A Bayesian approach to sample size determination for studies designed to evaluate continuous medical tests
We develop a Bayesian approach to sample size and power calculations for cross-sectional studies that are designed to evaluate and compare continuous medical tests. For studies that involve one test or two conditionally independent or dependent tests, we present methods that are applicable when the...
Saved in:
Published in | Computational statistics & data analysis Vol. 54; no. 2; pp. 298 - 307 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.02.2010
Elsevier |
Series | Computational Statistics & Data Analysis |
Subjects | |
Online Access | Get full text |
ISSN | 0167-9473 1872-7352 |
DOI | 10.1016/j.csda.2009.09.024 |
Cover
Abstract | We develop a Bayesian approach to sample size and power calculations for cross-sectional studies that are designed to evaluate and compare continuous medical tests. For studies that involve one test or two conditionally independent or dependent tests, we present methods that are applicable when the true disease status of sampled individuals will be available and when it will not. Within a hypothesis testing framework, we consider the goal of demonstrating that a medical test has area under the receiver operating characteristic (ROC) curve that exceeds a minimum acceptable level or another relevant threshold, and the goals of establishing the superiority or equivalence of one test relative to another. A Bayesian average power criterion is used to determine a sample size that will yield high posterior probability, on average, of a future study correctly deciding in favor of these goals. The impacts on Bayesian average power of prior distributions, the proportion of diseased subjects in the study, and correlation among tests are investigated through simulation. The computational algorithm we develop involves simulating multiple data sets that are fit with Bayesian models using Gibbs sampling, and is executed by using WinBUGS in tandem with R. |
---|---|
AbstractList | We develop a Bayesian approach to sample size and power calculations for cross-sectional studies that are designed to evaluate and compare continuous medical tests. For studies that involve one test or two conditionally independent or dependent tests, we present methods that are applicable when the true disease status of sampled individuals will be available and when it will not. Within a hypothesis testing framework, we consider the goal of demonstrating that a medical test has area under the receiver operating characteristic (ROC) curve that exceeds a minimum acceptable level or another relevant threshold, and the goals of establishing the superiority or equivalence of one test relative to another. A Bayesian average power criterion is used to determine a sample size that will yield high posterior probability, on average, of a future study correctly deciding in favor of these goals. The impacts on Bayesian average power of prior distributions, the proportion of diseased subjects in the study, and correlation among tests are investigated through simulation. The computational algorithm we develop involves simulating multiple data sets that are fit with Bayesian models using Gibbs sampling, and is executed by using WinBUGS in tandem with R. |
Author | Cheng, Dunlei Branscum, Adam J. Stamey, James D. |
Author_xml | – sequence: 1 givenname: Dunlei surname: Cheng fullname: Cheng, Dunlei email: DunleiC@baylorhealth.edu organization: Institute for Health Care Research and Improvement, Baylor Health Care System, Dallas, TX 75206, USA – sequence: 2 givenname: Adam J. surname: Branscum fullname: Branscum, Adam J. organization: Departments of Biostatistics, Statistics, and Epidemiology, University of Kentucky, Lexington, KY 40536, USA – sequence: 3 givenname: James D. surname: Stamey fullname: Stamey, James D. organization: Department of Statistical Science, Baylor University, Waco, TX 76798, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22122018$$DView record in Pascal Francis http://econpapers.repec.org/article/eeecsdana/v_3a54_3ay_3a2010_3ai_3a2_3ap_3a298-307.htm$$DView record in RePEc |
BookMark | eNp9UU1v3CAURFUidZP0D_TEpUdv-TCLLfWSRk0_FKmX9Iye8aNhZWML2JW2v76QbXvoIdJ7DBIzA8y7IhdhCUjIW862nPHd-_3WphG2grF-W0u0r8iGd1o0WipxQTaFpJu-1fI1uUppz1ih6G5D9rf0I5wweQgU1jUuYJ9oXmiCeZ2QJv8L6YgZ4-wDZL8E6pZIUz6MHlM5Sf5nwLEq8AjTATJSu4Tsw2E5JDrj6C1MNGPK6YZcOpgSvvmD1-TH_afHuy_Nw_fPX-9uHxore50bCzuHHDg44YRUymGrAXvVi3ZQw-DaHlUHWgEyoaRywPRgneJ67IZxJ6W8Jt_OvhFXtGaNfoZ4MohYMwpgjkaCastyKi0YZwV83ZZeK_adkUybpzwXs3dnsxVS-YmLEKxP_0yF4KI4dIXXnXk2LilFdMb6_BxYjuAnUy6pgzJ7Ux9h6qBMLdEWqfhP-tf9RdGHswhLkkeP0STrMdgSeESbzbj4l-S_AcbMsKk |
CitedBy_id | crossref_primary_10_3390_diagnostics1010001 crossref_primary_10_1007_s11634_022_00528_0 crossref_primary_10_1080_03610918_2021_1881117 crossref_primary_10_1051_matecconf_201710001015 crossref_primary_10_1002_sim_6218 crossref_primary_10_1016_j_measurement_2021_109387 crossref_primary_10_1016_j_csda_2012_11_001 crossref_primary_10_1080_10543406_2018_1535501 crossref_primary_10_1002_sim_4396 crossref_primary_10_1002_sim_6177 crossref_primary_10_1016_j_annepidem_2010_03_012 crossref_primary_10_1080_10543406_2013_789885 crossref_primary_10_29252_jsri_15_2_213 |
Cites_doi | 10.1002/sim.3250 10.2307/2533958 10.1002/sim.3505 10.1093/aje/153.9.921 10.1002/sim.2496 10.1214/ss/1030550861 10.1198/108571106X110883 10.1191/096228098678080061 10.1198/108571107X177519 10.1111/j.1541-0420.2006.00712.x 10.1111/j.1541-0420.2005.00324.x 10.1002/(SICI)1097-0258(19970715)16:13<1529::AID-SIM565>3.0.CO;2-H 10.1002/sim.2828 10.1093/oxfordjournals.aje.a117428 10.1016/j.prevetmed.2004.12.005 |
ContentType | Journal Article |
Copyright | 2009 Elsevier B.V. 2015 INIST-CNRS |
Copyright_xml | – notice: 2009 Elsevier B.V. – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW DKI X2L |
DOI | 10.1016/j.csda.2009.09.024 |
DatabaseName | CrossRef Pascal-Francis RePEc IDEAS RePEc |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DKI name: RePEc IDEAS url: http://ideas.repec.org/ sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Statistics |
EISSN | 1872-7352 |
EndPage | 307 |
ExternalDocumentID | eeecsdana_v_3a54_3ay_3a2010_3ai_3a2_3ap_3a298_307_htm 22122018 10_1016_j_csda_2009_09_024 S0167947309003545 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDS SES SEW SME SPC SPCBC SSB SSD SST SSV SSW SSZ T5K VH1 VOH WUQ XPP ZMT ZY4 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 02 0R 1 8P ABFLS ABPTK ADALY DKI G- HZ IPNFZ K M STF X X2L |
ID | FETCH-LOGICAL-c397t-ca6fe1a1af2f2355fe47ae95924b5bbf49e58a75ae02535fa07bcf517d8bd6333 |
IEDL.DBID | .~1 |
ISSN | 0167-9473 |
IngestDate | Wed Aug 18 03:10:08 EDT 2021 Mon Jul 21 09:16:20 EDT 2025 Tue Jul 01 02:24:23 EDT 2025 Thu Apr 24 23:09:26 EDT 2025 Fri Feb 23 02:20:08 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Correlation Sample size Non parametric estimation Probability distribution Multivariate analysis Hypothesis test Statistical test Cross sectional study Distribution function Sample survey Posterior distribution Bayes estimation Data analysis Prior distribution Average Roc curve Statistical association Statistical estimation Gibbs sampling Algorithm Mean estimation Sampling theory Statistical computation Posterior probability Simulation Correlation analysis Experimental design Receiver operating characteristic curves |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c397t-ca6fe1a1af2f2355fe47ae95924b5bbf49e58a75ae02535fa07bcf517d8bd6333 |
PageCount | 10 |
ParticipantIDs | repec_primary_eeecsdana_v_3a54_3ay_3a2010_3ai_3a2_3ap_3a298_307_htm pascalfrancis_primary_22122018 crossref_citationtrail_10_1016_j_csda_2009_09_024 crossref_primary_10_1016_j_csda_2009_09_024 elsevier_sciencedirect_doi_10_1016_j_csda_2009_09_024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-02-01 |
PublicationDateYYYYMMDD | 2010-02-01 |
PublicationDate_xml | – month: 02 year: 2010 text: 2010-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationSeriesTitle | Computational Statistics & Data Analysis |
PublicationTitle | Computational statistics & data analysis |
PublicationYear | 2010 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Erkanli, Sung, Costello, Angold (b7) 2006; 25 Choi, Johnson, Collins, Gardner (b6) 2006; 11 Obuchowski (b10) 1997; 53 Cheng, Stamey, Branscum (b5) 2009; 28 Obuchowski, McClish (b12) 1997; 16 Branscum, Gardner, Johnson (b2) 2005; 68 Joseph, Gyorkos, Coupal (b9) 1995; 141 Obuchowski (b11) 1998; 7 Johnson, Gastwirth, Pearson (b8) 2001; 153 Albert (b1) 2007; 63 Wang, Gatsonis (b14) 2008; 27 Zhou, Castelluccio, Zhou (b15) 2005; 61 Branscum, Johnson, Hanson, Gardner (b4) 2008; 27 Branscum, Johnson, Gardner (b3) 2007; 16 Wang, Gelfand (b13) 2002; 17 Branscum (10.1016/j.csda.2009.09.024_b3) 2007; 16 Branscum (10.1016/j.csda.2009.09.024_b2) 2005; 68 Erkanli (10.1016/j.csda.2009.09.024_b7) 2006; 25 Cheng (10.1016/j.csda.2009.09.024_b5) 2009; 28 Joseph (10.1016/j.csda.2009.09.024_b9) 1995; 141 Choi (10.1016/j.csda.2009.09.024_b6) 2006; 11 Albert (10.1016/j.csda.2009.09.024_b1) 2007; 63 Zhou (10.1016/j.csda.2009.09.024_b15) 2005; 61 Johnson (10.1016/j.csda.2009.09.024_b8) 2001; 153 Branscum (10.1016/j.csda.2009.09.024_b4) 2008; 27 Obuchowski (10.1016/j.csda.2009.09.024_b11) 1998; 7 Obuchowski (10.1016/j.csda.2009.09.024_b12) 1997; 16 Obuchowski (10.1016/j.csda.2009.09.024_b10) 1997; 53 Wang (10.1016/j.csda.2009.09.024_b13) 2002; 17 Wang (10.1016/j.csda.2009.09.024_b14) 2008; 27 |
References_xml | – volume: 63 start-page: 593 year: 2007 end-page: 602 ident: b1 article-title: Random effects modeling approaches for estimating ROC curves from repeated ordinal tests without a gold standard publication-title: Biometrics – volume: 25 start-page: 3905 year: 2006 end-page: 3928 ident: b7 article-title: Bayesian semi-parametric ROC analysis publication-title: Statistics in Medicine – volume: 28 start-page: 848 year: 2009 end-page: 863 ident: b5 article-title: Bayesian approach to average power calculation for binary regression with misclassified outcomes publication-title: Statistics in Medicine – volume: 61 start-page: 600 year: 2005 end-page: 609 ident: b15 article-title: Nonparametric estimation of ROC curves in the absence of a gold standard publication-title: Biometrics – volume: 53 start-page: 567 year: 1997 end-page: 578 ident: b10 article-title: Nonparametric analysis of clustered ROC curve data publication-title: Biometrics – volume: 17 start-page: 193 year: 2002 end-page: 208 ident: b13 article-title: A simulation-based approach to Bayesian sample size determination for performance under a given model and for separating models publication-title: Statistical Science – volume: 11 start-page: 210 year: 2006 end-page: 229 ident: b6 article-title: Bayesian inferences for receiver operating characteristic curves in the absence of a gold standard publication-title: Journal of Agricultural, Biological, and Environmental Statistics – volume: 68 start-page: 145 year: 2005 end-page: 163 ident: b2 article-title: Estimation of diagnostic test sensitivity and specificity through Bayesian modeling publication-title: Preventive Veterinary Medicine – volume: 27 start-page: 2474 year: 2008 end-page: 2496 ident: b4 article-title: Bayesian semiparametric ROC curve estimation and disease diagnosis publication-title: Statistics in Medicine – volume: 153 start-page: 921 year: 2001 end-page: 924 ident: b8 article-title: Screening without a gold standard: The Hui-Walter paradigm revisited publication-title: American Journal of Epidemiology – volume: 7 start-page: 371 year: 1998 end-page: 392 ident: b11 article-title: Sample size calculations in studies of test accuracy publication-title: Statistical Methods in Medical Research – volume: 16 start-page: 112 year: 2007 end-page: 127 ident: b3 article-title: Sample size calculations for studies designed to evaluate diagnostic test accuracy publication-title: Journal of Agricultural, Biological, and Environmental Statistics – volume: 141 start-page: 263 year: 1995 end-page: 272 ident: b9 article-title: Bayesian estimation of disease prevalence and the parameters of diagnostic tests in the absence of a gold standard publication-title: American Journal of Epidemiology – volume: 27 start-page: 243 year: 2008 end-page: 256 ident: b14 article-title: Hierarchical models for ROC curve summary measures: Design and analysis of multi-reader, multi-modality studies of medical test publication-title: Statistics in Medicine – volume: 16 start-page: 1529 year: 1997 end-page: 1542 ident: b12 article-title: Sample size determination for diagnostic accuracy studies involving binormal ROC curve indices publication-title: Statistics in Medicine – volume: 27 start-page: 2474 year: 2008 ident: 10.1016/j.csda.2009.09.024_b4 article-title: Bayesian semiparametric ROC curve estimation and disease diagnosis publication-title: Statistics in Medicine doi: 10.1002/sim.3250 – volume: 53 start-page: 567 year: 1997 ident: 10.1016/j.csda.2009.09.024_b10 article-title: Nonparametric analysis of clustered ROC curve data publication-title: Biometrics doi: 10.2307/2533958 – volume: 28 start-page: 848 year: 2009 ident: 10.1016/j.csda.2009.09.024_b5 article-title: Bayesian approach to average power calculation for binary regression with misclassified outcomes publication-title: Statistics in Medicine doi: 10.1002/sim.3505 – volume: 153 start-page: 921 year: 2001 ident: 10.1016/j.csda.2009.09.024_b8 article-title: Screening without a gold standard: The Hui-Walter paradigm revisited publication-title: American Journal of Epidemiology doi: 10.1093/aje/153.9.921 – volume: 25 start-page: 3905 year: 2006 ident: 10.1016/j.csda.2009.09.024_b7 article-title: Bayesian semi-parametric ROC analysis publication-title: Statistics in Medicine doi: 10.1002/sim.2496 – volume: 17 start-page: 193 year: 2002 ident: 10.1016/j.csda.2009.09.024_b13 article-title: A simulation-based approach to Bayesian sample size determination for performance under a given model and for separating models publication-title: Statistical Science doi: 10.1214/ss/1030550861 – volume: 11 start-page: 210 year: 2006 ident: 10.1016/j.csda.2009.09.024_b6 article-title: Bayesian inferences for receiver operating characteristic curves in the absence of a gold standard publication-title: Journal of Agricultural, Biological, and Environmental Statistics doi: 10.1198/108571106X110883 – volume: 7 start-page: 371 year: 1998 ident: 10.1016/j.csda.2009.09.024_b11 article-title: Sample size calculations in studies of test accuracy publication-title: Statistical Methods in Medical Research doi: 10.1191/096228098678080061 – volume: 16 start-page: 112 year: 2007 ident: 10.1016/j.csda.2009.09.024_b3 article-title: Sample size calculations for studies designed to evaluate diagnostic test accuracy publication-title: Journal of Agricultural, Biological, and Environmental Statistics doi: 10.1198/108571107X177519 – volume: 63 start-page: 593 year: 2007 ident: 10.1016/j.csda.2009.09.024_b1 article-title: Random effects modeling approaches for estimating ROC curves from repeated ordinal tests without a gold standard publication-title: Biometrics doi: 10.1111/j.1541-0420.2006.00712.x – volume: 61 start-page: 600 year: 2005 ident: 10.1016/j.csda.2009.09.024_b15 article-title: Nonparametric estimation of ROC curves in the absence of a gold standard publication-title: Biometrics doi: 10.1111/j.1541-0420.2005.00324.x – volume: 16 start-page: 1529 year: 1997 ident: 10.1016/j.csda.2009.09.024_b12 article-title: Sample size determination for diagnostic accuracy studies involving binormal ROC curve indices publication-title: Statistics in Medicine doi: 10.1002/(SICI)1097-0258(19970715)16:13<1529::AID-SIM565>3.0.CO;2-H – volume: 27 start-page: 243 year: 2008 ident: 10.1016/j.csda.2009.09.024_b14 article-title: Hierarchical models for ROC curve summary measures: Design and analysis of multi-reader, multi-modality studies of medical test publication-title: Statistics in Medicine doi: 10.1002/sim.2828 – volume: 141 start-page: 263 year: 1995 ident: 10.1016/j.csda.2009.09.024_b9 article-title: Bayesian estimation of disease prevalence and the parameters of diagnostic tests in the absence of a gold standard publication-title: American Journal of Epidemiology doi: 10.1093/oxfordjournals.aje.a117428 – volume: 68 start-page: 145 year: 2005 ident: 10.1016/j.csda.2009.09.024_b2 article-title: Estimation of diagnostic test sensitivity and specificity through Bayesian modeling publication-title: Preventive Veterinary Medicine doi: 10.1016/j.prevetmed.2004.12.005 |
SSID | ssj0002478 |
Score | 1.9611589 |
Snippet | We develop a Bayesian approach to sample size and power calculations for cross-sectional studies that are designed to evaluate and compare continuous medical... |
SourceID | repec pascalfrancis crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 298 |
SubjectTerms | Exact sciences and technology General topics Mathematics Multivariate analysis Numerical analysis Numerical analysis. Scientific computation Numerical methods in probability and statistics Probability and statistics Sampling theory, sample surveys Sciences and techniques of general use Statistics |
Title | A Bayesian approach to sample size determination for studies designed to evaluate continuous medical tests |
URI | https://dx.doi.org/10.1016/j.csda.2009.09.024 http://econpapers.repec.org/article/eeecsdana/v_3a54_3ay_3a2010_3ai_3a2_3ap_3a298-307.htm |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqcgEhxKdYoCsfuKGwm8TexMdlabVl1R6Ait6sSTwWqdps1GSRyoHfzszGWeiBHpDsOF9OIo8185I8PwvxdjoDQ6GnjCCBLFIu1xFA6qICnPIAxvitzvbJ6Wx5pj6d6_M9sRjGwjCtMvj-3qdvvXXYMwmtOWmqavKFCfRGUQ_lj3EEBHgEO21Sn37_6w_NI1G9N2Z9bz47DJzpOV5l6yBoVlJK1L-C08MGWmoy3891QTj2Ghss_wpER4_Fo4Ag5bx_yCdiD-un4sHJTn61fSYu5vID3CCPj5SDaLjs1rIF1gKWbfUTpRt4MGwZSdBVtj2lkI4wqQMd1whi4CiZ0l7Vm_WmlVf9vx1JILVrn4uzo8Ovi2UUJlWISoIeXVTCzGMMMfjEJwQ2PKoM0Gh6Dyt0UXhlUOeQaUBCQ6n2MM2K0us4c3nhZmmavhD79brGl0Ji6QjtgkbjnHIFQlpoZzCPIfegpjAS8dCatgyK4zzxxaUdqGUXli3AU2EayylRI_FuV6fp9TbuPFsPRrK3eo2lgHBnvfEti-5ulVAkJ0iUj8Ria-LdAUTki9Rgf9gUtKLFDWXmElBR8SrlhkuTW3Kc9nt39eo_H--1uN-TFJg180bsd9cbPCDs0xXjbecei3vz49XylMvV528r2vtxdfwbHAsJWQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb5wwELXS9NBWVdRPdZsm9aG3iu4C9oKP6SrRts3m0kTKzRrwWCVqWBTYSumhvz0za9g2h-RQCTACG5DHmnnA8xshPkymYCj0lBEkkEXK5ToCSF1UgFMewBi_1tlenEznZ-rruT7fErNhLgzTKnvfH3z62lv3R8Z9b46bqhp_ZwK9UTRC-WMcAYEH4qHSaca8vk9__vI8EhXcMQt8c_V-5kwgeZWtg160kpZE3RWdnjbQUp_5kOyCgOwVNlj-E4mOnomdHkLKg_CUz8UW1i_Ek8VGf7V9KS4O5Ge4Rp4gKQfVcNktZQssBizb6jdKNxBh2DSSsKtsA6eQzjCrAx236NXAUTKnvapXy1UrL8PPHUkotWtfibOjw9PZPOqzKkQlYY8uKmHqMYYYfOITQhseVQZoNL2IFboovDKoc8g0IMGhVHuYZEXpdZy5vHDTNE1fi-16WeMbIbF0BHdBo3FOuQIhLbQzmMeQe1ATGIl46E1b9pLjnPnipx24ZReWLcC5MI3lJVEj8XHTpgmCG_fW1oOR7K1hYyki3Ntu_5ZFN7dKKJQTJspHYrY28eYEIvJFarC_bApa0eaaViYTUFHxLq0Nlya35Dntj-7y7X8-3nvxaH66OLbHX06-7YrHgbHAFJp3Yru7WuEeAaGu2F8P9Bui6ghQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bayesian+approach+to+sample+size+determination+for+studies+designed+to+evaluate+continuous+medical+tests&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=DUNLEI+CHENG&rft.au=BRANSCUM%2C+Adam+J&rft.au=STAMEY%2C+James+D&rft.date=2010-02-01&rft.pub=Elsevier&rft.issn=0167-9473&rft.volume=54&rft.issue=2&rft.spage=298&rft.epage=307&rft_id=info:doi/10.1016%2Fj.csda.2009.09.024&rft.externalDBID=n%2Fa&rft.externalDocID=22122018 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon |