and Behav. Sciences Social and Information Networks Statistics for Social Sciences Taxonomy |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1sPejFj6pYrbKIeHIx2U2yybEUS5HqyUJvIfuFHoylSSv21zubJlSKF6-bZQ_zMpk3mZ03ALcssb5MIkZ97RsaaBtQmVhLszgUXGAKvf518fwSjSbB0zSc1jI5rhdmq37_UGC25DRgmbv144UxXbVgN_TxGFeYjQZ1H8zfWzFevLnrjb-441a5s4oiwyM4qOkf6a_xOoYdk3fgsBmtQGpP68Be0zBcdKA1zr5O4K5PisV8ab7JZ07k-8xBXhpSCU4XxHxIo10YOoXJ8PF1MKL1kAOqkAqUVOlMJB5niisXj5WKdSgCnRjFpbbak0EoJNKeSEcKUy8jXLetyJAYW1zDr8MZtPPP3JwDCTG0sGqQmLSBDWTGYisk92zkKTw07MINmiOdrWUsUicsPeqPU7eGrhwj1YuXfhd6jbXS-nUuUpago2LyyHkX7hsLbh5vpI8dAikikFYIpKuL_22_hH1W4ccp83vQLucLc4VBv5TXFdo_U6WjWA priority: 102 providerName: Springer Nature |
Title | A survey on bipartite graphs embedding |
URI | https://link.springer.com/article/10.1007/s13278-023-01058-z https://www.proquest.com/docview/2919610633 https://hal.science/hal-04089238 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6XbyIouJ0jiLiyWCbtE16kjk2h-gQcbBbaL7Qg91cu4H7631pOyoePDaFQN9L3-_3Xt4HQlcksYFMYoIDHRgcahtimViLUx4xysCFrkIXz5N4PA0fZ9GsDrjldVrl1iaWhlrPlYuR35IEzgr4L5TeLb6wmxrlblfrERq7qA0mmPMWat8PJy-vTZTFp-DUlyVGPE4w0AW_rpyp6ucocQ1miUsp8iOON4Aw7y4h8hfb_HNBWuLO6ADt14TR61caPkQ7JjtC130vXy3X5tubZ578WDj9F8Yru0_nnvmURjtMOkbT0fBtMMb1xAOsgBcUWOmUJT4liioHzkpxHbFQJ0ZRqa32ZRgxCRwo1rECP8wwV3rLUmDJFtbAVJygVjbPzCnyIsAZUk4Vkza0oUwJt0xS38a-gk2jDrqELxWLqqeFcF2mx_0n4dbgv-bA-_g66KDuVhCiPtu5aDTRQTdb4TSvmz7ITrgChCtK4YrN2f-7naM9UqqCYhJ0UatYrswFIH4he2iXjx56tXLhaRAPfgBwf6ck |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8NADLZKGWBBIEAUCkQImDiR3OU5IFQBpaWFqZXYjt5LMJCWvlD7o_iN-JJGRQxsrI5kKbbP_uw72wCnNDGeSEJKPOVp4ivjE5EYQ3pxELEIU-i8dPH4FDa6_sNz8FyCr6IXxj6rLHxi5qhVX9oa-SVN0FYwf2HsevBB7NYoe7tarNDIzaKlZ5-Yso2umreo3zNK63edmwZZbBUgEmPvmEjVixKXUcmkDYBSxiqIfJVoyYQyyhV-EAnEGaEKJeY6OrLtrVEPkahBGh5H5LsCqz5DbrYzvX6_rOm4SMzWedpFTwTBibvo08m79Ri142ypfcDkBjGZYzx7tc8vf2DbX9exWZSrb8LGAp46tdyetqCk0204rzmjyXCqZ04_dcTbwFrbWDvZrOuRo9-FVjYC7kD3XySxC-W0n-o9cAKMajTbYSaMb3zRo7GJBHNN6EpkGlTgBP-UD_IJGtzOtG7U2tzS0IvEiDLjqVeBaiEIvjhJI77UewUuCuEsPy-nLlvhchQuz4TL5_t_czuGtUbnsc3bzafWAazTTC2MUK8K5fFwog8Ra4zFUaZgB17-26K-Abc34E8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xkKCXPgJVU9KyQpQTK-xdPw8cokCUlIA4gMRt8b5UDjhR7AQlv6o_sbOOrVRVLxy4rq2VNY_9Zrwz3wAcs9T6Mo0Y9bVvaKBtQGVqLc2SMOYxptCrXxfXN9HgPvj5ED5swO-mF6aqdm-uJFc9DY6lKS_PJtqerRvfOHPMsMzVAnlhQpd1WeWVWbxg0lacDy9Qwz8Y61_e9Qa0nitAFaJvSZXO4tTjTHHlIFCpRIdxoFOjuNRWezIIY4mRRqQjhdmOiV2Da5xhLGpxDR0S992EbcyMfJfu9aJe3Y3z_09D1Prliiz_imD_uXStsKz_Ed7XQSjprqzmE2yYvAUfmgEPpPb3Fuw2bctFCzZH2csenHRJMZvOzYKMcyKfJs7wSkMq2uuCmGdptAPDfbh_E5F8hq18nJsvQEIEOFaNM5M2sIHMWGJjyT0beQo3DdtwhOIQkxWZhnD01oPuSLg1PFASDDiTud-GTiMtUTtVIViKxwWmsJy34bSR4PrxmoDZaUCgBkSlAbH8-rrXD2Hn9qIvRsObqwN4xypVcsr8DmyV05n5hlFIKb9Xiifw-NaW9gcrhugV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+survey+on+bipartite+graphs+embedding&rft.jtitle=Social+network+analysis+and+mining&rft.au=Giamphy%2C+Edward&rft.au=Guillaume%2C+Jean-Loup&rft.au=Doucet%2C+Antoine&rft.au=Sanchis%2C+Kevin&rft.date=2023-03-21&rft.pub=Springer+Nature+B.V&rft.issn=1869-5450&rft.eissn=1869-5469&rft.volume=13&rft.issue=1&rft.spage=54&rft_id=info:doi/10.1007%2Fs13278-023-01058-z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1869-5450&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1869-5450&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1869-5450&client=summon |