Modeling negative ion defect migration through the gramicidin A channel
The results of potential of mean force (PMF) calculations for the distinct stages of proton conduction through the gramicidin A channel, including proton migration, reorientation of the water file and negative ion defect migration, are presented. The negative ion defect migration mechanism was hypot...
Saved in:
Published in | Journal of molecular modeling Vol. 15; no. 8; pp. 1009 - 1012 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Berlin/Heidelberg : Springer-Verlag
01.08.2009
Springer-Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The results of potential of mean force (PMF) calculations for the distinct stages of proton conduction through the gramicidin A channel, including proton migration, reorientation of the water file and negative ion defect migration, are presented. The negative ion defect migration mechanism was hypothesized in experimental studies but was not considered previously in molecular dynamics simulations. The model system consisted of the peptide chains constructed on the base of the structure PDBID:1JNO, the inner file of nine water molecules and external clusters of water molecules placed at both ends of the channel. Potential energy functions were computed with the CHARMM/PM6/TIP3P parameters. The results obtained for proton migration and water file reorientation are basically consistent with those reported previously by Pómès and Roux (Biophys J 82:2304, 2002) within the similar approach. For the newly considered mechanism of negative ion defect migration from the channel center to the end of the water file we obtain the energy 3.8 kcal mol⁻¹ which is not considerably different from the activation energy of water reorientation, 5.4 kcal mol⁻¹. Therefore this mechanism may principally compete for the rate-limiting step in proton conduction in gramicidin. |
---|---|
AbstractList | The results of potential of mean force (PMF) calculations for the distinct stages of proton conduction through the gramicidin A channel, including proton migration, reorientation of the water file and negative ion defect migration, are presented. The negative ion defect migration mechanism was hypothesized in experimental studies but was not considered previously in molecular dynamics simulations. The model system consisted of the peptide chains constructed on the base of the structure PDBID:1JNO, the inner file of nine water molecules and external clusters of water molecules placed at both ends of the channel. Potential energy functions were computed with the CHARMM/PM6/TIP3P parameters. The results obtained for proton migration and water file reorientation are basically consistent with those reported previously by
Pómès and Roux
(Biophys J 82:2304,
2002
) within the similar approach. For the newly considered mechanism of negative ion defect migration from the channel center to the end of the water file we obtain the energy 3.8 kcal mol
−1
which is not considerably different from the activation energy of water reorientation, 5.4 kcal mol
−1
. Therefore this mechanism may principally compete for the rate-limiting step in proton conduction in gramicidin. The results of potential of mean force (PMF) calculations for the distinct stages of proton conduction through the gramicidin A channel, including proton migration, reorientation of the water file and negative ion defect migration, are presented. The negative ion defect migration mechanism was hypothesized in experimental studies but was not considered previously in molecular dynamics simulations. The model system consisted of the peptide chains constructed on the base of the structure PDBID:1JNO, the inner file of nine water molecules and external clusters of water molecules placed at both ends of the channel. Potential energy functions were computed with the CHARMM/PM6/TIP3P parameters. The results obtained for proton migration and water file reorientation are basically consistent with those reported previously by Pómès and Roux (Biophys J 82:2304, 2002) within the similar approach. For the newly considered mechanism of negative ion defect migration from the channel center to the end of the water file we obtain the energy 3.8 kcal mol⁻¹ which is not considerably different from the activation energy of water reorientation, 5.4 kcal mol⁻¹. Therefore this mechanism may principally compete for the rate-limiting step in proton conduction in gramicidin. The results of potential of mean force (PMF) calculations for the distinct stages of proton conduction through the gramicidin A channel, including proton migration, reorientation of the water file and negative ion defect migration, are presented. The negative ion defect migration mechanism was hypothesized in experimental studies but was not considered previously in molecular dynamics simulations. The model system consisted of the peptide chains constructed on the base of the structure PDBID:1JNO, the inner file of nine water molecules and external clusters of water molecules placed at both ends of the channel. Potential energy functions were computed with the CHARMM/PM6/TIP3P parameters. The results obtained for proton migration and water file reorientation are basically consistent with those reported previously by Pómès and Roux (Biophys J 82:2304, 2002) within the similar approach. For the newly considered mechanism of negative ion defect migration from the channel center to the end of the water file we obtain the energy 3.8 kcal mol(-1) which is not considerably different from the activation energy of water reorientation, 5.4 kcal mol(-1). Therefore this mechanism may principally compete for the rate-limiting step in proton conduction in gramicidin.The results of potential of mean force (PMF) calculations for the distinct stages of proton conduction through the gramicidin A channel, including proton migration, reorientation of the water file and negative ion defect migration, are presented. The negative ion defect migration mechanism was hypothesized in experimental studies but was not considered previously in molecular dynamics simulations. The model system consisted of the peptide chains constructed on the base of the structure PDBID:1JNO, the inner file of nine water molecules and external clusters of water molecules placed at both ends of the channel. Potential energy functions were computed with the CHARMM/PM6/TIP3P parameters. The results obtained for proton migration and water file reorientation are basically consistent with those reported previously by Pómès and Roux (Biophys J 82:2304, 2002) within the similar approach. For the newly considered mechanism of negative ion defect migration from the channel center to the end of the water file we obtain the energy 3.8 kcal mol(-1) which is not considerably different from the activation energy of water reorientation, 5.4 kcal mol(-1). Therefore this mechanism may principally compete for the rate-limiting step in proton conduction in gramicidin. The results of potential of mean force (PMF) calculations for the distinct stages of proton conduction through the gramicidin A channel, including proton migration, reorientation of the water file and negative ion defect migration, are presented. The negative ion defect migration mechanism was hypothesized in experimental studies but was not considered previously in molecular dynamics simulations. The model system consisted of the peptide chains constructed on the base of the structure PDBID:1JNO, the inner file of nine water molecules and external clusters of water molecules placed at both ends of the channel. Potential energy functions were computed with the CHARMM/PM6/TIP3P parameters. The results obtained for proton migration and water file reorientation are basically consistent with those reported previously by Pómès and Roux (Biophys J 82:2304, 2002) within the similar approach. For the newly considered mechanism of negative ion defect migration from the channel center to the end of the water file we obtain the energy 3.8 kcal mol(-1) which is not considerably different from the activation energy of water reorientation, 5.4 kcal mol(-1). Therefore this mechanism may principally compete for the rate-limiting step in proton conduction in gramicidin. |
Author | Nemukhin, Alexander V Moskovsky, Alexander A Kaliman, Ilya A |
Author_xml | – sequence: 1 fullname: Nemukhin, Alexander V – sequence: 2 fullname: Kaliman, Ilya A – sequence: 3 fullname: Moskovsky, Alexander A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19198898$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kM1O3TAQRq2Kqvy0D8AGsmIXGMdObC8RagEJxKIgsbMcZ5JrlNhgJ0h9-_oS2gULVmN9Omfk-fbJjg8eCTmkcEoBxFkCkIqXAKoE3rBSfiF7oLgsa6jYzttblVSyx12yn9ITZBC4-EZ2qaJKSiX3yOVt6HB0fig8DmZ2r1i44IsOe7RzMbkh5jAH8yaGZdjkiUXOJmdd53xxXtiN8R7H7-Rrb8aEP97nAXn49fP-4qq8ubu8vji_KS1TYi4NALW8RtHVWAla1bRipuW8V4LWiI1pTN02pmNcWao6aqjJ36zaVlLGLQN2QE7Wvc8xvCyYZj25ZHEcjcewJN0IJoUUVQaP3sGlnbDTz9FNJv7R_07PgFgBG0NKEXtt3fx27ByNGzUFvS1ZryXr3J3elqy3Jv1g_l_-iVOtTsqsHzDqp7BEn6v6VDpepd4EbYbokn74XQFlQBte14Kxv4u-lpA |
CitedBy_id | crossref_primary_10_1016_j_commatsci_2015_09_044 crossref_primary_10_1021_jp407406k |
Cites_doi | 10.1016/S0006-3495(99)77085-2 10.1016/S0006-3495(02)75448-9 10.1021/jp070104x 10.1006/jcph.1998.6171 10.1021/bi010942w 10.1016/S0006-3495(02)75634-8 10.1016/S0006-3495(02)75576-8 10.1016/S0006-3495(98)77492-2 10.1021/ja00124a002 10.1016/0009-2614(95)00905-J 10.1016/S0006-3495(96)79211-1 10.1021/jp973084f 10.1002/jcc.540040211 10.1016/S0006-3495(96)79321-9 10.1063/1.445869 10.1016/0010-4655(95)00053-I 10.1021/jp026464w 10.1073/pnas.75.1.298 10.1063/1.1740753 10.1006/jsbi.1997.3948 10.1021/ar0402098 10.1063/1.436773 10.1002/jcc.540130812 10.1016/S0006-3495(02)75385-X 10.1021/jp0465783 |
ContentType | Journal Article |
Copyright | Springer-Verlag 2009 |
Copyright_xml | – notice: Springer-Verlag 2009 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1007/s00894-009-0463-8 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 0948-5023 |
EndPage | 1012 |
ExternalDocumentID | 19198898 10_1007_s00894_009_0463_8 US201301645573 |
Genre | Journal Article |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS BGNMA FBQ KOV M4Y NU0 R4E RIG --- -4Y -58 -5G -BR -EM -Y2 -~C .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMOBN EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOW LAS LLZTM MA- N9A NB0 NDZJH NPVJJ NQJWS O9- O93 O9G O9I O9J OAM P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R89 R9I RHV RNI RNS ROL RPX RRX RSV RZK S16 S1Z S27 S3B SAP SCG SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z5O Z7R Z7U Z7V Z7W Z7X Z7Y Z83 Z86 Z87 Z8M Z8O Z8P Z8Q Z8S Z8W Z91 ZMTXR ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABQSL ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c397t-a001c45e7d5e27125123ab44f9715ee6a6a5b6ad349c19d1a1a8982bb8134c303 |
IEDL.DBID | U2A |
ISSN | 0949-183X 1610-2940 0948-5023 |
IngestDate | Thu Jul 10 22:01:48 EDT 2025 Mon Jul 21 06:04:34 EDT 2025 Tue Jul 01 02:45:18 EDT 2025 Thu Apr 24 23:10:54 EDT 2025 Fri Feb 21 02:30:28 EST 2025 Tue Nov 07 23:22:52 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Potential of mean force Gramicidin Proton transport |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c397t-a001c45e7d5e27125123ab44f9715ee6a6a5b6ad349c19d1a1a8982bb8134c303 |
Notes | http://dx.doi.org/10.1007/s00894-009-0463-8 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 19198898 |
PQID | 67387872 |
PQPubID | 23479 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_67387872 pubmed_primary_19198898 crossref_citationtrail_10_1007_s00894_009_0463_8 crossref_primary_10_1007_s00894_009_0463_8 springer_journals_10_1007_s00894_009_0463_8 fao_agris_US201301645573 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-08-01 |
PublicationDateYYYYMMDD | 2009-08-01 |
PublicationDate_xml | – month: 08 year: 2009 text: 2009-08-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany |
PublicationSubtitle | Computational Chemistry - Life Sciences - Advanced Materials - New Methods |
PublicationTitle | Journal of molecular modeling |
PublicationTitleAbbrev | J Mol Model |
PublicationTitleAlternate | J Mol Model |
PublicationYear | 2009 |
Publisher | Berlin/Heidelberg : Springer-Verlag Springer-Verlag |
Publisher_xml | – name: Berlin/Heidelberg : Springer-Verlag – name: Springer-Verlag |
References | RokitskayaTIKotovaEAAntonenkoYNBiophys J20028286510.1016/S0006-3495(02)75448-91:CAS:528:DC%2BD38XovVCnsg%3D%3D BrooksBRBruccoleriREOlafsonBDStatesDJSwaminathanSKarplusMJ Comput Chem1983418710.1002/jcc.5400402111:CAS:528:DyaL3sXit1aiu7w%3D PhilipsLRColeCDHendershotRJCottenMCrossTABusathDDBiophys J199977249210.1016/S0006-3495(99)77085-2 RouxBComp Phys Comm19959127510.1016/0010-4655(95)00053-I1:CAS:528:DyaK2MXps1Wrt7o%3D JorgensenWLChandrasekharJMaduraJDImpeyRWKleinMLJ Chem Phys19837992610.1063/1.4458691:CAS:528:DyaL3sXksF2htL4%3D VothGAAcc Chem Res20063914310.1021/ar04020981:CAS:528:DC%2BD28XptFWitg%3D%3D LeimkuhlerBJSweetCRJ Chem Phys200412110810.1063/1.17407531:CAS:528:DC%2BD2cXltVemt78%3D PómèsRRouxBBiophys J1998753310.1016/S0006-3495(98)77492-2 NagleJFMorowitzHJProc Natl Acad Sci USA19787529810.1073/pnas.75.1.2981:CAS:528:DyaE1cXhtVSntb0%3D PómèsRRouxBBiophys J1996711910.1016/S0006-3495(96)79211-1 De GrootBLTielemanDPPohlPGrubmüllerHBiophys J200282293410.1016/S0006-3495(02)75634-8 WallaceBAJ Struct Biol199812112310.1006/jsbi.1997.39481:CAS:528:DyaK1cXjslGht7s%3D StillingerFHDavidCWJ Chem Phys197869147310.1063/1.4367731:CAS:528:DyaE1cXls12nsLY%3D GrigorenkoBLNemukhinAVTopolIABurtSKJ Phys Chem A20021061066310.1021/jp026464w1:CAS:528:DC%2BD38XnvVOis7o%3D TownsleyLETuckerSShamSHintonJFBiochemistry2001401167610.1021/bi010942w1:CAS:528:DC%2BD3MXmsFSqsLg%3D PómèsRRouxBBiophys J200282230410.1016/S0006-3495(02)75576-8 SwansonJMSMaupinCMChenHPetersenMKXuJWuYVothGAJ Phys Chem B2007111430010.1021/jp070104x1:CAS:528:DC%2BD2sXktFegt70%3D KumarSBouzidaDSwendsenRHKollmanPARosenbergJMJ Comput Chem199213101110.1002/jcc.5401308121:CAS:528:DyaK38XmtVynsrs%3D AgmonNChem Phys Lett199524445610.1016/0009-2614(95)00905-J1:CAS:528:DyaK2MXos1Wls7o%3D MacKerellADJBashfordDBellottMDunbrackRLJEvanseckJDFieldMJFischerSGaoJGouJHaSJoseph-McCarthyDKuchnirLKuczeraKLauFTKMattosCMichnickSNgoTNguyenDTProdhomBReiherWEIRouxBSchelenkrichMSmithJCStoteRStraubJWatanbeMWiórkiewicz-KuczeraJYinDKarplusMJ Phys Chem B1998102358610.1021/jp973084f1:CAS:528:DyaK1cXivVOlsb4%3D BondSDLeimkuhlerBJLairdBBJ Comp Phys199915111410.1006/jcph.1998.61711:CAS:528:DyaK1MXivFejt74%3D CornellWDCieplakPBaylyCIGouldIRMerzKMFergusonDMSpellmeyerDCFoxTCaldwellJWKollmanPAJ Amer Chem Soc1995117517910.1021/ja00124a0021:CAS:528:DyaK2MXlsFertrc%3D Braun-SandSBurykinAChuZTWarshelAJ Phys Chem B200510958310.1021/jp04657831:CAS:528:DC%2BD2cXhtVCntbfJ SagnellaDELaasonenKKleinMLBiophys J199671117210.1016/S0006-3495(96)79321-91:CAS:528:DyaK28XlsVGnsbY%3D ChernyshevACukiermanSBiophys J20028218210.1016/S0006-3495(02)75385-X1:CAS:528:DC%2BD38XoslKltg%3D%3D LE Townsley (463_CR14) 2001; 40 WL Jorgensen (463_CR23) 1983; 79 DE Sagnella (463_CR7) 1996; 71 BJ Leimkuhler (463_CR17) 2004; 121 R Pómès (463_CR6) 1996; 71 FH Stillinger (463_CR21) 1978; 69 SD Bond (463_CR18) 1999; 151 A Chernyshev (463_CR25) 2002; 82 B Roux (463_CR19) 1995; 91 GA Voth (463_CR10) 2006; 39 S Kumar (463_CR20) 1992; 13 WD Cornell (463_CR16) 1995; 117 LR Philips (463_CR4) 1999; 77 JF Nagle (463_CR2) 1978; 75 BA Wallace (463_CR1) 1998; 121 R Pómès (463_CR8) 2002; 82 N Agmon (463_CR3) 1995; 244 TI Rokitskaya (463_CR5) 2002; 82 ADJ MacKerell (463_CR22) 1998; 102 R Pómès (463_CR13) 1998; 75 S Braun-Sand (463_CR12) 2005; 109 JMS Swanson (463_CR11) 2007; 111 BR Brooks (463_CR24) 1983; 4 BL Grigorenko (463_CR15) 2002; 106 BL Groot De (463_CR9) 2002; 82 11751307 - Biophys J. 2002 Jan;82(1 Pt 1):182-92 16851050 - J Phys Chem B. 2005 Jan 13;109(1):583-92 16489734 - Acc Chem Res. 2006 Feb;39(2):143-50 11570868 - Biochemistry. 2001 Oct 2;40(39):11676-86 8804586 - Biophys J. 1996 Jul;71(1):19-39 11964221 - Biophys J. 2002 May;82(5):2304-16 24889800 - J Phys Chem B. 1998 Apr 30;102(18):3586-616 272644 - Proc Natl Acad Sci U S A. 1978 Jan;75(1):298-302 20540928 - Biophys J. 1999 Nov;77(5):2492-501 8873991 - Biophys J. 1996 Sep;71(3):1172-8 17429993 - J Phys Chem B. 2007 May 3;111(17):4300-14 12023216 - Biophys J. 2002 Jun;82(6):2934-42 9649365 - Biophys J. 1998 Jul;75(1):33-40 9618340 - J Struct Biol. 1998;121(2):123-41 11806928 - Biophys J. 2002 Feb;82(2):865-73 15260527 - J Chem Phys. 2004 Jul 1;121(1):108-16 |
References_xml | – reference: CornellWDCieplakPBaylyCIGouldIRMerzKMFergusonDMSpellmeyerDCFoxTCaldwellJWKollmanPAJ Amer Chem Soc1995117517910.1021/ja00124a0021:CAS:528:DyaK2MXlsFertrc%3D – reference: NagleJFMorowitzHJProc Natl Acad Sci USA19787529810.1073/pnas.75.1.2981:CAS:528:DyaE1cXhtVSntb0%3D – reference: PómèsRRouxBBiophys J200282230410.1016/S0006-3495(02)75576-8 – reference: PómèsRRouxBBiophys J1996711910.1016/S0006-3495(96)79211-1 – reference: MacKerellADJBashfordDBellottMDunbrackRLJEvanseckJDFieldMJFischerSGaoJGouJHaSJoseph-McCarthyDKuchnirLKuczeraKLauFTKMattosCMichnickSNgoTNguyenDTProdhomBReiherWEIRouxBSchelenkrichMSmithJCStoteRStraubJWatanbeMWiórkiewicz-KuczeraJYinDKarplusMJ Phys Chem B1998102358610.1021/jp973084f1:CAS:528:DyaK1cXivVOlsb4%3D – reference: Braun-SandSBurykinAChuZTWarshelAJ Phys Chem B200510958310.1021/jp04657831:CAS:528:DC%2BD2cXhtVCntbfJ – reference: PómèsRRouxBBiophys J1998753310.1016/S0006-3495(98)77492-2 – reference: LeimkuhlerBJSweetCRJ Chem Phys200412110810.1063/1.17407531:CAS:528:DC%2BD2cXltVemt78%3D – reference: VothGAAcc Chem Res20063914310.1021/ar04020981:CAS:528:DC%2BD28XptFWitg%3D%3D – reference: BondSDLeimkuhlerBJLairdBBJ Comp Phys199915111410.1006/jcph.1998.61711:CAS:528:DyaK1MXivFejt74%3D – reference: WallaceBAJ Struct Biol199812112310.1006/jsbi.1997.39481:CAS:528:DyaK1cXjslGht7s%3D – reference: PhilipsLRColeCDHendershotRJCottenMCrossTABusathDDBiophys J199977249210.1016/S0006-3495(99)77085-2 – reference: TownsleyLETuckerSShamSHintonJFBiochemistry2001401167610.1021/bi010942w1:CAS:528:DC%2BD3MXmsFSqsLg%3D – reference: GrigorenkoBLNemukhinAVTopolIABurtSKJ Phys Chem A20021061066310.1021/jp026464w1:CAS:528:DC%2BD38XnvVOis7o%3D – reference: KumarSBouzidaDSwendsenRHKollmanPARosenbergJMJ Comput Chem199213101110.1002/jcc.5401308121:CAS:528:DyaK38XmtVynsrs%3D – reference: SwansonJMSMaupinCMChenHPetersenMKXuJWuYVothGAJ Phys Chem B2007111430010.1021/jp070104x1:CAS:528:DC%2BD2sXktFegt70%3D – reference: RouxBComp Phys Comm19959127510.1016/0010-4655(95)00053-I1:CAS:528:DyaK2MXps1Wrt7o%3D – reference: ChernyshevACukiermanSBiophys J20028218210.1016/S0006-3495(02)75385-X1:CAS:528:DC%2BD38XoslKltg%3D%3D – reference: De GrootBLTielemanDPPohlPGrubmüllerHBiophys J200282293410.1016/S0006-3495(02)75634-8 – reference: StillingerFHDavidCWJ Chem Phys197869147310.1063/1.4367731:CAS:528:DyaE1cXls12nsLY%3D – reference: BrooksBRBruccoleriREOlafsonBDStatesDJSwaminathanSKarplusMJ Comput Chem1983418710.1002/jcc.5400402111:CAS:528:DyaL3sXit1aiu7w%3D – reference: RokitskayaTIKotovaEAAntonenkoYNBiophys J20028286510.1016/S0006-3495(02)75448-91:CAS:528:DC%2BD38XovVCnsg%3D%3D – reference: SagnellaDELaasonenKKleinMLBiophys J199671117210.1016/S0006-3495(96)79321-91:CAS:528:DyaK28XlsVGnsbY%3D – reference: JorgensenWLChandrasekharJMaduraJDImpeyRWKleinMLJ Chem Phys19837992610.1063/1.4458691:CAS:528:DyaL3sXksF2htL4%3D – reference: AgmonNChem Phys Lett199524445610.1016/0009-2614(95)00905-J1:CAS:528:DyaK2MXos1Wls7o%3D – volume: 77 start-page: 2492 year: 1999 ident: 463_CR4 publication-title: Biophys J doi: 10.1016/S0006-3495(99)77085-2 – volume: 82 start-page: 865 year: 2002 ident: 463_CR5 publication-title: Biophys J doi: 10.1016/S0006-3495(02)75448-9 – volume: 111 start-page: 4300 year: 2007 ident: 463_CR11 publication-title: J Phys Chem B doi: 10.1021/jp070104x – volume: 151 start-page: 114 year: 1999 ident: 463_CR18 publication-title: J Comp Phys doi: 10.1006/jcph.1998.6171 – volume: 40 start-page: 11676 year: 2001 ident: 463_CR14 publication-title: Biochemistry doi: 10.1021/bi010942w – volume: 82 start-page: 2934 year: 2002 ident: 463_CR9 publication-title: Biophys J doi: 10.1016/S0006-3495(02)75634-8 – volume: 82 start-page: 2304 year: 2002 ident: 463_CR8 publication-title: Biophys J doi: 10.1016/S0006-3495(02)75576-8 – volume: 75 start-page: 33 year: 1998 ident: 463_CR13 publication-title: Biophys J doi: 10.1016/S0006-3495(98)77492-2 – volume: 117 start-page: 5179 year: 1995 ident: 463_CR16 publication-title: J Amer Chem Soc doi: 10.1021/ja00124a002 – volume: 244 start-page: 456 year: 1995 ident: 463_CR3 publication-title: Chem Phys Lett doi: 10.1016/0009-2614(95)00905-J – volume: 71 start-page: 19 year: 1996 ident: 463_CR6 publication-title: Biophys J doi: 10.1016/S0006-3495(96)79211-1 – volume: 102 start-page: 3586 year: 1998 ident: 463_CR22 publication-title: J Phys Chem B doi: 10.1021/jp973084f – volume: 4 start-page: 187 year: 1983 ident: 463_CR24 publication-title: J Comput Chem doi: 10.1002/jcc.540040211 – volume: 71 start-page: 1172 year: 1996 ident: 463_CR7 publication-title: Biophys J doi: 10.1016/S0006-3495(96)79321-9 – volume: 79 start-page: 926 year: 1983 ident: 463_CR23 publication-title: J Chem Phys doi: 10.1063/1.445869 – volume: 91 start-page: 275 year: 1995 ident: 463_CR19 publication-title: Comp Phys Comm doi: 10.1016/0010-4655(95)00053-I – volume: 106 start-page: 10663 year: 2002 ident: 463_CR15 publication-title: J Phys Chem A doi: 10.1021/jp026464w – volume: 75 start-page: 298 year: 1978 ident: 463_CR2 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.75.1.298 – volume: 121 start-page: 108 year: 2004 ident: 463_CR17 publication-title: J Chem Phys doi: 10.1063/1.1740753 – volume: 121 start-page: 123 year: 1998 ident: 463_CR1 publication-title: J Struct Biol doi: 10.1006/jsbi.1997.3948 – volume: 39 start-page: 143 year: 2006 ident: 463_CR10 publication-title: Acc Chem Res doi: 10.1021/ar0402098 – volume: 69 start-page: 1473 year: 1978 ident: 463_CR21 publication-title: J Chem Phys doi: 10.1063/1.436773 – volume: 13 start-page: 1011 year: 1992 ident: 463_CR20 publication-title: J Comput Chem doi: 10.1002/jcc.540130812 – volume: 82 start-page: 182 year: 2002 ident: 463_CR25 publication-title: Biophys J doi: 10.1016/S0006-3495(02)75385-X – volume: 109 start-page: 583 year: 2005 ident: 463_CR12 publication-title: J Phys Chem B doi: 10.1021/jp0465783 – reference: 17429993 - J Phys Chem B. 2007 May 3;111(17):4300-14 – reference: 11806928 - Biophys J. 2002 Feb;82(2):865-73 – reference: 24889800 - J Phys Chem B. 1998 Apr 30;102(18):3586-616 – reference: 8804586 - Biophys J. 1996 Jul;71(1):19-39 – reference: 8873991 - Biophys J. 1996 Sep;71(3):1172-8 – reference: 11964221 - Biophys J. 2002 May;82(5):2304-16 – reference: 9618340 - J Struct Biol. 1998;121(2):123-41 – reference: 16489734 - Acc Chem Res. 2006 Feb;39(2):143-50 – reference: 11570868 - Biochemistry. 2001 Oct 2;40(39):11676-86 – reference: 11751307 - Biophys J. 2002 Jan;82(1 Pt 1):182-92 – reference: 16851050 - J Phys Chem B. 2005 Jan 13;109(1):583-92 – reference: 15260527 - J Chem Phys. 2004 Jul 1;121(1):108-16 – reference: 12023216 - Biophys J. 2002 Jun;82(6):2934-42 – reference: 272644 - Proc Natl Acad Sci U S A. 1978 Jan;75(1):298-302 – reference: 20540928 - Biophys J. 1999 Nov;77(5):2492-501 – reference: 9649365 - Biophys J. 1998 Jul;75(1):33-40 |
SSID | ssj0009047 ssj0001256522 |
Score | 1.8318418 |
Snippet | The results of potential of mean force (PMF) calculations for the distinct stages of proton conduction through the gramicidin A channel, including proton... |
SourceID | proquest pubmed crossref springer fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1009 |
SubjectTerms | Algorithms Amino Acid Sequence Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Computer Appl. in Life Sciences Computer Applications in Chemistry Computer Simulation gramicidin Gramicidin - chemistry Gramicidin - metabolism Hydrogen Bonding Kinetics Membrane Potentials Models, Chemical Models, Molecular Molecular Medicine Molecular Sequence Data Original Paper Potential of mean force Protein Binding Protein Structure, Secondary Protein Structure, Tertiary Proton transport Protons Theoretical and Computational Chemistry Water - chemistry Water - metabolism |
Title | Modeling negative ion defect migration through the gramicidin A channel |
URI | https://link.springer.com/article/10.1007/s00894-009-0463-8 https://www.ncbi.nlm.nih.gov/pubmed/19198898 https://www.proquest.com/docview/67387872 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RdoAF8aY8igcmUKQmsRNnLKilAoGEoBJM1sVxq0qQItr-f85OUkAUJKYsTmJ_l9yd_d0D4JQ2Oig0ab8gDGmDImXmpRy1p1FghFoGqctKu72L-gN-_SSeyjzuaRXtXlGSTlMvkt3IWtkytu4wPwo9WYOGoK27jeMaBJ0vByvkozj2gJyZthckfMFmLnvKN3tUG-Jkmav5gyZ11qe3Aeul28g6hZw3YcXkW7B6WXVr24Yr29TMppaz3IxcMW9GiLPM2HAN9joeFZJmZV8euhpmA7PGekzWi3WYzQDOzcsODHrdx8u-VzZJ8DS5EjMPacWaCxNnwgSxc1dCTDkfJrEvjIkIcZFGmIU80X6S-eijTEgEqfRDrsmA7UI9n-RmHxgXKGJSAcMUQ96WhgxXFiWBZRYlog6a0K6gUrqsIG4bWbyoRe1jh64idJVFV8kmnC1ueSvKZ_w1eJ_wVzgi9aYGD4ElVWk3J0QcNuGkEooiYC2pgbmZzKc2Lk2S0qHJ7RWy-nxP4ieS1tqE80p4qvxBp79P4uBfow9hraCXbETgEdRn73NzTF7KLG1Bo3P1fNNtQa13cd9y3-gHOITbAg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5RGMqCeDc8PTCBIjWJnThjhSjluUClbtbFcatKJUW0_f-cnaSAeEhMWZzE-c65--x7AZzRRgeFJu0XRhFtUKTM_Yyj9jUKjFHLMHNZaQ-Pca_PbwdiUOVxz-po99ol6TT1MtmNrJUtY-sO8-PIlw1YIy4g7VLuh51PByvEUZz3gMhM2w9TvvRm_vSUL_aoMcTpT1Tzm5vUWZ_uJmxUtJF1SjlvwYoptqF5WXdr24Fr29TMppazwoxcMW9GiLPc2HAN9jIelZJmVV8euhpmA7PGekzWi3WYzQAuzGQX-t2r58ueXzVJ8DVRibmP9MWaC5PkwoSJoysRZpwP0yQQxsSEuMhizCOe6iDNAwxQpiSCTAYR12TA9mC1mBamBYwLFAmpgGGGEW9LQ4Yrj9PQehYlog49aNdQKV1VELeNLCZqWfvYoasIXWXRVdKD8-Utr2X5jL8Gtwh_hSNSb6r_FFqnKu3mhEgiD05roSgC1jo1sDDTxczGpUlSOjS5_VJWH-9Jg1TSt3pwUQtPVT_o7PdJHPxr9Ck0e88P9-r-5vHuENZLV5ONDjyC1fnbwhwTY5lnJ26FvgOtP9tn |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1RkIALYm9ZfeAEitokduIcq0LZKySo1Js1cdyqUkkrWv6fcZYCoiBxysVJnDfOzNhvFoAz2uig0KT9PN-nDYqUiRNz1I5GgQFq6cVZVtpjJ7jp8rue6BV9TqdltHtJSeY5DbZKUzqrT5J-fZ74RpbLlrTNDvYD35EVWOE2GZgWdNdrfjlkIX8lYxLIsWk4XsTnzOaip3yzTZU-jhe5nT8o08wStTdho3AhWTOX-RYsmXQb1lpl57YduLYNzmyaOUvNICvszQh9lhgbusFeh4Nc6qzo0UNXw2yQ1lAPyZKxJrPZwKkZ7UK3ffXSunGKhgmOJrdi5iB9sebChIkwXpi5Lj7GnPej0BXGBIS-iANMfB5pN0pcdFFGJI5Yuj7XZMz2YDkdp6YKjAsUIamDfow-b0hDRiwJIs-yjBJRezVolFApXVQTt00tRmpeBzlDVxG6yqKrZA3O57dM8lIafw2uEv4KB6TqVPfZswQr7eyECP0anJZCUQSsJTgwNeP3qY1Rk6SAaHL7uaw-3xO5kaRvrcFFKTxV_KzT3ydx8K_Rp7D6dNlWD7ed-0NYz1knGyh4BMuzt3dzTM7LLD7JFugHqcTfmg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+negative+ion+defect+migration+through+the+gramicidin+A+channel&rft.jtitle=Journal+of+molecular+modeling&rft.au=Nemukhin%2C+Alexander+V.&rft.au=Kaliman%2C+Ilya+A.&rft.au=Moskovsky%2C+Alexander+A.&rft.date=2009-08-01&rft.issn=1610-2940&rft.eissn=0948-5023&rft.volume=15&rft.issue=8&rft.spage=1009&rft.epage=1012&rft_id=info:doi/10.1007%2Fs00894-009-0463-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00894_009_0463_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0949-183X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0949-183X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0949-183X&client=summon |