A survey on bipartite graphs embedding

Research on graph representation learning (a.k.a. embedding) has received great attention in recent years and shows effective results for various types of networks. Nevertheless, few initiatives have been focused on the particular case of embeddings for bipartite graphs. In this paper, we first defi...

Full description

Saved in:
Bibliographic Details
Published inSocial Network Analysis and Mining Vol. 13; no. 1; p. 54
Main Authors Giamphy, Edward, Guillaume, Jean-Loup, Doucet, Antoine, Sanchis, Kevin
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 21.03.2023
Springer Nature B.V
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Research on graph representation learning (a.k.a. embedding) has received great attention in recent years and shows effective results for various types of networks. Nevertheless, few initiatives have been focused on the particular case of embeddings for bipartite graphs. In this paper, we first define the graph embedding problem in the case of bipartite graphs. Next, we propose a taxonomy of approaches used to tackle this problem and draw a description of state-of-the-art methods. Then, we establish their pros and cons with respect to conventional network embeddings. Finally, we provide a description of available resources to lead experiments on the subject.
AbstractList Research on graph representation learning (a.k.a. embedding) has received great attention in recent years and shows effective results for various types of networks. Nevertheless, few initiatives have been focused on the particular case of embeddings for bipartite graphs. In this paper, we first define the graph embedding problem in the case of bipartite graphs. Next, we propose a taxonomy of approaches used to tackle this problem and draw a description of state-of-the-art methods. Then, we establish their pros and cons with respect to conventional network embeddings. Finally, we provide a description of available resources to lead experiments on the subject.
Author Giamphy, Edward
Guillaume, Jean-Loup
Doucet, Antoine
Sanchis, Kevin
Author_xml – sequence: 1
  givenname: Edward
  surname: Giamphy
  fullname: Giamphy, Edward
  email: edward.giamphy@preligens.com
  organization: AI Research, Preligens, L3i, La Rochelle University
– sequence: 2
  givenname: Jean-Loup
  surname: Guillaume
  fullname: Guillaume, Jean-Loup
  organization: L3i, La Rochelle University
– sequence: 3
  givenname: Antoine
  surname: Doucet
  fullname: Doucet, Antoine
  organization: L3i, La Rochelle University
– sequence: 4
  givenname: Kevin
  surname: Sanchis
  fullname: Sanchis, Kevin
  organization: AI Research, Preligens
BackLink https://hal.science/hal-04089238$$DView record in HAL
BookMark eNpFkE1LAzEQhoNUsNb-AU8LguBhdZLZzcexFLVCwYueQzZJ2y3t7pq0hfbXm7qipxleHt4ZnmsyaNrGE3JL4ZECiKdIkQmZA8McKJQyP12QIZVc5WXB1eBvL-GKjGNcAyQMUQEfkvtJFvfh4I9Z22RV3Zmwq3c-WwbTrWLmt5V3rm6WN-RyYTbRj3_niHy-PH9MZ_n8_fVtOpnnFpXY5dYZoQCZRZuOSGulK0XhlLdYuYWDqihFxZBxx62gwgsoGRVGSrZImeA4Ig9978psdBfqrQlH3ZpazyZzfc6gAKkYygNN7F3PdqH92vu40-t2H5r0nmaKKk6BIyYKeyqmumbpwz9FQZ_96d6fTv70jz99wm9cR2IJ
CitedBy_id crossref_primary_10_1016_j_neunet_2025_107194
crossref_primary_10_3390_e26110992
crossref_primary_10_1016_j_artmed_2024_103028
crossref_primary_10_1016_j_neucom_2023_127016
crossref_primary_10_1145_3633518
crossref_primary_10_3389_frai_2023_1256352
crossref_primary_10_1016_j_asoc_2024_111230
crossref_primary_10_1016_j_eswa_2024_126322
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID C6C
0-V
3V.
7XB
88J
8BJ
8FE
8FG
8FK
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FQK
GNUQQ
HCIFZ
JBE
JQ2
K7-
M2R
P5Z
P62
PHGZM
PHGZT
PKEHL
POGQB
PQEST
PQGLB
PQQKQ
PQUKI
PRQQA
Q9U
1XC
VOOES
DOI 10.1007/s13278-023-01058-z
DatabaseName Springer Nature OA Free Journals
ProQuest Social Sciences Premium Collection【Remote access available】
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Social Science Database (Alumni Edition)
International Bibliography of the Social Sciences (IBSS)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
International Bibliography of the Social Sciences
ProQuest Central Student
SciTech Premium Collection
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
Computer Science Database
Social Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest Sociology & Social Sciences Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Social Sciences
ProQuest Central Basic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Social Science Journals (Alumni Edition)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Sociology & Social Sciences Collection
ProQuest Central
ProQuest One Applied & Life Sciences
International Bibliography of the Social Sciences (IBSS)
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Social Science Premium Collection
ProQuest One Social Sciences
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Social Science Journals
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

Computer Science Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Law
Computer Science
EISSN 1869-5469
ExternalDocumentID oai_HAL_hal_04089238v1
10_1007_s13278_023_01058_z
GroupedDBID C6C
0-V
0R~
0VY
203
30V
3V.
4.4
406
408
409
7XB
8BJ
8FE
8FG
8FK
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAJSJ
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABEEZ
ABFSG
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABXPI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACSTC
ACULB
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGXO
AFHIU
AFKRA
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHWEU
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARAPS
ASPBG
ATHPR
AUKKA
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
BENPR
BGLVJ
BGNMA
CCPQU
CSCUP
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FQK
FRRFC
FYJPI
GGCAI
GGRSB
GJIRD
GNUQQ
GQ8
HCIFZ
HG6
HMJXF
HQYDN
HRMNR
HVGLF
I0C
IKXTQ
ITM
IWAJR
IZIGR
J-C
JBE
JBSCW
JCJTX
JQ2
JZLTJ
K7-
KOV
LLZTM
M2R
M4Y
NPVJJ
NQJWS
NU0
O93
O9J
P62
PHGZM
PHGZT
PKEHL
POGQB
PQEST
PQGLB
PQQKQ
PQUKI
PRQQA
PT4
Q9U
RLLFE
ROL
RSV
S27
SCO
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
WK8
ZMTXR
~A9
1XC
2VQ
AAAVM
AARHV
AAYZH
AEBTG
AFLOW
AHSBF
AJBLW
EJD
FINBP
FSGXE
HF~
HZ~
O9-
RIG
S1Z
VOOES
ID FETCH-LOGICAL-c397t-cda79032c3c0008cc8d574d9ec3bdfd0b457b2326d6c717e705217a882f26d763
IEDL.DBID BENPR
ISSN 1869-5450
IngestDate Fri May 09 12:13:20 EDT 2025
Fri Jul 25 23:28:05 EDT 2025
Fri Feb 21 02:41:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Representation learning
Survey
Machine learning
Benchmark
Graph embeddings
Graph-based pattern representations
Bipartite graph
Data mining
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-cda79032c3c0008cc8d574d9ec3bdfd0b457b2326d6c717e705217a882f26d763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6160-3356
0000-0002-4615-1563
OpenAccessLink https://doi.org/10.1007/s13278-023-01058-z
PQID 2919610633
PQPubID 2044166
ParticipantIDs hal_primary_oai_HAL_hal_04089238v1
proquest_journals_2919610633
springer_journals_10_1007_s13278_023_01058_z
PublicationCentury 2000
PublicationDate 2023-03-21
PublicationDateYYYYMMDD 2023-03-21
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-21
  day: 21
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Heidelberg
PublicationTitle Social Network Analysis and Mining
PublicationTitleAbbrev Soc. Netw. Anal. Min
PublicationYear 2023
Publisher Springer Vienna
Springer Nature B.V
Springer
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
– name: Springer
References Asghar N (2016) Yelp dataset challenge: review rating prediction. arXiv . arxiv:1605.05362
Shlens J (2014) Notes on Kullback-Leibler Divergence and Likelihood. arXiv . arxiv:1404.2000
Hamilton WL, Ying R, Leskovec J (2017) Representation learning on graphs: methods and applications. arXiv preprint arXiv:1709.05584
He C (2019) Heterogeneous graph convolutional networks for bipartite graph embedding
He C, Xie T, Rong Y, Huang W, Huang J, Ren X, Shahabi C Adversarial Representation Learning on Large-Scale Bipartite Graphs
Huang W, Li Y, Fang Y, Fan J, Yang H (2020) Biane: Bipartite attributed network embedding. In: Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval, pp 149–158
Li C, Jia K, Shen D, Shi CJR, Yang H (2019) Hierarchical representation learning for bipartite graphs. In: proceedings of the twenty-eighth international joint conference on artificial intelligence, IJCAI-19, pp 2873–2879. international joint conferences on artificial intelligence organization, ??? . https://doi.org/10.24963/ijcai.2019/398
Cheng H-T, Koc L, Harmsen J, Shaked T, Chandra T, Aradhye H, Anderson G, Corrado G, Chai W, Ispir M, Anil R, Haque Z, Hong L, Jain V, Liu X, Shah H (2016) Wide & deep learning for recommender systems
Yang J, Leskovec J Defining and evaluating network communities based on ground-truth. arXiv arxiv:1205.6233
Rumelhart DE, Mcclelland J (1986) Parallel distributed processing: explorations in the microstructure of cognition. Vol 1. Foundations
HarperFMKonstanJAThe movielens datasets: history and contextACM Trans Interact Intell Syst20155411910.1145/2827872
Tang J, Gao H, Liu H, Das Sarma A (2012) Etrust: Understanding trust evolution in an online world. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining. KDD ’12, pp. 253–261. association for computing machinery, New York, NY, USA . https://doi.org/10.1145/2339530.2339574
Celma O (2010) Music recommendation and discovery in the long tail. Springer, ???
Giles CL, Bollacker KD, Lawrence S (1998) Citeseer: an automatic citation indexing system. In: DL ’98
GuillaumeJ-LLatapyMBipartite structure of all complex networksInf Process Lett2004905215221205465610.1016/j.ipl.2004.03.007
NewmanMEJStrogatzSHWattsDJRandom graphs with arbitrary degree distributions and their applicationsPhys Rev E200164210.1103/physreve.64.026118
Matthias, F, Jan Eric, L: Fast graph representation learning with pytorch geometric. https://github.com/pyg-team/pytorch_geometric
HamiltonWLGraph representation learningSynthesis Lectures Artif Intell Mach Learn2020143115910.1007/978-3-031-01588-5
Tang J, Zhang J, Yao L, Li J, Zhang L, Su Z (2008) Arnetminer: Extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining. KDD ’08, pp 990–998. association for computing machinery, New York, NY, USA . https://doi.org/10.1145/1401890.1402008
Xu Y, Cohen SB (2018) Stock movement prediction from tweets and historical prices. In: Proceedings of the 56th annual meeting of the association for computational linguistics (Volume 1: Long Papers), pp 1970–1979. association for computational linguistics, Melbourne, Australia . https://doi.org/10.18653/v1/P18-1183
Bertin-Mahieux T, Ellis DPW, Whitman B, Lamere P (2011) The million song dataset. In: Proceedings of the 12th international conference on music information retrieval (ISMIR 2011)
Hamilton WL, Ying R, Leskovec J (2018) Representation learning on graphs: methods and applications
Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv . arxiv:1609.02907
Cai H, Zheng VW, Chang KC-C (2017) A comprehensive survey of graph embedding: problems, techniques and applications. arXiv . arxiv:1709.07604
Ha D, Dai A, Le QV (2016) HyperNetworks. arXiv. arxiv:1609.09106
Baltrunas L, Church K, Karatzoglou A, Oliver N (2015) Frappe: understanding the usage and perception of mobile app recommendations in-the-wild. arXiv . arxiv:1505.03014
MinSGaoZPengJWangLQinKFangBStgsn - a spatial-temporal graph neural network framework for time-evolving social networksKnowl-Based Syst202121410.1016/j.knosys.2021.106746
BobadillaJOrtegaFHernandoAGutiérrezARecommender systems surveyKnowl-Based Syst20134610913210.1016/j.knosys.2013.03.012
GardnerTSdi BernardoDLorenzDCollinsJJInferring genetic networks and identifying compound mode of action via expression profilingScience2003301562910210510.1126/science.1081900
SenPNamataGBilgicMGetoorLGalligherBEliassi-RadTCollective classification in network dataAI Mag20082939310.1609/aimag.v29i3.2157
West R, Leskovec J (2012) Human wayfinding in information networks. In: proceedings of the 21st international conference on world wide web. WWW ’12, pp 619–628. association for computing machinery, New York, NY, USA . https://doi.org/10.1145/2187836.2187920
Grattarola D, Alippi C (2020) Graph neural networks in tensorflow and keras with spektral. arXiv . arxiv:2006.12138
BasileAOYahiATatonettiNPArtificial intelligence for drug toxicity and safetyTrends Pharmacol Sci201940962463510.1016/j.tips.2019.07.005
ChakrabartiDFaloutsosCGraph mining: laws generators and algorithmsACM Comput Surv2006381210.1145/1132952.1132954
Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector space. arXiv . arxiv:1301.3781
Wang M, Zheng D, Ye Z, Gan Q, Li M, Song X, Zhou J, Ma C, Yu L, Gai Y, Xiao T, He T, Karypis G, Li J, Zhang Z (2019) Deep graph library: a graph-centric, highly-performant package for graph neural networks. arXiv. arxiv:1909.01315
WuZPanSChenFLongGZhangCYuPSA comprehensive survey on graph neural networksIEEE Trans Neural Netw Learn Syst2021321424420549510.1109/tnnls.2020.2978386
Liu Z, Nguyen T-K, Fang Y (2021) Tail-gnn: Tail-node graph neural networks. In: Proceedings of the 27th ACM SIGKDD conference on knowledge discovery and data mining. KDD ’21, pp 1109–1119. association for computing machinery, New York, NY, USA . https://doi.org/10.1145/3447548.3467276
Tencent records the watching behaviors of users on movies in QQlive. https://v.qq.com
Gao C, Zheng Y, Li N, Li Y, Qin Y, Piao J, Quan Y, Chang J, Jin D, He X, Li Y (2021) A survey of graph neural networks for recommender systems: challenges, methods, and directions. arXiv . arxiv:2109.12843
McFee B, Bertin-Mahieux T, Ellis DPW, Lanckriet GRG (2012) The million song dataset challenge. In: Proceedings of the 21st international conference on world wide web. WWW ’12 Companion, pp 909–916. association for computing machinery, New York, NY, USA . https://doi.org/10.1145/2187980.2188222
Sybrandt J, Safro I FOBE and HOBE: First- and High-Order Bipartite Embeddings
Leskovec J, Lang KJ, Dasgupta A, Mahoney MW (2008) Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. arXiv . arxiv:0810.1355
Wang H, Chen B, Li W-J (2013) Collaborative topic regression with social regularization for tag recommendation. In: IJCAI
Grover, A, Leskovec, J (2016) node2vec: scalable feature learning for networks. arXiv . arxiv:1607.00653
Yang C, Xiao Y, Zhang Y, Sun Y, Han J: Heterogeneous network representation learning: a unified framework with survey and benchmark. arXiv (2020). arxiv:2004.00216
LeskovecJAdamicLAHubermanBAThe dynamics of viral marketingACM Trans Web200711510.1145/1232722.1232727
Barros CDT, Mendonça MRF, Vieira AB, Ziviani A (2021) A survey on embedding dynamic graphs. arXiv . arxiv:2101.01229
Perozzi B, Al-Rfou R, Skiena S (2014) DeepWalk. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data Mining. ACM, ??? . https://doi.org/10.1145/2623330.2623732
Yu L, Zhang C, Pei S, Sun G, Zhang X (2018) Walkranker: A unified pairwise ranking model with multiple relations for item recommendation. In: McIlraith, S.A, Weinberger, K.Q (eds.) proceedings of the thirty-second AAAI conference on artificial intelligence, (AAAI-18), the 30th Innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on educational advances in artificial intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pp 2596–2603. AAAI Press, ??? . https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16520
He C, Xie T, Rong Y, Huang W, Huang J, Ren X, Shahabi C (2020) Cascade-BGNN: toward efficient self-supervised representation learning on large-scale bipartite graphs
Wang M, Zhang J, Liu J, Hu W, Wang S, Li X, Liu W (2017) PDD Graph: bridging electronic medical records and biomedical knowledge graphs via entity linking. arXiv . arxiv:1707.05340
Godwin J, Keck T, Battaglia P, Bapst V, Kipf T, Li Y, Stachenfeld K, Veličković P, Sanchez-Gonzalez A Jraph: a library for graph neural networks In jax. http://github.com/deepmind/jraph
Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and phrases and their compositionality. In: Burges, C.J, Bottou, L, Welling, M, Ghahramani, Z, Weinberger, K.Q (eds.) Advances in neural information processing systems, vol. 26. Curran Associates, Inc., ??? . https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
Backstrom L, Huttenlocher D, Kleinberg J, Lan X (2006) Group formation in large social networks: Membership, growth, and evolution. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining. KDD ’06, pp 44–54. Association for Computing Machinery, New York, NY, USA . https://doi.org/10.1145/1150402.1150412
Gao M, He X, Chen L, Liu T, Zhang J, Zhou A (2019) Learning vertex representations for bipartite networks. arXiv . arXiv:1901.09676
Stauffer M, Tschachtli T, Fischer A, Riesen K (2017). A survey on applications of bipartite graph edit distance. https://doi.org/10.1007/978-3-319-58961-9_22
Hegeman T, Iosup A (2018) Survey of Graph Analysis Applications. arXiv. arxiv:1807.00382
Dwivedi VP, Luu AT, Laurent T, Bengio Y, Bresson X (2022) Gra
References_xml – reference: BobadillaJOrtegaFHernandoAGutiérrezARecommender systems surveyKnowl-Based Syst20134610913210.1016/j.knosys.2013.03.012
– reference: Xu Y, Cohen SB (2018) Stock movement prediction from tweets and historical prices. In: Proceedings of the 56th annual meeting of the association for computational linguistics (Volume 1: Long Papers), pp 1970–1979. association for computational linguistics, Melbourne, Australia . https://doi.org/10.18653/v1/P18-1183
– reference: Stauffer M, Tschachtli T, Fischer A, Riesen K (2017). A survey on applications of bipartite graph edit distance. https://doi.org/10.1007/978-3-319-58961-9_22
– reference: Sybrandt J, Safro I FOBE and HOBE: First- and High-Order Bipartite Embeddings
– reference: Baltrunas L, Church K, Karatzoglou A, Oliver N (2015) Frappe: understanding the usage and perception of mobile app recommendations in-the-wild. arXiv . arxiv:1505.03014
– reference: Liu Z, Nguyen T-K, Fang Y (2021) Tail-gnn: Tail-node graph neural networks. In: Proceedings of the 27th ACM SIGKDD conference on knowledge discovery and data mining. KDD ’21, pp 1109–1119. association for computing machinery, New York, NY, USA . https://doi.org/10.1145/3447548.3467276
– reference: Cheng H-T, Koc L, Harmsen J, Shaked T, Chandra T, Aradhye H, Anderson G, Corrado G, Chai W, Ispir M, Anil R, Haque Z, Hong L, Jain V, Liu X, Shah H (2016) Wide & deep learning for recommender systems
– reference: BasileAOYahiATatonettiNPArtificial intelligence for drug toxicity and safetyTrends Pharmacol Sci201940962463510.1016/j.tips.2019.07.005
– reference: He C, Xie T, Rong Y, Huang W, Huang J, Ren X, Shahabi C (2020) Cascade-BGNN: toward efficient self-supervised representation learning on large-scale bipartite graphs
– reference: Graph Nets, https://www.deepmind.com/open-source/graph-nets
– reference: West R, Leskovec J (2012) Human wayfinding in information networks. In: proceedings of the 21st international conference on world wide web. WWW ’12, pp 619–628. association for computing machinery, New York, NY, USA . https://doi.org/10.1145/2187836.2187920
– reference: Bertin-Mahieux T, Ellis DPW, Whitman B, Lamere P (2011) The million song dataset. In: Proceedings of the 12th international conference on music information retrieval (ISMIR 2011)
– reference: WuZPanSChenFLongGZhangCYuPSA comprehensive survey on graph neural networksIEEE Trans Neural Netw Learn Syst2021321424420549510.1109/tnnls.2020.2978386
– reference: Hegeman T, Iosup A (2018) Survey of Graph Analysis Applications. arXiv. arxiv:1807.00382
– reference: He R, McAuley J (2016) Ups and downs. In: Proceedings of the 25th international conference on world wide web. international world wide web conferences steering committee, ??? . https://doi.org/10.1145/2872427.2883037
– reference: Celma O (2010) Music recommendation and discovery in the long tail. Springer, ???
– reference: He C (2019) Heterogeneous graph convolutional networks for bipartite graph embedding
– reference: Giles CL, Bollacker KD, Lawrence S (1998) Citeseer: an automatic citation indexing system. In: DL ’98
– reference: Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and phrases and their compositionality. In: Burges, C.J, Bottou, L, Welling, M, Ghahramani, Z, Weinberger, K.Q (eds.) Advances in neural information processing systems, vol. 26. Curran Associates, Inc., ??? . https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
– reference: Tang J, Zhang J, Yao L, Li J, Zhang L, Su Z (2008) Arnetminer: Extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining. KDD ’08, pp 990–998. association for computing machinery, New York, NY, USA . https://doi.org/10.1145/1401890.1402008
– reference: NewmanMEJStrogatzSHWattsDJRandom graphs with arbitrary degree distributions and their applicationsPhys Rev E200164210.1103/physreve.64.026118
– reference: Leskovec J, Lang KJ, Dasgupta A, Mahoney MW (2008) Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. arXiv . arxiv:0810.1355
– reference: Bennett J, Lanning S (2007) The netflix prize
– reference: West R, Pineau J, Precup D (2009) Wikispeedia: An online game for inferring semantic distances between concepts. In: IJCAI
– reference: Jiang M, Cui P, Yuan NJ, Xie X, Yang S (2016) Little is much: Bridging cross-platform behaviors through overlapped crowds. In: Proceedings of the thirtieth AAAI conference on artificial intelligence. AAAI’16, pp 13–19. AAAI Press, ???
– reference: Shlens J (2014) Notes on Kullback-Leibler Divergence and Likelihood. arXiv . arxiv:1404.2000
– reference: Harper FM, Konstan JA (2015) The movielens datasets: history and context. ACM Trans Interact Intell Syst, 5(4) . https://doi.org/10.1145/2827872
– reference: Dwivedi VP, Luu AT, Laurent T, Bengio Y, Bresson X (2022) Graph neural networks with learnable structural and positional representations. In: International conference on learning representations . https://openreview.net/forum?id=wTTjnvGphYj
– reference: Yu L, Zhang C, Pei S, Sun G, Zhang X (2018) Walkranker: A unified pairwise ranking model with multiple relations for item recommendation. In: McIlraith, S.A, Weinberger, K.Q (eds.) proceedings of the thirty-second AAAI conference on artificial intelligence, (AAAI-18), the 30th Innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on educational advances in artificial intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pp 2596–2603. AAAI Press, ??? . https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16520
– reference: Matthias, F, Jan Eric, L: Fast graph representation learning with pytorch geometric. https://github.com/pyg-team/pytorch_geometric
– reference: Gao M, Chen L, He X, Zhou A (2018) Bine: bipartite network embedding. In: The 41st International ACM SIGIR conference on research & development in information retrieval, pp 715–724
– reference: Malkov YA, Yashunin DA (2016) Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small World graphs. arXiv . arxiv:1603.09320
– reference: SenPNamataGBilgicMGetoorLGalligherBEliassi-RadTCollective classification in network dataAI Mag20082939310.1609/aimag.v29i3.2157
– reference: Asghar N (2016) Yelp dataset challenge: review rating prediction. arXiv . arxiv:1605.05362
– reference: Rumelhart DE, Mcclelland J (1986) Parallel distributed processing: explorations in the microstructure of cognition. Vol 1. Foundations,
– reference: Barros CDT, Mendonça MRF, Vieira AB, Ziviani A (2021) A survey on embedding dynamic graphs. arXiv . arxiv:2101.01229
– reference: Wang M, Zhang J, Liu J, Hu W, Wang S, Li X, Liu W (2017) PDD Graph: bridging electronic medical records and biomedical knowledge graphs via entity linking. arXiv . arxiv:1707.05340
– reference: ChenJSafroIAlgebraic distance on graphsSIAM J Sci Comput201133634683490286202210.1137/090775087
– reference: Chen C-M, Wang C-J, Tsai M-F, Yang Y-H (2019) Collaborative similarity embedding for recommender systems. arXiv . arxiv:1902.06188
– reference: ChakrabartiDFaloutsosCGraph mining: laws generators and algorithmsACM Comput Surv2006381210.1145/1132952.1132954
– reference: Grover, A, Leskovec, J (2016) node2vec: scalable feature learning for networks. arXiv . arxiv:1607.00653
– reference: Tencent records the watching behaviors of users on movies in QQlive. https://v.qq.com/
– reference: Godwin J, Keck T, Battaglia P, Bapst V, Kipf T, Li Y, Stachenfeld K, Veličković P, Sanchez-Gonzalez A Jraph: a library for graph neural networks In jax. http://github.com/deepmind/jraph
– reference: Gao C, Zheng Y, Li N, Li Y, Qin Y, Piao J, Quan Y, Chang J, Jin D, He X, Li Y (2021) A survey of graph neural networks for recommender systems: challenges, methods, and directions. arXiv . arxiv:2109.12843
– reference: MinSGaoZPengJWangLQinKFangBStgsn - a spatial-temporal graph neural network framework for time-evolving social networksKnowl-Based Syst202121410.1016/j.knosys.2021.106746
– reference: Tang J, Gao H, Liu H, Das Sarma A (2012) Etrust: Understanding trust evolution in an online world. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining. KDD ’12, pp. 253–261. association for computing machinery, New York, NY, USA . https://doi.org/10.1145/2339530.2339574
– reference: GardnerTSdi BernardoDLorenzDCollinsJJInferring genetic networks and identifying compound mode of action via expression profilingScience2003301562910210510.1126/science.1081900
– reference: Hamilton WL, Ying R, Leskovec J (2017) Representation learning on graphs: methods and applications. arXiv preprint arXiv:1709.05584
– reference: Li C, Shi M, Qu B, Li X (2021) Deep attributed network representation learning via attribute enhanced neighborhood. arXiv . arxiv:2104.05234
– reference: Ha D, Dai A, Le QV (2016) HyperNetworks. arXiv. arxiv:1609.09106
– reference: Backstrom L, Huttenlocher D, Kleinberg J, Lan X (2006) Group formation in large social networks: Membership, growth, and evolution. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining. KDD ’06, pp 44–54. Association for Computing Machinery, New York, NY, USA . https://doi.org/10.1145/1150402.1150412
– reference: Grattarola D, Alippi C (2020) Graph neural networks in tensorflow and keras with spektral. arXiv . arxiv:2006.12138
– reference: Zhang Y, Xiong Y, Kong X, Zhu Y (2017) Learning node embeddings in interaction graphs. In: Proceedings of the 2017 ACM on conference on information and knowledge management. CIKM ’17, pp 397–406. Association for Computing Machinery, New York, NY, USA . https://doi.org/10.1145/3132847.3132918
– reference: McCallumANigamKRennieJDMSeymoreKAutomating the construction of internet portals with machine learningInf Retrieval2004312716310.1023/A:1009953814988
– reference: Li C, Jia K, Shen D, Shi CJR, Yang H (2019) Hierarchical representation learning for bipartite graphs. In: proceedings of the twenty-eighth international joint conference on artificial intelligence, IJCAI-19, pp 2873–2879. international joint conferences on artificial intelligence organization, ??? . https://doi.org/10.24963/ijcai.2019/398
– reference: McFee B, Bertin-Mahieux T, Ellis DPW, Lanckriet GRG (2012) The million song dataset challenge. In: Proceedings of the 21st international conference on world wide web. WWW ’12 Companion, pp 909–916. association for computing machinery, New York, NY, USA . https://doi.org/10.1145/2187980.2188222
– reference: Wang H, Chen B, Li W-J (2013) Collaborative topic regression with social regularization for tag recommendation. In: IJCAI
– reference: He C, Xie T, Rong Y, Huang W, Huang J, Ren X, Shahabi C Adversarial Representation Learning on Large-Scale Bipartite Graphs
– reference: Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector space. arXiv . arxiv:1301.3781
– reference: Hamilton WL, Ying R, Leskovec J (2018) Representation learning on graphs: methods and applications
– reference: Perozzi B, Al-Rfou R, Skiena S (2014) DeepWalk. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data Mining. ACM, ??? . https://doi.org/10.1145/2623330.2623732
– reference: Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv . arxiv:1609.02907
– reference: Cai H, Zheng VW, Chang KC-C (2017) A comprehensive survey of graph embedding: problems, techniques and applications. arXiv . arxiv:1709.07604
– reference: Gao M, He X, Chen L, Liu T, Zhang J, Zhou A (2019) Learning vertex representations for bipartite networks. arXiv . arXiv:1901.09676
– reference: HarperFMKonstanJAThe movielens datasets: history and contextACM Trans Interact Intell Syst20155411910.1145/2827872
– reference: Arsov N, Mirceva G (2019) Network Embedding: An Overview. arXiv. arxiv:1911.11726
– reference: Wang M, Zheng D, Ye Z, Gan Q, Li M, Song X, Zhou J, Ma C, Yu L, Gai Y, Xiao T, He T, Karypis G, Li J, Zhang Z (2019) Deep graph library: a graph-centric, highly-performant package for graph neural networks. arXiv. arxiv:1909.01315
– reference: LeskovecJAdamicLAHubermanBAThe dynamics of viral marketingACM Trans Web200711510.1145/1232722.1232727
– reference: HamiltonWLGraph representation learningSynthesis Lectures Artif Intell Mach Learn2020143115910.1007/978-3-031-01588-5
– reference: Huang W, Li Y, Fang Y, Fan J, Yang H (2020) Biane: Bipartite attributed network embedding. In: Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval, pp 149–158
– reference: Yang J, Leskovec J Defining and evaluating network communities based on ground-truth. arXiv arxiv:1205.6233
– reference: GuillaumeJ-LLatapyMBipartite structure of all complex networksInf Process Lett2004905215221205465610.1016/j.ipl.2004.03.007
– reference: Yang C, Xiao Y, Zhang Y, Sun Y, Han J: Heterogeneous network representation learning: a unified framework with survey and benchmark. arXiv (2020). arxiv:2004.00216
SSID ssj0001033906
Score 2.363221
SecondaryResourceType review_article
Snippet Research on graph representation learning (a.k.a. embedding) has received great attention in recent years and shows effective results for various types of...
SourceID hal
proquest
springer
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 54
SubjectTerms Algorithms
Applications of Graph Theory and Complex Networks
Classification
Codes
Computer Science
Data Mining and Knowledge Discovery
Economics
Embedding
Game Theory
Graphical representations
Graphs
Humanities
Information Retrieval
Law
Machine Learning
Methodology of the Social Sciences
Review Paper
Social and Behav. Sciences
Social and Information Networks
Statistics for Social Sciences
Taxonomy
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1sPejFj6pYrbKIeHIx2U2yybEUS5HqyUJvIfuFHoylSSv21zubJlSKF6-bZQ_zMpk3mZ03ALcssb5MIkZ97RsaaBtQmVhLszgUXGAKvf518fwSjSbB0zSc1jI5rhdmq37_UGC25DRgmbv144UxXbVgN_TxGFeYjQZ1H8zfWzFevLnrjb-441a5s4oiwyM4qOkf6a_xOoYdk3fgsBmtQGpP68Be0zBcdKA1zr5O4K5PisV8ab7JZ07k-8xBXhpSCU4XxHxIo10YOoXJ8PF1MKL1kAOqkAqUVOlMJB5niisXj5WKdSgCnRjFpbbak0EoJNKeSEcKUy8jXLetyJAYW1zDr8MZtPPP3JwDCTG0sGqQmLSBDWTGYisk92zkKTw07MINmiOdrWUsUicsPeqPU7eGrhwj1YuXfhd6jbXS-nUuUpago2LyyHkX7hsLbh5vpI8dAikikFYIpKuL_22_hH1W4ccp83vQLucLc4VBv5TXFdo_U6WjWA
  priority: 102
  providerName: Springer Nature
Title A survey on bipartite graphs embedding
URI https://link.springer.com/article/10.1007/s13278-023-01058-z
https://www.proquest.com/docview/2919610633
https://hal.science/hal-04089238
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6XbyIouJ0jiLiyWCbtE16kjk2h-gQcbBbaL7Qg91cu4H7631pOyoePDaFQN9L3-_3Xt4HQlcksYFMYoIDHRgcahtimViLUx4xysCFrkIXz5N4PA0fZ9GsDrjldVrl1iaWhlrPlYuR35IEzgr4L5TeLb6wmxrlblfrERq7qA0mmPMWat8PJy-vTZTFp-DUlyVGPE4w0AW_rpyp6ucocQ1miUsp8iOON4Aw7y4h8hfb_HNBWuLO6ADt14TR61caPkQ7JjtC130vXy3X5tubZ578WDj9F8Yru0_nnvmURjtMOkbT0fBtMMb1xAOsgBcUWOmUJT4liioHzkpxHbFQJ0ZRqa32ZRgxCRwo1rECP8wwV3rLUmDJFtbAVJygVjbPzCnyIsAZUk4Vkza0oUwJt0xS38a-gk2jDrqELxWLqqeFcF2mx_0n4dbgv-bA-_g66KDuVhCiPtu5aDTRQTdb4TSvmz7ITrgChCtK4YrN2f-7naM9UqqCYhJ0UatYrswFIH4he2iXjx56tXLhaRAPfgBwf6ck
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8NADLZKGWBBIEAUCkQImDiR3OU5IFQBpaWFqZXYjt5LMJCWvlD7o_iN-JJGRQxsrI5kKbbP_uw72wCnNDGeSEJKPOVp4ivjE5EYQ3pxELEIU-i8dPH4FDa6_sNz8FyCr6IXxj6rLHxi5qhVX9oa-SVN0FYwf2HsevBB7NYoe7tarNDIzaKlZ5-Yso2umreo3zNK63edmwZZbBUgEmPvmEjVixKXUcmkDYBSxiqIfJVoyYQyyhV-EAnEGaEKJeY6OrLtrVEPkahBGh5H5LsCqz5DbrYzvX6_rOm4SMzWedpFTwTBibvo08m79Ri142ypfcDkBjGZYzx7tc8vf2DbX9exWZSrb8LGAp46tdyetqCk0204rzmjyXCqZ04_dcTbwFrbWDvZrOuRo9-FVjYC7kD3XySxC-W0n-o9cAKMajTbYSaMb3zRo7GJBHNN6EpkGlTgBP-UD_IJGtzOtG7U2tzS0IvEiDLjqVeBaiEIvjhJI77UewUuCuEsPy-nLlvhchQuz4TL5_t_czuGtUbnsc3bzafWAazTTC2MUK8K5fFwog8Ra4zFUaZgB17-26K-Abc34E8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xkKCXPgJVU9KyQpQTK-xdPw8cokCUlIA4gMRt8b5UDjhR7AQlv6o_sbOOrVRVLxy4rq2VNY_9Zrwz3wAcs9T6Mo0Y9bVvaKBtQGVqLc2SMOYxptCrXxfXN9HgPvj5ED5swO-mF6aqdm-uJFc9DY6lKS_PJtqerRvfOHPMsMzVAnlhQpd1WeWVWbxg0lacDy9Qwz8Y61_e9Qa0nitAFaJvSZXO4tTjTHHlIFCpRIdxoFOjuNRWezIIY4mRRqQjhdmOiV2Da5xhLGpxDR0S992EbcyMfJfu9aJe3Y3z_09D1Prliiz_imD_uXStsKz_Ed7XQSjprqzmE2yYvAUfmgEPpPb3Fuw2bctFCzZH2csenHRJMZvOzYKMcyKfJs7wSkMq2uuCmGdptAPDfbh_E5F8hq18nJsvQEIEOFaNM5M2sIHMWGJjyT0beQo3DdtwhOIQkxWZhnD01oPuSLg1PFASDDiTud-GTiMtUTtVIViKxwWmsJy34bSR4PrxmoDZaUCgBkSlAbH8-rrXD2Hn9qIvRsObqwN4xypVcsr8DmyV05n5hlFIKb9Xiifw-NaW9gcrhugV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+survey+on+bipartite+graphs+embedding&rft.jtitle=Social+network+analysis+and+mining&rft.au=Giamphy%2C+Edward&rft.au=Guillaume%2C+Jean-Loup&rft.au=Doucet%2C+Antoine&rft.au=Sanchis%2C+Kevin&rft.date=2023-03-21&rft.pub=Springer+Nature+B.V&rft.issn=1869-5450&rft.eissn=1869-5469&rft.volume=13&rft.issue=1&rft.spage=54&rft_id=info:doi/10.1007%2Fs13278-023-01058-z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1869-5450&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1869-5450&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1869-5450&client=summon