Ensemble clustering of longitudinal bivariate HIV biomarker profiles to group patients by patterns of disease progression

This paper describes an ensemble cluster analysis of bivariate profiles of HIV biomarkers, viral load and CD4 cell counts, which jointly measure disease progression. Data are from a prevalent cohort of HIV positive participants in a clinical trial of vitamin supplementation in Botswana. These indivi...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of data science and analytics Vol. 14; no. 3; pp. 305 - 318
Main Authors Lynch, Miranda L., DeGruttola, Victor
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper describes an ensemble cluster analysis of bivariate profiles of HIV biomarkers, viral load and CD4 cell counts, which jointly measure disease progression. Data are from a prevalent cohort of HIV positive participants in a clinical trial of vitamin supplementation in Botswana. These individuals were HIV positive upon enrollment, but with unknown times of infection. To categorize groups of participants based on their patterns of progression of HIV infection using both biomarkers, we combine univariate shape-based cluster results for multiple biomarkers through the use of ensemble clustering methods. We first describe univariate clustering for each of the individual biomarker profiles, and make use of shape-respecting distances for clustering the longitudinal profile data. In our data, profiles are subject to either missing or irregular measurements as well as unobserved initiation times of the process of interest. Shape-respecting distances that can handle such data issues, preserve time-ordering, and identify similar profile shapes are useful in identifying patterns of disease progression from longitudinal biomarker data. However, their performance with regard to clustering differs by severity of the data issues mentioned above. We provide an empirical investigation of shape-respecting distances (Fréchet and dynamic time warping (DTW)) on benchmark shape data, and use DTW in cluster analysis of biomarker profile observations. These reveal a primary group of ‘typical progressors,’ as well as a smaller group that shows relatively rapid progression. We then refine the analysis using ensemble clustering for both markers to obtain a single classification. The information from joint evaluation of the two biomarkers combined with ensemble clustering reveals subgroups of patients not identifiable through univariate analyses; noteworthy subgroups are those that appear to represent recently and chronically infected subsets.
AbstractList This paper describes an ensemble cluster analysis of bivariate profiles of HIV biomarkers, viral load and CD4 cell counts, which jointly measure disease progression. Data are from a prevalent cohort of HIV positive participants in a clinical trial of vitamin supplementation in Botswana. These individuals were HIV positive upon enrollment, but with unknown times of infection. To categorize groups of participants based on their patterns of progression of HIV infection using both biomarkers, we combine univariate shape-based cluster results for multiple biomarkers through the use of ensemble clustering methods. We first describe univariate clustering for each of the individual biomarker profiles, and make use of shape-respecting distances for clustering the longitudinal profile data. In our data, profiles are subject to either missing or irregular measurements as well as unobserved initiation times of the process of interest. Shape-respecting distances that can handle such data issues, preserve time-ordering, and identify similar profile shapes are useful in identifying patterns of disease progression from longitudinal biomarker data. However, their performance with regard to clustering differs by severity of the data issues mentioned above. We provide an empirical investigation of shape-respecting distances (Fréchet and dynamic time warping (DTW)) on benchmark shape data, and use DTW in cluster analysis of biomarker profile observations. These reveal a primary group of ‘typical progressors,’ as well as a smaller group that shows relatively rapid progression. We then refine the analysis using ensemble clustering for both markers to obtain a single classification. The information from joint evaluation of the two biomarkers combined with ensemble clustering reveals subgroups of patients not identifiable through univariate analyses; noteworthy subgroups are those that appear to represent recently and chronically infected subsets.
This paper describes an ensemble cluster analysis of bivariate profiles of HIV biomarkers, viral load and CD4 cell counts, which jointly measure disease progression. Data are from a prevalent cohort of HIV positive participants in a clinical trial of vitamin supplementation in Botswana. These individuals were HIV positive upon enrollment, but with unknown times of infection. To categorize groups of participants based on their patterns of progression of HIV infection using both biomarkers, we combine univariate shape-based cluster results for multiple biomarkers through the use of ensemble clustering methods. We first describe univariate clustering for each of the individual biomarker profiles, and make use of shape-respecting distances for clustering the longitudinal profile data. In our data, profiles are subject to either missing or irregular measurements as well as unobserved initiation times of the process of interest. Shape-respecting distances that can handle such data issues, preserve time-ordering, and identify similar profile shapes are useful in identifying patterns of disease progression from longitudinal biomarker data. However, their performance with regard to clustering differs by severity of the data issues mentioned above. We provide an empirical investigation of shape-respecting distances (Fréchet and dynamic time warping (DTW)) on benchmark shape data, and use DTW in cluster analysis of biomarker profile observations. These reveal a primary group of 'typical progressors,' as well as a smaller group that shows relatively rapid progression. We then refine the analysis using ensemble clustering for both markers to obtain a single classification. The information from joint evaluation of the two biomarkers combined with ensemble clustering reveals subgroups of patients not identifiable through univariate analyses; noteworthy subgroups are those that appear to represent recently and chronically infected subsets. The online version contains supplementary material available at 10.1007/s41060-022-00323-2.
Author DeGruttola, Victor
Lynch, Miranda L.
Author_xml – sequence: 1
  givenname: Miranda L.
  orcidid: 0000-0001-8604-4431
  surname: Lynch
  fullname: Lynch, Miranda L.
  email: mlynch@hwi.buffalo.edu
  organization: Hauptman-Woodward Medical Research Institute
– sequence: 2
  givenname: Victor
  surname: DeGruttola
  fullname: DeGruttola, Victor
  organization: Department of Biostatistics, Harvard T. H. Chan School of Public Health
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35528805$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1TAQhS3UipbSF2CB_AKBsZ3fDRKqWlqpEhuourPseBJccu3Ik1S6b4_DLVewYeWxfM4nzzlv2EmIARl7J-CDAGg-UimghgKkLACUVIV8xc6lqsuiFHV7cpyrxzN2SfQEAKKpVVW3r9mZqirZtlCds_11INzZCXk_rbRg8mHkceBTDKNfVueDmbj1zyZ5syC_vXvIt7gz6ScmPqc4-AmJL5GPKa4zn83iMSzE7X6bMy_QhnOe0BBujjEhkY_hLTsdzER4-XJesO8319-ubov7r1_urj7fF73qmqWwoqy7vjZCyMp2YKwDKXrlhMPeKOeatsqLNm7omyZPrnW1RalK7KDD1ip1wT4duPNqd-j6_L1kJj0nn7fY62i8_vcl-B96jM-6g8wVbQa8_xtwdP4JMQvkQdCnSJRwOEoE6K0sfShL57L077K0zCZ1MNG8ZY5JP8U15bTpf65ffL-a2g
Cites_doi 10.1016/j.patcog.2008.11.030
10.1023/A:1024988512476
10.1017/S1351324909005129
10.1016/j.eswa.2020.113829
10.1101/cshperspect.a012526
10.2514/1.I010170
10.14778/1454159.1454226
10.1016/j.csda.2009.12.008
10.18637/jss.v031.i07
10.1080/15481603.2021.1908927
10.1016/j.aim.2015.03.018
10.1016/j.comgeo.2004.05.004
10.1007/s10618-014-0377-7
10.1186/1742-6405-4-11
10.1023/A:1012801612483
10.1016/0167-8655(84)90036-9
10.1109/TASSP.1987.1165065
10.1080/01621459.1971.10482356
10.1080/01621459.1983.10478008
10.1214/aos/1069362747
10.1145/2782759.2782767
10.1093/infdis/jis480
10.1016/j.jbi.2019.103231
10.1093/cid/ciab140
10.1142/S0218195995000064
10.1016/j.tcs.2014.06.026
10.1007/BF01908075
10.18637/jss.v065.i04
10.1001/jama.2013.280923
10.1109/TITS.2016.2547641
10.1145/2611380
10.1371/journal.pone.0150738
10.1109/TSG.2017.2683461
10.1142/S0218001411008683
10.1016/j.neucom.2014.07.014
10.18637/jss.v014.i12
10.1007/3-540-34416-0_2
10.1109/TCYB.2021.3049633
10.1016/j.cmpb.2011.05.008
10.1007/s00180-015-0611-9
10.1137/1.9781611974331.ch55
10.1137/1.9781611972818.60
10.1142/9789812813305_0005
10.5430/air.v7n1p15
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022.
DBID C6C
AAYXX
CITATION
NPM
5PM
DOI 10.1007/s41060-022-00323-2
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
PubMed
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
DatabaseTitleList CrossRef

PubMed

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2364-4168
EndPage 318
ExternalDocumentID PMC9064718
35528805
10_1007_s41060_022_00323_2
Genre Journal Article
GrantInformation_xml – fundername: National Institute of Allergy and Infectious Diseases
  grantid: NIAID R37 51164
  funderid: http://dx.doi.org/10.13039/100000060
– fundername: National Institutes of Health
  grantid: P30 AI036214; P01 AI131385
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: National Institutes of Health
  grantid: R24 AI106039; R01 AI135992
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: ;
  grantid: NIAID R37 51164
– fundername: ;
  grantid: P30 AI036214; P01 AI131385
– fundername: ;
  grantid: R24 AI106039; R01 AI135992
GroupedDBID -EM
0R~
203
406
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAZMS
ABAKF
ABBTF
ABDZT
ABECU
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ASPBG
AVWKF
AXYYD
AZFZN
BGNMA
C6C
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GJIRD
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
Z5O
Z7R
Z7X
Z7Z
Z81
Z83
Z88
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
NPM
5PM
ABRTQ
ID FETCH-LOGICAL-c397t-b1469c6a1125b90abd021c3d1deca3dd7853647dfc77536d8d6be234e909e8b33
IEDL.DBID C6C
ISSN 2364-415X
IngestDate Thu Aug 21 14:32:10 EDT 2025
Thu Jan 02 22:54:35 EST 2025
Tue Jul 01 02:13:13 EDT 2025
Fri Feb 21 02:45:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords HIV disease progression
HIV biomarkers
Shape-respecting distances
Dynamic time warping
Ensemble clustering
Language English
License The Author(s) 2022.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-b1469c6a1125b90abd021c3d1deca3dd7853647dfc77536d8d6be234e909e8b33
ORCID 0000-0001-8604-4431
OpenAccessLink https://doi.org/10.1007/s41060-022-00323-2
PMID 35528805
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9064718
pubmed_primary_35528805
crossref_primary_10_1007_s41060_022_00323_2
springer_journals_10_1007_s41060_022_00323_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Switzerland
PublicationTitle International journal of data science and analytics
PublicationTitleAbbrev Int J Data Sci Anal
PublicationTitleAlternate Int J Data Sci Anal
PublicationYear 2022
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References He, Huang, Qian (CR17) 2019; 96
Besse, Guillouet, Loubes, Royer (CR24) 2016; 17
Vega-Pons, Ruiz-Shulcloper (CR39) 2011; 25
Keogh, Kasetty (CR28) 2003; 7
CR35
Rashedi, Mirzaei, Rahmati (CR41) 2015; 148
Mosig, Clausen (CR22) 2005; 30
Martínez-Pérez (CR44) 2015; 279
Schäfer (CR37) 2015; 29
Sangalli, Secchi, Vantini, Vitelli (CR7) 2010; 54
Genolini, Alacoque, Sentenac, Arnaud (CR8) 2015; 65
Little, Chen, Wang, Anderson, Pond, Nakazawa, Mathews, DeGruttola, Smith (CR5) 2021; 73
Kenefic (CR19) 2014; 11
Giorgino (CR25) 2009; 31
Rand (CR30) 1971; 66
CR6
Genolini, Ecochard, Benghezal, Driss, Andrieu, Subtil (CR9) 2016; 11
CR48
CR47
Casacuberta, Vidal, Rulot (CR50) 1987; 35
Mackelprang, Baeten, Donnell, Celum, Farquhar, de Bruyn, Essex, McElrath, Nakku-Joloba, Lingappa (CR4) 2012; 206
Baum, Campa, Lai, Martinez, Tsalaile, Burns, Farahani, Li, Van Widenfelt, Page (CR51) 2013; 310
Carlsson, Mémoli (CR43) 2010; 11
CR42
Toohey, Duckham (CR10) 2015; 7
Langford, Ananworanich, Cooper (CR3) 2007; 4
Rath, Manmatha (CR34) 2002; 40
Zheng, Li, Ding (CR40) 2014; 9
Kanekar (CR2) 2010; 2
Halkidi, Batistakis, Vazirgiannis (CR52) 2001; 17
CR16
CR15
Wylie, Zhu (CR23) 2014; 556
Geler, Kurbalija, Ivanović, Radovanović (CR14) 2020; 162
CR13
De Soete (CR46) 1984; 2
CR55
CR54
CR53
Coffin, Swanstrom (CR1) 2013; 3
Tao, Both, Silveira, Buchin, Sijben, Purves, Laube, Peng, Toohey, Duckham (CR11) 2021; 58
Hornik (CR45) 2005; 14
Eiter, Mannila (CR21) 1994
Teeraratkul, O’Neill, Lall (CR18) 2017; 9
CR29
CR27
Fowlkes, Mallows (CR32) 1983; 78
Manning, Raghavan, Schütze (CR33) 2010; 16
Strehl, Ghosh (CR38) 2002; 3
Wang, Gasser (CR26) 1997; 25
Hubert, Arabie (CR31) 1985; 2
Alt, Godau (CR12) 1995; 5
CR20
Ding, Trajcevski, Scheuermann, Wang, Keogh (CR36) 2008; 1
Lemire (CR49) 2009; 42
H Alt (323_CR12) 1995; 5
K Wang (323_CR26) 1997; 25
A Strehl (323_CR38) 2002; 3
E Keogh (323_CR28) 2003; 7
323_CR35
E Rashedi (323_CR41) 2015; 148
C Genolini (323_CR8) 2015; 65
K Toohey (323_CR10) 2015; 7
WM Rand (323_CR30) 1971; 66
T Wylie (323_CR23) 2014; 556
K He (323_CR17) 2019; 96
L Hubert (323_CR31) 1985; 2
323_CR29
D Lemire (323_CR49) 2009; 42
TM Rath (323_CR34) 2002; 40
C Manning (323_CR33) 2010; 16
M Halkidi (323_CR52) 2001; 17
323_CR27
P Schäfer (323_CR37) 2015; 29
323_CR20
A Kanekar (323_CR2) 2010; 2
SJ Little (323_CR5) 2021; 73
323_CR6
H Ding (323_CR36) 2008; 1
K Hornik (323_CR45) 2005; 14
PC Besse (323_CR24) 2016; 17
T Eiter (323_CR21) 1994
G De Soete (323_CR46) 1984; 2
Z Geler (323_CR14) 2020; 162
S Vega-Pons (323_CR39) 2011; 25
C Genolini (323_CR9) 2016; 11
F Casacuberta (323_CR50) 1987; 35
323_CR13
323_CR16
323_CR15
Y Tao (323_CR11) 2021; 58
323_CR54
323_CR53
323_CR55
T Teeraratkul (323_CR18) 2017; 9
RD Mackelprang (323_CR4) 2012; 206
RJ Kenefic (323_CR19) 2014; 11
A Martínez-Pérez (323_CR44) 2015; 279
MK Baum (323_CR51) 2013; 310
G Carlsson (323_CR43) 2010; 11
J Coffin (323_CR1) 2013; 3
T Giorgino (323_CR25) 2009; 31
323_CR47
323_CR48
323_CR42
A Mosig (323_CR22) 2005; 30
LM Sangalli (323_CR7) 2010; 54
L Zheng (323_CR40) 2014; 9
SE Langford (323_CR3) 2007; 4
EB Fowlkes (323_CR32) 1983; 78
References_xml – volume: 42
  start-page: 2169
  issue: 9
  year: 2009
  end-page: 2180
  ident: CR49
  article-title: Faster retrieval with a two-pass dynamic-time-warping lower bound
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2008.11.030
– volume: 7
  start-page: 349
  issue: 4
  year: 2003
  end-page: 371
  ident: CR28
  article-title: On the need for time series data mining benchmarks: a survey and empirical demonstration
  publication-title: Data Min. Knowl. Disc.
  doi: 10.1023/A:1024988512476
– volume: 16
  start-page: 100
  issue: 1
  year: 2010
  end-page: 103
  ident: CR33
  article-title: Introduction to information retrieval
  publication-title: Nat. Lang. Eng.
  doi: 10.1017/S1351324909005129
– volume: 162
  year: 2020
  ident: CR14
  article-title: Weighted kNN and constrained elastic distances for time-series classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113829
– volume: 3
  start-page: 583
  year: 2002
  end-page: 617
  ident: CR38
  article-title: Cluster ensembles–a knowledge reuse framework for combining multiple partitions
  publication-title: J. Mach. Learn. Res.
– ident: CR16
– volume: 3
  start-page: 012526
  issue: 1
  year: 2013
  ident: CR1
  article-title: HIV pathogenesis: dynamics and genetics of viral populations and infected cells
  publication-title: Cold Spring Harb. Perspect. Med.
  doi: 10.1101/cshperspect.a012526
– volume: 11
  start-page: 512
  issue: 8
  year: 2014
  end-page: 524
  ident: CR19
  article-title: Track clustering using Fréchet distance and minimum description length
  publication-title: J. Aerospace Inform. Syst.
  doi: 10.2514/1.I010170
– volume: 1
  start-page: 1542
  issue: 2
  year: 2008
  end-page: 1552
  ident: CR36
  article-title: Querying and mining of time series data: experimental comparison of representations and distance measures
  publication-title: Proc. VLDB Endowment
  doi: 10.14778/1454159.1454226
– volume: 54
  start-page: 1219
  issue: 5
  year: 2010
  end-page: 1233
  ident: CR7
  article-title: -mean alignment for curve clustering
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2009.12.008
– volume: 2
  start-page: 55
  issue: 2
  year: 2010
  end-page: 61
  ident: CR2
  article-title: Biomarkers predicting progression of human immunodeficiency virus-related disease
  publication-title: J. Clin. Med. Res.
– volume: 31
  start-page: 1
  issue: 7
  year: 2009
  end-page: 24
  ident: CR25
  article-title: Computing and visualizing dynamic time warping alignments in R: the dtw package
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v031.i07
– ident: CR35
– ident: CR29
– ident: CR54
– volume: 58
  start-page: 643
  issue: 5
  year: 2021
  end-page: 69
  ident: CR11
  article-title: A comparative analysis of trajectory similarity measures
  publication-title: GISci. Remote Sens.
  doi: 10.1080/15481603.2021.1908927
– volume: 279
  start-page: 234
  year: 2015
  end-page: 262
  ident: CR44
  article-title: Gromov-hausdorff stability of linkage-based hierarchical clustering methods
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2015.03.018
– volume: 30
  start-page: 113
  issue: 2
  year: 2005
  end-page: 127
  ident: CR22
  article-title: Approximately matching polygonal curves with respect to the Fréchet distance
  publication-title: Comput. Geom.
  doi: 10.1016/j.comgeo.2004.05.004
– ident: CR42
– ident: CR15
– volume: 29
  start-page: 1505
  issue: 6
  year: 2015
  end-page: 1530
  ident: CR37
  article-title: The BOSS is concerned with time series classification in the presence of noise
  publication-title: Data Min. Knowl. Disc.
  doi: 10.1007/s10618-014-0377-7
– volume: 4
  start-page: 1
  issue: 1
  year: 2007
  ident: CR3
  article-title: Predictors of disease progression in HIV infection: a review
  publication-title: AIDS Res. Ther.
  doi: 10.1186/1742-6405-4-11
– volume: 17
  start-page: 107
  issue: 2–3
  year: 2001
  end-page: 145
  ident: CR52
  article-title: On clustering validation techniques
  publication-title: J. Intell. Inform. Syst.
  doi: 10.1023/A:1012801612483
– volume: 40
  start-page: 1
  year: 2002
  end-page: 4
  ident: CR34
  article-title: Lower-bounding of dynamic time warping distances for multivariate time series
  publication-title: University of Massachusetts Amherst Technical Report MM
– volume: 11
  start-page: 1425
  year: 2010
  end-page: 1470
  ident: CR43
  article-title: Characterization, stability and convergence of hierarchical clustering methods
  publication-title: J. Mach. Learn. Res.
– volume: 2
  start-page: 133
  issue: 3
  year: 1984
  end-page: 137
  ident: CR46
  article-title: A least squares algorithm for fitting an ultrametric tree to a dissimilarity matrix
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/0167-8655(84)90036-9
– volume: 35
  start-page: 1631
  issue: 11
  year: 1987
  end-page: 1633
  ident: CR50
  article-title: On the metric properties of dynamic time warping
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/TASSP.1987.1165065
– volume: 66
  start-page: 846
  issue: 336
  year: 1971
  end-page: 850
  ident: CR30
  article-title: Objective criteria for the evaluation of clustering methods
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1971.10482356
– ident: CR47
– volume: 78
  start-page: 553
  issue: 383
  year: 1983
  end-page: 569
  ident: CR32
  article-title: A method for comparing two hierarchical clusterings
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1983.10478008
– ident: CR53
– volume: 25
  start-page: 1251
  issue: 3
  year: 1997
  end-page: 1276
  ident: CR26
  article-title: Alignment of curves by dynamic time warping
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1069362747
– volume: 7
  start-page: 43
  issue: 1
  year: 2015
  end-page: 50
  ident: CR10
  article-title: Trajectory similarity measures
  publication-title: Sigspatial Special
  doi: 10.1145/2782759.2782767
– ident: CR6
– volume: 206
  start-page: 1299
  issue: 8
  year: 2012
  end-page: 1308
  ident: CR4
  article-title: Quantifying ongoing HIV-1 exposure in HIV-1-serodiscordant couples to identify individuals with potential host resistance to HIV-1
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jis480
– volume: 96
  year: 2019
  ident: CR17
  article-title: Early detection and risk assessment for chronic disease with irregular longitudinal data analysis
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2019.103231
– ident: CR27
– volume: 73
  start-page: 842
  issue: 5
  year: 2021
  end-page: 9
  ident: CR5
  article-title: Effective human immunodeficiency virus molecular surveillance requires identification of incident cases of infection
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciab140
– volume: 5
  start-page: 75
  year: 1995
  end-page: 91
  ident: CR12
  article-title: Computing the Fréchet distance between two polygonal curves
  publication-title: Int. J. Comput. Geom. Appl.
  doi: 10.1142/S0218195995000064
– ident: CR48
– volume: 556
  start-page: 34
  year: 2014
  end-page: 44
  ident: CR23
  article-title: Following a curve with the discrete Fréchet distance
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2014.06.026
– volume: 2
  start-page: 193
  issue: 1
  year: 1985
  end-page: 218
  ident: CR31
  article-title: Comparing partitions
  publication-title: J. Classif.
  doi: 10.1007/BF01908075
– volume: 65
  start-page: 1
  issue: 4
  year: 2015
  end-page: 34
  ident: CR8
  article-title: kml and kml3d: R packages to cluster longitudinal data
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v065.i04
– volume: 310
  start-page: 2154
  issue: 20
  year: 2013
  end-page: 2163
  ident: CR51
  article-title: Effect of micronutrient supplementation on disease progression in asymptomatic, antiretroviral-naive, HIV-infected adults in Botswana: a randomized clinical trial
  publication-title: JAMA
  doi: 10.1001/jama.2013.280923
– volume: 17
  start-page: 3306
  issue: 11
  year: 2016
  end-page: 3317
  ident: CR24
  article-title: Review and perspective for distance-based clustering of vehicle trajectories
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2016.2547641
– volume: 9
  start-page: 9
  issue: 2
  year: 2014
  ident: CR40
  article-title: A framework for hierarchical ensemble clustering
  publication-title: ACM Trans. Knowl. Discovery from Data (TKDD)
  doi: 10.1145/2611380
– volume: 11
  start-page: 0150738
  issue: 6
  year: 2016
  ident: CR9
  article-title: kmlShape: An efficient method to cluster longitudinal data (time-series) according to their shapes
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0150738
– ident: CR13
– volume: 9
  start-page: 5196
  issue: 5
  year: 2017
  end-page: 5206
  ident: CR18
  article-title: Shape-based approach to household electric load curve clustering and prediction
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2017.2683461
– volume: 25
  start-page: 337
  issue: 03
  year: 2011
  end-page: 372
  ident: CR39
  article-title: A survey of clustering ensemble algorithms
  publication-title: Int. J. Pattern Recognit Artif Intell.
  doi: 10.1142/S0218001411008683
– volume: 148
  start-page: 487
  year: 2015
  end-page: 497
  ident: CR41
  article-title: An information theoretic approach to hierarchical clustering combination
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.07.014
– ident: CR55
– volume: 14
  start-page: 1
  issue: 12
  year: 2005
  end-page: 25
  ident: CR45
  article-title: A CLUE for CLUster Ensembles
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v014.i12
– year: 1994
  ident: CR21
  publication-title: Computing discrete Fréchet distance
– ident: CR20
– ident: 323_CR29
– volume: 206
  start-page: 1299
  issue: 8
  year: 2012
  ident: 323_CR4
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jis480
– ident: 323_CR48
– volume: 17
  start-page: 107
  issue: 2–3
  year: 2001
  ident: 323_CR52
  publication-title: J. Intell. Inform. Syst.
  doi: 10.1023/A:1012801612483
– volume: 31
  start-page: 1
  issue: 7
  year: 2009
  ident: 323_CR25
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v031.i07
– ident: 323_CR15
  doi: 10.1007/3-540-34416-0_2
– volume: 16
  start-page: 100
  issue: 1
  year: 2010
  ident: 323_CR33
  publication-title: Nat. Lang. Eng.
  doi: 10.1017/S1351324909005129
– volume: 54
  start-page: 1219
  issue: 5
  year: 2010
  ident: 323_CR7
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2009.12.008
– volume: 96
  year: 2019
  ident: 323_CR17
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2019.103231
– volume: 25
  start-page: 1251
  issue: 3
  year: 1997
  ident: 323_CR26
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1069362747
– ident: 323_CR53
– volume-title: Computing discrete Fréchet distance
  year: 1994
  ident: 323_CR21
– ident: 323_CR42
  doi: 10.1109/TCYB.2021.3049633
– volume: 35
  start-page: 1631
  issue: 11
  year: 1987
  ident: 323_CR50
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/TASSP.1987.1165065
– ident: 323_CR6
  doi: 10.1016/j.cmpb.2011.05.008
– volume: 7
  start-page: 349
  issue: 4
  year: 2003
  ident: 323_CR28
  publication-title: Data Min. Knowl. Disc.
  doi: 10.1023/A:1024988512476
– volume: 14
  start-page: 1
  issue: 12
  year: 2005
  ident: 323_CR45
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v014.i12
– ident: 323_CR54
  doi: 10.1007/s00180-015-0611-9
– volume: 2
  start-page: 133
  issue: 3
  year: 1984
  ident: 323_CR46
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/0167-8655(84)90036-9
– volume: 9
  start-page: 9
  issue: 2
  year: 2014
  ident: 323_CR40
  publication-title: ACM Trans. Knowl. Discovery from Data (TKDD)
  doi: 10.1145/2611380
– volume: 73
  start-page: 842
  issue: 5
  year: 2021
  ident: 323_CR5
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciab140
– volume: 40
  start-page: 1
  year: 2002
  ident: 323_CR34
  publication-title: University of Massachusetts Amherst Technical Report MM
– volume: 4
  start-page: 1
  issue: 1
  year: 2007
  ident: 323_CR3
  publication-title: AIDS Res. Ther.
  doi: 10.1186/1742-6405-4-11
– volume: 17
  start-page: 3306
  issue: 11
  year: 2016
  ident: 323_CR24
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2016.2547641
– ident: 323_CR47
– ident: 323_CR16
  doi: 10.1137/1.9781611974331.ch55
– volume: 42
  start-page: 2169
  issue: 9
  year: 2009
  ident: 323_CR49
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2008.11.030
– volume: 78
  start-page: 553
  issue: 383
  year: 1983
  ident: 323_CR32
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1983.10478008
– volume: 11
  start-page: 0150738
  issue: 6
  year: 2016
  ident: 323_CR9
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0150738
– volume: 1
  start-page: 1542
  issue: 2
  year: 2008
  ident: 323_CR36
  publication-title: Proc. VLDB Endowment
  doi: 10.14778/1454159.1454226
– volume: 556
  start-page: 34
  year: 2014
  ident: 323_CR23
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2014.06.026
– volume: 162
  year: 2020
  ident: 323_CR14
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113829
– volume: 11
  start-page: 512
  issue: 8
  year: 2014
  ident: 323_CR19
  publication-title: J. Aerospace Inform. Syst.
  doi: 10.2514/1.I010170
– volume: 279
  start-page: 234
  year: 2015
  ident: 323_CR44
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2015.03.018
– volume: 148
  start-page: 487
  year: 2015
  ident: 323_CR41
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.07.014
– volume: 58
  start-page: 643
  issue: 5
  year: 2021
  ident: 323_CR11
  publication-title: GISci. Remote Sens.
  doi: 10.1080/15481603.2021.1908927
– ident: 323_CR35
  doi: 10.1137/1.9781611972818.60
– volume: 3
  start-page: 012526
  issue: 1
  year: 2013
  ident: 323_CR1
  publication-title: Cold Spring Harb. Perspect. Med.
  doi: 10.1101/cshperspect.a012526
– ident: 323_CR27
  doi: 10.1142/9789812813305_0005
– volume: 11
  start-page: 1425
  year: 2010
  ident: 323_CR43
  publication-title: J. Mach. Learn. Res.
– volume: 30
  start-page: 113
  issue: 2
  year: 2005
  ident: 323_CR22
  publication-title: Comput. Geom.
  doi: 10.1016/j.comgeo.2004.05.004
– volume: 2
  start-page: 193
  issue: 1
  year: 1985
  ident: 323_CR31
  publication-title: J. Classif.
  doi: 10.1007/BF01908075
– volume: 5
  start-page: 75
  year: 1995
  ident: 323_CR12
  publication-title: Int. J. Comput. Geom. Appl.
  doi: 10.1142/S0218195995000064
– volume: 310
  start-page: 2154
  issue: 20
  year: 2013
  ident: 323_CR51
  publication-title: JAMA
  doi: 10.1001/jama.2013.280923
– ident: 323_CR55
  doi: 10.5430/air.v7n1p15
– ident: 323_CR13
– volume: 9
  start-page: 5196
  issue: 5
  year: 2017
  ident: 323_CR18
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2017.2683461
– volume: 7
  start-page: 43
  issue: 1
  year: 2015
  ident: 323_CR10
  publication-title: Sigspatial Special
  doi: 10.1145/2782759.2782767
– volume: 66
  start-page: 846
  issue: 336
  year: 1971
  ident: 323_CR30
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1971.10482356
– volume: 29
  start-page: 1505
  issue: 6
  year: 2015
  ident: 323_CR37
  publication-title: Data Min. Knowl. Disc.
  doi: 10.1007/s10618-014-0377-7
– volume: 3
  start-page: 583
  year: 2002
  ident: 323_CR38
  publication-title: J. Mach. Learn. Res.
– volume: 25
  start-page: 337
  issue: 03
  year: 2011
  ident: 323_CR39
  publication-title: Int. J. Pattern Recognit Artif Intell.
  doi: 10.1142/S0218001411008683
– volume: 2
  start-page: 55
  issue: 2
  year: 2010
  ident: 323_CR2
  publication-title: J. Clin. Med. Res.
– ident: 323_CR20
– volume: 65
  start-page: 1
  issue: 4
  year: 2015
  ident: 323_CR8
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v065.i04
SSID ssj0001763568
ssib031263555
Score 2.1941488
Snippet This paper describes an ensemble cluster analysis of bivariate profiles of HIV biomarkers, viral load and CD4 cell counts, which jointly measure disease...
SourceID pubmedcentral
pubmed
crossref
springer
SourceType Open Access Repository
Index Database
Publisher
StartPage 305
SubjectTerms Applications
Artificial Intelligence
Business Information Systems
Computational Biology/Bioinformatics
Computer Science
Data Mining and Knowledge Discovery
Database Management
Title Ensemble clustering of longitudinal bivariate HIV biomarker profiles to group patients by patterns of disease progression
URI https://link.springer.com/article/10.1007/s41060-022-00323-2
https://www.ncbi.nlm.nih.gov/pubmed/35528805
https://pubmed.ncbi.nlm.nih.gov/PMC9064718
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba8IwFA5DX_ay-8VdJA9728Jsk6bto4riBpM9zOFbaS5lgmuH1YH_fidpLChjsJdSaAgl30nOSfKd7yB051MdcUMbpEIJwrJAkDhUHqFM-pmkIu0oy7YY89GEPU-DqZPJMbkwO_f3jyWDPUuHGM452J9PCSy3zcCj3Fhwn_c3tkM9o6ricizt-YpVXrMF6ShnBPzU1OXM_N7tll-qndEuUXLnttQ6oeEROnDRI-5WcB-jPZ2foMNNZQbsJuopWg_yUn-KucZyvjJSCNAbLjI8L0x5opUypbCwmH3DRhliTTx6escmD99QdRbYlfEu8bLANukDO_HVEou1eTdniKXpzt3uYEvyqgQ-ztBkOHjrj4grskAkhCJLImCpjCVPIe4KRNxJhQKvL6nylJYpVSoEf85ZqDIZws6Gq0hxoX3KdNyJdSQoPUeNvMj1JcIQPHLlM53STDHAOo5klno60AC8DiRvofvNECdflZZGUqsmW0ASACSxgCR-C11Ug1-3BXx9WG6CFgq3YKkbGKns7S_57MNKZscmp9aLWuhhA2Di5mr5xy9c_a_5Ndr3rUUZBtoNaiwXK30LIctStFGzO-z1xm1rs_Acv778AGkp5kE
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA6iD_ri_TKvefBNg2uTpu2jjI1O55422VtpLsXBbGXdhP17T7KssCGCb4WGUPKd5JzTfOc7CN37VEfc0AapUIKwPBAkDpVHKJN-LqnImsqyLfo8GbKXUTByMjmmFmbj_v6pYpCzNInhnIP9-ZTAcbvDIFM29L0Wb61sh3pGVcXVWNr_K1Z5zTako5wR8FMjVzPz-7Rrfql2RptEyY3bUuuEOodo30WP-HkJ9xHa0sUxOlh1ZsBuo56gRbuo9KeYaCwncyOFALPhMseT0rQnmivTCguL8TckyhBr4qT7jk0dvqHqTLFr413hWYlt0Qd24qsVFgvzbP4hVmY6d7uDLclrKfBxioad9qCVENdkgUgIRWZEwFEZS55B3BWIuJkJBV5fUuUpLTOqVAj-nLNQ5TKEzIarSHGhfcp03Ix1JCg9Q9tFWegLhCF45MpnOqO5YoB1HMk883SgAXgdSN5AD6slTr-WWhpprZpsAUkBkNQCkvoNdL5c_Hos4OvDcRM0ULgGSz3ASGWvvynGH1YyOzY1tV7UQI8rAFO3V6s_PuHyf8Pv0G4yeOulvW7_9Qrt-da6DBvtGm3PpnN9A-HLTNxau_0BubDmpg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA6iIL54v8xrHnzT4Nqkafso07GpDB-c7K00l-JgdsN2gv_ekzQtbojgW6EhlJyTnHOa7_sOQpc-1RE3sEEqlCAsCwSJQ-URyqSfSSrStrJoiwHvDdnDKBj9YPFbtHt9JVlxGoxKU17ezFR20xDfGFQybWKQ6OCVPiVwCK9BpWIvaju8U3sU9YzWimNe2r8uVo_NtqmjnBGIXiPHpPl92oVo1YSoZfjk0h2qDU3dbbTpckp8WznBDlrR-S7aqvs1YLd999DXfV7odzHRWE7mRiABZsPTDE-mpmnRXJkGWViMP6F8hgwU9_qv2LDzDYDnA7vm3gUup9hSQbCTZC2w-DLP5s9iYaZzdz7YQr8q2Y99NOzev3R6xLVeIBISlJIIOEBjyVPIxgIRt1OhIBeQVHlKy5QqFUKU5yxUmQyh3uEqUlxonzIdt2MdCUoP0Go-zfURwpBScuUzndJMMfCAOJJZ6ulAgzvoQPIWuqqXOJlVChtJo6VsDZKAQRJrkMRvocNq8ZuxYF8fDqGghcIFszQDjID24pt8_GaFtGPDtPWiFrquDZi4HVz88QnH_xt-gdaf77rJU3_weII2fOtcBqJ2ilbLj7k-g5ymFOfWbb8BnQ7u7Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+clustering+of+longitudinal+bivariate+HIV+biomarker+profiles+to+group+patients+by+patterns+of+disease+progression&rft.jtitle=International+journal+of+data+science+and+analytics&rft.au=Lynch%2C+Miranda+L.&rft.au=DeGruttola%2C+Victor&rft.date=2022-09-01&rft.issn=2364-415X&rft.eissn=2364-4168&rft.volume=14&rft.issue=3&rft.spage=305&rft.epage=318&rft_id=info:doi/10.1007%2Fs41060-022-00323-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s41060_022_00323_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2364-415X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2364-415X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2364-415X&client=summon