URS AND URSIMS FOR P-ADIC MEROMORPHIC FUNCTIONS INSIDE A DISC

Let $K$ be an algebraically closed field of characteristic zero, complete for an ultrametric absolute value. We show that the $p$-adic main Nevanlinna Theorem holds for meromorphic functions inside an ‘open’ disc in $K$. Let $P_{n,c}$ be the Frank–Reinders’s polynomial $$ (n-1)(n-2)X^n-2n(n-2)X^{n-1...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Edinburgh Mathematical Society Vol. 44; no. 3; pp. 485 - 504
Main Authors Boutabaa, Abdelbaki, Escassut, Alain
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.10.2001
Subjects
Online AccessGet full text
ISSN0013-0915
1464-3839
DOI10.1017/S0013091599000759

Cover

Abstract Let $K$ be an algebraically closed field of characteristic zero, complete for an ultrametric absolute value. We show that the $p$-adic main Nevanlinna Theorem holds for meromorphic functions inside an ‘open’ disc in $K$. Let $P_{n,c}$ be the Frank–Reinders’s polynomial $$ (n-1)(n-2)X^n-2n(n-2)X^{n-1}+ n(n-1)X^{n-2}-c\qq (c\neq0,\ c\neq1,\ c\neq2) $$ and let $S_{n,c}$ be the set of its $n$ distinct zeros. For every $n\geq 7$, we show that $S_{n,c}$ is an $n$-points unique range set (counting multiplicities) for unbounded analytic functions inside an ‘open disc’, and for every $n\geq10$, we show that $S_{n,c}$ is an $n$-points unique range set ignoring multiplicities for the same set of functions. Similar results are obtained for meromorphic functions whose characteristic function is unbounded: we obtain unique range sets ignoring multiplicities of $17$ points. A better result is obtained for an analytic or a meromorphic function $f$ when its derivative is ‘small’ comparatively to $f$. In particular, for every $n\geq5$ we show that $S_{n,c}$ is an $n$-points unique range set ignoring multiplicities for unbounded analytic functions with small derivative. Actually, in each case, results also apply to pairs of analytic functions when just one of them is supposed unbounded. The method we use is based upon the $p$-adic Nevanlinna Theory, and Frank–Reinders’s and Fujimoto’s methods used for meromorphic functions in $\mathbb{C}$. Among other results, we show that the set of functions having a bounded characteristic function is just the field of fractions of the ring of bounded analytic functions in the disc. AMS 2000 Mathematics subject classification: Primary 12H25. Secondary 12J25; 46S10
AbstractList Let $K$ be an algebraically closed field of characteristic zero, complete for an ultrametric absolute value. We show that the $p$-adic main Nevanlinna Theorem holds for meromorphic functions inside an ‘open’ disc in $K$. Let $P_{n,c}$ be the Frank–Reinders’s polynomial $$ (n-1)(n-2)X^n-2n(n-2)X^{n-1}+ n(n-1)X^{n-2}-c\qq (c\neq0,\ c\neq1,\ c\neq2) $$ and let $S_{n,c}$ be the set of its $n$ distinct zeros. For every $n\geq 7$, we show that $S_{n,c}$ is an $n$-points unique range set (counting multiplicities) for unbounded analytic functions inside an ‘open disc’, and for every $n\geq10$, we show that $S_{n,c}$ is an $n$-points unique range set ignoring multiplicities for the same set of functions. Similar results are obtained for meromorphic functions whose characteristic function is unbounded: we obtain unique range sets ignoring multiplicities of $17$ points. A better result is obtained for an analytic or a meromorphic function $f$ when its derivative is ‘small’ comparatively to $f$. In particular, for every $n\geq5$ we show that $S_{n,c}$ is an $n$-points unique range set ignoring multiplicities for unbounded analytic functions with small derivative. Actually, in each case, results also apply to pairs of analytic functions when just one of them is supposed unbounded. The method we use is based upon the $p$-adic Nevanlinna Theory, and Frank–Reinders’s and Fujimoto’s methods used for meromorphic functions in $\mathbb{C}$. Among other results, we show that the set of functions having a bounded characteristic function is just the field of fractions of the ring of bounded analytic functions in the disc. AMS 2000 Mathematics subject classification: Primary 12H25. Secondary 12J25; 46S10
Let $K$ be an algebraically closed field of characteristic zero, complete for an ultrametric absolute value. We show that the $p$-adic main Nevanlinna Theorem holds for meromorphic functions inside an 'open' disc in $K$. Let $P_{n,c}$ be the Frank-Reinders's polynomial $$ (n-1)(n-2)X^n-2n(n-2)X^{n-1}+ n(n-1)X^{n-2}-c\qq (c\neq0,\ c\neq1,\ c\neq2) $$ and let $S_{n,c}$ be the set of its $n$ distinct zeros. For every $n\geq 7$, we show that $S_{n,c}$ is an $n$-points unique range set (counting multiplicities) for unbounded analytic functions inside an 'open disc', and for every $n\geq10$, we show that $S_{n,c}$ is an $n$-points unique range set ignoring multiplicities for the same set of functions. Similar results are obtained for meromorphic functions whose characteristic function is unbounded: we obtain unique range sets ignoring multiplicities of $17$ points. A better result is obtained for an analytic or a meromorphic function $f$ when its derivative is 'small' comparatively to $f$. In particular, for every $n\geq5$ we show that $S_{n,c}$ is an $n$-points unique range set ignoring multiplicities for unbounded analytic functions with small derivative. Actually, in each case, results also apply to pairs of analytic functions when just one of them is supposed unbounded. The method we use is based upon the $p$-adic Nevanlinna Theory, and Frank-Reinders's and Fujimoto's methods used for meromorphic functions in $\mathbb{C}$. Among other results, we show that the set of functions having a bounded characteristic function is just the field of fractions of the ring of bounded analytic functions in the disc. AMS 2000 Mathematics subject classification: Primary 12H25. Secondary 12J25; 46S10 [PUBLICATION ABSTRACT]
Let $K$ be an algebraically closed field of characteristic zero, complete for an ultrametric absolute value. We show that the $p$-adic main Nevanlinna Theorem holds for meromorphic functions inside an ‘open’ disc in $K$. Let $P_{n,c}$ be the Frank–Reinders’s polynomial $$ (n-1)(n-2)X^n-2n(n-2)X^{n-1}+ n(n-1)X^{n-2}-c\qq (c\neq0,\ c\neq1,\ c\neq2) $$ and let $S_{n,c}$ be the set of its $n$ distinct zeros. For every $n\geq 7$, we show that $S_{n,c}$ is an $n$-points unique range set (counting multiplicities) for unbounded analytic functions inside an ‘open disc’, and for every $n\geq10$, we show that $S_{n,c}$ is an $n$-points unique range set ignoring multiplicities for the same set of functions. Similar results are obtained for meromorphic functions whose characteristic function is unbounded: we obtain unique range sets ignoring multiplicities of $17$ points. A better result is obtained for an analytic or a meromorphic function $f$ when its derivative is ‘small’ comparatively to $f$. In particular, for every $n\geq5$ we show that $S_{n,c}$ is an $n$-points unique range set ignoring multiplicities for unbounded analytic functions with small derivative. Actually, in each case, results also apply to pairs of analytic functions when just one of them is supposed unbounded. The method we use is based upon the $p$-adic Nevanlinna Theory, and Frank–Reinders’s and Fujimoto’s methods used for meromorphic functions in $\mathbb{C}$. Among other results, we show that the set of functions having a bounded characteristic function is just the field of fractions of the ring of bounded analytic functions in the disc. AMS 2000 Mathematics subject classification: Primary 12H25. Secondary 12J25; 46S10
Author Escassut, Alain
Boutabaa, Abdelbaki
Author_xml – sequence: 1
  givenname: Abdelbaki
  surname: Boutabaa
  fullname: Boutabaa, Abdelbaki
  email: boutabaa@ucfma.univ-bpclermont.fr
  organization: Laboratoire de Mathématiques Pures, Université Blaise Pascal (Clermont-Ferrand), Les Cézeaux, 63177 Aubiere Cedex, France (boutabaa@ucfma.univ-bpclermont.fr; escassut@ucfma.univ-bpclermont.fr)
– sequence: 2
  givenname: Alain
  surname: Escassut
  fullname: Escassut, Alain
  email: boutabaa@ucfma.univ-bpclermont.fr
  organization: Laboratoire de Mathématiques Pures, Université Blaise Pascal (Clermont-Ferrand), Les Cézeaux, 63177 Aubiere Cedex, France (boutabaa@ucfma.univ-bpclermont.fr; escassut@ucfma.univ-bpclermont.fr)
BookMark eNp9kE1Pg0AQhjdGE9vqD_BGvKP7ASx78ECgpSSlVLY9b5aPNdQW6kIT_fdC2mii0dNMMu8z78w7Bpd1U5cA3CH4gCCijxxCRCBDNmMQQmqzCzBClmOZxCXsEoyGsTnMr8G4bbeDhtpoBJ42KTe8ZWD0NYq5MUtSY2V6QeQb8TRN4iRdzft-tln66yhZciNa8iiYGp4RRNy_AVdK7try9lwnYDObrv25uUjCyPcWZk4Y7cwcQ4xzS1KVIVcRRFyLYBsW_VGyKDKcY4simDOiLGormdFc2URK6CqoLIcpMgH3p70H3bwdy7YT2-ao695SYOxihomLexE9iXLdtK0ulcirTnZVU3daVjuBoBiiEr-i6kn0gzzoai_1x7-MeWKqtivfvwCpX4VDCbWFEz4LyEkYh9wXQa8nZw-5z3RVvJTfP_zt8gmjpYMQ
CitedBy_id crossref_primary_10_5802_afst_1309
crossref_primary_10_1142_S1793557108000357
crossref_primary_10_1016_j_indag_2012_06_003
crossref_primary_10_1016_j_jmaa_2008_10_006
crossref_primary_10_1134_S2070046610040035
crossref_primary_10_1134_S2070046618010028
crossref_primary_10_1007_s12215_021_00680_0
crossref_primary_10_1016_j_indag_2015_08_005
crossref_primary_10_32513_tbilisi_1529460023
crossref_primary_10_1080_17476930903394945
crossref_primary_10_1007_s40306_015_0166_4
crossref_primary_10_1016_j_jnt_2003_11_005
crossref_primary_10_11650_twjm_1500405180
crossref_primary_10_1007_s10013_017_0240_4
crossref_primary_10_1017_S0017089507003473
crossref_primary_10_1134_S2070046621030018
crossref_primary_10_1016_j_bulsci_2006_05_004
crossref_primary_10_2748_tmj_1372182721
crossref_primary_10_1134_S2070046611020038
crossref_primary_10_1016_j_bulsci_2011_06_006
ContentType Journal Article
Copyright Copyright © Edinburgh Mathematical Society 2001
2001 Edinburgh Mathematical Society
Copyright_xml – notice: Copyright © Edinburgh Mathematical Society 2001
– notice: 2001 Edinburgh Mathematical Society
DBID BSCLL
AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1017/S0013091599000759
DatabaseName Istex
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1464-3839
EndPage 504
ExternalDocumentID 1401846371
10_1017_S0013091599000759
ark_67375_6GQ_0S3GMGSC_D
Genre Feature
GroupedDBID -1D
-1F
-2P
-2V
-E.
-~6
-~N
-~X
.FH
09C
09E
0E1
0R~
123
29O
3V.
4.4
5VS
6OB
6~7
74X
74Y
7~V
88I
8FE
8FG
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AATMM
AAUIS
AAUKB
ABBXD
ABBZL
ABEFU
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABQTM
ABQWD
ABROB
ABTAH
ABTCQ
ABUWG
ABVFV
ABVKB
ABVZP
ABXAU
ABZCX
ABZUI
ACBMC
ACDLN
ACETC
ACGFS
ACGOD
ACIMK
ACIPV
ACIWK
ACMRT
ACNCT
ACRPL
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADKIL
ADNMO
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMFK
AEMTW
AENCP
AENEX
AENGE
AEYYC
AFFNX
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFUTZ
AFZFC
AGABE
AGBYD
AGJUD
AGLWM
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
FRP
GNUQQ
HCIFZ
HG-
HST
HZ~
H~9
I.6
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KAFGG
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M0N
M2P
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OHT
OK1
OYBOY
P2P
P62
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
RNI
ROL
RR0
RZO
S6-
S6U
SAAAG
T9M
TR2
TWZ
UT1
WFFJZ
WH7
WQ3
WXU
WYP
XOL
YNT
ZCG
ZDLDU
ZJOSE
ZMEZD
ZY4
ZYDXJ
~V1
AAKNA
ABGDZ
ABXHF
ACEJA
AGQPQ
AHDLI
AKMAY
AMVHM
ANOYL
BSCLL
PHGZM
PHGZT
PQGLB
PUEGO
AAYXX
ABHFL
ACOZI
CITATION
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c397t-c2022c4a7fb18f313843250d001addb2c24710c93f475fab7cf53aa08f0f469f3
IEDL.DBID 8FG
ISSN 0013-0915
IngestDate Wed Aug 13 05:50:11 EDT 2025
Tue Jul 01 03:48:02 EDT 2025
Thu Apr 24 23:06:28 EDT 2025
Sun Aug 31 06:48:34 EDT 2025
Tue Jan 21 06:18:55 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords ultrametric
meromorphic
ursim
Nevanlinna
urs
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-c2022c4a7fb18f313843250d001addb2c24710c93f475fab7cf53aa08f0f469f3
Notes ark:/67375/6GQ-0S3GMGSC-D
PII:S0013091599000759
ArticleID:00075
istex:8C060E81E728CCABFE655F21971FB5829B2D4767
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
OpenAccessLink https://www.cambridge.org/core/services/aop-cambridge-core/content/view/688207F76C89D688E406C217B69D7F7C/S0013091599000759a.pdf/div-class-title-urs-and-ursims-for-span-class-italic-p-span-adic-meromorphic-functions-inside-a-disc-div.pdf
PQID 228292382
PQPubID 41713
PageCount 20
ParticipantIDs proquest_journals_228292382
crossref_citationtrail_10_1017_S0013091599000759
crossref_primary_10_1017_S0013091599000759
istex_primary_ark_67375_6GQ_0S3GMGSC_D
cambridge_journals_10_1017_S0013091599000759
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2001-10-01
PublicationDateYYYYMMDD 2001-10-01
PublicationDate_xml – month: 10
  year: 2001
  text: 2001-10-01
  day: 01
PublicationDecade 2000
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Proceedings of the Edinburgh Mathematical Society
PublicationTitleAlternate Proceedings of the Edinburgh Mathematical Society
PublicationYear 2001
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
SSID ssj0007751
Score 1.6552755
Snippet Let $K$ be an algebraically closed field of characteristic zero, complete for an ultrametric absolute value. We show that the $p$-adic main Nevanlinna Theorem...
SourceID proquest
crossref
istex
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 485
SubjectTerms meromorphic
Nevanlinna
ultrametric
urs
ursim
Title URS AND URSIMS FOR P-ADIC MEROMORPHIC FUNCTIONS INSIDE A DISC
URI https://www.cambridge.org/core/product/identifier/S0013091599000759/type/journal_article
https://api.istex.fr/ark:/67375/6GQ-0S3GMGSC-D/fulltext.pdf
https://www.proquest.com/docview/228292382
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT4NAEN5oe9GD8RlrtdmD8WAk8oY9GIMFWkxoK0jijSwLXDRtbWviz3d2C6hp0oQEArsJzA7zzTAfMwhdEwZhcibK4-WmpJMCXimqFRItVCvTs5zYJv8bORyZw0R_fjPeKm7OsqJV1jZRGOp8xvg38nuVp_wAX9TH-afEm0bx5GrVQWMXtRUAGq7mtj9oDLFlGUrTwIAoRp3UFBWjecYOzhEiUJP8La3wD6LaXNrfG5ZawI9_iA4qvxE764U-QjvF9Bjth03R1eUJekiiGDsjF8M-CGMM8R2eSI4b9HHoReNwHE2GcOwnI0EciTEE7oHrYQe7Qdw_RYnvvfaHUtUdQWLgQ6wkpgL8Mp1aZabYpaZotq6BP5PDk4HNylSmAu7IjGilbhklzSxWGhqlsl3KJcTEpXaGWtPZtDhHOLOJkevUZopMdVpoBDaZ5ib3_SA8MjvorhFOWun4Ml3zw6x0Q5YdJNfyS1lVaZw3vPjYNuW2mTJfl9nYNvhGLEozki7eOT_NMlJz8JLKMZiPQdxP3Q7q1qv2e9uNIl1svdpFe4JuJnh7l6i1WnwVV-B_rLKe0LIeaj95o0n0A7pjzCk
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JTttA9AmSA3CoylI1ZZsDcEBY9TJe5oBQiBNiwCbEROLmjsf2hSpQEgT9qP5j30xsA0LKDcmSLXvGst7-_DaAPSbQTU5Ve7zM0SjLkaW4lWs8N92UphnzHFmNHEZOf0TPb-3bBfhX1cLItMpKJipBnd0L-Y_8pylDfqhfzJOHP5ocGiWDq9UEjRlVXOR_n9FjmxwHPqJ33zR73ZtOXyuHCmgCVe9UE-jtm4Jyt0gNr7AMy6MWmgEZimtk9dQUJoprXTCroK5d8NQVhW1xrnuFXqArWVj43kVoUlnQ2oDmaTcaDGvR77q2UY9MYIZdhVFVj2oZI8R7jCk9zd42c3inFJsSvy8fdINSeL2v8KW0VEl7RlqrsJCP12AlrNu8TtbheDSMSTvyCZ6DMCboUZKB1vaDDgm7w6vwajjo43VvFKlUlZgEURz4XdImfhB3NmD0KaD7Bo3x_Tj_DiT1mJ1R7glD55TnFsND55kjrU10yJwWHNXASUqumiSzjDQ3-QDLFugV_BJR9jaXIzZ-z9tyWG95mDX2mLf4QCGlXskf72RGnGsnztl1oscosM7iTuK3YLPC2utn16T7Y-7TXVjq34SXyWUQXWzCskp2U1mDW9CYPj7l22j9TNOdkuYI_PpsMv8PyNwIgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=URS+AND+URSIMS+FOR+P-ADIC+MEROMORPHIC+FUNCTIONS+INSIDE+A+DISC&rft.jtitle=Proceedings+of+the+Edinburgh+Mathematical+Society&rft.au=Boutabaa%2C+Abdelbaki&rft.au=Escassut%2C+Alain&rft.date=2001-10-01&rft.pub=Cambridge+University+Press&rft.issn=0013-0915&rft.eissn=1464-3839&rft.volume=44&rft.issue=3&rft.spage=485&rft.epage=504&rft_id=info:doi/10.1017%2FS0013091599000759&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_6GQ_0S3GMGSC_D
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-0915&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-0915&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-0915&client=summon