Exponential data fitting applied to infiltration, hydrograph separation, and variogram fitting
Most lumped rainfall-runoff models separate the interflow and groundwater components from the measured runoff hydrograph in an attempt to model these as hydrologic reservoir units. Similarly, rainfall losses due to infiltration as well as other abstractions are separated from the measured rainfall h...
Saved in:
Published in | Stochastic environmental research and risk assessment Vol. 20; no. 1-2; pp. 33 - 52 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Springer Nature B.V
01.01.2006
|
Subjects | |
Online Access | Get full text |
ISSN | 1436-3240 1436-3259 |
DOI | 10.1007/s00477-005-0002-9 |
Cover
Abstract | Most lumped rainfall-runoff models separate the interflow and groundwater components from the measured runoff hydrograph in an attempt to model these as hydrologic reservoir units. Similarly, rainfall losses due to infiltration as well as other abstractions are separated from the measured rainfall hyetograph, which are then used as inputs to the various hydrologic reservoir units. This data pre-processing is necessary in order to use the linear unit hydrograph theory, as well as for maintaining a hydrologic budget between the surface and subsurface flow processes. Since infiltration determines the shape of the runoff hydrograph, it must be estimated as accurately as possible. When measured infiltration data is available, Horton's exponential infiltration model is preferable due to its simplicity. However, estimating the parameters from Horton's model constitutes a nonlinear least squares fitting problem. Hence, an iterative procedure that requires initialization is subject to convergence. In a similar context, the separation of direct runoff, interflow, and baseflow from the total hydrograph is typically done in an ad hoc manner. However, many practitioners use exponential models in a rather "layer peeling" fashion to perform this separation. In essence, this also constitutes an exponential data fitting problem. Likewise, certain variogram functions can be fitted using exponential data fitting techniques. In this paper we show that fitting a Hortonian model to experimental data, as well as performing hydrograph separation, and total hydrograph and variogram fitting can all be formulated as a system identification problem using Hankel-based realization algorithms. The main advantage is that the parameters can be estimated in a noniterative fashion, using robust numerical linear algebra techniques. As such, the system identification algorithms overcome the problem of convergence inherent in iterative techniques. In addition, the algorithms are robust to noise in the data since they optimally separate the signal and noise subspaces from the observed noisy data. The algorithms are tested with real data from field experiments performed in Surinam, as well as with real hydrograph data from a watershed in Louisiana. The system identification techniques presented herein can also be used with any other type of exponential data such as exponential decays from nuclear experiments, tracer studies, and compartmental analysis studies.[PUBLICATION ABSTRACT] |
---|---|
AbstractList | Most lumped rainfall-runoff models separate the interflow and groundwater components from the measured runoff hydrograph in an attempt to model these as hydrologic reservoir units. Similarly, rainfall losses due to infiltration as well as other abstractions are separated from the measured rainfall hyetograph, which are then used as inputs to the various hydrologic reservoir units. This data pre-processing is necessary in order to use the linear unit hydrograph theory, as well as for maintaining a hydrologic budget between the surface and subsurface flow processes. Since infiltration determines the shape of the runoff hydrograph, it must be estimated as accurately as possible. When measured infiltration data is available, Horton's exponential infiltration model is preferable due to its simplicity. However, estimating the parameters from Horton's model constitutes a nonlinear least squares fitting problem. Hence, an iterative procedure that requires initialization is subject to convergence. In a similar context, the separation of direct runoff, interflow, and baseflow from the total hydrograph is typically done in an ad hoc manner. However, many practitioners use exponential models in a rather "layer peeling" fashion to perform this separation. In essence, this also constitutes an exponential data fitting problem. Likewise, certain variogram functions can be fitted using exponential data fitting techniques. In this paper we show that fitting a Hortonian model to experimental data, as well as performing hydrograph separation, and total hydrograph and variogram fitting can all be formulated as a system identification problem using Hankel-based realization algorithms. The main advantage is that the parameters can be estimated in a noniterative fashion, using robust numerical linear algebra techniques. As such, the system identification algorithms overcome the problem of convergence inherent in iterative techniques. In addition, the algorithms are robust to noise in the data since they optimally separate the signal and noise subspaces from the observed noisy data. The algorithms are tested with real data from field experiments performed in Surinam, as well as with real hydrograph data from a watershed in Louisiana. The system identification techniques presented herein can also be used with any other type of exponential data such as exponential decays from nuclear experiments, tracer studies, and compartmental analysis studies.[PUBLICATION ABSTRACT] |
Author | Ramos, José A. |
Author_xml | – sequence: 1 givenname: José A. surname: Ramos fullname: Ramos, José A. |
BookMark | eNp9kE1PwzAMhiM0JMbYD-AWcabgfLRZjmgaH9IkLnAlctt0C-rSkmaI_XsyBhw4cLBs2X5fy88pGfnOW0LOGVwxAHU9AEilMoA8BfBMH5Exk6LIBM_16LeWcEKmw-DKpMmF1gzG5GXx0SczHx22tMaItHExOr-i2PetszWNHXW-cW0MGF3nL-l6V4duFbBf08H2-NNGX9N3DG4_2vy4nJHjBtvBTr_zhDzfLp7m99ny8e5hfrPMKqFVzKpy1jA5U0KVgFAI0TS2VIWczUTOq5wLiwUyiTUK5LXEElRZay3ASoUCKjEhFwffPnRvWztE89ptg08nDedcKdCCpSV2WKpCNwzBNqYPboNhZxiYPUhzAGkSSLMHaXTSqD-aysWvjxMP1_6j_ARLC3qj |
CitedBy_id | crossref_primary_10_1007_s00477_010_0398_8 crossref_primary_10_1109_TAC_2014_2351853 |
Cites_doi | 10.1109/78.558510 10.1016/0165-1684(93)90130-3 10.1007/978-3-662-05294-5 10.1029/95WR00234 10.1109/78.236505 10.1109/TAC.1981.1102568 10.1109/TAC.1974.1100525 10.1016/0021-9991(77)90031-6 10.1006/jmre.1997.1244 10.1137/0906003 10.1364/JOSA.73.001799 10.1137/1.9781611971002 10.1109/29.1488 10.1080/00207178908559631 10.1007/978-3-642-45697-8_7 10.1006/jmra.1996.0077 10.1016/S1474-6670(17)60403-8 10.1002/9781118625590 10.1016/0377-0427(87)90135-X |
ContentType | Journal Article |
Copyright | Springer-Verlag 2005 |
Copyright_xml | – notice: Springer-Verlag 2005 |
DBID | AAYXX CITATION 3V. 7ST 7XB 88I 8AO 8FD 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ KR7 L6V M2P M7S PATMY PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U S0W SOI |
DOI | 10.1007/s00477-005-0002-9 |
DatabaseName | CrossRef ProQuest Central (Corporate) Environment Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering Collection ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Science Database Engineering Database Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic DELNET Engineering & Technology Collection Environment Abstracts |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Central Student |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Environmental Sciences |
EISSN | 1436-3259 |
EndPage | 52 |
ExternalDocumentID | 937518111 10_1007_s00477_005_0002_9 |
Genre | Feature |
GeographicLocations | Louisiana United States--US Suriname |
GeographicLocations_xml | – name: Suriname – name: Louisiana – name: United States--US |
GroupedDBID | -Y2 .86 .VR 06D 0R~ 0VY 123 1N0 2.D 203 29Q 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5VS 67M 67Z 6NX 7XC 88I 8AO 8FE 8FG 8FH 8FW 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHIR ADHKG ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG ATCPS ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS CAG CCPQU CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDH EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FIL FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V L8X LAS LLZTM M2P M4Y M7S MA- ML. N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O93 O9G O9J OAM P19 P2P PATMY PF0 PHGZM PHGZT PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOS R89 R9I RIG RNS ROL RPX RSV S0W S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Y6R YLTOR Z45 ZMTXR ~02 ~A9 3V. 7ST 7XB 8FD 8FK ABRTQ C1K FR3 KR7 PKEHL PQEST PQGLB PQUKI PRINS PUEGO Q9U SOI |
ID | FETCH-LOGICAL-c397t-cb8f148737b0a0633ffeb76488352c523ea6a14ada3a2d4ab07bd9930e47a30c3 |
IEDL.DBID | 8FG |
ISSN | 1436-3240 |
IngestDate | Sat Aug 23 15:05:34 EDT 2025 Tue Jul 01 01:05:50 EDT 2025 Thu Apr 24 22:59:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c397t-cb8f148737b0a0633ffeb76488352c523ea6a14ada3a2d4ab07bd9930e47a30c3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
PQID | 222770931 |
PQPubID | 31669 |
PageCount | 20 |
ParticipantIDs | proquest_journals_222770931 crossref_primary_10_1007_s00477_005_0002_9 crossref_citationtrail_10_1007_s00477_005_0002_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-1-00 20060101 |
PublicationDateYYYYMMDD | 2006-01-01 |
PublicationDate_xml | – month: 01 year: 2006 text: 2006-1-00 |
PublicationDecade | 2000 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Stochastic environmental research and risk assessment |
PublicationYear | 2006 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | S Van Huffel (2_CR28) 1994 VT Chow (2_CR4) 1988 B De Moor (2_CR8) 1993; 41 JA Ramos (2_CR23) 1995; 31 M Moonen (2_CR18) 1989; 49 JM Varah (2_CR32) 1985; 6 J Cadzow (2_CR1) 1988; 36 AJ Vander Veen (2_CR30) 1991 G Golub (2_CR12) 1983 2_CR36 JA Jacquez (2_CR14) 1972 GC Goodwin (2_CR13) 1977 SY Kung (2_CR37) 1983; 73 I Dologlou (2_CR10) 1996; 45 LL Scharf (2_CR24) 1991 WJ Wiscombe (2_CR35) 1977; 24 H Chen (2_CR3) 1996; 119 H Wackernagel (2_CR34) 2003 NR Draper (2_CR11) 1998 L Vanhamme (2_CR31) 1997; 129 S Van Huffel (2_CR27) 1991 2_CR19 SJ Orfanidis (2_CR20) 1988 2_CR16 T Kailath (2_CR15) 1980 2_CR17 2_CR22 2_CR9 2_CR25 2_CR5 S Van Huffel (2_CR26) 1992; 33 W Viessman (2_CR33) 1977 2_CR7 2_CR2 G Van de Genachte (2_CR29) 1995; 10 R Prony de (2_CR21) 1795; 1 P De Groen (2_CR6) 1987; 20 |
References_xml | – ident: 2_CR25 – volume: 10 start-page: 667 year: 1995 ident: 2_CR29 publication-title: Hydrol Process – volume-title: Matrix computations year: 1983 ident: 2_CR12 – volume: 45 start-page: 799 year: 1996 ident: 2_CR10 publication-title: IEEE Trans Signal Process doi: 10.1109/78.558510 – volume: 33 start-page: 333 issue: 3 year: 1992 ident: 2_CR26 publication-title: Signal Process doi: 10.1016/0165-1684(93)90130-3 – ident: 2_CR17 – volume-title: Introduction to hydrology year: 1977 ident: 2_CR33 – volume-title: Multivariate geostatistics: an introduction with applications year: 2003 ident: 2_CR34 doi: 10.1007/978-3-662-05294-5 – volume-title: Optimal signal processing year: 1988 ident: 2_CR20 – start-page: 197 volume-title: Mathematics in signal processing III year: 1994 ident: 2_CR28 – volume: 31 start-page: 1519 issue: 6 year: 1995 ident: 2_CR23 publication-title: Water Resour Res doi: 10.1029/95WR00234 – ident: 2_CR7 – volume: 41 start-page: 2826 issue: 9 year: 1993 ident: 2_CR8 publication-title: IEEE Trans Signal Process doi: 10.1109/78.236505 – ident: 2_CR19 doi: 10.1109/TAC.1981.1102568 – volume-title: Compartmental analysis in biology and medicine year: 1972 ident: 2_CR14 – ident: 2_CR36 doi: 10.1109/TAC.1974.1100525 – volume: 1 start-page: 24 year: 1795 ident: 2_CR21 publication-title: J Ecole Polytech Paris – volume: 24 start-page: 416 year: 1977 ident: 2_CR35 publication-title: J Comput Phys doi: 10.1016/0021-9991(77)90031-6 – volume: 129 start-page: 35 year: 1997 ident: 2_CR31 publication-title: J Magn Reson doi: 10.1006/jmre.1997.1244 – volume: 6 start-page: 30 year: 1985 ident: 2_CR32 publication-title: SIAM J Sci Statist Comput doi: 10.1137/0906003 – volume-title: Linear systems year: 1980 ident: 2_CR15 – volume: 73 start-page: 1799 issue: 12 year: 1983 ident: 2_CR37 publication-title: J Opt Soc Am doi: 10.1364/JOSA.73.001799 – volume-title: The total least squares problem, computational aspects and analysis year: 1991 ident: 2_CR27 doi: 10.1137/1.9781611971002 – volume: 36 start-page: 49 year: 1988 ident: 2_CR1 publication-title: IEEE Trans Acoust Speech Signal Process doi: 10.1109/29.1488 – volume-title: Dynamic system identification year: 1977 ident: 2_CR13 – volume: 49 start-page: 219 issue: 1 year: 1989 ident: 2_CR18 publication-title: Int J Control doi: 10.1080/00207178908559631 – ident: 2_CR5 doi: 10.1007/978-3-642-45697-8_7 – volume: 119 start-page: 225 year: 1996 ident: 2_CR3 publication-title: J Magn Reson A doi: 10.1006/jmra.1996.0077 – ident: 2_CR16 – start-page: 431 volume-title: SVD and signal processing, II: algorithms, analysis and applications year: 1991 ident: 2_CR30 – start-page: 1 volume-title: SVD and signal processing, II: algorithms, analysis and applications year: 1991 ident: 2_CR24 – volume-title: Applied hydrology year: 1988 ident: 2_CR4 – ident: 2_CR9 doi: 10.1016/S1474-6670(17)60403-8 – volume-title: Applied regression analysis year: 1998 ident: 2_CR11 doi: 10.1002/9781118625590 – ident: 2_CR2 – volume: 20 start-page: 175 year: 1987 ident: 2_CR6 publication-title: J Comput Appl Math doi: 10.1016/0377-0427(87)90135-X – ident: 2_CR22 |
SSID | ssib007539910 ssib057179955 ssib001127189 ssj0017754 |
Score | 1.7098423 |
Snippet | Most lumped rainfall-runoff models separate the interflow and groundwater components from the measured runoff hydrograph in an attempt to model these as... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 33 |
SubjectTerms | Algorithms Base flow Field tests Groundwater Groundwater runoff Hydrology Infiltration Rain Rainfall-runoff relationships Reservoirs Stochastic models Unit hydrographs |
Title | Exponential data fitting applied to infiltration, hydrograph separation, and variogram fitting |
URI | https://www.proquest.com/docview/222770931 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFG8UDnoxihIRJT14MjYW9tHtZNQMiQdijCScXPqxBRIykE0j_72vXTfChev6kaV9fe_3-l5_D6Fb5ksOhpQTT0qHuK4MCQ8djwTeQLORSZkIkyA79kcT923qTW1uTm7TKiudaBS1Wkp9R_6g32wycL_7j6tvootG6eCqraBxiJp9MDRazIPhax1E0ORu5nGR4xPNO1cFNWnJIcoY0TScRieEu2ZpVysbUzM8RScWI-KnclPP0EGStVA72j5Jg0Z7JvMWOrJ1zGebc_QV_a2WmU4Agi46-ROnc5PYjHmJNnGxxCBT84Vly73Hs41al-NxnpRE4PozzxT-BT_aZG9Vs1ygyTD6fBkRW0GBSMAZBZEiSMHfYQ4TlAMYcdI0EcyHQwu4S4IPmnCf912uuMMHyuWCMqEAsdDEZdyh0mmjRga_fYkwVUJ7sNRTMnBDCTAHnCEhGU08pVnDOohWCxhLSy-uq1ws4poY2ax5DGuuI96DOOygu3rIquTW2Ne5W-1KbI9ZHtdCcbW3tYuOtzcn16hRrH-SG8AShegZiemh5nM0fv_4B46gyDY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS0NBDA5aD_Uirqh1mYNexMHxbdN3EHGpVFuLSAVPPmcrCtLWti79Uf5Hk7dUvHjz-mbhkclkmSRfAHZkZBQqUsVDY3weBCbmKvZDXg09QiMzxuk0QbYV1e-Cq_vwfgq-iloYSqssZGIqqG3P0Bv5AdVsSnS_D4_7r5yaRlFwteigkXFFw40_0GMbHl2e4_Huet5FrX1W53lTAW5Q9Y640dUOugDSl1oo1M9-p-O0jJCP0RQx6JY5FanDQFnlK88GSgupLSpx4QKpfGF83HcaZgIqaC3BzGmtdXM7CVsQnFxazuRHnJDuijCqyFBLpeQE_JlKofi3IvytB1LldjEPc7lVyk4yNlqAKdddhJXaTxEcDuZSYLgI5bxz-tN4CR5qn_1el1KOcAqlm7LOc5pKzVRm37JRjyEXP7_k-Lz77GlsB9l6NnQZ9Dh9Vl3L3tFzT_PFil2W4e5fyLsCpS7-9iowYTX5zCK0phrEBg0rdL-0kcKFlnDK1kAUBExMDmhOfTVekgkUc0rzBGlOMXYviddgb7Kkn6F5_DW5UpxKkl_sYTJhw_U_R7ehXG9fN5PmZatRgdmfd5sNKI0Gb24TLZmR3sr5h8Hjf7PsNwbIBQI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsNADLVYJOCCWEVZ5wAXxIhptmkOCCFoWYU4gMSJMFsEUtUWWpZ-Gn-HPUmKuHDjmlkUzTi2X2w_A2zLxCg0pIrHxoQ8ikzKVRrGvBEHxEZmjNM-QfY6ObuLLu7j-zH4qmphKK2y0oleUduuoX_k-1SzKRF-1_fzMivi5qR12Hvh1ECKAq1VN41CQi7d8APRW__g_ASveicIWs3b4zNeNhjgBs3wgBvdyBEOyFBqodBWh3nutExQptEtMQjRnEpUPVJWhSqwkdJCaosGXbhIqlCYEPcdh0lcnxLua7RORwEMIpbzhU1hwonzrgqoioK_VEpOFKBeH6W_TeJvi-DNXGsOZkv_lB0VAjUPY66zAMvNn3I4HCz1QX8Bpsse6k_DRXhofva6HUo-wimUeMryZ59UzVTh6bJBl6E8P7dLpt499jS0r8V61ncFCTk9Vh3L3hHD-8yxapcluPuXw12GiQ6-9gowYTWhZxFb04hSgy4WAjFtpHCxJcayGojqADNTUptTh412NiJl9mee4ZlTtD3I0hrsjpb0Cl6PvyavVbeSlZ94PxsJ5Oqfo1swhYKaXZ1fX67BzM8PnHWYGLy-uQ10aQZ60wsPg8f_ltZvd7cH0g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exponential+data+fitting+applied+to+infiltration%2C+hydrograph+separation%2C+and+variogram+fitting&rft.jtitle=Stochastic+environmental+research+and+risk+assessment&rft.au=Ramos%2C+Jos%C3%A9+A.&rft.date=2006-01-01&rft.issn=1436-3240&rft.eissn=1436-3259&rft.volume=20&rft.issue=1-2&rft.spage=33&rft.epage=52&rft_id=info:doi/10.1007%2Fs00477-005-0002-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00477_005_0002_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1436-3240&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1436-3240&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1436-3240&client=summon |