A Bayesian approach to sample size determination for studies designed to evaluate continuous medical tests

We develop a Bayesian approach to sample size and power calculations for cross-sectional studies that are designed to evaluate and compare continuous medical tests. For studies that involve one test or two conditionally independent or dependent tests, we present methods that are applicable when the...

Full description

Saved in:
Bibliographic Details
Published inComputational statistics & data analysis Vol. 54; no. 2; pp. 298 - 307
Main Authors Cheng, Dunlei, Branscum, Adam J., Stamey, James D.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.02.2010
Elsevier
SeriesComputational Statistics & Data Analysis
Subjects
Online AccessGet full text
ISSN0167-9473
1872-7352
DOI10.1016/j.csda.2009.09.024

Cover

Abstract We develop a Bayesian approach to sample size and power calculations for cross-sectional studies that are designed to evaluate and compare continuous medical tests. For studies that involve one test or two conditionally independent or dependent tests, we present methods that are applicable when the true disease status of sampled individuals will be available and when it will not. Within a hypothesis testing framework, we consider the goal of demonstrating that a medical test has area under the receiver operating characteristic (ROC) curve that exceeds a minimum acceptable level or another relevant threshold, and the goals of establishing the superiority or equivalence of one test relative to another. A Bayesian average power criterion is used to determine a sample size that will yield high posterior probability, on average, of a future study correctly deciding in favor of these goals. The impacts on Bayesian average power of prior distributions, the proportion of diseased subjects in the study, and correlation among tests are investigated through simulation. The computational algorithm we develop involves simulating multiple data sets that are fit with Bayesian models using Gibbs sampling, and is executed by using WinBUGS in tandem with R.
AbstractList We develop a Bayesian approach to sample size and power calculations for cross-sectional studies that are designed to evaluate and compare continuous medical tests. For studies that involve one test or two conditionally independent or dependent tests, we present methods that are applicable when the true disease status of sampled individuals will be available and when it will not. Within a hypothesis testing framework, we consider the goal of demonstrating that a medical test has area under the receiver operating characteristic (ROC) curve that exceeds a minimum acceptable level or another relevant threshold, and the goals of establishing the superiority or equivalence of one test relative to another. A Bayesian average power criterion is used to determine a sample size that will yield high posterior probability, on average, of a future study correctly deciding in favor of these goals. The impacts on Bayesian average power of prior distributions, the proportion of diseased subjects in the study, and correlation among tests are investigated through simulation. The computational algorithm we develop involves simulating multiple data sets that are fit with Bayesian models using Gibbs sampling, and is executed by using WinBUGS in tandem with R.
Author Cheng, Dunlei
Branscum, Adam J.
Stamey, James D.
Author_xml – sequence: 1
  givenname: Dunlei
  surname: Cheng
  fullname: Cheng, Dunlei
  email: DunleiC@baylorhealth.edu
  organization: Institute for Health Care Research and Improvement, Baylor Health Care System, Dallas, TX 75206, USA
– sequence: 2
  givenname: Adam J.
  surname: Branscum
  fullname: Branscum, Adam J.
  organization: Departments of Biostatistics, Statistics, and Epidemiology, University of Kentucky, Lexington, KY 40536, USA
– sequence: 3
  givenname: James D.
  surname: Stamey
  fullname: Stamey, James D.
  organization: Department of Statistical Science, Baylor University, Waco, TX 76798, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22122018$$DView record in Pascal Francis
http://econpapers.repec.org/article/eeecsdana/v_3a54_3ay_3a2010_3ai_3a2_3ap_3a298-307.htm$$DView record in RePEc
BookMark eNp9UU1v3CAURFUidZP0D_TEpUdv-TCLLfWSRk0_FKmX9Iye8aNhZWML2JW2v76QbXvoIdJ7DBIzA8y7IhdhCUjIW862nPHd-_3WphG2grF-W0u0r8iGd1o0WipxQTaFpJu-1fI1uUppz1ih6G5D9rf0I5wweQgU1jUuYJ9oXmiCeZ2QJv8L6YgZ4-wDZL8E6pZIUz6MHlM5Sf5nwLEq8AjTATJSu4Tsw2E5JDrj6C1MNGPK6YZcOpgSvvmD1-TH_afHuy_Nw_fPX-9uHxore50bCzuHHDg44YRUymGrAXvVi3ZQw-DaHlUHWgEyoaRywPRgneJ67IZxJ6W8Jt_OvhFXtGaNfoZ4MohYMwpgjkaCastyKi0YZwV83ZZeK_adkUybpzwXs3dnsxVS-YmLEKxP_0yF4KI4dIXXnXk2LilFdMb6_BxYjuAnUy6pgzJ7Ux9h6qBMLdEWqfhP-tf9RdGHswhLkkeP0STrMdgSeESbzbj4l-S_AcbMsKk
CitedBy_id crossref_primary_10_3390_diagnostics1010001
crossref_primary_10_1007_s11634_022_00528_0
crossref_primary_10_1080_03610918_2021_1881117
crossref_primary_10_1051_matecconf_201710001015
crossref_primary_10_1002_sim_6218
crossref_primary_10_1016_j_measurement_2021_109387
crossref_primary_10_1016_j_csda_2012_11_001
crossref_primary_10_1080_10543406_2018_1535501
crossref_primary_10_1002_sim_4396
crossref_primary_10_1002_sim_6177
crossref_primary_10_1016_j_annepidem_2010_03_012
crossref_primary_10_1080_10543406_2013_789885
crossref_primary_10_29252_jsri_15_2_213
Cites_doi 10.1002/sim.3250
10.2307/2533958
10.1002/sim.3505
10.1093/aje/153.9.921
10.1002/sim.2496
10.1214/ss/1030550861
10.1198/108571106X110883
10.1191/096228098678080061
10.1198/108571107X177519
10.1111/j.1541-0420.2006.00712.x
10.1111/j.1541-0420.2005.00324.x
10.1002/(SICI)1097-0258(19970715)16:13<1529::AID-SIM565>3.0.CO;2-H
10.1002/sim.2828
10.1093/oxfordjournals.aje.a117428
10.1016/j.prevetmed.2004.12.005
ContentType Journal Article
Copyright 2009 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2009 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DKI
X2L
DOI 10.1016/j.csda.2009.09.024
DatabaseName CrossRef
Pascal-Francis
RePEc IDEAS
RePEc
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Statistics
EISSN 1872-7352
EndPage 307
ExternalDocumentID eeecsdana_v_3a54_3ay_3a2010_3ai_3a2_3ap_3a298_307_htm
22122018
10_1016_j_csda_2009_09_024
S0167947309003545
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
VH1
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
02
0R
1
8P
ABFLS
ABPTK
ADALY
DKI
G-
HZ
IPNFZ
K
M
STF
X
X2L
ID FETCH-LOGICAL-c397t-ca6fe1a1af2f2355fe47ae95924b5bbf49e58a75ae02535fa07bcf517d8bd6333
IEDL.DBID .~1
ISSN 0167-9473
IngestDate Wed Aug 18 03:10:08 EDT 2021
Mon Jul 21 09:16:20 EDT 2025
Tue Jul 01 02:24:23 EDT 2025
Thu Apr 24 23:09:26 EDT 2025
Fri Feb 23 02:20:08 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Correlation
Sample size
Non parametric estimation
Probability distribution
Multivariate analysis
Hypothesis test
Statistical test
Cross sectional study
Distribution function
Sample survey
Posterior distribution
Bayes estimation
Data analysis
Prior distribution
Average
Roc curve
Statistical association
Statistical estimation
Gibbs sampling
Algorithm
Mean estimation
Sampling theory
Statistical computation
Posterior probability
Simulation
Correlation analysis
Experimental design
Receiver operating characteristic curves
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-ca6fe1a1af2f2355fe47ae95924b5bbf49e58a75ae02535fa07bcf517d8bd6333
PageCount 10
ParticipantIDs repec_primary_eeecsdana_v_3a54_3ay_3a2010_3ai_3a2_3ap_3a298_307_htm
pascalfrancis_primary_22122018
crossref_citationtrail_10_1016_j_csda_2009_09_024
crossref_primary_10_1016_j_csda_2009_09_024
elsevier_sciencedirect_doi_10_1016_j_csda_2009_09_024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-02-01
PublicationDateYYYYMMDD 2010-02-01
PublicationDate_xml – month: 02
  year: 2010
  text: 2010-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationSeriesTitle Computational Statistics & Data Analysis
PublicationTitle Computational statistics & data analysis
PublicationYear 2010
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Erkanli, Sung, Costello, Angold (b7) 2006; 25
Choi, Johnson, Collins, Gardner (b6) 2006; 11
Obuchowski (b10) 1997; 53
Cheng, Stamey, Branscum (b5) 2009; 28
Obuchowski, McClish (b12) 1997; 16
Branscum, Gardner, Johnson (b2) 2005; 68
Joseph, Gyorkos, Coupal (b9) 1995; 141
Obuchowski (b11) 1998; 7
Johnson, Gastwirth, Pearson (b8) 2001; 153
Albert (b1) 2007; 63
Wang, Gatsonis (b14) 2008; 27
Zhou, Castelluccio, Zhou (b15) 2005; 61
Branscum, Johnson, Hanson, Gardner (b4) 2008; 27
Branscum, Johnson, Gardner (b3) 2007; 16
Wang, Gelfand (b13) 2002; 17
Branscum (10.1016/j.csda.2009.09.024_b3) 2007; 16
Branscum (10.1016/j.csda.2009.09.024_b2) 2005; 68
Erkanli (10.1016/j.csda.2009.09.024_b7) 2006; 25
Cheng (10.1016/j.csda.2009.09.024_b5) 2009; 28
Joseph (10.1016/j.csda.2009.09.024_b9) 1995; 141
Choi (10.1016/j.csda.2009.09.024_b6) 2006; 11
Albert (10.1016/j.csda.2009.09.024_b1) 2007; 63
Zhou (10.1016/j.csda.2009.09.024_b15) 2005; 61
Johnson (10.1016/j.csda.2009.09.024_b8) 2001; 153
Branscum (10.1016/j.csda.2009.09.024_b4) 2008; 27
Obuchowski (10.1016/j.csda.2009.09.024_b11) 1998; 7
Obuchowski (10.1016/j.csda.2009.09.024_b12) 1997; 16
Obuchowski (10.1016/j.csda.2009.09.024_b10) 1997; 53
Wang (10.1016/j.csda.2009.09.024_b13) 2002; 17
Wang (10.1016/j.csda.2009.09.024_b14) 2008; 27
References_xml – volume: 63
  start-page: 593
  year: 2007
  end-page: 602
  ident: b1
  article-title: Random effects modeling approaches for estimating ROC curves from repeated ordinal tests without a gold standard
  publication-title: Biometrics
– volume: 25
  start-page: 3905
  year: 2006
  end-page: 3928
  ident: b7
  article-title: Bayesian semi-parametric ROC analysis
  publication-title: Statistics in Medicine
– volume: 28
  start-page: 848
  year: 2009
  end-page: 863
  ident: b5
  article-title: Bayesian approach to average power calculation for binary regression with misclassified outcomes
  publication-title: Statistics in Medicine
– volume: 61
  start-page: 600
  year: 2005
  end-page: 609
  ident: b15
  article-title: Nonparametric estimation of ROC curves in the absence of a gold standard
  publication-title: Biometrics
– volume: 53
  start-page: 567
  year: 1997
  end-page: 578
  ident: b10
  article-title: Nonparametric analysis of clustered ROC curve data
  publication-title: Biometrics
– volume: 17
  start-page: 193
  year: 2002
  end-page: 208
  ident: b13
  article-title: A simulation-based approach to Bayesian sample size determination for performance under a given model and for separating models
  publication-title: Statistical Science
– volume: 11
  start-page: 210
  year: 2006
  end-page: 229
  ident: b6
  article-title: Bayesian inferences for receiver operating characteristic curves in the absence of a gold standard
  publication-title: Journal of Agricultural, Biological, and Environmental Statistics
– volume: 68
  start-page: 145
  year: 2005
  end-page: 163
  ident: b2
  article-title: Estimation of diagnostic test sensitivity and specificity through Bayesian modeling
  publication-title: Preventive Veterinary Medicine
– volume: 27
  start-page: 2474
  year: 2008
  end-page: 2496
  ident: b4
  article-title: Bayesian semiparametric ROC curve estimation and disease diagnosis
  publication-title: Statistics in Medicine
– volume: 153
  start-page: 921
  year: 2001
  end-page: 924
  ident: b8
  article-title: Screening without a gold standard: The Hui-Walter paradigm revisited
  publication-title: American Journal of Epidemiology
– volume: 7
  start-page: 371
  year: 1998
  end-page: 392
  ident: b11
  article-title: Sample size calculations in studies of test accuracy
  publication-title: Statistical Methods in Medical Research
– volume: 16
  start-page: 112
  year: 2007
  end-page: 127
  ident: b3
  article-title: Sample size calculations for studies designed to evaluate diagnostic test accuracy
  publication-title: Journal of Agricultural, Biological, and Environmental Statistics
– volume: 141
  start-page: 263
  year: 1995
  end-page: 272
  ident: b9
  article-title: Bayesian estimation of disease prevalence and the parameters of diagnostic tests in the absence of a gold standard
  publication-title: American Journal of Epidemiology
– volume: 27
  start-page: 243
  year: 2008
  end-page: 256
  ident: b14
  article-title: Hierarchical models for ROC curve summary measures: Design and analysis of multi-reader, multi-modality studies of medical test
  publication-title: Statistics in Medicine
– volume: 16
  start-page: 1529
  year: 1997
  end-page: 1542
  ident: b12
  article-title: Sample size determination for diagnostic accuracy studies involving binormal ROC curve indices
  publication-title: Statistics in Medicine
– volume: 27
  start-page: 2474
  year: 2008
  ident: 10.1016/j.csda.2009.09.024_b4
  article-title: Bayesian semiparametric ROC curve estimation and disease diagnosis
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.3250
– volume: 53
  start-page: 567
  year: 1997
  ident: 10.1016/j.csda.2009.09.024_b10
  article-title: Nonparametric analysis of clustered ROC curve data
  publication-title: Biometrics
  doi: 10.2307/2533958
– volume: 28
  start-page: 848
  year: 2009
  ident: 10.1016/j.csda.2009.09.024_b5
  article-title: Bayesian approach to average power calculation for binary regression with misclassified outcomes
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.3505
– volume: 153
  start-page: 921
  year: 2001
  ident: 10.1016/j.csda.2009.09.024_b8
  article-title: Screening without a gold standard: The Hui-Walter paradigm revisited
  publication-title: American Journal of Epidemiology
  doi: 10.1093/aje/153.9.921
– volume: 25
  start-page: 3905
  year: 2006
  ident: 10.1016/j.csda.2009.09.024_b7
  article-title: Bayesian semi-parametric ROC analysis
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.2496
– volume: 17
  start-page: 193
  year: 2002
  ident: 10.1016/j.csda.2009.09.024_b13
  article-title: A simulation-based approach to Bayesian sample size determination for performance under a given model and for separating models
  publication-title: Statistical Science
  doi: 10.1214/ss/1030550861
– volume: 11
  start-page: 210
  year: 2006
  ident: 10.1016/j.csda.2009.09.024_b6
  article-title: Bayesian inferences for receiver operating characteristic curves in the absence of a gold standard
  publication-title: Journal of Agricultural, Biological, and Environmental Statistics
  doi: 10.1198/108571106X110883
– volume: 7
  start-page: 371
  year: 1998
  ident: 10.1016/j.csda.2009.09.024_b11
  article-title: Sample size calculations in studies of test accuracy
  publication-title: Statistical Methods in Medical Research
  doi: 10.1191/096228098678080061
– volume: 16
  start-page: 112
  year: 2007
  ident: 10.1016/j.csda.2009.09.024_b3
  article-title: Sample size calculations for studies designed to evaluate diagnostic test accuracy
  publication-title: Journal of Agricultural, Biological, and Environmental Statistics
  doi: 10.1198/108571107X177519
– volume: 63
  start-page: 593
  year: 2007
  ident: 10.1016/j.csda.2009.09.024_b1
  article-title: Random effects modeling approaches for estimating ROC curves from repeated ordinal tests without a gold standard
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2006.00712.x
– volume: 61
  start-page: 600
  year: 2005
  ident: 10.1016/j.csda.2009.09.024_b15
  article-title: Nonparametric estimation of ROC curves in the absence of a gold standard
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2005.00324.x
– volume: 16
  start-page: 1529
  year: 1997
  ident: 10.1016/j.csda.2009.09.024_b12
  article-title: Sample size determination for diagnostic accuracy studies involving binormal ROC curve indices
  publication-title: Statistics in Medicine
  doi: 10.1002/(SICI)1097-0258(19970715)16:13<1529::AID-SIM565>3.0.CO;2-H
– volume: 27
  start-page: 243
  year: 2008
  ident: 10.1016/j.csda.2009.09.024_b14
  article-title: Hierarchical models for ROC curve summary measures: Design and analysis of multi-reader, multi-modality studies of medical test
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.2828
– volume: 141
  start-page: 263
  year: 1995
  ident: 10.1016/j.csda.2009.09.024_b9
  article-title: Bayesian estimation of disease prevalence and the parameters of diagnostic tests in the absence of a gold standard
  publication-title: American Journal of Epidemiology
  doi: 10.1093/oxfordjournals.aje.a117428
– volume: 68
  start-page: 145
  year: 2005
  ident: 10.1016/j.csda.2009.09.024_b2
  article-title: Estimation of diagnostic test sensitivity and specificity through Bayesian modeling
  publication-title: Preventive Veterinary Medicine
  doi: 10.1016/j.prevetmed.2004.12.005
SSID ssj0002478
Score 1.9611589
Snippet We develop a Bayesian approach to sample size and power calculations for cross-sectional studies that are designed to evaluate and compare continuous medical...
SourceID repec
pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 298
SubjectTerms Exact sciences and technology
General topics
Mathematics
Multivariate analysis
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in probability and statistics
Probability and statistics
Sampling theory, sample surveys
Sciences and techniques of general use
Statistics
Title A Bayesian approach to sample size determination for studies designed to evaluate continuous medical tests
URI https://dx.doi.org/10.1016/j.csda.2009.09.024
http://econpapers.repec.org/article/eeecsdana/v_3a54_3ay_3a2010_3ai_3a2_3ap_3a298-307.htm
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqcgEhxKdYoCsfuKGwm8TexMdlabVl1R6Ait6sSTwWqdps1GSRyoHfzszGWeiBHpDsOF9OIo8185I8PwvxdjoDQ6GnjCCBLFIu1xFA6qICnPIAxvitzvbJ6Wx5pj6d6_M9sRjGwjCtMvj-3qdvvXXYMwmtOWmqavKFCfRGUQ_lj3EEBHgEO21Sn37_6w_NI1G9N2Z9bz47DJzpOV5l6yBoVlJK1L-C08MGWmoy3891QTj2Ghss_wpER4_Fo4Ag5bx_yCdiD-un4sHJTn61fSYu5vID3CCPj5SDaLjs1rIF1gKWbfUTpRt4MGwZSdBVtj2lkI4wqQMd1whi4CiZ0l7Vm_WmlVf9vx1JILVrn4uzo8Ovi2UUJlWISoIeXVTCzGMMMfjEJwQ2PKoM0Gh6Dyt0UXhlUOeQaUBCQ6n2MM2K0us4c3nhZmmavhD79brGl0Ji6QjtgkbjnHIFQlpoZzCPIfegpjAS8dCatgyK4zzxxaUdqGUXli3AU2EayylRI_FuV6fp9TbuPFsPRrK3eo2lgHBnvfEti-5ulVAkJ0iUj8Ria-LdAUTki9Rgf9gUtKLFDWXmElBR8SrlhkuTW3Kc9nt39eo_H--1uN-TFJg180bsd9cbPCDs0xXjbecei3vz49XylMvV528r2vtxdfwbHAsJWQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb5wwELXS9NBWVdRPdZsm9aG3iu4C9oKP6SrRts3m0kTKzRrwWCVqWBTYSumhvz0za9g2h-RQCTACG5DHmnnA8xshPkymYCj0lBEkkEXK5ToCSF1UgFMewBi_1tlenEznZ-rruT7fErNhLgzTKnvfH3z62lv3R8Z9b46bqhp_ZwK9UTRC-WMcAYEH4qHSaca8vk9__vI8EhXcMQt8c_V-5kwgeZWtg160kpZE3RWdnjbQUp_5kOyCgOwVNlj-E4mOnomdHkLKg_CUz8UW1i_Ek8VGf7V9KS4O5Ge4Rp4gKQfVcNktZQssBizb6jdKNxBh2DSSsKtsA6eQzjCrAx236NXAUTKnvapXy1UrL8PPHUkotWtfibOjw9PZPOqzKkQlYY8uKmHqMYYYfOITQhseVQZoNL2IFboovDKoc8g0IMGhVHuYZEXpdZy5vHDTNE1fi-16WeMbIbF0BHdBo3FOuQIhLbQzmMeQe1ATGIl46E1b9pLjnPnipx24ZReWLcC5MI3lJVEj8XHTpgmCG_fW1oOR7K1hYyki3Ntu_5ZFN7dKKJQTJspHYrY28eYEIvJFarC_bApa0eaaViYTUFHxLq0Nlya35Dntj-7y7X8-3nvxaH66OLbHX06-7YrHgbHAFJp3Yru7WuEeAaGu2F8P9Bui6ghQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bayesian+approach+to+sample+size+determination+for+studies+designed+to+evaluate+continuous+medical+tests&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=DUNLEI+CHENG&rft.au=BRANSCUM%2C+Adam+J&rft.au=STAMEY%2C+James+D&rft.date=2010-02-01&rft.pub=Elsevier&rft.issn=0167-9473&rft.volume=54&rft.issue=2&rft.spage=298&rft.epage=307&rft_id=info:doi/10.1016%2Fj.csda.2009.09.024&rft.externalDBID=n%2Fa&rft.externalDocID=22122018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon