URS AND URSIMS FOR P-ADIC MEROMORPHIC FUNCTIONS INSIDE A DISC
Let $K$ be an algebraically closed field of characteristic zero, complete for an ultrametric absolute value. We show that the $p$-adic main Nevanlinna Theorem holds for meromorphic functions inside an ‘open’ disc in $K$. Let $P_{n,c}$ be the Frank–Reinders’s polynomial $$ (n-1)(n-2)X^n-2n(n-2)X^{n-1...
Saved in:
Published in | Proceedings of the Edinburgh Mathematical Society Vol. 44; no. 3; pp. 485 - 504 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.10.2001
|
Subjects | |
Online Access | Get full text |
ISSN | 0013-0915 1464-3839 |
DOI | 10.1017/S0013091599000759 |
Cover
Abstract | Let $K$ be an algebraically closed field of characteristic zero, complete for an ultrametric absolute value. We show that the $p$-adic main Nevanlinna Theorem holds for meromorphic functions inside an ‘open’ disc in $K$. Let $P_{n,c}$ be the Frank–Reinders’s polynomial $$ (n-1)(n-2)X^n-2n(n-2)X^{n-1}+ n(n-1)X^{n-2}-c\qq (c\neq0,\ c\neq1,\ c\neq2) $$ and let $S_{n,c}$ be the set of its $n$ distinct zeros. For every $n\geq 7$, we show that $S_{n,c}$ is an $n$-points unique range set (counting multiplicities) for unbounded analytic functions inside an ‘open disc’, and for every $n\geq10$, we show that $S_{n,c}$ is an $n$-points unique range set ignoring multiplicities for the same set of functions. Similar results are obtained for meromorphic functions whose characteristic function is unbounded: we obtain unique range sets ignoring multiplicities of $17$ points. A better result is obtained for an analytic or a meromorphic function $f$ when its derivative is ‘small’ comparatively to $f$. In particular, for every $n\geq5$ we show that $S_{n,c}$ is an $n$-points unique range set ignoring multiplicities for unbounded analytic functions with small derivative. Actually, in each case, results also apply to pairs of analytic functions when just one of them is supposed unbounded. The method we use is based upon the $p$-adic Nevanlinna Theory, and Frank–Reinders’s and Fujimoto’s methods used for meromorphic functions in $\mathbb{C}$. Among other results, we show that the set of functions having a bounded characteristic function is just the field of fractions of the ring of bounded analytic functions in the disc. AMS 2000 Mathematics subject classification: Primary 12H25. Secondary 12J25; 46S10 |
---|---|
AbstractList | Let $K$ be an algebraically closed field of characteristic zero, complete for an ultrametric absolute value. We show that the $p$-adic main Nevanlinna Theorem holds for meromorphic functions inside an ‘open’ disc in $K$. Let $P_{n,c}$ be the Frank–Reinders’s polynomial
$$ (n-1)(n-2)X^n-2n(n-2)X^{n-1}+ n(n-1)X^{n-2}-c\qq (c\neq0,\ c\neq1,\ c\neq2) $$
and let $S_{n,c}$ be the set of its $n$ distinct zeros. For every $n\geq 7$, we show that $S_{n,c}$ is an $n$-points unique range set (counting multiplicities) for unbounded analytic functions inside an ‘open disc’, and for every $n\geq10$, we show that $S_{n,c}$ is an $n$-points unique range set ignoring multiplicities for the same set of functions. Similar results are obtained for meromorphic functions whose characteristic function is unbounded: we obtain unique range sets ignoring multiplicities of $17$ points. A better result is obtained for an analytic or a meromorphic function $f$ when its derivative is ‘small’ comparatively to $f$. In particular, for every $n\geq5$ we show that $S_{n,c}$ is an $n$-points unique range set ignoring multiplicities for unbounded analytic functions with small derivative. Actually, in each case, results also apply to pairs of analytic functions when just one of them is supposed unbounded. The method we use is based upon the $p$-adic Nevanlinna Theory, and Frank–Reinders’s and Fujimoto’s methods used for meromorphic functions in $\mathbb{C}$. Among other results, we show that the set of functions having a bounded characteristic function is just the field of fractions of the ring of bounded analytic functions in the disc.
AMS 2000
Mathematics subject classification:
Primary 12H25. Secondary 12J25; 46S10 Let $K$ be an algebraically closed field of characteristic zero, complete for an ultrametric absolute value. We show that the $p$-adic main Nevanlinna Theorem holds for meromorphic functions inside an 'open' disc in $K$. Let $P_{n,c}$ be the Frank-Reinders's polynomial $$ (n-1)(n-2)X^n-2n(n-2)X^{n-1}+ n(n-1)X^{n-2}-c\qq (c\neq0,\ c\neq1,\ c\neq2) $$ and let $S_{n,c}$ be the set of its $n$ distinct zeros. For every $n\geq 7$, we show that $S_{n,c}$ is an $n$-points unique range set (counting multiplicities) for unbounded analytic functions inside an 'open disc', and for every $n\geq10$, we show that $S_{n,c}$ is an $n$-points unique range set ignoring multiplicities for the same set of functions. Similar results are obtained for meromorphic functions whose characteristic function is unbounded: we obtain unique range sets ignoring multiplicities of $17$ points. A better result is obtained for an analytic or a meromorphic function $f$ when its derivative is 'small' comparatively to $f$. In particular, for every $n\geq5$ we show that $S_{n,c}$ is an $n$-points unique range set ignoring multiplicities for unbounded analytic functions with small derivative. Actually, in each case, results also apply to pairs of analytic functions when just one of them is supposed unbounded. The method we use is based upon the $p$-adic Nevanlinna Theory, and Frank-Reinders's and Fujimoto's methods used for meromorphic functions in $\mathbb{C}$. Among other results, we show that the set of functions having a bounded characteristic function is just the field of fractions of the ring of bounded analytic functions in the disc. AMS 2000 Mathematics subject classification: Primary 12H25. Secondary 12J25; 46S10 [PUBLICATION ABSTRACT] Let $K$ be an algebraically closed field of characteristic zero, complete for an ultrametric absolute value. We show that the $p$-adic main Nevanlinna Theorem holds for meromorphic functions inside an ‘open’ disc in $K$. Let $P_{n,c}$ be the Frank–Reinders’s polynomial $$ (n-1)(n-2)X^n-2n(n-2)X^{n-1}+ n(n-1)X^{n-2}-c\qq (c\neq0,\ c\neq1,\ c\neq2) $$ and let $S_{n,c}$ be the set of its $n$ distinct zeros. For every $n\geq 7$, we show that $S_{n,c}$ is an $n$-points unique range set (counting multiplicities) for unbounded analytic functions inside an ‘open disc’, and for every $n\geq10$, we show that $S_{n,c}$ is an $n$-points unique range set ignoring multiplicities for the same set of functions. Similar results are obtained for meromorphic functions whose characteristic function is unbounded: we obtain unique range sets ignoring multiplicities of $17$ points. A better result is obtained for an analytic or a meromorphic function $f$ when its derivative is ‘small’ comparatively to $f$. In particular, for every $n\geq5$ we show that $S_{n,c}$ is an $n$-points unique range set ignoring multiplicities for unbounded analytic functions with small derivative. Actually, in each case, results also apply to pairs of analytic functions when just one of them is supposed unbounded. The method we use is based upon the $p$-adic Nevanlinna Theory, and Frank–Reinders’s and Fujimoto’s methods used for meromorphic functions in $\mathbb{C}$. Among other results, we show that the set of functions having a bounded characteristic function is just the field of fractions of the ring of bounded analytic functions in the disc. AMS 2000 Mathematics subject classification: Primary 12H25. Secondary 12J25; 46S10 |
Author | Escassut, Alain Boutabaa, Abdelbaki |
Author_xml | – sequence: 1 givenname: Abdelbaki surname: Boutabaa fullname: Boutabaa, Abdelbaki email: boutabaa@ucfma.univ-bpclermont.fr organization: Laboratoire de Mathématiques Pures, Université Blaise Pascal (Clermont-Ferrand), Les Cézeaux, 63177 Aubiere Cedex, France (boutabaa@ucfma.univ-bpclermont.fr; escassut@ucfma.univ-bpclermont.fr) – sequence: 2 givenname: Alain surname: Escassut fullname: Escassut, Alain email: boutabaa@ucfma.univ-bpclermont.fr organization: Laboratoire de Mathématiques Pures, Université Blaise Pascal (Clermont-Ferrand), Les Cézeaux, 63177 Aubiere Cedex, France (boutabaa@ucfma.univ-bpclermont.fr; escassut@ucfma.univ-bpclermont.fr) |
BookMark | eNp9kE1Pg0AQhjdGE9vqD_BGvKP7ASx78ECgpSSlVLY9b5aPNdQW6kIT_fdC2mii0dNMMu8z78w7Bpd1U5cA3CH4gCCijxxCRCBDNmMQQmqzCzBClmOZxCXsEoyGsTnMr8G4bbeDhtpoBJ42KTe8ZWD0NYq5MUtSY2V6QeQb8TRN4iRdzft-tln66yhZciNa8iiYGp4RRNy_AVdK7try9lwnYDObrv25uUjCyPcWZk4Y7cwcQ4xzS1KVIVcRRFyLYBsW_VGyKDKcY4simDOiLGormdFc2URK6CqoLIcpMgH3p70H3bwdy7YT2-ao695SYOxihomLexE9iXLdtK0ulcirTnZVU3daVjuBoBiiEr-i6kn0gzzoai_1x7-MeWKqtivfvwCpX4VDCbWFEz4LyEkYh9wXQa8nZw-5z3RVvJTfP_zt8gmjpYMQ |
CitedBy_id | crossref_primary_10_5802_afst_1309 crossref_primary_10_1142_S1793557108000357 crossref_primary_10_1016_j_indag_2012_06_003 crossref_primary_10_1016_j_jmaa_2008_10_006 crossref_primary_10_1134_S2070046610040035 crossref_primary_10_1134_S2070046618010028 crossref_primary_10_1007_s12215_021_00680_0 crossref_primary_10_1016_j_indag_2015_08_005 crossref_primary_10_32513_tbilisi_1529460023 crossref_primary_10_1080_17476930903394945 crossref_primary_10_1007_s40306_015_0166_4 crossref_primary_10_1016_j_jnt_2003_11_005 crossref_primary_10_11650_twjm_1500405180 crossref_primary_10_1007_s10013_017_0240_4 crossref_primary_10_1017_S0017089507003473 crossref_primary_10_1134_S2070046621030018 crossref_primary_10_1016_j_bulsci_2006_05_004 crossref_primary_10_2748_tmj_1372182721 crossref_primary_10_1134_S2070046611020038 crossref_primary_10_1016_j_bulsci_2011_06_006 |
ContentType | Journal Article |
Copyright | Copyright © Edinburgh Mathematical Society
2001 2001 Edinburgh Mathematical Society |
Copyright_xml | – notice: Copyright © Edinburgh Mathematical Society 2001 – notice: 2001 Edinburgh Mathematical Society |
DBID | BSCLL AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1017/S0013091599000759 |
DatabaseName | Istex CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1464-3839 |
EndPage | 504 |
ExternalDocumentID | 1401846371 10_1017_S0013091599000759 ark_67375_6GQ_0S3GMGSC_D |
Genre | Feature |
GroupedDBID | -1D -1F -2P -2V -E. -~6 -~N -~X .FH 09C 09E 0E1 0R~ 123 29O 3V. 4.4 5VS 6OB 6~7 74X 74Y 7~V 88I 8FE 8FG 8R4 8R5 9M5 AAAZR AABES AABWE AACJH AAGFV AAKTX AAMNQ AANRG AARAB AASVR AATMM AAUIS AAUKB ABBXD ABBZL ABEFU ABITZ ABJCF ABJNI ABKKG ABMWE ABQTM ABQWD ABROB ABTAH ABTCQ ABUWG ABVFV ABVKB ABVZP ABXAU ABZCX ABZUI ACBMC ACDLN ACETC ACGFS ACGOD ACIMK ACIPV ACIWK ACMRT ACNCT ACRPL ACUIJ ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADKIL ADNMO ADOVH ADOVT ADVJH AEBAK AEBPU AEHGV AEMFK AEMTW AENCP AENEX AENGE AEYYC AFFNX AFFUJ AFKQG AFKRA AFLOS AFLVW AFUTZ AFZFC AGABE AGBYD AGJUD AGLWM AHQXX AHRGI AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ARZZG ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BENPR BESQT BGHMG BGLVJ BJBOZ BLZWO BMAJL BPHCQ BQFHP C0O CAG CBIIA CCPQU CCQAD CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CJCSC COF CS3 DC4 DOHLZ DU5 DWQXO EBS EGQIC EJD FRP GNUQQ HCIFZ HG- HST HZ~ H~9 I.6 I.7 I.9 IH6 IOEEP IOO IS6 I~P J36 J38 J3A JHPGK JQKCU K6V K7- KAFGG KCGVB KFECR L6V L98 LHUNA LW7 M-V M0N M2P M7S M7~ M8. NIKVX NMFBF NZEOI O9- OHT OK1 OYBOY P2P P62 PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RIG RNI ROL RR0 RZO S6- S6U SAAAG T9M TR2 TWZ UT1 WFFJZ WH7 WQ3 WXU WYP XOL YNT ZCG ZDLDU ZJOSE ZMEZD ZY4 ZYDXJ ~V1 AAKNA ABGDZ ABXHF ACEJA AGQPQ AHDLI AKMAY AMVHM ANOYL BSCLL PHGZM PHGZT PQGLB PUEGO AAYXX ABHFL ACOZI CITATION 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c397t-c2022c4a7fb18f313843250d001addb2c24710c93f475fab7cf53aa08f0f469f3 |
IEDL.DBID | 8FG |
ISSN | 0013-0915 |
IngestDate | Wed Aug 13 05:50:11 EDT 2025 Tue Jul 01 03:48:02 EDT 2025 Thu Apr 24 23:06:28 EDT 2025 Sun Aug 31 06:48:34 EDT 2025 Tue Jan 21 06:18:55 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | ultrametric meromorphic ursim Nevanlinna urs |
Language | English |
License | https://www.cambridge.org/core/terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c397t-c2022c4a7fb18f313843250d001addb2c24710c93f475fab7cf53aa08f0f469f3 |
Notes | ark:/67375/6GQ-0S3GMGSC-D PII:S0013091599000759 ArticleID:00075 istex:8C060E81E728CCABFE655F21971FB5829B2D4767 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
OpenAccessLink | https://www.cambridge.org/core/services/aop-cambridge-core/content/view/688207F76C89D688E406C217B69D7F7C/S0013091599000759a.pdf/div-class-title-urs-and-ursims-for-span-class-italic-p-span-adic-meromorphic-functions-inside-a-disc-div.pdf |
PQID | 228292382 |
PQPubID | 41713 |
PageCount | 20 |
ParticipantIDs | proquest_journals_228292382 crossref_citationtrail_10_1017_S0013091599000759 crossref_primary_10_1017_S0013091599000759 istex_primary_ark_67375_6GQ_0S3GMGSC_D cambridge_journals_10_1017_S0013091599000759 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2001-10-01 |
PublicationDateYYYYMMDD | 2001-10-01 |
PublicationDate_xml | – month: 10 year: 2001 text: 2001-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Proceedings of the Edinburgh Mathematical Society |
PublicationTitleAlternate | Proceedings of the Edinburgh Mathematical Society |
PublicationYear | 2001 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
SSID | ssj0007751 |
Score | 1.6552755 |
Snippet | Let $K$ be an algebraically closed field of characteristic zero, complete for an ultrametric absolute value. We show that the $p$-adic main Nevanlinna Theorem... |
SourceID | proquest crossref istex cambridge |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 485 |
SubjectTerms | meromorphic Nevanlinna ultrametric urs ursim |
Title | URS AND URSIMS FOR P-ADIC MEROMORPHIC FUNCTIONS INSIDE A DISC |
URI | https://www.cambridge.org/core/product/identifier/S0013091599000759/type/journal_article https://api.istex.fr/ark:/67375/6GQ-0S3GMGSC-D/fulltext.pdf https://www.proquest.com/docview/228292382 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT4NAEN5oe9GD8RlrtdmD8WAk8oY9GIMFWkxoK0jijSwLXDRtbWviz3d2C6hp0oQEArsJzA7zzTAfMwhdEwZhcibK4-WmpJMCXimqFRItVCvTs5zYJv8bORyZw0R_fjPeKm7OsqJV1jZRGOp8xvg38nuVp_wAX9TH-afEm0bx5GrVQWMXtRUAGq7mtj9oDLFlGUrTwIAoRp3UFBWjecYOzhEiUJP8La3wD6LaXNrfG5ZawI9_iA4qvxE764U-QjvF9Bjth03R1eUJekiiGDsjF8M-CGMM8R2eSI4b9HHoReNwHE2GcOwnI0EciTEE7oHrYQe7Qdw_RYnvvfaHUtUdQWLgQ6wkpgL8Mp1aZabYpaZotq6BP5PDk4HNylSmAu7IjGilbhklzSxWGhqlsl3KJcTEpXaGWtPZtDhHOLOJkevUZopMdVpoBDaZ5ib3_SA8MjvorhFOWun4Ml3zw6x0Q5YdJNfyS1lVaZw3vPjYNuW2mTJfl9nYNvhGLEozki7eOT_NMlJz8JLKMZiPQdxP3Q7q1qv2e9uNIl1svdpFe4JuJnh7l6i1WnwVV-B_rLKe0LIeaj95o0n0A7pjzCk |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JTttA9AmSA3CoylI1ZZsDcEBY9TJe5oBQiBNiwCbEROLmjsf2hSpQEgT9qP5j30xsA0LKDcmSLXvGst7-_DaAPSbQTU5Ve7zM0SjLkaW4lWs8N92UphnzHFmNHEZOf0TPb-3bBfhX1cLItMpKJipBnd0L-Y_8pylDfqhfzJOHP5ocGiWDq9UEjRlVXOR_n9FjmxwHPqJ33zR73ZtOXyuHCmgCVe9UE-jtm4Jyt0gNr7AMy6MWmgEZimtk9dQUJoprXTCroK5d8NQVhW1xrnuFXqArWVj43kVoUlnQ2oDmaTcaDGvR77q2UY9MYIZdhVFVj2oZI8R7jCk9zd42c3inFJsSvy8fdINSeL2v8KW0VEl7RlqrsJCP12AlrNu8TtbheDSMSTvyCZ6DMCboUZKB1vaDDgm7w6vwajjo43VvFKlUlZgEURz4XdImfhB3NmD0KaD7Bo3x_Tj_DiT1mJ1R7glD55TnFsND55kjrU10yJwWHNXASUqumiSzjDQ3-QDLFugV_BJR9jaXIzZ-z9tyWG95mDX2mLf4QCGlXskf72RGnGsnztl1oscosM7iTuK3YLPC2utn16T7Y-7TXVjq34SXyWUQXWzCskp2U1mDW9CYPj7l22j9TNOdkuYI_PpsMv8PyNwIgw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=URS+AND+URSIMS+FOR+P-ADIC+MEROMORPHIC+FUNCTIONS+INSIDE+A+DISC&rft.jtitle=Proceedings+of+the+Edinburgh+Mathematical+Society&rft.au=Boutabaa%2C+Abdelbaki&rft.au=Escassut%2C+Alain&rft.date=2001-10-01&rft.pub=Cambridge+University+Press&rft.issn=0013-0915&rft.eissn=1464-3839&rft.volume=44&rft.issue=3&rft.spage=485&rft.epage=504&rft_id=info:doi/10.1017%2FS0013091599000759&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_6GQ_0S3GMGSC_D |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-0915&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-0915&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-0915&client=summon |