Intrusion Detection for Electric Vehicle Charging Systems (EVCS)

The market for Electric Vehicles (EVs) has expanded tremendously as seen in the recent Conference of the Parties 27 (COP27) held at Sharm El Sheikh, Egypt in November 2022. This needs the creation of an ecosystem that is user-friendly and secure. Internet-connected Electric Vehicle Charging Stations...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms Vol. 16; no. 2; p. 75
Main Authors ElKashlan, Mohamed, Aslan, Heba, Said Elsayed, Mahmoud, Jurcut, Anca D., Azer, Marianne A.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2023
Subjects
Online AccessGet full text
ISSN1999-4893
1999-4893
DOI10.3390/a16020075

Cover

Loading…
Abstract The market for Electric Vehicles (EVs) has expanded tremendously as seen in the recent Conference of the Parties 27 (COP27) held at Sharm El Sheikh, Egypt in November 2022. This needs the creation of an ecosystem that is user-friendly and secure. Internet-connected Electric Vehicle Charging Stations (EVCSs) provide a rich user experience and add-on services. Eventually, the EVCSs are connected to a management system, which is the Electric Vehicle Charging Station Management System (EVCSMS). Attacking the EVCS ecosystem remotely via cyberattacks is rising at the same rate as physical attacks and vandalism happening on the physical EVCSs. The cyberattack is more severe than the physical attack as it may affect thousands of EVCSs at the same time. Intrusion Detection is vital in defending against diverse types of attacks and unauthorized activities. Fundamentally, the Intrusion Detection System’s (IDS) problem is a classification problem. The IDS tries to determine if each traffic stream is legitimate or malicious, that is, binary classification. Furthermore, the IDS can identify the type of malicious traffic, which is called multiclass classification. In this paper, we address IoT security issues in EVCS by using different machine learning techniques and using the native IoT dataset to discover fraudulent traffic in EVCSs, which has not been performed in any previous research. We also compare different machine learning classifier algorithms for detecting Distributed Denial of Service (DDoS) attacks in the EVCS network environment. A typical Internet of Things (IoT) dataset obtained from actual IoT traffic is used in the paper. We compare classification algorithms that are placed in line with the traffic and contain DDoS attacks targeting the EVCS network. The results obtained from this research improve the stability of the EVCS system and significantly reduce the number of cyberattacks that could disrupt the daily life activities associated with the EVCS ecosystem.
AbstractList The market for Electric Vehicles (EVs) has expanded tremendously as seen in the recent Conference of the Parties 27 (COP27) held at Sharm El Sheikh, Egypt in November 2022. This needs the creation of an ecosystem that is user-friendly and secure. Internet-connected Electric Vehicle Charging Stations (EVCSs) provide a rich user experience and add-on services. Eventually, the EVCSs are connected to a management system, which is the Electric Vehicle Charging Station Management System (EVCSMS). Attacking the EVCS ecosystem remotely via cyberattacks is rising at the same rate as physical attacks and vandalism happening on the physical EVCSs. The cyberattack is more severe than the physical attack as it may affect thousands of EVCSs at the same time. Intrusion Detection is vital in defending against diverse types of attacks and unauthorized activities. Fundamentally, the Intrusion Detection System’s (IDS) problem is a classification problem. The IDS tries to determine if each traffic stream is legitimate or malicious, that is, binary classification. Furthermore, the IDS can identify the type of malicious traffic, which is called multiclass classification. In this paper, we address IoT security issues in EVCS by using different machine learning techniques and using the native IoT dataset to discover fraudulent traffic in EVCSs, which has not been performed in any previous research. We also compare different machine learning classifier algorithms for detecting Distributed Denial of Service (DDoS) attacks in the EVCS network environment. A typical Internet of Things (IoT) dataset obtained from actual IoT traffic is used in the paper. We compare classification algorithms that are placed in line with the traffic and contain DDoS attacks targeting the EVCS network. The results obtained from this research improve the stability of the EVCS system and significantly reduce the number of cyberattacks that could disrupt the daily life activities associated with the EVCS ecosystem.
Audience Academic
Author Aslan, Heba
Azer, Marianne A.
Said Elsayed, Mahmoud
Jurcut, Anca D.
ElKashlan, Mohamed
Author_xml – sequence: 1
  givenname: Mohamed
  surname: ElKashlan
  fullname: ElKashlan, Mohamed
– sequence: 2
  givenname: Heba
  surname: Aslan
  fullname: Aslan, Heba
– sequence: 3
  givenname: Mahmoud
  orcidid: 0000-0003-2416-7481
  surname: Said Elsayed
  fullname: Said Elsayed, Mahmoud
– sequence: 4
  givenname: Anca D.
  orcidid: 0000-0002-2705-1823
  surname: Jurcut
  fullname: Jurcut, Anca D.
– sequence: 5
  givenname: Marianne A.
  orcidid: 0000-0002-8068-5120
  surname: Azer
  fullname: Azer, Marianne A.
BookMark eNplkU1PAyEQhompifXj4D_YxIseqrCwfNxsatUmJh6qvRJgodK0SwV66L-XWjVGw4Fh8j7vDDPHoNeFzgJwjuA1xgLeKERhDSFrDkAfCSEGhAvc-xUfgeOUFhDSRlDUB7eTLsdN8qGr7my2Ju8iF2I1XpZH9Kaa2TdvlrYavak49928mm5TtqtUXY5no-nVKTh0apns2dd9Al7vxy-jx8HT88NkNHwaGCxYHhhOLbKi1YbqlmvldMM444YoSjHRyGCCiSDaOEGZNbpmSGFFFWdNg0gr8AmY7H3boBZyHf1Kxa0MysvPRIhzqWLedSopdE4jDh2pGyIQ005Bgy3HGGnHhSteF3uvdQzvG5uyXIRN7Er7smZMlIKkwUV1vVfNVTH1nQs5KlNOa1felLE7X_JDRmohMEewADd7wMSQUrROGp_VbqIF9EuJoNztSP7sqBBXf4jvj_3XfgBGLZBi
CitedBy_id crossref_primary_10_32604_csse_2023_043107
crossref_primary_10_1093_ijlct_ctae266
crossref_primary_10_3390_math13050712
crossref_primary_10_1016_j_cose_2024_103989
crossref_primary_10_1080_00051144_2024_2405787
crossref_primary_10_3390_math12040571
crossref_primary_10_1016_j_aej_2024_12_061
crossref_primary_10_1016_j_engappai_2023_107667
crossref_primary_10_1109_TITS_2023_3307660
crossref_primary_10_1007_s10668_024_04790_4
crossref_primary_10_1016_j_compeleceng_2024_109842
crossref_primary_10_1109_ACCESS_2024_3437192
crossref_primary_10_1109_ACCESS_2025_3529526
crossref_primary_10_1038_s41598_025_93135_w
crossref_primary_10_1109_TICPS_2024_3437349
crossref_primary_10_1016_j_compeleceng_2024_109111
crossref_primary_10_3390_a16050217
Cites_doi 10.1155/2022/7892130
10.3233/JIFS-220310
10.1007/s11831-020-09496-0
10.1002/spy2.210
10.1109/OJCOMS.2022.3188750
10.1002/er.7915
10.1016/j.cose.2021.102511
10.1016/j.accinf.2022.100568
10.1002/dac.4169
10.1109/SPIES48661.2020.9243152
10.1109/MSP.2018.2825478
10.1109/ACCESS.2021.3056614
10.1016/j.cose.2021.102588
10.1109/TITS.2022.3222789
10.1016/j.amc.2021.126639
10.1007/s10586-017-1109-8
10.1145/3494107.3522781
10.47760/ijcsmc.2020.v09i10.012
10.1007/s11036-021-01843-0
10.1002/ett.3803
10.1016/j.jnca.2021.103244
10.1109/CSPA55076.2022.9782043
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7X5
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K6~
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/a16020075
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Entrepreneurship Database
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
ProQuest Entrepreneurship
Advanced Technologies & Aerospace Collection
Business Premium Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1999-4893
ExternalDocumentID oai_doaj_org_article_60ffb180f4254917bfa0c3e8331bf89f
A742993810
10_3390_a16020075
GeographicLocations Egypt
GeographicLocations_xml – name: Egypt
GroupedDBID 23M
2WC
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
J9A
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
TR2
TUS
PMFND
3V.
7SC
7TB
7X5
7XB
8AL
8FD
8FK
BEZIV
FR3
JQ2
K6~
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c397t-c86e1e9dbc6bd8bafb57878c4a6634b1c343494bcf967ecb271a3a6a875514d93
IEDL.DBID DOA
ISSN 1999-4893
IngestDate Wed Aug 27 01:26:51 EDT 2025
Fri Jul 25 12:08:10 EDT 2025
Tue Jun 10 20:17:25 EDT 2025
Tue Jul 01 03:23:13 EDT 2025
Thu Apr 24 22:51:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-c86e1e9dbc6bd8bafb57878c4a6634b1c343494bcf967ecb271a3a6a875514d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2416-7481
0000-0002-8068-5120
0000-0002-2705-1823
OpenAccessLink https://doaj.org/article/60ffb180f4254917bfa0c3e8331bf89f
PQID 2779514453
PQPubID 2032439
ParticipantIDs doaj_primary_oai_doaj_org_article_60ffb180f4254917bfa0c3e8331bf89f
proquest_journals_2779514453
gale_infotracacademiconefile_A742993810
crossref_citationtrail_10_3390_a16020075
crossref_primary_10_3390_a16020075
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 20230101
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Algorithms
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Blakely (ref_7) 2022; 46
Gnanambal (ref_26) 2018; 9
ref_14
ref_13
Thakkar (ref_12) 2021; 28
Ying (ref_24) 2019; Volume 1168
Babu (ref_8) 2022; 5
Xiao (ref_16) 2018; 35
Zeadally (ref_23) 2020; 33
ref_19
Sarhan (ref_5) 2022; 27
Nasr (ref_10) 2022; 112
Otoum (ref_6) 2022; 33
Sworna (ref_17) 2021; 196
Brik (ref_4) 2022; 3
Malik (ref_11) 2022; 2022
ref_22
ref_21
Thamaraiselvi (ref_15) 2020; 9
Maseer (ref_18) 2021; 9
Ahmad (ref_20) 2022; 114
Aljawarneh (ref_25) 2019; 22
ref_3
Su (ref_9) 2022; 413
ref_27
Kumar (ref_2) 2022; 46
Suriya (ref_1) 2022; 43
References_xml – volume: 2022
  start-page: 7892130
  year: 2022
  ident: ref_11
  article-title: An improved deep belief network ids on iot-based network for traffic systems
  publication-title: J. Adv. Transp.
  doi: 10.1155/2022/7892130
– volume: 43
  start-page: 4789
  year: 2022
  ident: ref_1
  article-title: A novel ensembling of deep learning based intrusion detection system and scroll chaotic countermeasures for electric vehicle charging System
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-220310
– volume: 28
  start-page: 3211
  year: 2021
  ident: ref_12
  article-title: A review on machine learning and deep learning perspectives of ids for iot: Recent updates, security issues, and challenges
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-020-09496-0
– volume: 5
  start-page: e210
  year: 2022
  ident: ref_8
  article-title: A survey on security challenges and protocols of electric vehicle dynamic charging system
  publication-title: Secur. Priv.
  doi: 10.1002/spy2.210
– volume: 3
  start-page: 1164
  year: 2022
  ident: ref_4
  article-title: “Why should I trust your ids?”: An explainable deep learning framework for intrusion detection systems in internet of things networks
  publication-title: IEEE Open J. Commun. Soc.
  doi: 10.1109/OJCOMS.2022.3188750
– volume: 46
  start-page: 11139
  year: 2022
  ident: ref_2
  article-title: Charge scheduling framework with multiaggregator collaboration for direct charging and battery swapping station in a coupled distribution-transportation network
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.7915
– volume: 112
  start-page: 102511
  year: 2022
  ident: ref_10
  article-title: Power jacking your station: In-depth security analysis of electric vehicle charging station management systems
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2021.102511
– volume: 46
  start-page: 100568
  year: 2022
  ident: ref_7
  article-title: Exploring the information content of cyber breach reports and the relationship to internal controls
  publication-title: Int. J. Account. Inf. Syst.
  doi: 10.1016/j.accinf.2022.100568
– volume: 33
  start-page: e4169
  year: 2020
  ident: ref_23
  article-title: Securing internet of things (iot) with machine learning
  publication-title: Int. J. Commun. Syst.
  doi: 10.1002/dac.4169
– ident: ref_13
  doi: 10.1109/SPIES48661.2020.9243152
– ident: ref_14
– volume: 35
  start-page: 41
  year: 2018
  ident: ref_16
  article-title: Iot security techniques based on machine learning: How do iot devices use ai to enhance security?
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2018.2825478
– volume: 9
  start-page: 22351
  year: 2021
  ident: ref_18
  article-title: Benchmarking of machine learning for anomaly based intrusion detection systems in the cicids2017 dataset
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3056614
– volume: 114
  start-page: 102588
  year: 2022
  ident: ref_20
  article-title: A comprehensive deep learning benchmark for iot ids
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2021.102588
– ident: ref_21
  doi: 10.1109/TITS.2022.3222789
– ident: ref_27
– volume: 413
  start-page: 126639
  year: 2022
  ident: ref_9
  article-title: Cyber-attacks against cyberphysical power systems security: State estimation, attacks reconstruction and defense strategy
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2021.126639
– volume: 22
  start-page: 10549
  year: 2019
  ident: ref_25
  article-title: An enhanced j48 classification algorithm for the anomaly intrusion detection systems
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-017-1109-8
– ident: ref_3
  doi: 10.1145/3494107.3522781
– volume: 9
  start-page: 95
  year: 2020
  ident: ref_15
  article-title: Attack and anomaly detection in iot networks using machine learning
  publication-title: Int. J. Comput. Sci. Mob. Comput.
  doi: 10.47760/ijcsmc.2020.v09i10.012
– volume: 27
  start-page: 357
  year: 2022
  ident: ref_5
  article-title: Towards a standard feature set for network intrusion detection system datasets
  publication-title: Mob. Netw. Appl.
  doi: 10.1007/s11036-021-01843-0
– volume: 33
  start-page: e3803
  year: 2022
  ident: ref_6
  article-title: Dl-ids: A deep learning–based intrusion detection framework for securing iot
  publication-title: Trans. Emerg. Telecommun. Technol.
  doi: 10.1002/ett.3803
– volume: Volume 1168
  start-page: 022022
  year: 2019
  ident: ref_24
  article-title: An overview of overfitting and its solutions
  publication-title: Journal of Physics: Conference Series
– volume: 196
  start-page: 103244
  year: 2021
  ident: ref_17
  article-title: Towards development of iot-ml driven healthcare systems: A survey
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2021.103244
– ident: ref_22
– ident: ref_19
  doi: 10.1109/CSPA55076.2022.9782043
– volume: 9
  start-page: 3640
  year: 2018
  ident: ref_26
  article-title: Classification algorithms with attribute selection: An evaluation study using weka
  publication-title: Int. J. Adv. Netw. Appl.
SSID ssj0065961
Score 2.382279
Snippet The market for Electric Vehicles (EVs) has expanded tremendously as seen in the recent Conference of the Parties 27 (COP27) held at Sharm El Sheikh, Egypt in...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 75
SubjectTerms Accuracy
Algorithms
Alliances
Battery chargers
Classification
Communication
Cybersecurity
Cyberterrorism
Datasets
DDoS
Denial of service attacks
Electric vehicle charging
Electric vehicle charging stations
Electric vehicles
Electricity distribution
Energy consumption
EVCS
Infrastructure
Internet of Things
Internet of Things (IoT)
intrusion detection
Intrusion detection systems
Machine learning
Network security
Payment systems
Protocol
Software
Use statistics
User experience
Vandalism
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxQxFA7afemL14qrrQQRWh-GTprLTJ7sxS2r0CK90beQk4sWyuzq7v_Hc2YzK0L1dSaEmXNyrkm-j7EPKoD2uvUV6reulPSq8gnqKmubQCUrcw_2fHZuptfq662-LQ23RTlWOfjE3lHHWaAe-f5B02AyoJSWn-Y_K2KNot3VQqHxmI3QBbdYfI2OJ-ffLgZfbLQ1YoUnJLG43_fC1NSc039FoR6s_18uuY8zp8_Yk5Ig8qOVRp-zR6l7wZ4O5Au82OJLdvilo_sSKFb-OS37A1UdxwyUT3pim7vAb9IPmoLTjjpREfGCTs73Jjcnlx-32PXp5OpkWhU6hCpg0rCsQmuSSDZCMBBb8BnI2tqgPGYNCkSQirBmIGRrmhTgoBFeeuOxIkHBRStfsY1u1qXXjIcUlKlDtIDRGWL0Qjc2apWwmrN1hDHbG8TjQsEKJ8qKe4c1A0nSrSU5Zu_XQ-crgIyHBh2TjNcDCNO6fzD79d0VE3GmzhlEW2dFRatoIPs6yNRKKSC3No_ZLmnIkeXhxwRfLhDgLxGGlTtqKLYSYtmYbQ9KdMUkF-7PAnrz_9dv2SZxyq_6LNtsA5WZdjDzWMK7srx-A4p019E
  priority: 102
  providerName: ProQuest
Title Intrusion Detection for Electric Vehicle Charging Systems (EVCS)
URI https://www.proquest.com/docview/2779514453
https://doaj.org/article/60ffb180f4254917bfa0c3e8331bf89f
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1RuPRSoB_qAl1ZFVLpISLGH4lvfO0ClYqqtiBulsexBRIKSOz_FzNJdkWlIi5cIyty5mU8bxL7PYBtHdEEU4eC8C0LrYIuQsKyyMYl1Mmp3Ik9_zy3pxf6x5W5emL1xXvCenngPnC7tswZZV1mza2MrDCHMqpUKyUx1y7z6ks1b95M9WuwNc7KXkdIUVO_G6Qt-aOc-af6dCL9zy3FXX2ZrsG7gRiKg35C67CU2vewOjddEEMOfoD9s5bPSVA4xXGadRupWkHMU0w6Q5ubKC7TNd9C8J90tiASgyq52JlcHv35_hEuppO_R6fFYINQRCILsyLWNsnkGowWmxpDRs6yOupAbEGjjEqzxgzG7GyVIu5VMqhgA3UixIYapz7BcnvXps8gYoralrFxSFUZmyZIU7nG6ERdnCsbHMHOPDw-DhrhbFVx66lX4Ej6RSRH8HUx9L4XxvjfoEOO8WIAa1l3FwhhPyDsX0J4BN8YIc8ZR5OJYTg4QI_E2lX-oOKaykplI9iag-iHVHzwe1VFLFJrozZeYzab8JYd5_uvMFuwTJCnL8RLZjiGN_X0ZAwrh5PzX7_H3Qv5CFk04YA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbhQxEC1F4QAXdsRAAAuBCIdW7LHb3T4gCMkMM2S5kES5OV4BCfUEMhLip_hGqnoZhATccu22eqm9vLwH8EwFX7qydgXqlxdKOlW45HmRS5O8SkbmFuz54FDPjtX70_J0DX4OZ2FoW-UQE9tAHReB5si3xlWFxYBSpXx9_rUg1ihaXR0oNDqz2Es_vmPLdvFqvov6fT4eTydHO7OiZxUoAubeZRFqnUQy0QftY-1d9mS0dVAOk6_yIkhFkC0-ZKOrFPy4Ek467bCwx_dHAl_CkH9FSWnIo-rpuyHy69Jo0aEX4U2-5YTmNBVY_pHzWmqAfyWANqtNb8L1vhxl25393IK11NyGGwPVA-s9_w68mTd0OgOVyHbTst2-1TCsd9mkpdH5HNhJ-kSPYLR-T8RHrMdCZ5uTk50PL-_C8aWI6R6sN4sm3QcWUlCah2g81gI-RifKysRSJewdDY9-BJuDeGzokcmJIOOLxQ6FJGlXkhzB09XQ8w6O42-D3pKMVwMIQbu9sPj20fYOaTXP2YuaZ0Utsqh8djzIVEspfK5NHsEL0pAlP8ePCa4_roC_RIhZdruiTE74aCPYGJRo-wBwYX-b64P_334CV2dHB_t2f3649xCuEZt9N8OzAeuo2PQIa56lf9waGoOzy7bsX-DbFBo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwlx4Y1YKGAhEOUQrbN2nPiAoO3uqkthVQGtejO2Y9NKKFvoSoi_xq9jJnEWIQG3XhMrcmbG87DH3wfwVHpX2KKyGeqXZ1JYmdngeBYLHZwMWsQW7PndQu0fyTcnxckG_OzvwlBbZe8TW0ddLz3tkY_GZYnJgJSFGMXUFnE4mb06_5oRgxSdtPZ0Gp2JHIQf37F8u3g5n6Cun43Hs-nHvf0sMQxkHuPwKvOVCnnQtfPK1ZWz0ZEBV15aDMTS5V5Igm9xPmpVBu_GZW6FVRaTfJxLTUBM6P43S6yK-AA2d6eLw_d9HFCFVnmHZSSE5iObK04bg8UfEbAlCvhXOGhj3OwGXEvJKdvprOkmbITmFlzviR9Y8gO34fW8obsaqFI2Cau2mathmP2yaUuqc-bZcTilTzA6zScaJJaQ0dn29Hjvw4s7cHQpgroLg2bZhHvAfPBScV9rh5mBq2ubF6WuCxmwktS8dkPY7sVjfMIpJ7qMLwbrFZKkWUtyCE_WQ887cI6_DdolGa8HEJ52-2D57bNJy9MoHqPLKx4lFcx56aLlXoRKiNzFSschPCcNGVr1OBlv0-UF_CXCzzI7JcV1QksbwlavRJPcwYX5bbz3___6MVxBqzZv54uDB3CVqO277Z4tGKBew0NMgFbuUbI0Bp8u27h_ATVWGaw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrusion+Detection+for+Electric+Vehicle+Charging+Systems+%28EVCS%29&rft.jtitle=Algorithms&rft.au=Mohamed+ElKashlan&rft.au=Heba+Aslan&rft.au=Mahmoud+Said+Elsayed&rft.au=Anca+D.+Jurcut&rft.date=2023-01-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=16&rft.issue=2&rft.spage=75&rft_id=info:doi/10.3390%2Fa16020075&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_60ffb180f4254917bfa0c3e8331bf89f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon