Ensemble clustering of longitudinal bivariate HIV biomarker profiles to group patients by patterns of disease progression
This paper describes an ensemble cluster analysis of bivariate profiles of HIV biomarkers, viral load and CD4 cell counts, which jointly measure disease progression. Data are from a prevalent cohort of HIV positive participants in a clinical trial of vitamin supplementation in Botswana. These indivi...
Saved in:
Published in | International journal of data science and analytics Vol. 14; no. 3; pp. 305 - 318 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper describes an ensemble cluster analysis of bivariate profiles of HIV biomarkers, viral load and CD4 cell counts, which jointly measure disease progression. Data are from a prevalent cohort of HIV positive participants in a clinical trial of vitamin supplementation in Botswana. These individuals were HIV positive upon enrollment, but with unknown times of infection. To categorize groups of participants based on their patterns of progression of HIV infection using both biomarkers, we combine univariate shape-based cluster results for multiple biomarkers through the use of ensemble clustering methods. We first describe univariate clustering for each of the individual biomarker profiles, and make use of shape-respecting distances for clustering the longitudinal profile data. In our data, profiles are subject to either missing or irregular measurements as well as unobserved initiation times of the process of interest. Shape-respecting distances that can handle such data issues, preserve time-ordering, and identify similar profile shapes are useful in identifying patterns of disease progression from longitudinal biomarker data. However, their performance with regard to clustering differs by severity of the data issues mentioned above. We provide an empirical investigation of shape-respecting distances (Fréchet and dynamic time warping (DTW)) on benchmark shape data, and use DTW in cluster analysis of biomarker profile observations. These reveal a primary group of ‘typical progressors,’ as well as a smaller group that shows relatively rapid progression. We then refine the analysis using ensemble clustering for both markers to obtain a single classification. The information from joint evaluation of the two biomarkers combined with ensemble clustering reveals subgroups of patients not identifiable through univariate analyses; noteworthy subgroups are those that appear to represent recently and chronically infected subsets. |
---|---|
AbstractList | This paper describes an ensemble cluster analysis of bivariate profiles of HIV biomarkers, viral load and CD4 cell counts, which jointly measure disease progression. Data are from a prevalent cohort of HIV positive participants in a clinical trial of vitamin supplementation in Botswana. These individuals were HIV positive upon enrollment, but with unknown times of infection. To categorize groups of participants based on their patterns of progression of HIV infection using both biomarkers, we combine univariate shape-based cluster results for multiple biomarkers through the use of ensemble clustering methods. We first describe univariate clustering for each of the individual biomarker profiles, and make use of shape-respecting distances for clustering the longitudinal profile data. In our data, profiles are subject to either missing or irregular measurements as well as unobserved initiation times of the process of interest. Shape-respecting distances that can handle such data issues, preserve time-ordering, and identify similar profile shapes are useful in identifying patterns of disease progression from longitudinal biomarker data. However, their performance with regard to clustering differs by severity of the data issues mentioned above. We provide an empirical investigation of shape-respecting distances (Fréchet and dynamic time warping (DTW)) on benchmark shape data, and use DTW in cluster analysis of biomarker profile observations. These reveal a primary group of ‘typical progressors,’ as well as a smaller group that shows relatively rapid progression. We then refine the analysis using ensemble clustering for both markers to obtain a single classification. The information from joint evaluation of the two biomarkers combined with ensemble clustering reveals subgroups of patients not identifiable through univariate analyses; noteworthy subgroups are those that appear to represent recently and chronically infected subsets. This paper describes an ensemble cluster analysis of bivariate profiles of HIV biomarkers, viral load and CD4 cell counts, which jointly measure disease progression. Data are from a prevalent cohort of HIV positive participants in a clinical trial of vitamin supplementation in Botswana. These individuals were HIV positive upon enrollment, but with unknown times of infection. To categorize groups of participants based on their patterns of progression of HIV infection using both biomarkers, we combine univariate shape-based cluster results for multiple biomarkers through the use of ensemble clustering methods. We first describe univariate clustering for each of the individual biomarker profiles, and make use of shape-respecting distances for clustering the longitudinal profile data. In our data, profiles are subject to either missing or irregular measurements as well as unobserved initiation times of the process of interest. Shape-respecting distances that can handle such data issues, preserve time-ordering, and identify similar profile shapes are useful in identifying patterns of disease progression from longitudinal biomarker data. However, their performance with regard to clustering differs by severity of the data issues mentioned above. We provide an empirical investigation of shape-respecting distances (Fréchet and dynamic time warping (DTW)) on benchmark shape data, and use DTW in cluster analysis of biomarker profile observations. These reveal a primary group of 'typical progressors,' as well as a smaller group that shows relatively rapid progression. We then refine the analysis using ensemble clustering for both markers to obtain a single classification. The information from joint evaluation of the two biomarkers combined with ensemble clustering reveals subgroups of patients not identifiable through univariate analyses; noteworthy subgroups are those that appear to represent recently and chronically infected subsets. The online version contains supplementary material available at 10.1007/s41060-022-00323-2. |
Author | DeGruttola, Victor Lynch, Miranda L. |
Author_xml | – sequence: 1 givenname: Miranda L. orcidid: 0000-0001-8604-4431 surname: Lynch fullname: Lynch, Miranda L. email: mlynch@hwi.buffalo.edu organization: Hauptman-Woodward Medical Research Institute – sequence: 2 givenname: Victor surname: DeGruttola fullname: DeGruttola, Victor organization: Department of Biostatistics, Harvard T. H. Chan School of Public Health |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35528805$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1TAQhS3UipbSF2CB_AKBsZ3fDRKqWlqpEhuourPseBJccu3Ik1S6b4_DLVewYeWxfM4nzzlv2EmIARl7J-CDAGg-UimghgKkLACUVIV8xc6lqsuiFHV7cpyrxzN2SfQEAKKpVVW3r9mZqirZtlCds_11INzZCXk_rbRg8mHkceBTDKNfVueDmbj1zyZ5syC_vXvIt7gz6ScmPqc4-AmJL5GPKa4zn83iMSzE7X6bMy_QhnOe0BBujjEhkY_hLTsdzER4-XJesO8319-ubov7r1_urj7fF73qmqWwoqy7vjZCyMp2YKwDKXrlhMPeKOeatsqLNm7omyZPrnW1RalK7KDD1ip1wT4duPNqd-j6_L1kJj0nn7fY62i8_vcl-B96jM-6g8wVbQa8_xtwdP4JMQvkQdCnSJRwOEoE6K0sfShL57L077K0zCZ1MNG8ZY5JP8U15bTpf65ffL-a2g |
Cites_doi | 10.1016/j.patcog.2008.11.030 10.1023/A:1024988512476 10.1017/S1351324909005129 10.1016/j.eswa.2020.113829 10.1101/cshperspect.a012526 10.2514/1.I010170 10.14778/1454159.1454226 10.1016/j.csda.2009.12.008 10.18637/jss.v031.i07 10.1080/15481603.2021.1908927 10.1016/j.aim.2015.03.018 10.1016/j.comgeo.2004.05.004 10.1007/s10618-014-0377-7 10.1186/1742-6405-4-11 10.1023/A:1012801612483 10.1016/0167-8655(84)90036-9 10.1109/TASSP.1987.1165065 10.1080/01621459.1971.10482356 10.1080/01621459.1983.10478008 10.1214/aos/1069362747 10.1145/2782759.2782767 10.1093/infdis/jis480 10.1016/j.jbi.2019.103231 10.1093/cid/ciab140 10.1142/S0218195995000064 10.1016/j.tcs.2014.06.026 10.1007/BF01908075 10.18637/jss.v065.i04 10.1001/jama.2013.280923 10.1109/TITS.2016.2547641 10.1145/2611380 10.1371/journal.pone.0150738 10.1109/TSG.2017.2683461 10.1142/S0218001411008683 10.1016/j.neucom.2014.07.014 10.18637/jss.v014.i12 10.1007/3-540-34416-0_2 10.1109/TCYB.2021.3049633 10.1016/j.cmpb.2011.05.008 10.1007/s00180-015-0611-9 10.1137/1.9781611974331.ch55 10.1137/1.9781611972818.60 10.1142/9789812813305_0005 10.5430/air.v7n1p15 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. |
DBID | C6C AAYXX CITATION NPM 5PM |
DOI | 10.1007/s41060-022-00323-2 |
DatabaseName | Springer Nature OA Free Journals (WRLC) CrossRef PubMed PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed |
DatabaseTitleList | CrossRef PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2364-4168 |
EndPage | 318 |
ExternalDocumentID | PMC9064718 35528805 10_1007_s41060_022_00323_2 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Institute of Allergy and Infectious Diseases grantid: NIAID R37 51164 funderid: http://dx.doi.org/10.13039/100000060 – fundername: National Institutes of Health grantid: P30 AI036214; P01 AI131385 funderid: http://dx.doi.org/10.13039/100000002 – fundername: National Institutes of Health grantid: R24 AI106039; R01 AI135992 funderid: http://dx.doi.org/10.13039/100000002 – fundername: ; grantid: NIAID R37 51164 – fundername: ; grantid: P30 AI036214; P01 AI131385 – fundername: ; grantid: R24 AI106039; R01 AI135992 |
GroupedDBID | -EM 0R~ 203 406 AACDK AAHNG AAIAL AAJBT AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAZMS ABAKF ABBTF ABDZT ABECU ABFTD ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AEPYU AESKC AEVLU AEXYK AFBBN AFLOW AFQWF AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AHBYD AHKAY AHSBF AIAKS AIGIU AILAN AITGF AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ASPBG AVWKF AXYYD AZFZN BGNMA C6C CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FERAY FIGPU FINBP FNLPD FSGXE GGCAI GJIRD IKXTQ IWAJR J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW Z5O Z7R Z7X Z7Z Z81 Z83 Z88 ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION NPM 5PM ABRTQ |
ID | FETCH-LOGICAL-c397t-b1469c6a1125b90abd021c3d1deca3dd7853647dfc77536d8d6be234e909e8b33 |
IEDL.DBID | C6C |
ISSN | 2364-415X |
IngestDate | Thu Aug 21 14:32:10 EDT 2025 Thu Jan 02 22:54:35 EST 2025 Tue Jul 01 02:13:13 EDT 2025 Fri Feb 21 02:45:55 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | HIV disease progression HIV biomarkers Shape-respecting distances Dynamic time warping Ensemble clustering |
Language | English |
License | The Author(s) 2022. Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c397t-b1469c6a1125b90abd021c3d1deca3dd7853647dfc77536d8d6be234e909e8b33 |
ORCID | 0000-0001-8604-4431 |
OpenAccessLink | https://doi.org/10.1007/s41060-022-00323-2 |
PMID | 35528805 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9064718 pubmed_primary_35528805 crossref_primary_10_1007_s41060_022_00323_2 springer_journals_10_1007_s41060_022_00323_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Switzerland |
PublicationTitle | International journal of data science and analytics |
PublicationTitleAbbrev | Int J Data Sci Anal |
PublicationTitleAlternate | Int J Data Sci Anal |
PublicationYear | 2022 |
Publisher | Springer International Publishing |
Publisher_xml | – name: Springer International Publishing |
References | He, Huang, Qian (CR17) 2019; 96 Besse, Guillouet, Loubes, Royer (CR24) 2016; 17 Vega-Pons, Ruiz-Shulcloper (CR39) 2011; 25 Keogh, Kasetty (CR28) 2003; 7 CR35 Rashedi, Mirzaei, Rahmati (CR41) 2015; 148 Mosig, Clausen (CR22) 2005; 30 Martínez-Pérez (CR44) 2015; 279 Schäfer (CR37) 2015; 29 Sangalli, Secchi, Vantini, Vitelli (CR7) 2010; 54 Genolini, Alacoque, Sentenac, Arnaud (CR8) 2015; 65 Little, Chen, Wang, Anderson, Pond, Nakazawa, Mathews, DeGruttola, Smith (CR5) 2021; 73 Kenefic (CR19) 2014; 11 Giorgino (CR25) 2009; 31 Rand (CR30) 1971; 66 CR6 Genolini, Ecochard, Benghezal, Driss, Andrieu, Subtil (CR9) 2016; 11 CR48 CR47 Casacuberta, Vidal, Rulot (CR50) 1987; 35 Mackelprang, Baeten, Donnell, Celum, Farquhar, de Bruyn, Essex, McElrath, Nakku-Joloba, Lingappa (CR4) 2012; 206 Baum, Campa, Lai, Martinez, Tsalaile, Burns, Farahani, Li, Van Widenfelt, Page (CR51) 2013; 310 Carlsson, Mémoli (CR43) 2010; 11 CR42 Toohey, Duckham (CR10) 2015; 7 Langford, Ananworanich, Cooper (CR3) 2007; 4 Rath, Manmatha (CR34) 2002; 40 Zheng, Li, Ding (CR40) 2014; 9 Kanekar (CR2) 2010; 2 Halkidi, Batistakis, Vazirgiannis (CR52) 2001; 17 CR16 CR15 Wylie, Zhu (CR23) 2014; 556 Geler, Kurbalija, Ivanović, Radovanović (CR14) 2020; 162 CR13 De Soete (CR46) 1984; 2 CR55 CR54 CR53 Coffin, Swanstrom (CR1) 2013; 3 Tao, Both, Silveira, Buchin, Sijben, Purves, Laube, Peng, Toohey, Duckham (CR11) 2021; 58 Hornik (CR45) 2005; 14 Eiter, Mannila (CR21) 1994 Teeraratkul, O’Neill, Lall (CR18) 2017; 9 CR29 CR27 Fowlkes, Mallows (CR32) 1983; 78 Manning, Raghavan, Schütze (CR33) 2010; 16 Strehl, Ghosh (CR38) 2002; 3 Wang, Gasser (CR26) 1997; 25 Hubert, Arabie (CR31) 1985; 2 Alt, Godau (CR12) 1995; 5 CR20 Ding, Trajcevski, Scheuermann, Wang, Keogh (CR36) 2008; 1 Lemire (CR49) 2009; 42 H Alt (323_CR12) 1995; 5 K Wang (323_CR26) 1997; 25 A Strehl (323_CR38) 2002; 3 E Keogh (323_CR28) 2003; 7 323_CR35 E Rashedi (323_CR41) 2015; 148 C Genolini (323_CR8) 2015; 65 K Toohey (323_CR10) 2015; 7 WM Rand (323_CR30) 1971; 66 T Wylie (323_CR23) 2014; 556 K He (323_CR17) 2019; 96 L Hubert (323_CR31) 1985; 2 323_CR29 D Lemire (323_CR49) 2009; 42 TM Rath (323_CR34) 2002; 40 C Manning (323_CR33) 2010; 16 M Halkidi (323_CR52) 2001; 17 323_CR27 P Schäfer (323_CR37) 2015; 29 323_CR20 A Kanekar (323_CR2) 2010; 2 SJ Little (323_CR5) 2021; 73 323_CR6 H Ding (323_CR36) 2008; 1 K Hornik (323_CR45) 2005; 14 PC Besse (323_CR24) 2016; 17 T Eiter (323_CR21) 1994 G De Soete (323_CR46) 1984; 2 Z Geler (323_CR14) 2020; 162 S Vega-Pons (323_CR39) 2011; 25 C Genolini (323_CR9) 2016; 11 F Casacuberta (323_CR50) 1987; 35 323_CR13 323_CR16 323_CR15 Y Tao (323_CR11) 2021; 58 323_CR54 323_CR53 323_CR55 T Teeraratkul (323_CR18) 2017; 9 RD Mackelprang (323_CR4) 2012; 206 RJ Kenefic (323_CR19) 2014; 11 A Martínez-Pérez (323_CR44) 2015; 279 MK Baum (323_CR51) 2013; 310 G Carlsson (323_CR43) 2010; 11 J Coffin (323_CR1) 2013; 3 T Giorgino (323_CR25) 2009; 31 323_CR47 323_CR48 323_CR42 A Mosig (323_CR22) 2005; 30 LM Sangalli (323_CR7) 2010; 54 L Zheng (323_CR40) 2014; 9 SE Langford (323_CR3) 2007; 4 EB Fowlkes (323_CR32) 1983; 78 |
References_xml | – volume: 42 start-page: 2169 issue: 9 year: 2009 end-page: 2180 ident: CR49 article-title: Faster retrieval with a two-pass dynamic-time-warping lower bound publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2008.11.030 – volume: 7 start-page: 349 issue: 4 year: 2003 end-page: 371 ident: CR28 article-title: On the need for time series data mining benchmarks: a survey and empirical demonstration publication-title: Data Min. Knowl. Disc. doi: 10.1023/A:1024988512476 – volume: 16 start-page: 100 issue: 1 year: 2010 end-page: 103 ident: CR33 article-title: Introduction to information retrieval publication-title: Nat. Lang. Eng. doi: 10.1017/S1351324909005129 – volume: 162 year: 2020 ident: CR14 article-title: Weighted kNN and constrained elastic distances for time-series classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113829 – volume: 3 start-page: 583 year: 2002 end-page: 617 ident: CR38 article-title: Cluster ensembles–a knowledge reuse framework for combining multiple partitions publication-title: J. Mach. Learn. Res. – ident: CR16 – volume: 3 start-page: 012526 issue: 1 year: 2013 ident: CR1 article-title: HIV pathogenesis: dynamics and genetics of viral populations and infected cells publication-title: Cold Spring Harb. Perspect. Med. doi: 10.1101/cshperspect.a012526 – volume: 11 start-page: 512 issue: 8 year: 2014 end-page: 524 ident: CR19 article-title: Track clustering using Fréchet distance and minimum description length publication-title: J. Aerospace Inform. Syst. doi: 10.2514/1.I010170 – volume: 1 start-page: 1542 issue: 2 year: 2008 end-page: 1552 ident: CR36 article-title: Querying and mining of time series data: experimental comparison of representations and distance measures publication-title: Proc. VLDB Endowment doi: 10.14778/1454159.1454226 – volume: 54 start-page: 1219 issue: 5 year: 2010 end-page: 1233 ident: CR7 article-title: -mean alignment for curve clustering publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2009.12.008 – volume: 2 start-page: 55 issue: 2 year: 2010 end-page: 61 ident: CR2 article-title: Biomarkers predicting progression of human immunodeficiency virus-related disease publication-title: J. Clin. Med. Res. – volume: 31 start-page: 1 issue: 7 year: 2009 end-page: 24 ident: CR25 article-title: Computing and visualizing dynamic time warping alignments in R: the dtw package publication-title: J. Stat. Softw. doi: 10.18637/jss.v031.i07 – ident: CR35 – ident: CR29 – ident: CR54 – volume: 58 start-page: 643 issue: 5 year: 2021 end-page: 69 ident: CR11 article-title: A comparative analysis of trajectory similarity measures publication-title: GISci. Remote Sens. doi: 10.1080/15481603.2021.1908927 – volume: 279 start-page: 234 year: 2015 end-page: 262 ident: CR44 article-title: Gromov-hausdorff stability of linkage-based hierarchical clustering methods publication-title: Adv. Math. doi: 10.1016/j.aim.2015.03.018 – volume: 30 start-page: 113 issue: 2 year: 2005 end-page: 127 ident: CR22 article-title: Approximately matching polygonal curves with respect to the Fréchet distance publication-title: Comput. Geom. doi: 10.1016/j.comgeo.2004.05.004 – ident: CR42 – ident: CR15 – volume: 29 start-page: 1505 issue: 6 year: 2015 end-page: 1530 ident: CR37 article-title: The BOSS is concerned with time series classification in the presence of noise publication-title: Data Min. Knowl. Disc. doi: 10.1007/s10618-014-0377-7 – volume: 4 start-page: 1 issue: 1 year: 2007 ident: CR3 article-title: Predictors of disease progression in HIV infection: a review publication-title: AIDS Res. Ther. doi: 10.1186/1742-6405-4-11 – volume: 17 start-page: 107 issue: 2–3 year: 2001 end-page: 145 ident: CR52 article-title: On clustering validation techniques publication-title: J. Intell. Inform. Syst. doi: 10.1023/A:1012801612483 – volume: 40 start-page: 1 year: 2002 end-page: 4 ident: CR34 article-title: Lower-bounding of dynamic time warping distances for multivariate time series publication-title: University of Massachusetts Amherst Technical Report MM – volume: 11 start-page: 1425 year: 2010 end-page: 1470 ident: CR43 article-title: Characterization, stability and convergence of hierarchical clustering methods publication-title: J. Mach. Learn. Res. – volume: 2 start-page: 133 issue: 3 year: 1984 end-page: 137 ident: CR46 article-title: A least squares algorithm for fitting an ultrametric tree to a dissimilarity matrix publication-title: Pattern Recogn. Lett. doi: 10.1016/0167-8655(84)90036-9 – volume: 35 start-page: 1631 issue: 11 year: 1987 end-page: 1633 ident: CR50 article-title: On the metric properties of dynamic time warping publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/TASSP.1987.1165065 – volume: 66 start-page: 846 issue: 336 year: 1971 end-page: 850 ident: CR30 article-title: Objective criteria for the evaluation of clustering methods publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1971.10482356 – ident: CR47 – volume: 78 start-page: 553 issue: 383 year: 1983 end-page: 569 ident: CR32 article-title: A method for comparing two hierarchical clusterings publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1983.10478008 – ident: CR53 – volume: 25 start-page: 1251 issue: 3 year: 1997 end-page: 1276 ident: CR26 article-title: Alignment of curves by dynamic time warping publication-title: Ann. Stat. doi: 10.1214/aos/1069362747 – volume: 7 start-page: 43 issue: 1 year: 2015 end-page: 50 ident: CR10 article-title: Trajectory similarity measures publication-title: Sigspatial Special doi: 10.1145/2782759.2782767 – ident: CR6 – volume: 206 start-page: 1299 issue: 8 year: 2012 end-page: 1308 ident: CR4 article-title: Quantifying ongoing HIV-1 exposure in HIV-1-serodiscordant couples to identify individuals with potential host resistance to HIV-1 publication-title: J. Infect. Dis. doi: 10.1093/infdis/jis480 – volume: 96 year: 2019 ident: CR17 article-title: Early detection and risk assessment for chronic disease with irregular longitudinal data analysis publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2019.103231 – ident: CR27 – volume: 73 start-page: 842 issue: 5 year: 2021 end-page: 9 ident: CR5 article-title: Effective human immunodeficiency virus molecular surveillance requires identification of incident cases of infection publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciab140 – volume: 5 start-page: 75 year: 1995 end-page: 91 ident: CR12 article-title: Computing the Fréchet distance between two polygonal curves publication-title: Int. J. Comput. Geom. Appl. doi: 10.1142/S0218195995000064 – ident: CR48 – volume: 556 start-page: 34 year: 2014 end-page: 44 ident: CR23 article-title: Following a curve with the discrete Fréchet distance publication-title: Theoret. Comput. Sci. doi: 10.1016/j.tcs.2014.06.026 – volume: 2 start-page: 193 issue: 1 year: 1985 end-page: 218 ident: CR31 article-title: Comparing partitions publication-title: J. Classif. doi: 10.1007/BF01908075 – volume: 65 start-page: 1 issue: 4 year: 2015 end-page: 34 ident: CR8 article-title: kml and kml3d: R packages to cluster longitudinal data publication-title: J. Stat. Softw. doi: 10.18637/jss.v065.i04 – volume: 310 start-page: 2154 issue: 20 year: 2013 end-page: 2163 ident: CR51 article-title: Effect of micronutrient supplementation on disease progression in asymptomatic, antiretroviral-naive, HIV-infected adults in Botswana: a randomized clinical trial publication-title: JAMA doi: 10.1001/jama.2013.280923 – volume: 17 start-page: 3306 issue: 11 year: 2016 end-page: 3317 ident: CR24 article-title: Review and perspective for distance-based clustering of vehicle trajectories publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2016.2547641 – volume: 9 start-page: 9 issue: 2 year: 2014 ident: CR40 article-title: A framework for hierarchical ensemble clustering publication-title: ACM Trans. Knowl. Discovery from Data (TKDD) doi: 10.1145/2611380 – volume: 11 start-page: 0150738 issue: 6 year: 2016 ident: CR9 article-title: kmlShape: An efficient method to cluster longitudinal data (time-series) according to their shapes publication-title: PLoS ONE doi: 10.1371/journal.pone.0150738 – ident: CR13 – volume: 9 start-page: 5196 issue: 5 year: 2017 end-page: 5206 ident: CR18 article-title: Shape-based approach to household electric load curve clustering and prediction publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2017.2683461 – volume: 25 start-page: 337 issue: 03 year: 2011 end-page: 372 ident: CR39 article-title: A survey of clustering ensemble algorithms publication-title: Int. J. Pattern Recognit Artif Intell. doi: 10.1142/S0218001411008683 – volume: 148 start-page: 487 year: 2015 end-page: 497 ident: CR41 article-title: An information theoretic approach to hierarchical clustering combination publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.07.014 – ident: CR55 – volume: 14 start-page: 1 issue: 12 year: 2005 end-page: 25 ident: CR45 article-title: A CLUE for CLUster Ensembles publication-title: J. Stat. Softw. doi: 10.18637/jss.v014.i12 – year: 1994 ident: CR21 publication-title: Computing discrete Fréchet distance – ident: CR20 – ident: 323_CR29 – volume: 206 start-page: 1299 issue: 8 year: 2012 ident: 323_CR4 publication-title: J. Infect. Dis. doi: 10.1093/infdis/jis480 – ident: 323_CR48 – volume: 17 start-page: 107 issue: 2–3 year: 2001 ident: 323_CR52 publication-title: J. Intell. Inform. Syst. doi: 10.1023/A:1012801612483 – volume: 31 start-page: 1 issue: 7 year: 2009 ident: 323_CR25 publication-title: J. Stat. Softw. doi: 10.18637/jss.v031.i07 – ident: 323_CR15 doi: 10.1007/3-540-34416-0_2 – volume: 16 start-page: 100 issue: 1 year: 2010 ident: 323_CR33 publication-title: Nat. Lang. Eng. doi: 10.1017/S1351324909005129 – volume: 54 start-page: 1219 issue: 5 year: 2010 ident: 323_CR7 publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2009.12.008 – volume: 96 year: 2019 ident: 323_CR17 publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2019.103231 – volume: 25 start-page: 1251 issue: 3 year: 1997 ident: 323_CR26 publication-title: Ann. Stat. doi: 10.1214/aos/1069362747 – ident: 323_CR53 – volume-title: Computing discrete Fréchet distance year: 1994 ident: 323_CR21 – ident: 323_CR42 doi: 10.1109/TCYB.2021.3049633 – volume: 35 start-page: 1631 issue: 11 year: 1987 ident: 323_CR50 publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/TASSP.1987.1165065 – ident: 323_CR6 doi: 10.1016/j.cmpb.2011.05.008 – volume: 7 start-page: 349 issue: 4 year: 2003 ident: 323_CR28 publication-title: Data Min. Knowl. Disc. doi: 10.1023/A:1024988512476 – volume: 14 start-page: 1 issue: 12 year: 2005 ident: 323_CR45 publication-title: J. Stat. Softw. doi: 10.18637/jss.v014.i12 – ident: 323_CR54 doi: 10.1007/s00180-015-0611-9 – volume: 2 start-page: 133 issue: 3 year: 1984 ident: 323_CR46 publication-title: Pattern Recogn. Lett. doi: 10.1016/0167-8655(84)90036-9 – volume: 9 start-page: 9 issue: 2 year: 2014 ident: 323_CR40 publication-title: ACM Trans. Knowl. Discovery from Data (TKDD) doi: 10.1145/2611380 – volume: 73 start-page: 842 issue: 5 year: 2021 ident: 323_CR5 publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciab140 – volume: 40 start-page: 1 year: 2002 ident: 323_CR34 publication-title: University of Massachusetts Amherst Technical Report MM – volume: 4 start-page: 1 issue: 1 year: 2007 ident: 323_CR3 publication-title: AIDS Res. Ther. doi: 10.1186/1742-6405-4-11 – volume: 17 start-page: 3306 issue: 11 year: 2016 ident: 323_CR24 publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2016.2547641 – ident: 323_CR47 – ident: 323_CR16 doi: 10.1137/1.9781611974331.ch55 – volume: 42 start-page: 2169 issue: 9 year: 2009 ident: 323_CR49 publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2008.11.030 – volume: 78 start-page: 553 issue: 383 year: 1983 ident: 323_CR32 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1983.10478008 – volume: 11 start-page: 0150738 issue: 6 year: 2016 ident: 323_CR9 publication-title: PLoS ONE doi: 10.1371/journal.pone.0150738 – volume: 1 start-page: 1542 issue: 2 year: 2008 ident: 323_CR36 publication-title: Proc. VLDB Endowment doi: 10.14778/1454159.1454226 – volume: 556 start-page: 34 year: 2014 ident: 323_CR23 publication-title: Theoret. Comput. Sci. doi: 10.1016/j.tcs.2014.06.026 – volume: 162 year: 2020 ident: 323_CR14 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113829 – volume: 11 start-page: 512 issue: 8 year: 2014 ident: 323_CR19 publication-title: J. Aerospace Inform. Syst. doi: 10.2514/1.I010170 – volume: 279 start-page: 234 year: 2015 ident: 323_CR44 publication-title: Adv. Math. doi: 10.1016/j.aim.2015.03.018 – volume: 148 start-page: 487 year: 2015 ident: 323_CR41 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.07.014 – volume: 58 start-page: 643 issue: 5 year: 2021 ident: 323_CR11 publication-title: GISci. Remote Sens. doi: 10.1080/15481603.2021.1908927 – ident: 323_CR35 doi: 10.1137/1.9781611972818.60 – volume: 3 start-page: 012526 issue: 1 year: 2013 ident: 323_CR1 publication-title: Cold Spring Harb. Perspect. Med. doi: 10.1101/cshperspect.a012526 – ident: 323_CR27 doi: 10.1142/9789812813305_0005 – volume: 11 start-page: 1425 year: 2010 ident: 323_CR43 publication-title: J. Mach. Learn. Res. – volume: 30 start-page: 113 issue: 2 year: 2005 ident: 323_CR22 publication-title: Comput. Geom. doi: 10.1016/j.comgeo.2004.05.004 – volume: 2 start-page: 193 issue: 1 year: 1985 ident: 323_CR31 publication-title: J. Classif. doi: 10.1007/BF01908075 – volume: 5 start-page: 75 year: 1995 ident: 323_CR12 publication-title: Int. J. Comput. Geom. Appl. doi: 10.1142/S0218195995000064 – volume: 310 start-page: 2154 issue: 20 year: 2013 ident: 323_CR51 publication-title: JAMA doi: 10.1001/jama.2013.280923 – ident: 323_CR55 doi: 10.5430/air.v7n1p15 – ident: 323_CR13 – volume: 9 start-page: 5196 issue: 5 year: 2017 ident: 323_CR18 publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2017.2683461 – volume: 7 start-page: 43 issue: 1 year: 2015 ident: 323_CR10 publication-title: Sigspatial Special doi: 10.1145/2782759.2782767 – volume: 66 start-page: 846 issue: 336 year: 1971 ident: 323_CR30 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1971.10482356 – volume: 29 start-page: 1505 issue: 6 year: 2015 ident: 323_CR37 publication-title: Data Min. Knowl. Disc. doi: 10.1007/s10618-014-0377-7 – volume: 3 start-page: 583 year: 2002 ident: 323_CR38 publication-title: J. Mach. Learn. Res. – volume: 25 start-page: 337 issue: 03 year: 2011 ident: 323_CR39 publication-title: Int. J. Pattern Recognit Artif Intell. doi: 10.1142/S0218001411008683 – volume: 2 start-page: 55 issue: 2 year: 2010 ident: 323_CR2 publication-title: J. Clin. Med. Res. – ident: 323_CR20 – volume: 65 start-page: 1 issue: 4 year: 2015 ident: 323_CR8 publication-title: J. Stat. Softw. doi: 10.18637/jss.v065.i04 |
SSID | ssj0001763568 ssib031263555 |
Score | 2.1941488 |
Snippet | This paper describes an ensemble cluster analysis of bivariate profiles of HIV biomarkers, viral load and CD4 cell counts, which jointly measure disease... |
SourceID | pubmedcentral pubmed crossref springer |
SourceType | Open Access Repository Index Database Publisher |
StartPage | 305 |
SubjectTerms | Applications Artificial Intelligence Business Information Systems Computational Biology/Bioinformatics Computer Science Data Mining and Knowledge Discovery Database Management |
Title | Ensemble clustering of longitudinal bivariate HIV biomarker profiles to group patients by patterns of disease progression |
URI | https://link.springer.com/article/10.1007/s41060-022-00323-2 https://www.ncbi.nlm.nih.gov/pubmed/35528805 https://pubmed.ncbi.nlm.nih.gov/PMC9064718 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba8IwFA5DX_ay-8VdJA9728Jsk6bto4riBpM9zOFbaS5lgmuH1YH_fidpLChjsJdSaAgl30nOSfKd7yB051MdcUMbpEIJwrJAkDhUHqFM-pmkIu0oy7YY89GEPU-DqZPJMbkwO_f3jyWDPUuHGM452J9PCSy3zcCj3Fhwn_c3tkM9o6ricizt-YpVXrMF6ShnBPzU1OXM_N7tll-qndEuUXLnttQ6oeEROnDRI-5WcB-jPZ2foMNNZQbsJuopWg_yUn-KucZyvjJSCNAbLjI8L0x5opUypbCwmH3DRhliTTx6escmD99QdRbYlfEu8bLANukDO_HVEou1eTdniKXpzt3uYEvyqgQ-ztBkOHjrj4grskAkhCJLImCpjCVPIe4KRNxJhQKvL6nylJYpVSoEf85ZqDIZws6Gq0hxoX3KdNyJdSQoPUeNvMj1JcIQPHLlM53STDHAOo5klno60AC8DiRvofvNECdflZZGUqsmW0ASACSxgCR-C11Ug1-3BXx9WG6CFgq3YKkbGKns7S_57MNKZscmp9aLWuhhA2Di5mr5xy9c_a_5Ndr3rUUZBtoNaiwXK30LIctStFGzO-z1xm1rs_Acv778AGkp5kE |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA6iD_ri_TKvefBNg2uTpu2jjI1O55422VtpLsXBbGXdhP17T7KssCGCb4WGUPKd5JzTfOc7CN37VEfc0AapUIKwPBAkDpVHKJN-LqnImsqyLfo8GbKXUTByMjmmFmbj_v6pYpCzNInhnIP9-ZTAcbvDIFM29L0Wb61sh3pGVcXVWNr_K1Z5zTako5wR8FMjVzPz-7Rrfql2RptEyY3bUuuEOodo30WP-HkJ9xHa0sUxOlh1ZsBuo56gRbuo9KeYaCwncyOFALPhMseT0rQnmivTCguL8TckyhBr4qT7jk0dvqHqTLFr413hWYlt0Qd24qsVFgvzbP4hVmY6d7uDLclrKfBxioad9qCVENdkgUgIRWZEwFEZS55B3BWIuJkJBV5fUuUpLTOqVAj-nLNQ5TKEzIarSHGhfcp03Ix1JCg9Q9tFWegLhCF45MpnOqO5YoB1HMk883SgAXgdSN5AD6slTr-WWhpprZpsAUkBkNQCkvoNdL5c_Hos4OvDcRM0ULgGSz3ASGWvvynGH1YyOzY1tV7UQI8rAFO3V6s_PuHyf8Pv0G4yeOulvW7_9Qrt-da6DBvtGm3PpnN9A-HLTNxau_0BubDmpg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA6iIL54v8xrHnzT4Nqkafso07GpDB-c7K00l-JgdsN2gv_ekzQtbojgW6EhlJyTnHOa7_sOQpc-1RE3sEEqlCAsCwSJQ-URyqSfSSrStrJoiwHvDdnDKBj9YPFbtHt9JVlxGoxKU17ezFR20xDfGFQybWKQ6OCVPiVwCK9BpWIvaju8U3sU9YzWimNe2r8uVo_NtqmjnBGIXiPHpPl92oVo1YSoZfjk0h2qDU3dbbTpckp8WznBDlrR-S7aqvs1YLd999DXfV7odzHRWE7mRiABZsPTDE-mpmnRXJkGWViMP6F8hgwU9_qv2LDzDYDnA7vm3gUup9hSQbCTZC2w-DLP5s9iYaZzdz7YQr8q2Y99NOzev3R6xLVeIBISlJIIOEBjyVPIxgIRt1OhIBeQVHlKy5QqFUKU5yxUmQyh3uEqUlxonzIdt2MdCUoP0Go-zfURwpBScuUzndJMMfCAOJJZ6ulAgzvoQPIWuqqXOJlVChtJo6VsDZKAQRJrkMRvocNq8ZuxYF8fDqGghcIFszQDjID24pt8_GaFtGPDtPWiFrquDZi4HVz88QnH_xt-gdaf77rJU3_weII2fOtcBqJ2ilbLj7k-g5ymFOfWbb8BnQ7u7Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+clustering+of+longitudinal+bivariate+HIV+biomarker+profiles+to+group+patients+by+patterns+of+disease+progression&rft.jtitle=International+journal+of+data+science+and+analytics&rft.au=Lynch%2C+Miranda+L.&rft.au=DeGruttola%2C+Victor&rft.date=2022-09-01&rft.issn=2364-415X&rft.eissn=2364-4168&rft.volume=14&rft.issue=3&rft.spage=305&rft.epage=318&rft_id=info:doi/10.1007%2Fs41060-022-00323-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s41060_022_00323_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2364-415X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2364-415X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2364-415X&client=summon |