Exploring Opportunities and Challenges of Artificial Intelligence and Machine Learning in Higher Education Institutions
The way people travel, organise their time, and acquire information has changed due to information technologies. Artificial intelligence (AI) and machine learning (ML) are mechanisms that evolved from data management and developing processes. Incorporating these mechanisms into business is a trend m...
Saved in:
Published in | Sustainability Vol. 13; no. 18; p. 10424 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The way people travel, organise their time, and acquire information has changed due to information technologies. Artificial intelligence (AI) and machine learning (ML) are mechanisms that evolved from data management and developing processes. Incorporating these mechanisms into business is a trend many different industries, including education, have identified as game-changers. As a result, education platforms and applications are more closely aligned with learners’ needs and knowledge, making the educational process more efficient. Therefore, AI and ML have great potential in e-learning and higher education institutions (HEI). Thus, the article aims to determine its potential and use areas in higher education based on secondary research and document analysis (literature review), content analysis, and primary research (survey). As referent points for this research, multiple academic, scientific, and commercial sources were used to obtain a broader picture of the research subject. Furthermore, the survey was implemented among students in the Republic of Serbia, with 103 respondents to generate data and information on how much knowledge of AI and ML is held by the student population, mainly to understand both opportunities and challenges involved in AI and ML in HEI. The study addresses critical issues, like common knowledge and stance of research bases regarding AI and ML in HEI; best practices regarding usage of AI and ML in HEI; students’ knowledge of AI and ML; and students’ attitudes regarding AI and ML opportunities and challenges in HEI. In statistical considerations, aiming to evaluate if the indicators were considered reflexive and, in this case, belong to the same theoretical dimension, the Correlation Matrix was presented, followed by the Composite Reliability. Finally, the results were evaluated by regression analysis. The results indicated that AI and ML are essential technologies that enhance learning, primarily through students’ skills, collaborative learning in HEI, and an accessible research environment. |
---|---|
AbstractList | The way people travel, organise their time, and acquire information has changed due to information technologies. Artificial intelligence (AI) and machine learning (ML) are mechanisms that evolved from data management and developing processes. Incorporating these mechanisms into business is a trend many different industries, including education, have identified as game-changers. As a result, education platforms and applications are more closely aligned with learners’ needs and knowledge, making the educational process more efficient. Therefore, AI and ML have great potential in e-learning and higher education institutions (HEI). Thus, the article aims to determine its potential and use areas in higher education based on secondary research and document analysis (literature review), content analysis, and primary research (survey). As referent points for this research, multiple academic, scientific, and commercial sources were used to obtain a broader picture of the research subject. Furthermore, the survey was implemented among students in the Republic of Serbia, with 103 respondents to generate data and information on how much knowledge of AI and ML is held by the student population, mainly to understand both opportunities and challenges involved in AI and ML in HEI. The study addresses critical issues, like common knowledge and stance of research bases regarding AI and ML in HEI; best practices regarding usage of AI and ML in HEI; students’ knowledge of AI and ML; and students’ attitudes regarding AI and ML opportunities and challenges in HEI. In statistical considerations, aiming to evaluate if the indicators were considered reflexive and, in this case, belong to the same theoretical dimension, the Correlation Matrix was presented, followed by the Composite Reliability. Finally, the results were evaluated by regression analysis. The results indicated that AI and ML are essential technologies that enhance learning, primarily through students’ skills, collaborative learning in HEI, and an accessible research environment. |
Audience | Academic |
Author | Martins, Oliva M. D. Dumangiu, Mihail Ilić, Milena Kuleto, Valentin Ranković, Marko Păun, Dan Mihoreanu, Larisa |
Author_xml | – sequence: 1 givenname: Valentin orcidid: 0000-0002-7811-5436 surname: Kuleto fullname: Kuleto, Valentin – sequence: 2 givenname: Milena orcidid: 0000-0002-9719-175X surname: Ilić fullname: Ilić, Milena – sequence: 3 givenname: Mihail surname: Dumangiu fullname: Dumangiu, Mihail – sequence: 4 givenname: Marko surname: Ranković fullname: Ranković, Marko – sequence: 5 givenname: Oliva M. D. orcidid: 0000-0002-2958-691X surname: Martins fullname: Martins, Oliva M. D. – sequence: 6 givenname: Dan surname: Păun fullname: Păun, Dan – sequence: 7 givenname: Larisa surname: Mihoreanu fullname: Mihoreanu, Larisa |
BookMark | eNptkUtr3DAQgEVJoWmaU_-AoadSNtXDtuTjsmyThS2BPs5GlkfeCYrkSjJN_3212RySUumgkfR9MzDzlpz54IGQ94xeCdHRz2lhgilGa16_IuecSrZitKFnz-I35DKlO1qWEKxj7Tn5vX2YXYjop-p2nkPMi8eMkCrtx2pz0M6Bn8o12GodM1o0qF218xmcwwm8gUfyqzYH9FDtQUd_TIa-usHpALHajovRGYMvVsqYl2Oc3pHXVrsEl0_nBfn5Zftjc7Pa317vNuv9yohO5pVWipqxlsMooRNGqU7LQTWGD9yaphYth_INfLBGN9S2dcupGkFZIQcY-CAuyIdT3jmGXwuk3N-FJfpSsueNbBuuaNMU6upETdpBj96GHLUpe4R7NKXNFsv7WglVKy65LMLHF0JhMjzkSS8p9bvv316y7MSaGFKKYHuD-bEjpQi6ntH-OL_-2fyK8-kfZ454r-Of_9J_ASFwni0 |
CitedBy_id | crossref_primary_10_48070_erciyesakademi_1544216 crossref_primary_10_18009_jcer_1477709 crossref_primary_10_1007_s10639_023_11917_z crossref_primary_10_3390_su14148636 crossref_primary_10_48127_spvk_epmq_24_16_04 crossref_primary_10_32329_uad_1609305 crossref_primary_10_37497_rev_artif_intell_educ_v5i00_32 crossref_primary_10_22610_imbr_v16i3S_I_a_4178 crossref_primary_10_3390_su15065221 crossref_primary_10_3389_feduc_2024_1412018 crossref_primary_10_3390_electronics14071248 crossref_primary_10_1007_s10639_024_13112_0 crossref_primary_10_3390_su16010204 crossref_primary_10_1007_s10639_023_12333_z crossref_primary_10_3390_info15040205 crossref_primary_10_1007_s10639_024_13113_z crossref_primary_10_1016_j_jmrt_2023_06_159 crossref_primary_10_29121_shodhkosh_v5_i2_2024_3781 crossref_primary_10_56294_hl2023187 crossref_primary_10_1109_ACCESS_2022_3225555 crossref_primary_10_3390_electronics11010121 crossref_primary_10_22399_ijcesen_869 crossref_primary_10_5861_ijrse_2024_24000 crossref_primary_10_1051_e3sconf_202342010009 crossref_primary_10_1016_j_engappai_2022_105666 crossref_primary_10_21449_ijate_1369290 crossref_primary_10_3389_fpsyg_2022_929175 crossref_primary_10_1057_s41270_024_00290_6 crossref_primary_10_3390_su14095624 crossref_primary_10_1108_DLO_04_2022_0074 crossref_primary_10_1108_IMDS_04_2022_0221 crossref_primary_10_4018_IRMJ_305244 crossref_primary_10_1002_tl_20625 crossref_primary_10_1080_20421338_2024_2376916 crossref_primary_10_3390_su151310723 crossref_primary_10_53469_jrve_2025_7_01__10 crossref_primary_10_57020_ject_1475566 crossref_primary_10_47495_okufbed_1042317 crossref_primary_10_3389_feduc_2024_1414606 crossref_primary_10_1016_j_chb_2024_108354 crossref_primary_10_1016_j_heliyon_2024_e40025 crossref_primary_10_3390_educsci14101063 crossref_primary_10_1016_j_caeai_2023_100167 crossref_primary_10_48084_etasr_8013 crossref_primary_10_1108_IJPPM_01_2024_0049 crossref_primary_10_56294_sctconf2023582 crossref_primary_10_2478_amns_2024_3253 crossref_primary_10_1108_QAE_03_2024_0050 crossref_primary_10_1080_08839514_2023_2175110 crossref_primary_10_12973_eu_jer_14_1_249 crossref_primary_10_1007_s10755_024_09747_z crossref_primary_10_1038_s41598_024_68963_x crossref_primary_10_1080_2331186X_2024_2386892 crossref_primary_10_37376_fesj_vi16_7106 crossref_primary_10_59324_ejceel_2024_2_3__04 crossref_primary_10_1016_j_nlp_2022_100003 crossref_primary_10_3233_JCM_237054 crossref_primary_10_1007_s10639_024_12594_2 crossref_primary_10_3389_fcomp_2023_1141649 crossref_primary_10_32604_cmc_2022_026405 crossref_primary_10_1155_2024_8729440 crossref_primary_10_17244_eku_1457088 crossref_primary_10_3389_feduc_2024_1425779 crossref_primary_10_3390_su16166724 crossref_primary_10_3390_su15043507 crossref_primary_10_63034_esr_358 crossref_primary_10_1109_ACCESS_2025_3542417 crossref_primary_10_2478_amns_2025_0125 crossref_primary_10_1016_j_ijme_2024_101106 crossref_primary_10_25204_iktisad_1588001 crossref_primary_10_1108_JEET_12_2024_0047 crossref_primary_10_1177_16094069231193593 crossref_primary_10_12688_routledgeopenres_17581_1 crossref_primary_10_53623_apga_v3i2_404 crossref_primary_10_30935_cedtech_15617 crossref_primary_10_3390_su14042216 crossref_primary_10_1016_j_psicod_2023_06_001 crossref_primary_10_1111_ejed_70053 crossref_primary_10_3390_s23125424 crossref_primary_10_25159_1947_9417_16006 crossref_primary_10_1057_s41599_024_03432_4 crossref_primary_10_1016_j_entcom_2024_100699 crossref_primary_10_3389_feduc_2024_1470853 crossref_primary_10_53759_7669_jmc202303034 crossref_primary_10_3390_su14105842 crossref_primary_10_3389_feduc_2024_1438715 crossref_primary_10_25233_ijlel_1528746 crossref_primary_10_3389_feduc_2022_856085 crossref_primary_10_3389_fpsyg_2022_856085 crossref_primary_10_3390_su17020379 crossref_primary_10_57175_evsos_v2i4_157 crossref_primary_10_59400_cai1581 crossref_primary_10_1080_2331186X_2024_2448053 crossref_primary_10_2139_ssrn_5037669 crossref_primary_10_3390_su132212347 crossref_primary_10_1080_23311916_2023_2272358 crossref_primary_10_1080_1475939X_2024_2337924 crossref_primary_10_3390_electronics13183632 crossref_primary_10_21511_ppm_23_1__2025_08 crossref_primary_10_47813_2782_2818_2024_4_4_0215_0226 crossref_primary_10_3390_su14074339 crossref_primary_10_3390_su15086540 crossref_primary_10_1016_j_measen_2024_101704 crossref_primary_10_1108_TQM_01_2022_0001 crossref_primary_10_1111_ejed_70036 crossref_primary_10_3390_su16093554 crossref_primary_10_1109_ACCESS_2024_3433531 crossref_primary_10_38124_ijisrt_IJISRT24SEP312 crossref_primary_10_1111_ejed_12909 crossref_primary_10_1016_j_nedt_2024_106355 crossref_primary_10_1016_j_psicoe_2023_06_002 crossref_primary_10_1111_ejed_12863 crossref_primary_10_3390_su151612253 crossref_primary_10_1038_s41598_025_93159_2 crossref_primary_10_1108_TECHS_03_2024_0014 crossref_primary_10_1080_10875301_2024_2352746 crossref_primary_10_3390_su14020749 crossref_primary_10_1016_j_ssaho_2023_100655 crossref_primary_10_3389_feduc_2023_1183162 crossref_primary_10_1080_2331186X_2024_2387943 crossref_primary_10_5961_higheredusci_1402198 crossref_primary_10_3389_feduc_2024_1501819 crossref_primary_10_1177_09763996231158229 crossref_primary_10_3390_su151713159 crossref_primary_10_1108_ITSE_11_2023_0218 crossref_primary_10_55938_ijgasr_v3i1_71 crossref_primary_10_57175_evsos_v1i3_20 |
Cites_doi | 10.2753/MTP1069-6679190202 10.1007/s11747-011-0261-6 10.1109/TALE.2018.8615217 10.1007/978-3-319-57413-4 10.3390/su12145872 10.1007/978-981-13-8759-3 10.1177/002224377901600110 10.1207/s15327906mbr1401_4 10.1007/978-3-030-20212-5 10.1186/s41039-017-0062-8 10.4324/9781003015789 10.1016/j.jbusres.2008.01.012 10.31224/osf.io/5qfex 10.1007/978-3-030-58948-6 10.1016/j.jbusres.2008.01.013 10.1016/S0167-8116(02)00097-6 10.1038/s41746-019-0148-3 10.1038/s41746-020-0262-2 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2021 MDPI AG 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2021 MDPI AG – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ISR 4U- ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
DOI | 10.3390/su131810424 |
DatabaseName | CrossRef Gale In Context: Science University Readers ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database University Readers ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
EISSN | 2071-1050 |
ExternalDocumentID | A838482727 10_3390_su131810424 |
GeographicLocations | Serbia United States--US |
GeographicLocations_xml | – name: Serbia – name: United States--US |
GroupedDBID | 29Q 2WC 2XV 4P2 5VS 7XC 8FE 8FH A8Z AAHBH AAYXX ACHQT ADBBV ADMLS AENEX AFKRA AFMMW ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION E3Z ECGQY FRS GX1 IAO IEP ISR ITC KQ8 ML. MODMG M~E OK1 P2P PHGZM PHGZT PIMPY PROAC TR2 4U- ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c397t-a880cd47bd7e93c889a7b85c2b2fc54362ecd4e2bfca50f646208de8f37beb2b3 |
IEDL.DBID | BENPR |
ISSN | 2071-1050 |
IngestDate | Mon Jun 30 07:29:15 EDT 2025 Tue Jul 01 05:40:54 EDT 2025 Fri Jun 27 03:22:17 EDT 2025 Thu Apr 24 22:55:35 EDT 2025 Tue Jul 01 02:39:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c397t-a880cd47bd7e93c889a7b85c2b2fc54362ecd4e2bfca50f646208de8f37beb2b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7811-5436 0000-0002-2958-691X 0000-0002-9719-175X |
OpenAccessLink | https://www.proquest.com/docview/2576528055?pq-origsite=%requestingapplication% |
PQID | 2576528055 |
PQPubID | 2032327 |
ParticipantIDs | proquest_journals_2576528055 gale_infotracacademiconefile_A838482727 gale_incontextgauss_ISR_A838482727 crossref_citationtrail_10_3390_su131810424 crossref_primary_10_3390_su131810424 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sustainability |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_14 Shah (ref_21) 2019; 2 ref_36 ref_13 ref_35 Churchill (ref_40) 1979; 16 ref_12 ref_34 ref_11 ref_33 ref_10 ref_32 ref_31 ref_19 ref_18 ref_17 ref_16 ref_15 ref_37 Revelle (ref_39) 1979; 14 Manea (ref_48) 2019; 10 Gerke (ref_22) 2020; 3 Gudergan (ref_41) 2008; 61 ref_25 ref_47 ref_24 ref_23 Popenici (ref_30) 2017; 12 ref_43 ref_20 ref_42 ref_1 Hair (ref_46) 2012; 40 ref_3 ref_2 ref_29 Coltman (ref_44) 2008; 61 Hair (ref_45) 2011; 19 ref_28 ref_27 ref_26 ref_9 ref_8 ref_5 Rossiter (ref_38) 2001; 19 ref_4 ref_7 ref_6 |
References_xml | – ident: ref_7 – ident: ref_28 – ident: ref_9 – volume: 19 start-page: 139 year: 2011 ident: ref_45 article-title: PLS-SEM: Indeed a Silver Bullet. 2011 publication-title: J. Mark. Theory Pract. doi: 10.2753/MTP1069-6679190202 – volume: 40 start-page: 414 year: 2012 ident: ref_46 article-title: An assessment of the use of partial least squares structural equation modeling in marketing research publication-title: J. Acad. Mark. Sci. doi: 10.1007/s11747-011-0261-6 – ident: ref_5 – ident: ref_32 – ident: ref_3 – ident: ref_24 – volume: 10 start-page: 2 year: 2019 ident: ref_48 article-title: Quality parametres on higher education PhD program in Romania publication-title: Indep. J. Manag. Prod. – ident: ref_26 – ident: ref_34 – ident: ref_2 doi: 10.1109/TALE.2018.8615217 – ident: ref_11 – ident: ref_37 doi: 10.1007/978-3-319-57413-4 – ident: ref_47 doi: 10.3390/su12145872 – ident: ref_16 – ident: ref_1 doi: 10.1007/978-981-13-8759-3 – volume: 16 start-page: 64 year: 1979 ident: ref_40 article-title: A paradigm for developing better measures of marketing Constructs publication-title: J. Mark. Res. doi: 10.1177/002224377901600110 – ident: ref_42 – ident: ref_35 – ident: ref_23 – volume: 14 start-page: 57 year: 1979 ident: ref_39 article-title: Hierarchical clustering and the internal structure of tests publication-title: Multivar. Behav. Res. doi: 10.1207/s15327906mbr1401_4 – ident: ref_19 doi: 10.1007/978-3-030-20212-5 – volume: 12 start-page: 22 year: 2017 ident: ref_30 article-title: Exploring the impact of artificial intelligence on teaching and learning in higher education publication-title: Res. Pract. Technol. Enhanc. Learn. doi: 10.1186/s41039-017-0062-8 – ident: ref_6 – ident: ref_8 – ident: ref_25 – ident: ref_4 – ident: ref_31 – ident: ref_29 – ident: ref_18 doi: 10.4324/9781003015789 – ident: ref_27 – volume: 61 start-page: 1238 year: 2008 ident: ref_41 article-title: Confirmatory tetrad analysis in PLS path modeling publication-title: J. Bus. Res. doi: 10.1016/j.jbusres.2008.01.012 – ident: ref_14 doi: 10.31224/osf.io/5qfex – ident: ref_33 doi: 10.1007/978-3-030-58948-6 – ident: ref_12 – ident: ref_10 – ident: ref_15 – ident: ref_13 – ident: ref_17 – ident: ref_36 – ident: ref_43 – volume: 61 start-page: 1250 year: 2008 ident: ref_44 article-title: Formative versus reflective measurement models Two applications of formative measurement publication-title: J. Bus. Res. doi: 10.1016/j.jbusres.2008.01.013 – volume: 19 start-page: 305 year: 2001 ident: ref_38 article-title: The C-OAR-SE procedure for scale development in marketing publication-title: Int. J. Res. Mark. doi: 10.1016/S0167-8116(02)00097-6 – ident: ref_20 – volume: 2 start-page: 69 year: 2019 ident: ref_21 article-title: Artificial intelligence and machine learning in clinical development: A translational perspective publication-title: Digit. Med. doi: 10.1038/s41746-019-0148-3 – volume: 3 start-page: 53 year: 2020 ident: ref_22 article-title: The need for a system view to regulate artificial intelligence/machine learning-based software as medical device publication-title: Digit. Med. doi: 10.1038/s41746-020-0262-2 |
SSID | ssj0000331916 |
Score | 2.6027415 |
Snippet | The way people travel, organise their time, and acquire information has changed due to information technologies. Artificial intelligence (AI) and machine... |
SourceID | proquest gale crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 10424 |
SubjectTerms | Artificial intelligence Cognitive ability Collaborative learning Content analysis Deep learning Education, Higher Educational aspects Efficiency Higher education Institutional theory Internet of Things Literature reviews Machine learning R&D Research & development School environment Students Sustainability Teaching Technology application |
Title | Exploring Opportunities and Challenges of Artificial Intelligence and Machine Learning in Higher Education Institutions |
URI | https://www.proquest.com/docview/2576528055 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSwJBEB9SH-olypIskyWEIDjyvrz1KUwsDbSwBN-O271bCeK0Tunfb-Zuzw-Qnne4W3Zmdz72t78BaNiOlOg1qHKvhOG4yjQC20JbVqGHCRHaSNobcDhq9SfOy9Sd6oJbomGV-ZmYHtThXFKN_J4CY9fiTdd9WHwb1DWKbld1C40ClPAI5rwIpcfe6G28rrI0bTQxs5U9zLMxv0f9mmjGJt347bii_Qdy6mWeTuBYh4esk-nzFA6iuAyH-evhpAyV3uZlGgrqrZmcwe8aTcdeFxRUr-KULJUFcci6ecuUhM1V-vWMOIINthg5U8lhCq6MmOZdnbHPmGVYELbGgrAcYUAmew6Tp95Ht2_orgqGxNhjaQS4Y2XoeCL0orYtOW8HnuCutISlpOugQ4twOLKEom4JquW0rCYPI65sT2AaLuwKFON5HF0AEyLADBfXXai2E4o2V4quTQNHBtJrClGFu3yBfakpx6nzxZePqQdpw9_SRhUaa-FFxrSxX-yGNOUTd0VM4JhZsEoSf_A-9jvc5sRqanlVuNVCao4_xOlkbw1w2kR3tSNZyzXu692b-Btbu_x_-AqOLMK4pJizGhSXP6voGoOUpahrS6xD4Xlq_gHjI-rE |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5BOMCl4lFEWkotBKqEtGJj72a9B1SlNCgBEhAPiZtZe21UqdqkbKKIP9Xf2Jl9BJBQb5w92rU8n2c89jczAHsiMAa9Bt3cO-0FoWt5ieCIZZdGGBAhRoregINhu3cbnN6Fdwvwt86FIVplbRMLQ52ODN2RH9LBOOTSD8Pv4z8edY2i19W6hUYJizP7NMOQLT_q_0T97nN-0r057nlVVwHPoO-deAki1qRBpNPIxsJIGSeRlqHhmjsTBmjQLQ5brh11C3DtoM19mVrpRKQxDNUCv7sISyjo8wYs_egOL6_mtzq-QEi32mUioBCxj3hq4bZp0QvjK9f3tgMovNrJKnyojqOsU-JnDRZstg7LdbZyvg6b3edMOBSsTEG-AbM5e49djOkQP82K4qwsyVJ2XLdoydnIFV8vC1Ww_osKoIXkoCBzWlbVeX1gvzJWck_YnHvCakYDbZGPcPsu670JjWyU2S1gWicYUXMptYuDVMfSOXqmTQKTmMjXugkH9QIrU5U4p04bvxWGOqQN9UIbTdibC4_Lyh5vi-2SphTVysiIjPOQTPNc9a-vVEcKSVVUedSEb5WQG-EPcTplbgNOm8prvZLcrjWuKmuRq2dsf_r_8FdY7t0MztV5f3j2GVY48WsKvts2NCaPU_sFD0gTvVOhksH9e2-Ef8JaKIk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NVgJeEBQmCgUsVDQJKVpqJ43zgFBZW62MddN-SHszsWNPSCgtpNXEv8Zfx13idJs08bZnnxLL9_nOZ393B9AXkTHoNejm3ukgit0gyARHLLs8wYAIMVL1BjycD_fPo68X8cUW_G1yYYhW2djEylDnC0N35Lt0MI65DON413laxPF4-nn5K6AOUvTS2rTTqCFyYP9cYfhWfpqNUdcfOJ9Ozvb2A99hIDDoh1dBhug1eZToPLGpMFKmWaJlbLjmzsQRGneLw5ZrR50D3DAa8lDmVjqRaAxJtcDvPoB2QlFRC9pfJvPjk80NTygQ3oNhnRQoRBoitga4hQb02njLDd7tDCoPN30KT_zRlI1qLD2DLVt04FGTuVx2YHtynRWHgt4slM_hasPkY0dLOtCvi6pQK8uKnO017VpKtnDV1-uiFWx2oxpoJXlYETst8zVfL9mPgtU8FLbhobCG3UDb5QWc38t6b0OrWBT2JTCtM4yuuZTapVGuU-kcPdlmkclMEmrdhY_NAivjy51T142fCsMe0oa6oY0u9DfCy7rKx91i70lTiupmFITAy2xdlmp2eqJGUkiqqMqTLux4IbfAH-J06jwHnDaV2rol2Ws0rrzlKNU1zl_9f_gdPMQNoL7N5gev4TEnqk1FfetBa_V7bd_gWWml33pQMvh-3_vgHx12LL4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+Opportunities+and+Challenges+of+Artificial+Intelligence+and+Machine+Learning+in+Higher+Education+Institutions&rft.jtitle=Sustainability&rft.au=Kuleto%2C+Valentin&rft.au=Ili%C4%87%2C+Milena&rft.au=Dumangiu%2C+Mihail&rft.au=Rankovi%C4%87%2C+Marko&rft.date=2021-09-01&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=13&rft.issue=18&rft.spage=10424&rft_id=info:doi/10.3390%2Fsu131810424&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_su131810424 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon |