Exploring Opportunities and Challenges of Artificial Intelligence and Machine Learning in Higher Education Institutions

The way people travel, organise their time, and acquire information has changed due to information technologies. Artificial intelligence (AI) and machine learning (ML) are mechanisms that evolved from data management and developing processes. Incorporating these mechanisms into business is a trend m...

Full description

Saved in:
Bibliographic Details
Published inSustainability Vol. 13; no. 18; p. 10424
Main Authors Kuleto, Valentin, Ilić, Milena, Dumangiu, Mihail, Ranković, Marko, Martins, Oliva M. D., Păun, Dan, Mihoreanu, Larisa
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The way people travel, organise their time, and acquire information has changed due to information technologies. Artificial intelligence (AI) and machine learning (ML) are mechanisms that evolved from data management and developing processes. Incorporating these mechanisms into business is a trend many different industries, including education, have identified as game-changers. As a result, education platforms and applications are more closely aligned with learners’ needs and knowledge, making the educational process more efficient. Therefore, AI and ML have great potential in e-learning and higher education institutions (HEI). Thus, the article aims to determine its potential and use areas in higher education based on secondary research and document analysis (literature review), content analysis, and primary research (survey). As referent points for this research, multiple academic, scientific, and commercial sources were used to obtain a broader picture of the research subject. Furthermore, the survey was implemented among students in the Republic of Serbia, with 103 respondents to generate data and information on how much knowledge of AI and ML is held by the student population, mainly to understand both opportunities and challenges involved in AI and ML in HEI. The study addresses critical issues, like common knowledge and stance of research bases regarding AI and ML in HEI; best practices regarding usage of AI and ML in HEI; students’ knowledge of AI and ML; and students’ attitudes regarding AI and ML opportunities and challenges in HEI. In statistical considerations, aiming to evaluate if the indicators were considered reflexive and, in this case, belong to the same theoretical dimension, the Correlation Matrix was presented, followed by the Composite Reliability. Finally, the results were evaluated by regression analysis. The results indicated that AI and ML are essential technologies that enhance learning, primarily through students’ skills, collaborative learning in HEI, and an accessible research environment.
AbstractList The way people travel, organise their time, and acquire information has changed due to information technologies. Artificial intelligence (AI) and machine learning (ML) are mechanisms that evolved from data management and developing processes. Incorporating these mechanisms into business is a trend many different industries, including education, have identified as game-changers. As a result, education platforms and applications are more closely aligned with learners’ needs and knowledge, making the educational process more efficient. Therefore, AI and ML have great potential in e-learning and higher education institutions (HEI). Thus, the article aims to determine its potential and use areas in higher education based on secondary research and document analysis (literature review), content analysis, and primary research (survey). As referent points for this research, multiple academic, scientific, and commercial sources were used to obtain a broader picture of the research subject. Furthermore, the survey was implemented among students in the Republic of Serbia, with 103 respondents to generate data and information on how much knowledge of AI and ML is held by the student population, mainly to understand both opportunities and challenges involved in AI and ML in HEI. The study addresses critical issues, like common knowledge and stance of research bases regarding AI and ML in HEI; best practices regarding usage of AI and ML in HEI; students’ knowledge of AI and ML; and students’ attitudes regarding AI and ML opportunities and challenges in HEI. In statistical considerations, aiming to evaluate if the indicators were considered reflexive and, in this case, belong to the same theoretical dimension, the Correlation Matrix was presented, followed by the Composite Reliability. Finally, the results were evaluated by regression analysis. The results indicated that AI and ML are essential technologies that enhance learning, primarily through students’ skills, collaborative learning in HEI, and an accessible research environment.
Audience Academic
Author Martins, Oliva M. D.
Dumangiu, Mihail
Ilić, Milena
Kuleto, Valentin
Ranković, Marko
Păun, Dan
Mihoreanu, Larisa
Author_xml – sequence: 1
  givenname: Valentin
  orcidid: 0000-0002-7811-5436
  surname: Kuleto
  fullname: Kuleto, Valentin
– sequence: 2
  givenname: Milena
  orcidid: 0000-0002-9719-175X
  surname: Ilić
  fullname: Ilić, Milena
– sequence: 3
  givenname: Mihail
  surname: Dumangiu
  fullname: Dumangiu, Mihail
– sequence: 4
  givenname: Marko
  surname: Ranković
  fullname: Ranković, Marko
– sequence: 5
  givenname: Oliva M. D.
  orcidid: 0000-0002-2958-691X
  surname: Martins
  fullname: Martins, Oliva M. D.
– sequence: 6
  givenname: Dan
  surname: Păun
  fullname: Păun, Dan
– sequence: 7
  givenname: Larisa
  surname: Mihoreanu
  fullname: Mihoreanu, Larisa
BookMark eNptkUtr3DAQgEVJoWmaU_-AoadSNtXDtuTjsmyThS2BPs5GlkfeCYrkSjJN_3212RySUumgkfR9MzDzlpz54IGQ94xeCdHRz2lhgilGa16_IuecSrZitKFnz-I35DKlO1qWEKxj7Tn5vX2YXYjop-p2nkPMi8eMkCrtx2pz0M6Bn8o12GodM1o0qF218xmcwwm8gUfyqzYH9FDtQUd_TIa-usHpALHajovRGYMvVsqYl2Oc3pHXVrsEl0_nBfn5Zftjc7Pa317vNuv9yohO5pVWipqxlsMooRNGqU7LQTWGD9yaphYth_INfLBGN9S2dcupGkFZIQcY-CAuyIdT3jmGXwuk3N-FJfpSsueNbBuuaNMU6upETdpBj96GHLUpe4R7NKXNFsv7WglVKy65LMLHF0JhMjzkSS8p9bvv316y7MSaGFKKYHuD-bEjpQi6ntH-OL_-2fyK8-kfZ454r-Of_9J_ASFwni0
CitedBy_id crossref_primary_10_48070_erciyesakademi_1544216
crossref_primary_10_18009_jcer_1477709
crossref_primary_10_1007_s10639_023_11917_z
crossref_primary_10_3390_su14148636
crossref_primary_10_48127_spvk_epmq_24_16_04
crossref_primary_10_32329_uad_1609305
crossref_primary_10_37497_rev_artif_intell_educ_v5i00_32
crossref_primary_10_22610_imbr_v16i3S_I_a_4178
crossref_primary_10_3390_su15065221
crossref_primary_10_3389_feduc_2024_1412018
crossref_primary_10_3390_electronics14071248
crossref_primary_10_1007_s10639_024_13112_0
crossref_primary_10_3390_su16010204
crossref_primary_10_1007_s10639_023_12333_z
crossref_primary_10_3390_info15040205
crossref_primary_10_1007_s10639_024_13113_z
crossref_primary_10_1016_j_jmrt_2023_06_159
crossref_primary_10_29121_shodhkosh_v5_i2_2024_3781
crossref_primary_10_56294_hl2023187
crossref_primary_10_1109_ACCESS_2022_3225555
crossref_primary_10_3390_electronics11010121
crossref_primary_10_22399_ijcesen_869
crossref_primary_10_5861_ijrse_2024_24000
crossref_primary_10_1051_e3sconf_202342010009
crossref_primary_10_1016_j_engappai_2022_105666
crossref_primary_10_21449_ijate_1369290
crossref_primary_10_3389_fpsyg_2022_929175
crossref_primary_10_1057_s41270_024_00290_6
crossref_primary_10_3390_su14095624
crossref_primary_10_1108_DLO_04_2022_0074
crossref_primary_10_1108_IMDS_04_2022_0221
crossref_primary_10_4018_IRMJ_305244
crossref_primary_10_1002_tl_20625
crossref_primary_10_1080_20421338_2024_2376916
crossref_primary_10_3390_su151310723
crossref_primary_10_53469_jrve_2025_7_01__10
crossref_primary_10_57020_ject_1475566
crossref_primary_10_47495_okufbed_1042317
crossref_primary_10_3389_feduc_2024_1414606
crossref_primary_10_1016_j_chb_2024_108354
crossref_primary_10_1016_j_heliyon_2024_e40025
crossref_primary_10_3390_educsci14101063
crossref_primary_10_1016_j_caeai_2023_100167
crossref_primary_10_48084_etasr_8013
crossref_primary_10_1108_IJPPM_01_2024_0049
crossref_primary_10_56294_sctconf2023582
crossref_primary_10_2478_amns_2024_3253
crossref_primary_10_1108_QAE_03_2024_0050
crossref_primary_10_1080_08839514_2023_2175110
crossref_primary_10_12973_eu_jer_14_1_249
crossref_primary_10_1007_s10755_024_09747_z
crossref_primary_10_1038_s41598_024_68963_x
crossref_primary_10_1080_2331186X_2024_2386892
crossref_primary_10_37376_fesj_vi16_7106
crossref_primary_10_59324_ejceel_2024_2_3__04
crossref_primary_10_1016_j_nlp_2022_100003
crossref_primary_10_3233_JCM_237054
crossref_primary_10_1007_s10639_024_12594_2
crossref_primary_10_3389_fcomp_2023_1141649
crossref_primary_10_32604_cmc_2022_026405
crossref_primary_10_1155_2024_8729440
crossref_primary_10_17244_eku_1457088
crossref_primary_10_3389_feduc_2024_1425779
crossref_primary_10_3390_su16166724
crossref_primary_10_3390_su15043507
crossref_primary_10_63034_esr_358
crossref_primary_10_1109_ACCESS_2025_3542417
crossref_primary_10_2478_amns_2025_0125
crossref_primary_10_1016_j_ijme_2024_101106
crossref_primary_10_25204_iktisad_1588001
crossref_primary_10_1108_JEET_12_2024_0047
crossref_primary_10_1177_16094069231193593
crossref_primary_10_12688_routledgeopenres_17581_1
crossref_primary_10_53623_apga_v3i2_404
crossref_primary_10_30935_cedtech_15617
crossref_primary_10_3390_su14042216
crossref_primary_10_1016_j_psicod_2023_06_001
crossref_primary_10_1111_ejed_70053
crossref_primary_10_3390_s23125424
crossref_primary_10_25159_1947_9417_16006
crossref_primary_10_1057_s41599_024_03432_4
crossref_primary_10_1016_j_entcom_2024_100699
crossref_primary_10_3389_feduc_2024_1470853
crossref_primary_10_53759_7669_jmc202303034
crossref_primary_10_3390_su14105842
crossref_primary_10_3389_feduc_2024_1438715
crossref_primary_10_25233_ijlel_1528746
crossref_primary_10_3389_feduc_2022_856085
crossref_primary_10_3389_fpsyg_2022_856085
crossref_primary_10_3390_su17020379
crossref_primary_10_57175_evsos_v2i4_157
crossref_primary_10_59400_cai1581
crossref_primary_10_1080_2331186X_2024_2448053
crossref_primary_10_2139_ssrn_5037669
crossref_primary_10_3390_su132212347
crossref_primary_10_1080_23311916_2023_2272358
crossref_primary_10_1080_1475939X_2024_2337924
crossref_primary_10_3390_electronics13183632
crossref_primary_10_21511_ppm_23_1__2025_08
crossref_primary_10_47813_2782_2818_2024_4_4_0215_0226
crossref_primary_10_3390_su14074339
crossref_primary_10_3390_su15086540
crossref_primary_10_1016_j_measen_2024_101704
crossref_primary_10_1108_TQM_01_2022_0001
crossref_primary_10_1111_ejed_70036
crossref_primary_10_3390_su16093554
crossref_primary_10_1109_ACCESS_2024_3433531
crossref_primary_10_38124_ijisrt_IJISRT24SEP312
crossref_primary_10_1111_ejed_12909
crossref_primary_10_1016_j_nedt_2024_106355
crossref_primary_10_1016_j_psicoe_2023_06_002
crossref_primary_10_1111_ejed_12863
crossref_primary_10_3390_su151612253
crossref_primary_10_1038_s41598_025_93159_2
crossref_primary_10_1108_TECHS_03_2024_0014
crossref_primary_10_1080_10875301_2024_2352746
crossref_primary_10_3390_su14020749
crossref_primary_10_1016_j_ssaho_2023_100655
crossref_primary_10_3389_feduc_2023_1183162
crossref_primary_10_1080_2331186X_2024_2387943
crossref_primary_10_5961_higheredusci_1402198
crossref_primary_10_3389_feduc_2024_1501819
crossref_primary_10_1177_09763996231158229
crossref_primary_10_3390_su151713159
crossref_primary_10_1108_ITSE_11_2023_0218
crossref_primary_10_55938_ijgasr_v3i1_71
crossref_primary_10_57175_evsos_v1i3_20
Cites_doi 10.2753/MTP1069-6679190202
10.1007/s11747-011-0261-6
10.1109/TALE.2018.8615217
10.1007/978-3-319-57413-4
10.3390/su12145872
10.1007/978-981-13-8759-3
10.1177/002224377901600110
10.1207/s15327906mbr1401_4
10.1007/978-3-030-20212-5
10.1186/s41039-017-0062-8
10.4324/9781003015789
10.1016/j.jbusres.2008.01.012
10.31224/osf.io/5qfex
10.1007/978-3-030-58948-6
10.1016/j.jbusres.2008.01.013
10.1016/S0167-8116(02)00097-6
10.1038/s41746-019-0148-3
10.1038/s41746-020-0262-2
ContentType Journal Article
Copyright COPYRIGHT 2021 MDPI AG
2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2021 MDPI AG
– notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
4U-
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.3390/su131810424
DatabaseName CrossRef
Gale In Context: Science
University Readers
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
University Readers
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 2071-1050
ExternalDocumentID A838482727
10_3390_su131810424
GeographicLocations Serbia
United States--US
GeographicLocations_xml – name: Serbia
– name: United States--US
GroupedDBID 29Q
2WC
2XV
4P2
5VS
7XC
8FE
8FH
A8Z
AAHBH
AAYXX
ACHQT
ADBBV
ADMLS
AENEX
AFKRA
AFMMW
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
E3Z
ECGQY
FRS
GX1
IAO
IEP
ISR
ITC
KQ8
ML.
MODMG
M~E
OK1
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
4U-
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c397t-a880cd47bd7e93c889a7b85c2b2fc54362ecd4e2bfca50f646208de8f37beb2b3
IEDL.DBID BENPR
ISSN 2071-1050
IngestDate Mon Jun 30 07:29:15 EDT 2025
Tue Jul 01 05:40:54 EDT 2025
Fri Jun 27 03:22:17 EDT 2025
Thu Apr 24 22:55:35 EDT 2025
Tue Jul 01 02:39:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-a880cd47bd7e93c889a7b85c2b2fc54362ecd4e2bfca50f646208de8f37beb2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7811-5436
0000-0002-2958-691X
0000-0002-9719-175X
OpenAccessLink https://www.proquest.com/docview/2576528055?pq-origsite=%requestingapplication%
PQID 2576528055
PQPubID 2032327
ParticipantIDs proquest_journals_2576528055
gale_infotracacademiconefile_A838482727
gale_incontextgauss_ISR_A838482727
crossref_citationtrail_10_3390_su131810424
crossref_primary_10_3390_su131810424
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sustainability
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_14
Shah (ref_21) 2019; 2
ref_36
ref_13
ref_35
Churchill (ref_40) 1979; 16
ref_12
ref_34
ref_11
ref_33
ref_10
ref_32
ref_31
ref_19
ref_18
ref_17
ref_16
ref_15
ref_37
Revelle (ref_39) 1979; 14
Manea (ref_48) 2019; 10
Gerke (ref_22) 2020; 3
Gudergan (ref_41) 2008; 61
ref_25
ref_47
ref_24
ref_23
Popenici (ref_30) 2017; 12
ref_43
ref_20
ref_42
ref_1
Hair (ref_46) 2012; 40
ref_3
ref_2
ref_29
Coltman (ref_44) 2008; 61
Hair (ref_45) 2011; 19
ref_28
ref_27
ref_26
ref_9
ref_8
ref_5
Rossiter (ref_38) 2001; 19
ref_4
ref_7
ref_6
References_xml – ident: ref_7
– ident: ref_28
– ident: ref_9
– volume: 19
  start-page: 139
  year: 2011
  ident: ref_45
  article-title: PLS-SEM: Indeed a Silver Bullet. 2011
  publication-title: J. Mark. Theory Pract.
  doi: 10.2753/MTP1069-6679190202
– volume: 40
  start-page: 414
  year: 2012
  ident: ref_46
  article-title: An assessment of the use of partial least squares structural equation modeling in marketing research
  publication-title: J. Acad. Mark. Sci.
  doi: 10.1007/s11747-011-0261-6
– ident: ref_5
– ident: ref_32
– ident: ref_3
– ident: ref_24
– volume: 10
  start-page: 2
  year: 2019
  ident: ref_48
  article-title: Quality parametres on higher education PhD program in Romania
  publication-title: Indep. J. Manag. Prod.
– ident: ref_26
– ident: ref_34
– ident: ref_2
  doi: 10.1109/TALE.2018.8615217
– ident: ref_11
– ident: ref_37
  doi: 10.1007/978-3-319-57413-4
– ident: ref_47
  doi: 10.3390/su12145872
– ident: ref_16
– ident: ref_1
  doi: 10.1007/978-981-13-8759-3
– volume: 16
  start-page: 64
  year: 1979
  ident: ref_40
  article-title: A paradigm for developing better measures of marketing Constructs
  publication-title: J. Mark. Res.
  doi: 10.1177/002224377901600110
– ident: ref_42
– ident: ref_35
– ident: ref_23
– volume: 14
  start-page: 57
  year: 1979
  ident: ref_39
  article-title: Hierarchical clustering and the internal structure of tests
  publication-title: Multivar. Behav. Res.
  doi: 10.1207/s15327906mbr1401_4
– ident: ref_19
  doi: 10.1007/978-3-030-20212-5
– volume: 12
  start-page: 22
  year: 2017
  ident: ref_30
  article-title: Exploring the impact of artificial intelligence on teaching and learning in higher education
  publication-title: Res. Pract. Technol. Enhanc. Learn.
  doi: 10.1186/s41039-017-0062-8
– ident: ref_6
– ident: ref_8
– ident: ref_25
– ident: ref_4
– ident: ref_31
– ident: ref_29
– ident: ref_18
  doi: 10.4324/9781003015789
– ident: ref_27
– volume: 61
  start-page: 1238
  year: 2008
  ident: ref_41
  article-title: Confirmatory tetrad analysis in PLS path modeling
  publication-title: J. Bus. Res.
  doi: 10.1016/j.jbusres.2008.01.012
– ident: ref_14
  doi: 10.31224/osf.io/5qfex
– ident: ref_33
  doi: 10.1007/978-3-030-58948-6
– ident: ref_12
– ident: ref_10
– ident: ref_15
– ident: ref_13
– ident: ref_17
– ident: ref_36
– ident: ref_43
– volume: 61
  start-page: 1250
  year: 2008
  ident: ref_44
  article-title: Formative versus reflective measurement models Two applications of formative measurement
  publication-title: J. Bus. Res.
  doi: 10.1016/j.jbusres.2008.01.013
– volume: 19
  start-page: 305
  year: 2001
  ident: ref_38
  article-title: The C-OAR-SE procedure for scale development in marketing
  publication-title: Int. J. Res. Mark.
  doi: 10.1016/S0167-8116(02)00097-6
– ident: ref_20
– volume: 2
  start-page: 69
  year: 2019
  ident: ref_21
  article-title: Artificial intelligence and machine learning in clinical development: A translational perspective
  publication-title: Digit. Med.
  doi: 10.1038/s41746-019-0148-3
– volume: 3
  start-page: 53
  year: 2020
  ident: ref_22
  article-title: The need for a system view to regulate artificial intelligence/machine learning-based software as medical device
  publication-title: Digit. Med.
  doi: 10.1038/s41746-020-0262-2
SSID ssj0000331916
Score 2.6027415
Snippet The way people travel, organise their time, and acquire information has changed due to information technologies. Artificial intelligence (AI) and machine...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 10424
SubjectTerms Artificial intelligence
Cognitive ability
Collaborative learning
Content analysis
Deep learning
Education, Higher
Educational aspects
Efficiency
Higher education
Institutional theory
Internet of Things
Literature reviews
Machine learning
R&D
Research & development
School environment
Students
Sustainability
Teaching
Technology application
Title Exploring Opportunities and Challenges of Artificial Intelligence and Machine Learning in Higher Education Institutions
URI https://www.proquest.com/docview/2576528055
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSwJBEB9SH-olypIskyWEIDjyvrz1KUwsDbSwBN-O271bCeK0Tunfb-Zuzw-Qnne4W3Zmdz72t78BaNiOlOg1qHKvhOG4yjQC20JbVqGHCRHaSNobcDhq9SfOy9Sd6oJbomGV-ZmYHtThXFKN_J4CY9fiTdd9WHwb1DWKbld1C40ClPAI5rwIpcfe6G28rrI0bTQxs5U9zLMxv0f9mmjGJt347bii_Qdy6mWeTuBYh4esk-nzFA6iuAyH-evhpAyV3uZlGgrqrZmcwe8aTcdeFxRUr-KULJUFcci6ecuUhM1V-vWMOIINthg5U8lhCq6MmOZdnbHPmGVYELbGgrAcYUAmew6Tp95Ht2_orgqGxNhjaQS4Y2XoeCL0orYtOW8HnuCutISlpOugQ4twOLKEom4JquW0rCYPI65sT2AaLuwKFON5HF0AEyLADBfXXai2E4o2V4quTQNHBtJrClGFu3yBfakpx6nzxZePqQdpw9_SRhUaa-FFxrSxX-yGNOUTd0VM4JhZsEoSf_A-9jvc5sRqanlVuNVCao4_xOlkbw1w2kR3tSNZyzXu692b-Btbu_x_-AqOLMK4pJizGhSXP6voGoOUpahrS6xD4Xlq_gHjI-rE
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5BOMCl4lFEWkotBKqEtGJj72a9B1SlNCgBEhAPiZtZe21UqdqkbKKIP9Xf2Jl9BJBQb5w92rU8n2c89jczAHsiMAa9Bt3cO-0FoWt5ieCIZZdGGBAhRoregINhu3cbnN6Fdwvwt86FIVplbRMLQ52ODN2RH9LBOOTSD8Pv4z8edY2i19W6hUYJizP7NMOQLT_q_0T97nN-0r057nlVVwHPoO-deAki1qRBpNPIxsJIGSeRlqHhmjsTBmjQLQ5brh11C3DtoM19mVrpRKQxDNUCv7sISyjo8wYs_egOL6_mtzq-QEi32mUioBCxj3hq4bZp0QvjK9f3tgMovNrJKnyojqOsU-JnDRZstg7LdbZyvg6b3edMOBSsTEG-AbM5e49djOkQP82K4qwsyVJ2XLdoydnIFV8vC1Ww_osKoIXkoCBzWlbVeX1gvzJWck_YnHvCakYDbZGPcPsu670JjWyU2S1gWicYUXMptYuDVMfSOXqmTQKTmMjXugkH9QIrU5U4p04bvxWGOqQN9UIbTdibC4_Lyh5vi-2SphTVysiIjPOQTPNc9a-vVEcKSVVUedSEb5WQG-EPcTplbgNOm8prvZLcrjWuKmuRq2dsf_r_8FdY7t0MztV5f3j2GVY48WsKvts2NCaPU_sFD0gTvVOhksH9e2-Ef8JaKIk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NVgJeEBQmCgUsVDQJKVpqJ43zgFBZW62MddN-SHszsWNPSCgtpNXEv8Zfx13idJs08bZnnxLL9_nOZ393B9AXkTHoNejm3ukgit0gyARHLLs8wYAIMVL1BjycD_fPo68X8cUW_G1yYYhW2djEylDnC0N35Lt0MI65DON413laxPF4-nn5K6AOUvTS2rTTqCFyYP9cYfhWfpqNUdcfOJ9Ozvb2A99hIDDoh1dBhug1eZToPLGpMFKmWaJlbLjmzsQRGneLw5ZrR50D3DAa8lDmVjqRaAxJtcDvPoB2QlFRC9pfJvPjk80NTygQ3oNhnRQoRBoitga4hQb02njLDd7tDCoPN30KT_zRlI1qLD2DLVt04FGTuVx2YHtynRWHgt4slM_hasPkY0dLOtCvi6pQK8uKnO017VpKtnDV1-uiFWx2oxpoJXlYETst8zVfL9mPgtU8FLbhobCG3UDb5QWc38t6b0OrWBT2JTCtM4yuuZTapVGuU-kcPdlmkclMEmrdhY_NAivjy51T142fCsMe0oa6oY0u9DfCy7rKx91i70lTiupmFITAy2xdlmp2eqJGUkiqqMqTLux4IbfAH-J06jwHnDaV2rol2Ws0rrzlKNU1zl_9f_gdPMQNoL7N5gev4TEnqk1FfetBa_V7bd_gWWml33pQMvh-3_vgHx12LL4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+Opportunities+and+Challenges+of+Artificial+Intelligence+and+Machine+Learning+in+Higher+Education+Institutions&rft.jtitle=Sustainability&rft.au=Kuleto%2C+Valentin&rft.au=Ili%C4%87%2C+Milena&rft.au=Dumangiu%2C+Mihail&rft.au=Rankovi%C4%87%2C+Marko&rft.date=2021-09-01&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=13&rft.issue=18&rft.spage=10424&rft_id=info:doi/10.3390%2Fsu131810424&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_su131810424
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon