Exponential data fitting applied to infiltration, hydrograph separation, and variogram fitting

Most lumped rainfall-runoff models separate the interflow and groundwater components from the measured runoff hydrograph in an attempt to model these as hydrologic reservoir units. Similarly, rainfall losses due to infiltration as well as other abstractions are separated from the measured rainfall h...

Full description

Saved in:
Bibliographic Details
Published inStochastic environmental research and risk assessment Vol. 20; no. 1-2; pp. 33 - 52
Main Author Ramos, José A.
Format Journal Article
LanguageEnglish
Published Heidelberg Springer Nature B.V 01.01.2006
Subjects
Online AccessGet full text
ISSN1436-3240
1436-3259
DOI10.1007/s00477-005-0002-9

Cover

Abstract Most lumped rainfall-runoff models separate the interflow and groundwater components from the measured runoff hydrograph in an attempt to model these as hydrologic reservoir units. Similarly, rainfall losses due to infiltration as well as other abstractions are separated from the measured rainfall hyetograph, which are then used as inputs to the various hydrologic reservoir units. This data pre-processing is necessary in order to use the linear unit hydrograph theory, as well as for maintaining a hydrologic budget between the surface and subsurface flow processes. Since infiltration determines the shape of the runoff hydrograph, it must be estimated as accurately as possible. When measured infiltration data is available, Horton's exponential infiltration model is preferable due to its simplicity. However, estimating the parameters from Horton's model constitutes a nonlinear least squares fitting problem. Hence, an iterative procedure that requires initialization is subject to convergence. In a similar context, the separation of direct runoff, interflow, and baseflow from the total hydrograph is typically done in an ad hoc manner. However, many practitioners use exponential models in a rather "layer peeling" fashion to perform this separation. In essence, this also constitutes an exponential data fitting problem. Likewise, certain variogram functions can be fitted using exponential data fitting techniques. In this paper we show that fitting a Hortonian model to experimental data, as well as performing hydrograph separation, and total hydrograph and variogram fitting can all be formulated as a system identification problem using Hankel-based realization algorithms. The main advantage is that the parameters can be estimated in a noniterative fashion, using robust numerical linear algebra techniques. As such, the system identification algorithms overcome the problem of convergence inherent in iterative techniques. In addition, the algorithms are robust to noise in the data since they optimally separate the signal and noise subspaces from the observed noisy data. The algorithms are tested with real data from field experiments performed in Surinam, as well as with real hydrograph data from a watershed in Louisiana. The system identification techniques presented herein can also be used with any other type of exponential data such as exponential decays from nuclear experiments, tracer studies, and compartmental analysis studies.[PUBLICATION ABSTRACT]
AbstractList Most lumped rainfall-runoff models separate the interflow and groundwater components from the measured runoff hydrograph in an attempt to model these as hydrologic reservoir units. Similarly, rainfall losses due to infiltration as well as other abstractions are separated from the measured rainfall hyetograph, which are then used as inputs to the various hydrologic reservoir units. This data pre-processing is necessary in order to use the linear unit hydrograph theory, as well as for maintaining a hydrologic budget between the surface and subsurface flow processes. Since infiltration determines the shape of the runoff hydrograph, it must be estimated as accurately as possible. When measured infiltration data is available, Horton's exponential infiltration model is preferable due to its simplicity. However, estimating the parameters from Horton's model constitutes a nonlinear least squares fitting problem. Hence, an iterative procedure that requires initialization is subject to convergence. In a similar context, the separation of direct runoff, interflow, and baseflow from the total hydrograph is typically done in an ad hoc manner. However, many practitioners use exponential models in a rather "layer peeling" fashion to perform this separation. In essence, this also constitutes an exponential data fitting problem. Likewise, certain variogram functions can be fitted using exponential data fitting techniques. In this paper we show that fitting a Hortonian model to experimental data, as well as performing hydrograph separation, and total hydrograph and variogram fitting can all be formulated as a system identification problem using Hankel-based realization algorithms. The main advantage is that the parameters can be estimated in a noniterative fashion, using robust numerical linear algebra techniques. As such, the system identification algorithms overcome the problem of convergence inherent in iterative techniques. In addition, the algorithms are robust to noise in the data since they optimally separate the signal and noise subspaces from the observed noisy data. The algorithms are tested with real data from field experiments performed in Surinam, as well as with real hydrograph data from a watershed in Louisiana. The system identification techniques presented herein can also be used with any other type of exponential data such as exponential decays from nuclear experiments, tracer studies, and compartmental analysis studies.[PUBLICATION ABSTRACT]
Author Ramos, José A.
Author_xml – sequence: 1
  givenname: José A.
  surname: Ramos
  fullname: Ramos, José A.
BookMark eNp9kE1PwzAMhiM0JMbYD-AWcabgfLRZjmgaH9IkLnAlctt0C-rSkmaI_XsyBhw4cLBs2X5fy88pGfnOW0LOGVwxAHU9AEilMoA8BfBMH5Exk6LIBM_16LeWcEKmw-DKpMmF1gzG5GXx0SczHx22tMaItHExOr-i2PetszWNHXW-cW0MGF3nL-l6V4duFbBf08H2-NNGX9N3DG4_2vy4nJHjBtvBTr_zhDzfLp7m99ny8e5hfrPMKqFVzKpy1jA5U0KVgFAI0TS2VIWczUTOq5wLiwUyiTUK5LXEElRZay3ASoUCKjEhFwffPnRvWztE89ptg08nDedcKdCCpSV2WKpCNwzBNqYPboNhZxiYPUhzAGkSSLMHaXTSqD-aysWvjxMP1_6j_ARLC3qj
CitedBy_id crossref_primary_10_1007_s00477_010_0398_8
crossref_primary_10_1109_TAC_2014_2351853
Cites_doi 10.1109/78.558510
10.1016/0165-1684(93)90130-3
10.1007/978-3-662-05294-5
10.1029/95WR00234
10.1109/78.236505
10.1109/TAC.1981.1102568
10.1109/TAC.1974.1100525
10.1016/0021-9991(77)90031-6
10.1006/jmre.1997.1244
10.1137/0906003
10.1364/JOSA.73.001799
10.1137/1.9781611971002
10.1109/29.1488
10.1080/00207178908559631
10.1007/978-3-642-45697-8_7
10.1006/jmra.1996.0077
10.1016/S1474-6670(17)60403-8
10.1002/9781118625590
10.1016/0377-0427(87)90135-X
ContentType Journal Article
Copyright Springer-Verlag 2005
Copyright_xml – notice: Springer-Verlag 2005
DBID AAYXX
CITATION
3V.
7ST
7XB
88I
8AO
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
KR7
L6V
M2P
M7S
PATMY
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
S0W
SOI
DOI 10.1007/s00477-005-0002-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Environment Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering Collection
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Science Database
Engineering Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
Environment Abstracts
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Environmental Sciences
EISSN 1436-3259
EndPage 52
ExternalDocumentID 937518111
10_1007_s00477_005_0002_9
Genre Feature
GeographicLocations Louisiana
United States--US
Suriname
GeographicLocations_xml – name: Suriname
– name: Louisiana
– name: United States--US
GroupedDBID -Y2
.86
.VR
06D
0R~
0VY
123
1N0
2.D
203
29Q
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5VS
67M
67Z
6NX
7XC
88I
8AO
8FE
8FG
8FH
8FW
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHIR
ADHKG
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
ATCPS
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FIL
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
L8X
LAS
LLZTM
M2P
M4Y
M7S
MA-
ML.
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O93
O9G
O9J
OAM
P19
P2P
PATMY
PF0
PHGZM
PHGZT
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOS
R89
R9I
RIG
RNS
ROL
RPX
RSV
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Y6R
YLTOR
Z45
ZMTXR
~02
~A9
3V.
7ST
7XB
8FD
8FK
ABRTQ
C1K
FR3
KR7
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
SOI
ID FETCH-LOGICAL-c397t-cb8f148737b0a0633ffeb76488352c523ea6a14ada3a2d4ab07bd9930e47a30c3
IEDL.DBID 8FG
ISSN 1436-3240
IngestDate Sat Aug 23 15:05:34 EDT 2025
Tue Jul 01 01:05:50 EDT 2025
Thu Apr 24 22:59:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-cb8f148737b0a0633ffeb76488352c523ea6a14ada3a2d4ab07bd9930e47a30c3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 222770931
PQPubID 31669
PageCount 20
ParticipantIDs proquest_journals_222770931
crossref_primary_10_1007_s00477_005_0002_9
crossref_citationtrail_10_1007_s00477_005_0002_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-1-00
20060101
PublicationDateYYYYMMDD 2006-01-01
PublicationDate_xml – month: 01
  year: 2006
  text: 2006-1-00
PublicationDecade 2000
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Stochastic environmental research and risk assessment
PublicationYear 2006
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References S Van Huffel (2_CR28) 1994
VT Chow (2_CR4) 1988
B De Moor (2_CR8) 1993; 41
JA Ramos (2_CR23) 1995; 31
M Moonen (2_CR18) 1989; 49
JM Varah (2_CR32) 1985; 6
J Cadzow (2_CR1) 1988; 36
AJ Vander Veen (2_CR30) 1991
G Golub (2_CR12) 1983
2_CR36
JA Jacquez (2_CR14) 1972
GC Goodwin (2_CR13) 1977
SY Kung (2_CR37) 1983; 73
I Dologlou (2_CR10) 1996; 45
LL Scharf (2_CR24) 1991
WJ Wiscombe (2_CR35) 1977; 24
H Chen (2_CR3) 1996; 119
H Wackernagel (2_CR34) 2003
NR Draper (2_CR11) 1998
L Vanhamme (2_CR31) 1997; 129
S Van Huffel (2_CR27) 1991
2_CR19
SJ Orfanidis (2_CR20) 1988
2_CR16
T Kailath (2_CR15) 1980
2_CR17
2_CR22
2_CR9
2_CR25
2_CR5
S Van Huffel (2_CR26) 1992; 33
W Viessman (2_CR33) 1977
2_CR7
2_CR2
G Van de Genachte (2_CR29) 1995; 10
R Prony de (2_CR21) 1795; 1
P De Groen (2_CR6) 1987; 20
References_xml – ident: 2_CR25
– volume: 10
  start-page: 667
  year: 1995
  ident: 2_CR29
  publication-title: Hydrol Process
– volume-title: Matrix computations
  year: 1983
  ident: 2_CR12
– volume: 45
  start-page: 799
  year: 1996
  ident: 2_CR10
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/78.558510
– volume: 33
  start-page: 333
  issue: 3
  year: 1992
  ident: 2_CR26
  publication-title: Signal Process
  doi: 10.1016/0165-1684(93)90130-3
– ident: 2_CR17
– volume-title: Introduction to hydrology
  year: 1977
  ident: 2_CR33
– volume-title: Multivariate geostatistics: an introduction with applications
  year: 2003
  ident: 2_CR34
  doi: 10.1007/978-3-662-05294-5
– volume-title: Optimal signal processing
  year: 1988
  ident: 2_CR20
– start-page: 197
  volume-title: Mathematics in signal processing III
  year: 1994
  ident: 2_CR28
– volume: 31
  start-page: 1519
  issue: 6
  year: 1995
  ident: 2_CR23
  publication-title: Water Resour Res
  doi: 10.1029/95WR00234
– ident: 2_CR7
– volume: 41
  start-page: 2826
  issue: 9
  year: 1993
  ident: 2_CR8
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/78.236505
– ident: 2_CR19
  doi: 10.1109/TAC.1981.1102568
– volume-title: Compartmental analysis in biology and medicine
  year: 1972
  ident: 2_CR14
– ident: 2_CR36
  doi: 10.1109/TAC.1974.1100525
– volume: 1
  start-page: 24
  year: 1795
  ident: 2_CR21
  publication-title: J Ecole Polytech Paris
– volume: 24
  start-page: 416
  year: 1977
  ident: 2_CR35
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(77)90031-6
– volume: 129
  start-page: 35
  year: 1997
  ident: 2_CR31
  publication-title: J Magn Reson
  doi: 10.1006/jmre.1997.1244
– volume: 6
  start-page: 30
  year: 1985
  ident: 2_CR32
  publication-title: SIAM J Sci Statist Comput
  doi: 10.1137/0906003
– volume-title: Linear systems
  year: 1980
  ident: 2_CR15
– volume: 73
  start-page: 1799
  issue: 12
  year: 1983
  ident: 2_CR37
  publication-title: J Opt Soc Am
  doi: 10.1364/JOSA.73.001799
– volume-title: The total least squares problem, computational aspects and analysis
  year: 1991
  ident: 2_CR27
  doi: 10.1137/1.9781611971002
– volume: 36
  start-page: 49
  year: 1988
  ident: 2_CR1
  publication-title: IEEE Trans Acoust Speech Signal Process
  doi: 10.1109/29.1488
– volume-title: Dynamic system identification
  year: 1977
  ident: 2_CR13
– volume: 49
  start-page: 219
  issue: 1
  year: 1989
  ident: 2_CR18
  publication-title: Int J Control
  doi: 10.1080/00207178908559631
– ident: 2_CR5
  doi: 10.1007/978-3-642-45697-8_7
– volume: 119
  start-page: 225
  year: 1996
  ident: 2_CR3
  publication-title: J Magn Reson A
  doi: 10.1006/jmra.1996.0077
– ident: 2_CR16
– start-page: 431
  volume-title: SVD and signal processing, II: algorithms, analysis and applications
  year: 1991
  ident: 2_CR30
– start-page: 1
  volume-title: SVD and signal processing, II: algorithms, analysis and applications
  year: 1991
  ident: 2_CR24
– volume-title: Applied hydrology
  year: 1988
  ident: 2_CR4
– ident: 2_CR9
  doi: 10.1016/S1474-6670(17)60403-8
– volume-title: Applied regression analysis
  year: 1998
  ident: 2_CR11
  doi: 10.1002/9781118625590
– ident: 2_CR2
– volume: 20
  start-page: 175
  year: 1987
  ident: 2_CR6
  publication-title: J Comput Appl Math
  doi: 10.1016/0377-0427(87)90135-X
– ident: 2_CR22
SSID ssib007539910
ssib057179955
ssib001127189
ssj0017754
Score 1.7098423
Snippet Most lumped rainfall-runoff models separate the interflow and groundwater components from the measured runoff hydrograph in an attempt to model these as...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 33
SubjectTerms Algorithms
Base flow
Field tests
Groundwater
Groundwater runoff
Hydrology
Infiltration
Rain
Rainfall-runoff relationships
Reservoirs
Stochastic models
Unit hydrographs
Title Exponential data fitting applied to infiltration, hydrograph separation, and variogram fitting
URI https://www.proquest.com/docview/222770931
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFG8UDnoxihIRJT14MjYW9tHtZNQMiQdijCScXPqxBRIykE0j_72vXTfChev6kaV9fe_3-l5_D6Fb5ksOhpQTT0qHuK4MCQ8djwTeQLORSZkIkyA79kcT923qTW1uTm7TKiudaBS1Wkp9R_6g32wycL_7j6tvootG6eCqraBxiJp9MDRazIPhax1E0ORu5nGR4xPNO1cFNWnJIcoY0TScRieEu2ZpVysbUzM8RScWI-KnclPP0EGStVA72j5Jg0Z7JvMWOrJ1zGebc_QV_a2WmU4Agi46-ROnc5PYjHmJNnGxxCBT84Vly73Hs41al-NxnpRE4PozzxT-BT_aZG9Vs1ygyTD6fBkRW0GBSMAZBZEiSMHfYQ4TlAMYcdI0EcyHQwu4S4IPmnCf912uuMMHyuWCMqEAsdDEZdyh0mmjRga_fYkwVUJ7sNRTMnBDCTAHnCEhGU08pVnDOohWCxhLSy-uq1ws4poY2ax5DGuuI96DOOygu3rIquTW2Ne5W-1KbI9ZHtdCcbW3tYuOtzcn16hRrH-SG8AShegZiemh5nM0fv_4B46gyDY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS0NBDA5aD_Uirqh1mYNexMHxbdN3EHGpVFuLSAVPPmcrCtLWti79Uf5Hk7dUvHjz-mbhkclkmSRfAHZkZBQqUsVDY3weBCbmKvZDXg09QiMzxuk0QbYV1e-Cq_vwfgq-iloYSqssZGIqqG3P0Bv5AdVsSnS_D4_7r5yaRlFwteigkXFFw40_0GMbHl2e4_Huet5FrX1W53lTAW5Q9Y640dUOugDSl1oo1M9-p-O0jJCP0RQx6JY5FanDQFnlK88GSgupLSpx4QKpfGF83HcaZgIqaC3BzGmtdXM7CVsQnFxazuRHnJDuijCqyFBLpeQE_JlKofi3IvytB1LldjEPc7lVyk4yNlqAKdddhJXaTxEcDuZSYLgI5bxz-tN4CR5qn_1el1KOcAqlm7LOc5pKzVRm37JRjyEXP7_k-Lz77GlsB9l6NnQZ9Dh9Vl3L3tFzT_PFil2W4e5fyLsCpS7-9iowYTX5zCK0phrEBg0rdL-0kcKFlnDK1kAUBExMDmhOfTVekgkUc0rzBGlOMXYviddgb7Kkn6F5_DW5UpxKkl_sYTJhw_U_R7ehXG9fN5PmZatRgdmfd5sNKI0Gb24TLZmR3sr5h8Hjf7PsNwbIBQI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsNADLVYJOCCWEVZ5wAXxIhptmkOCCFoWYU4gMSJMFsEUtUWWpZ-Gn-HPUmKuHDjmlkUzTi2X2w_A2zLxCg0pIrHxoQ8ikzKVRrGvBEHxEZmjNM-QfY6ObuLLu7j-zH4qmphKK2y0oleUduuoX_k-1SzKRF-1_fzMivi5qR12Hvh1ECKAq1VN41CQi7d8APRW__g_ASveicIWs3b4zNeNhjgBs3wgBvdyBEOyFBqodBWh3nutExQptEtMQjRnEpUPVJWhSqwkdJCaosGXbhIqlCYEPcdh0lcnxLua7RORwEMIpbzhU1hwonzrgqoioK_VEpOFKBeH6W_TeJvi-DNXGsOZkv_lB0VAjUPY66zAMvNn3I4HCz1QX8Bpsse6k_DRXhofva6HUo-wimUeMryZ59UzVTh6bJBl6E8P7dLpt499jS0r8V61ncFCTk9Vh3L3hHD-8yxapcluPuXw12GiQ6-9gowYTWhZxFb04hSgy4WAjFtpHCxJcayGojqADNTUptTh412NiJl9mee4ZlTtD3I0hrsjpb0Cl6PvyavVbeSlZ94PxsJ5Oqfo1swhYKaXZ1fX67BzM8PnHWYGLy-uQ10aQZ60wsPg8f_ltZvd7cH0g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exponential+data+fitting+applied+to+infiltration%2C+hydrograph+separation%2C+and+variogram+fitting&rft.jtitle=Stochastic+environmental+research+and+risk+assessment&rft.au=Ramos%2C+Jos%C3%A9+A.&rft.date=2006-01-01&rft.issn=1436-3240&rft.eissn=1436-3259&rft.volume=20&rft.issue=1-2&rft.spage=33&rft.epage=52&rft_id=info:doi/10.1007%2Fs00477-005-0002-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00477_005_0002_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1436-3240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1436-3240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1436-3240&client=summon