Intrusion Detection for Electric Vehicle Charging Systems (EVCS)
The market for Electric Vehicles (EVs) has expanded tremendously as seen in the recent Conference of the Parties 27 (COP27) held at Sharm El Sheikh, Egypt in November 2022. This needs the creation of an ecosystem that is user-friendly and secure. Internet-connected Electric Vehicle Charging Stations...
Saved in:
Published in | Algorithms Vol. 16; no. 2; p. 75 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1999-4893 1999-4893 |
DOI | 10.3390/a16020075 |
Cover
Loading…
Abstract | The market for Electric Vehicles (EVs) has expanded tremendously as seen in the recent Conference of the Parties 27 (COP27) held at Sharm El Sheikh, Egypt in November 2022. This needs the creation of an ecosystem that is user-friendly and secure. Internet-connected Electric Vehicle Charging Stations (EVCSs) provide a rich user experience and add-on services. Eventually, the EVCSs are connected to a management system, which is the Electric Vehicle Charging Station Management System (EVCSMS). Attacking the EVCS ecosystem remotely via cyberattacks is rising at the same rate as physical attacks and vandalism happening on the physical EVCSs. The cyberattack is more severe than the physical attack as it may affect thousands of EVCSs at the same time. Intrusion Detection is vital in defending against diverse types of attacks and unauthorized activities. Fundamentally, the Intrusion Detection System’s (IDS) problem is a classification problem. The IDS tries to determine if each traffic stream is legitimate or malicious, that is, binary classification. Furthermore, the IDS can identify the type of malicious traffic, which is called multiclass classification. In this paper, we address IoT security issues in EVCS by using different machine learning techniques and using the native IoT dataset to discover fraudulent traffic in EVCSs, which has not been performed in any previous research. We also compare different machine learning classifier algorithms for detecting Distributed Denial of Service (DDoS) attacks in the EVCS network environment. A typical Internet of Things (IoT) dataset obtained from actual IoT traffic is used in the paper. We compare classification algorithms that are placed in line with the traffic and contain DDoS attacks targeting the EVCS network. The results obtained from this research improve the stability of the EVCS system and significantly reduce the number of cyberattacks that could disrupt the daily life activities associated with the EVCS ecosystem. |
---|---|
AbstractList | The market for Electric Vehicles (EVs) has expanded tremendously as seen in the recent Conference of the Parties 27 (COP27) held at Sharm El Sheikh, Egypt in November 2022. This needs the creation of an ecosystem that is user-friendly and secure. Internet-connected Electric Vehicle Charging Stations (EVCSs) provide a rich user experience and add-on services. Eventually, the EVCSs are connected to a management system, which is the Electric Vehicle Charging Station Management System (EVCSMS). Attacking the EVCS ecosystem remotely via cyberattacks is rising at the same rate as physical attacks and vandalism happening on the physical EVCSs. The cyberattack is more severe than the physical attack as it may affect thousands of EVCSs at the same time. Intrusion Detection is vital in defending against diverse types of attacks and unauthorized activities. Fundamentally, the Intrusion Detection System’s (IDS) problem is a classification problem. The IDS tries to determine if each traffic stream is legitimate or malicious, that is, binary classification. Furthermore, the IDS can identify the type of malicious traffic, which is called multiclass classification. In this paper, we address IoT security issues in EVCS by using different machine learning techniques and using the native IoT dataset to discover fraudulent traffic in EVCSs, which has not been performed in any previous research. We also compare different machine learning classifier algorithms for detecting Distributed Denial of Service (DDoS) attacks in the EVCS network environment. A typical Internet of Things (IoT) dataset obtained from actual IoT traffic is used in the paper. We compare classification algorithms that are placed in line with the traffic and contain DDoS attacks targeting the EVCS network. The results obtained from this research improve the stability of the EVCS system and significantly reduce the number of cyberattacks that could disrupt the daily life activities associated with the EVCS ecosystem. |
Audience | Academic |
Author | Aslan, Heba Azer, Marianne A. Said Elsayed, Mahmoud Jurcut, Anca D. ElKashlan, Mohamed |
Author_xml | – sequence: 1 givenname: Mohamed surname: ElKashlan fullname: ElKashlan, Mohamed – sequence: 2 givenname: Heba surname: Aslan fullname: Aslan, Heba – sequence: 3 givenname: Mahmoud orcidid: 0000-0003-2416-7481 surname: Said Elsayed fullname: Said Elsayed, Mahmoud – sequence: 4 givenname: Anca D. orcidid: 0000-0002-2705-1823 surname: Jurcut fullname: Jurcut, Anca D. – sequence: 5 givenname: Marianne A. orcidid: 0000-0002-8068-5120 surname: Azer fullname: Azer, Marianne A. |
BookMark | eNplkU1PAyEQhompifXj4D_YxIseqrCwfNxsatUmJh6qvRJgodK0SwV66L-XWjVGw4Fh8j7vDDPHoNeFzgJwjuA1xgLeKERhDSFrDkAfCSEGhAvc-xUfgeOUFhDSRlDUB7eTLsdN8qGr7my2Ju8iF2I1XpZH9Kaa2TdvlrYavak49928mm5TtqtUXY5no-nVKTh0apns2dd9Al7vxy-jx8HT88NkNHwaGCxYHhhOLbKi1YbqlmvldMM444YoSjHRyGCCiSDaOEGZNbpmSGFFFWdNg0gr8AmY7H3boBZyHf1Kxa0MysvPRIhzqWLedSopdE4jDh2pGyIQ005Bgy3HGGnHhSteF3uvdQzvG5uyXIRN7Er7smZMlIKkwUV1vVfNVTH1nQs5KlNOa1felLE7X_JDRmohMEewADd7wMSQUrROGp_VbqIF9EuJoNztSP7sqBBXf4jvj_3XfgBGLZBi |
CitedBy_id | crossref_primary_10_32604_csse_2023_043107 crossref_primary_10_1093_ijlct_ctae266 crossref_primary_10_3390_math13050712 crossref_primary_10_1016_j_cose_2024_103989 crossref_primary_10_1080_00051144_2024_2405787 crossref_primary_10_3390_math12040571 crossref_primary_10_1016_j_aej_2024_12_061 crossref_primary_10_1016_j_engappai_2023_107667 crossref_primary_10_1109_TITS_2023_3307660 crossref_primary_10_1007_s10668_024_04790_4 crossref_primary_10_1016_j_compeleceng_2024_109842 crossref_primary_10_1109_ACCESS_2024_3437192 crossref_primary_10_1109_ACCESS_2025_3529526 crossref_primary_10_1038_s41598_025_93135_w crossref_primary_10_1109_TICPS_2024_3437349 crossref_primary_10_1016_j_compeleceng_2024_109111 crossref_primary_10_3390_a16050217 |
Cites_doi | 10.1155/2022/7892130 10.3233/JIFS-220310 10.1007/s11831-020-09496-0 10.1002/spy2.210 10.1109/OJCOMS.2022.3188750 10.1002/er.7915 10.1016/j.cose.2021.102511 10.1016/j.accinf.2022.100568 10.1002/dac.4169 10.1109/SPIES48661.2020.9243152 10.1109/MSP.2018.2825478 10.1109/ACCESS.2021.3056614 10.1016/j.cose.2021.102588 10.1109/TITS.2022.3222789 10.1016/j.amc.2021.126639 10.1007/s10586-017-1109-8 10.1145/3494107.3522781 10.47760/ijcsmc.2020.v09i10.012 10.1007/s11036-021-01843-0 10.1002/ett.3803 10.1016/j.jnca.2021.103244 10.1109/CSPA55076.2022.9782043 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7X5 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K6~ K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/a16020075 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Entrepreneurship Database ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection ProQuest Entrepreneurship Advanced Technologies & Aerospace Collection Business Premium Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1999-4893 |
ExternalDocumentID | oai_doaj_org_article_60ffb180f4254917bfa0c3e8331bf89f A742993810 10_3390_a16020075 |
GeographicLocations | Egypt |
GeographicLocations_xml | – name: Egypt |
GroupedDBID | 23M 2WC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC J9A K6V K7- KQ8 L6V M7S MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS TR2 TUS PMFND 3V. 7SC 7TB 7X5 7XB 8AL 8FD 8FK BEZIV FR3 JQ2 K6~ KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c397t-c86e1e9dbc6bd8bafb57878c4a6634b1c343494bcf967ecb271a3a6a875514d93 |
IEDL.DBID | DOA |
ISSN | 1999-4893 |
IngestDate | Wed Aug 27 01:26:51 EDT 2025 Fri Jul 25 12:08:10 EDT 2025 Tue Jun 10 20:17:25 EDT 2025 Tue Jul 01 03:23:13 EDT 2025 Thu Apr 24 22:51:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c397t-c86e1e9dbc6bd8bafb57878c4a6634b1c343494bcf967ecb271a3a6a875514d93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2416-7481 0000-0002-8068-5120 0000-0002-2705-1823 |
OpenAccessLink | https://doaj.org/article/60ffb180f4254917bfa0c3e8331bf89f |
PQID | 2779514453 |
PQPubID | 2032439 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_60ffb180f4254917bfa0c3e8331bf89f proquest_journals_2779514453 gale_infotracacademiconefile_A742993810 crossref_citationtrail_10_3390_a16020075 crossref_primary_10_3390_a16020075 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 20230101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Algorithms |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Blakely (ref_7) 2022; 46 Gnanambal (ref_26) 2018; 9 ref_14 ref_13 Thakkar (ref_12) 2021; 28 Ying (ref_24) 2019; Volume 1168 Babu (ref_8) 2022; 5 Xiao (ref_16) 2018; 35 Zeadally (ref_23) 2020; 33 ref_19 Sarhan (ref_5) 2022; 27 Nasr (ref_10) 2022; 112 Otoum (ref_6) 2022; 33 Sworna (ref_17) 2021; 196 Brik (ref_4) 2022; 3 Malik (ref_11) 2022; 2022 ref_22 ref_21 Thamaraiselvi (ref_15) 2020; 9 Maseer (ref_18) 2021; 9 Ahmad (ref_20) 2022; 114 Aljawarneh (ref_25) 2019; 22 ref_3 Su (ref_9) 2022; 413 ref_27 Kumar (ref_2) 2022; 46 Suriya (ref_1) 2022; 43 |
References_xml | – volume: 2022 start-page: 7892130 year: 2022 ident: ref_11 article-title: An improved deep belief network ids on iot-based network for traffic systems publication-title: J. Adv. Transp. doi: 10.1155/2022/7892130 – volume: 43 start-page: 4789 year: 2022 ident: ref_1 article-title: A novel ensembling of deep learning based intrusion detection system and scroll chaotic countermeasures for electric vehicle charging System publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-220310 – volume: 28 start-page: 3211 year: 2021 ident: ref_12 article-title: A review on machine learning and deep learning perspectives of ids for iot: Recent updates, security issues, and challenges publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-020-09496-0 – volume: 5 start-page: e210 year: 2022 ident: ref_8 article-title: A survey on security challenges and protocols of electric vehicle dynamic charging system publication-title: Secur. Priv. doi: 10.1002/spy2.210 – volume: 3 start-page: 1164 year: 2022 ident: ref_4 article-title: “Why should I trust your ids?”: An explainable deep learning framework for intrusion detection systems in internet of things networks publication-title: IEEE Open J. Commun. Soc. doi: 10.1109/OJCOMS.2022.3188750 – volume: 46 start-page: 11139 year: 2022 ident: ref_2 article-title: Charge scheduling framework with multiaggregator collaboration for direct charging and battery swapping station in a coupled distribution-transportation network publication-title: Int. J. Energy Res. doi: 10.1002/er.7915 – volume: 112 start-page: 102511 year: 2022 ident: ref_10 article-title: Power jacking your station: In-depth security analysis of electric vehicle charging station management systems publication-title: Comput. Secur. doi: 10.1016/j.cose.2021.102511 – volume: 46 start-page: 100568 year: 2022 ident: ref_7 article-title: Exploring the information content of cyber breach reports and the relationship to internal controls publication-title: Int. J. Account. Inf. Syst. doi: 10.1016/j.accinf.2022.100568 – volume: 33 start-page: e4169 year: 2020 ident: ref_23 article-title: Securing internet of things (iot) with machine learning publication-title: Int. J. Commun. Syst. doi: 10.1002/dac.4169 – ident: ref_13 doi: 10.1109/SPIES48661.2020.9243152 – ident: ref_14 – volume: 35 start-page: 41 year: 2018 ident: ref_16 article-title: Iot security techniques based on machine learning: How do iot devices use ai to enhance security? publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2018.2825478 – volume: 9 start-page: 22351 year: 2021 ident: ref_18 article-title: Benchmarking of machine learning for anomaly based intrusion detection systems in the cicids2017 dataset publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3056614 – volume: 114 start-page: 102588 year: 2022 ident: ref_20 article-title: A comprehensive deep learning benchmark for iot ids publication-title: Comput. Secur. doi: 10.1016/j.cose.2021.102588 – ident: ref_21 doi: 10.1109/TITS.2022.3222789 – ident: ref_27 – volume: 413 start-page: 126639 year: 2022 ident: ref_9 article-title: Cyber-attacks against cyberphysical power systems security: State estimation, attacks reconstruction and defense strategy publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2021.126639 – volume: 22 start-page: 10549 year: 2019 ident: ref_25 article-title: An enhanced j48 classification algorithm for the anomaly intrusion detection systems publication-title: Clust. Comput. doi: 10.1007/s10586-017-1109-8 – ident: ref_3 doi: 10.1145/3494107.3522781 – volume: 9 start-page: 95 year: 2020 ident: ref_15 article-title: Attack and anomaly detection in iot networks using machine learning publication-title: Int. J. Comput. Sci. Mob. Comput. doi: 10.47760/ijcsmc.2020.v09i10.012 – volume: 27 start-page: 357 year: 2022 ident: ref_5 article-title: Towards a standard feature set for network intrusion detection system datasets publication-title: Mob. Netw. Appl. doi: 10.1007/s11036-021-01843-0 – volume: 33 start-page: e3803 year: 2022 ident: ref_6 article-title: Dl-ids: A deep learning–based intrusion detection framework for securing iot publication-title: Trans. Emerg. Telecommun. Technol. doi: 10.1002/ett.3803 – volume: Volume 1168 start-page: 022022 year: 2019 ident: ref_24 article-title: An overview of overfitting and its solutions publication-title: Journal of Physics: Conference Series – volume: 196 start-page: 103244 year: 2021 ident: ref_17 article-title: Towards development of iot-ml driven healthcare systems: A survey publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2021.103244 – ident: ref_22 – ident: ref_19 doi: 10.1109/CSPA55076.2022.9782043 – volume: 9 start-page: 3640 year: 2018 ident: ref_26 article-title: Classification algorithms with attribute selection: An evaluation study using weka publication-title: Int. J. Adv. Netw. Appl. |
SSID | ssj0065961 |
Score | 2.382279 |
Snippet | The market for Electric Vehicles (EVs) has expanded tremendously as seen in the recent Conference of the Parties 27 (COP27) held at Sharm El Sheikh, Egypt in... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 75 |
SubjectTerms | Accuracy Algorithms Alliances Battery chargers Classification Communication Cybersecurity Cyberterrorism Datasets DDoS Denial of service attacks Electric vehicle charging Electric vehicle charging stations Electric vehicles Electricity distribution Energy consumption EVCS Infrastructure Internet of Things Internet of Things (IoT) intrusion detection Intrusion detection systems Machine learning Network security Payment systems Protocol Software Use statistics User experience Vandalism |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxQxFA7afemL14qrrQQRWh-GTprLTJ7sxS2r0CK90beQk4sWyuzq7v_Hc2YzK0L1dSaEmXNyrkm-j7EPKoD2uvUV6reulPSq8gnqKmubQCUrcw_2fHZuptfq662-LQ23RTlWOfjE3lHHWaAe-f5B02AyoJSWn-Y_K2KNot3VQqHxmI3QBbdYfI2OJ-ffLgZfbLQ1YoUnJLG43_fC1NSc039FoR6s_18uuY8zp8_Yk5Ig8qOVRp-zR6l7wZ4O5Au82OJLdvilo_sSKFb-OS37A1UdxwyUT3pim7vAb9IPmoLTjjpREfGCTs73Jjcnlx-32PXp5OpkWhU6hCpg0rCsQmuSSDZCMBBb8BnI2tqgPGYNCkSQirBmIGRrmhTgoBFeeuOxIkHBRStfsY1u1qXXjIcUlKlDtIDRGWL0Qjc2apWwmrN1hDHbG8TjQsEKJ8qKe4c1A0nSrSU5Zu_XQ-crgIyHBh2TjNcDCNO6fzD79d0VE3GmzhlEW2dFRatoIPs6yNRKKSC3No_ZLmnIkeXhxwRfLhDgLxGGlTtqKLYSYtmYbQ9KdMUkF-7PAnrz_9dv2SZxyq_6LNtsA5WZdjDzWMK7srx-A4p019E priority: 102 providerName: ProQuest |
Title | Intrusion Detection for Electric Vehicle Charging Systems (EVCS) |
URI | https://www.proquest.com/docview/2779514453 https://doaj.org/article/60ffb180f4254917bfa0c3e8331bf89f |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1RuPRSoB_qAl1ZFVLpISLGH4lvfO0ClYqqtiBulsexBRIKSOz_FzNJdkWlIi5cIyty5mU8bxL7PYBtHdEEU4eC8C0LrYIuQsKyyMYl1Mmp3Ik9_zy3pxf6x5W5emL1xXvCenngPnC7tswZZV1mza2MrDCHMqpUKyUx1y7z6ks1b95M9WuwNc7KXkdIUVO_G6Qt-aOc-af6dCL9zy3FXX2ZrsG7gRiKg35C67CU2vewOjddEEMOfoD9s5bPSVA4xXGadRupWkHMU0w6Q5ubKC7TNd9C8J90tiASgyq52JlcHv35_hEuppO_R6fFYINQRCILsyLWNsnkGowWmxpDRs6yOupAbEGjjEqzxgzG7GyVIu5VMqhgA3UixIYapz7BcnvXps8gYoralrFxSFUZmyZIU7nG6ERdnCsbHMHOPDw-DhrhbFVx66lX4Ej6RSRH8HUx9L4XxvjfoEOO8WIAa1l3FwhhPyDsX0J4BN8YIc8ZR5OJYTg4QI_E2lX-oOKaykplI9iag-iHVHzwe1VFLFJrozZeYzab8JYd5_uvMFuwTJCnL8RLZjiGN_X0ZAwrh5PzX7_H3Qv5CFk04YA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbhQxEC1F4QAXdsRAAAuBCIdW7LHb3T4gCMkMM2S5kES5OV4BCfUEMhLip_hGqnoZhATccu22eqm9vLwH8EwFX7qydgXqlxdKOlW45HmRS5O8SkbmFuz54FDPjtX70_J0DX4OZ2FoW-UQE9tAHReB5si3xlWFxYBSpXx9_rUg1ihaXR0oNDqz2Es_vmPLdvFqvov6fT4eTydHO7OiZxUoAubeZRFqnUQy0QftY-1d9mS0dVAOk6_yIkhFkC0-ZKOrFPy4Ek467bCwx_dHAl_CkH9FSWnIo-rpuyHy69Jo0aEX4U2-5YTmNBVY_pHzWmqAfyWANqtNb8L1vhxl25393IK11NyGGwPVA-s9_w68mTd0OgOVyHbTst2-1TCsd9mkpdH5HNhJ-kSPYLR-T8RHrMdCZ5uTk50PL-_C8aWI6R6sN4sm3QcWUlCah2g81gI-RifKysRSJewdDY9-BJuDeGzokcmJIOOLxQ6FJGlXkhzB09XQ8w6O42-D3pKMVwMIQbu9sPj20fYOaTXP2YuaZ0Utsqh8djzIVEspfK5NHsEL0pAlP8ePCa4_roC_RIhZdruiTE74aCPYGJRo-wBwYX-b64P_334CV2dHB_t2f3649xCuEZt9N8OzAeuo2PQIa56lf9waGoOzy7bsX-DbFBo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwlx4Y1YKGAhEOUQrbN2nPiAoO3uqkthVQGtejO2Y9NKKFvoSoi_xq9jJnEWIQG3XhMrcmbG87DH3wfwVHpX2KKyGeqXZ1JYmdngeBYLHZwMWsQW7PndQu0fyTcnxckG_OzvwlBbZe8TW0ddLz3tkY_GZYnJgJSFGMXUFnE4mb06_5oRgxSdtPZ0Gp2JHIQf37F8u3g5n6Cun43Hs-nHvf0sMQxkHuPwKvOVCnnQtfPK1ZWz0ZEBV15aDMTS5V5Igm9xPmpVBu_GZW6FVRaTfJxLTUBM6P43S6yK-AA2d6eLw_d9HFCFVnmHZSSE5iObK04bg8UfEbAlCvhXOGhj3OwGXEvJKdvprOkmbITmFlzviR9Y8gO34fW8obsaqFI2Cau2mathmP2yaUuqc-bZcTilTzA6zScaJJaQ0dn29Hjvw4s7cHQpgroLg2bZhHvAfPBScV9rh5mBq2ubF6WuCxmwktS8dkPY7sVjfMIpJ7qMLwbrFZKkWUtyCE_WQ887cI6_DdolGa8HEJ52-2D57bNJy9MoHqPLKx4lFcx56aLlXoRKiNzFSschPCcNGVr1OBlv0-UF_CXCzzI7JcV1QksbwlavRJPcwYX5bbz3___6MVxBqzZv54uDB3CVqO277Z4tGKBew0NMgFbuUbI0Bp8u27h_ATVWGaw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrusion+Detection+for+Electric+Vehicle+Charging+Systems+%28EVCS%29&rft.jtitle=Algorithms&rft.au=Mohamed+ElKashlan&rft.au=Heba+Aslan&rft.au=Mahmoud+Said+Elsayed&rft.au=Anca+D.+Jurcut&rft.date=2023-01-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=16&rft.issue=2&rft.spage=75&rft_id=info:doi/10.3390%2Fa16020075&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_60ffb180f4254917bfa0c3e8331bf89f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon |