Modeling negative ion defect migration through the gramicidin A channel

The results of potential of mean force (PMF) calculations for the distinct stages of proton conduction through the gramicidin A channel, including proton migration, reorientation of the water file and negative ion defect migration, are presented. The negative ion defect migration mechanism was hypot...

Full description

Saved in:
Bibliographic Details
Published inJournal of molecular modeling Vol. 15; no. 8; pp. 1009 - 1012
Main Authors Nemukhin, Alexander V, Kaliman, Ilya A, Moskovsky, Alexander A
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Berlin/Heidelberg : Springer-Verlag 01.08.2009
Springer-Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The results of potential of mean force (PMF) calculations for the distinct stages of proton conduction through the gramicidin A channel, including proton migration, reorientation of the water file and negative ion defect migration, are presented. The negative ion defect migration mechanism was hypothesized in experimental studies but was not considered previously in molecular dynamics simulations. The model system consisted of the peptide chains constructed on the base of the structure PDBID:1JNO, the inner file of nine water molecules and external clusters of water molecules placed at both ends of the channel. Potential energy functions were computed with the CHARMM/PM6/TIP3P parameters. The results obtained for proton migration and water file reorientation are basically consistent with those reported previously by Pómès and Roux (Biophys J 82:2304, 2002) within the similar approach. For the newly considered mechanism of negative ion defect migration from the channel center to the end of the water file we obtain the energy 3.8 kcal mol⁻¹ which is not considerably different from the activation energy of water reorientation, 5.4 kcal mol⁻¹. Therefore this mechanism may principally compete for the rate-limiting step in proton conduction in gramicidin.
AbstractList The results of potential of mean force (PMF) calculations for the distinct stages of proton conduction through the gramicidin A channel, including proton migration, reorientation of the water file and negative ion defect migration, are presented. The negative ion defect migration mechanism was hypothesized in experimental studies but was not considered previously in molecular dynamics simulations. The model system consisted of the peptide chains constructed on the base of the structure PDBID:1JNO, the inner file of nine water molecules and external clusters of water molecules placed at both ends of the channel. Potential energy functions were computed with the CHARMM/PM6/TIP3P parameters. The results obtained for proton migration and water file reorientation are basically consistent with those reported previously by Pómès and Roux (Biophys J 82:2304, 2002 ) within the similar approach. For the newly considered mechanism of negative ion defect migration from the channel center to the end of the water file we obtain the energy 3.8 kcal mol −1 which is not considerably different from the activation energy of water reorientation, 5.4 kcal mol −1 . Therefore this mechanism may principally compete for the rate-limiting step in proton conduction in gramicidin.
The results of potential of mean force (PMF) calculations for the distinct stages of proton conduction through the gramicidin A channel, including proton migration, reorientation of the water file and negative ion defect migration, are presented. The negative ion defect migration mechanism was hypothesized in experimental studies but was not considered previously in molecular dynamics simulations. The model system consisted of the peptide chains constructed on the base of the structure PDBID:1JNO, the inner file of nine water molecules and external clusters of water molecules placed at both ends of the channel. Potential energy functions were computed with the CHARMM/PM6/TIP3P parameters. The results obtained for proton migration and water file reorientation are basically consistent with those reported previously by Pómès and Roux (Biophys J 82:2304, 2002) within the similar approach. For the newly considered mechanism of negative ion defect migration from the channel center to the end of the water file we obtain the energy 3.8 kcal mol⁻¹ which is not considerably different from the activation energy of water reorientation, 5.4 kcal mol⁻¹. Therefore this mechanism may principally compete for the rate-limiting step in proton conduction in gramicidin.
The results of potential of mean force (PMF) calculations for the distinct stages of proton conduction through the gramicidin A channel, including proton migration, reorientation of the water file and negative ion defect migration, are presented. The negative ion defect migration mechanism was hypothesized in experimental studies but was not considered previously in molecular dynamics simulations. The model system consisted of the peptide chains constructed on the base of the structure PDBID:1JNO, the inner file of nine water molecules and external clusters of water molecules placed at both ends of the channel. Potential energy functions were computed with the CHARMM/PM6/TIP3P parameters. The results obtained for proton migration and water file reorientation are basically consistent with those reported previously by Pómès and Roux (Biophys J 82:2304, 2002) within the similar approach. For the newly considered mechanism of negative ion defect migration from the channel center to the end of the water file we obtain the energy 3.8 kcal mol(-1) which is not considerably different from the activation energy of water reorientation, 5.4 kcal mol(-1). Therefore this mechanism may principally compete for the rate-limiting step in proton conduction in gramicidin.The results of potential of mean force (PMF) calculations for the distinct stages of proton conduction through the gramicidin A channel, including proton migration, reorientation of the water file and negative ion defect migration, are presented. The negative ion defect migration mechanism was hypothesized in experimental studies but was not considered previously in molecular dynamics simulations. The model system consisted of the peptide chains constructed on the base of the structure PDBID:1JNO, the inner file of nine water molecules and external clusters of water molecules placed at both ends of the channel. Potential energy functions were computed with the CHARMM/PM6/TIP3P parameters. The results obtained for proton migration and water file reorientation are basically consistent with those reported previously by Pómès and Roux (Biophys J 82:2304, 2002) within the similar approach. For the newly considered mechanism of negative ion defect migration from the channel center to the end of the water file we obtain the energy 3.8 kcal mol(-1) which is not considerably different from the activation energy of water reorientation, 5.4 kcal mol(-1). Therefore this mechanism may principally compete for the rate-limiting step in proton conduction in gramicidin.
The results of potential of mean force (PMF) calculations for the distinct stages of proton conduction through the gramicidin A channel, including proton migration, reorientation of the water file and negative ion defect migration, are presented. The negative ion defect migration mechanism was hypothesized in experimental studies but was not considered previously in molecular dynamics simulations. The model system consisted of the peptide chains constructed on the base of the structure PDBID:1JNO, the inner file of nine water molecules and external clusters of water molecules placed at both ends of the channel. Potential energy functions were computed with the CHARMM/PM6/TIP3P parameters. The results obtained for proton migration and water file reorientation are basically consistent with those reported previously by Pómès and Roux (Biophys J 82:2304, 2002) within the similar approach. For the newly considered mechanism of negative ion defect migration from the channel center to the end of the water file we obtain the energy 3.8 kcal mol(-1) which is not considerably different from the activation energy of water reorientation, 5.4 kcal mol(-1). Therefore this mechanism may principally compete for the rate-limiting step in proton conduction in gramicidin.
Author Nemukhin, Alexander V
Moskovsky, Alexander A
Kaliman, Ilya A
Author_xml – sequence: 1
  fullname: Nemukhin, Alexander V
– sequence: 2
  fullname: Kaliman, Ilya A
– sequence: 3
  fullname: Moskovsky, Alexander A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19198898$$D View this record in MEDLINE/PubMed
BookMark eNp9kM1O3TAQRq2Kqvy0D8AGsmIXGMdObC8RagEJxKIgsbMcZ5JrlNhgJ0h9-_oS2gULVmN9Omfk-fbJjg8eCTmkcEoBxFkCkIqXAKoE3rBSfiF7oLgsa6jYzttblVSyx12yn9ITZBC4-EZ2qaJKSiX3yOVt6HB0fig8DmZ2r1i44IsOe7RzMbkh5jAH8yaGZdjkiUXOJmdd53xxXtiN8R7H7-Rrb8aEP97nAXn49fP-4qq8ubu8vji_KS1TYi4NALW8RtHVWAla1bRipuW8V4LWiI1pTN02pmNcWao6aqjJ36zaVlLGLQN2QE7Wvc8xvCyYZj25ZHEcjcewJN0IJoUUVQaP3sGlnbDTz9FNJv7R_07PgFgBG0NKEXtt3fx27ByNGzUFvS1ZryXr3J3elqy3Jv1g_l_-iVOtTsqsHzDqp7BEn6v6VDpepd4EbYbokn74XQFlQBte14Kxv4u-lpA
CitedBy_id crossref_primary_10_1016_j_commatsci_2015_09_044
crossref_primary_10_1021_jp407406k
Cites_doi 10.1016/S0006-3495(99)77085-2
10.1016/S0006-3495(02)75448-9
10.1021/jp070104x
10.1006/jcph.1998.6171
10.1021/bi010942w
10.1016/S0006-3495(02)75634-8
10.1016/S0006-3495(02)75576-8
10.1016/S0006-3495(98)77492-2
10.1021/ja00124a002
10.1016/0009-2614(95)00905-J
10.1016/S0006-3495(96)79211-1
10.1021/jp973084f
10.1002/jcc.540040211
10.1016/S0006-3495(96)79321-9
10.1063/1.445869
10.1016/0010-4655(95)00053-I
10.1021/jp026464w
10.1073/pnas.75.1.298
10.1063/1.1740753
10.1006/jsbi.1997.3948
10.1021/ar0402098
10.1063/1.436773
10.1002/jcc.540130812
10.1016/S0006-3495(02)75385-X
10.1021/jp0465783
ContentType Journal Article
Copyright Springer-Verlag 2009
Copyright_xml – notice: Springer-Verlag 2009
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1007/s00894-009-0463-8
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 0948-5023
EndPage 1012
ExternalDocumentID 19198898
10_1007_s00894_009_0463_8
US201301645573
Genre Journal Article
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
BGNMA
FBQ
KOV
M4Y
NU0
R4E
RIG
---
-4Y
-58
-5G
-BR
-EM
-Y2
-~C
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOW
LAS
LLZTM
MA-
N9A
NB0
NDZJH
NPVJJ
NQJWS
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCG
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7U
Z7V
Z7W
Z7X
Z7Y
Z83
Z86
Z87
Z8M
Z8O
Z8P
Z8Q
Z8S
Z8W
Z91
ZMTXR
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c397t-a001c45e7d5e27125123ab44f9715ee6a6a5b6ad349c19d1a1a8982bb8134c303
IEDL.DBID U2A
ISSN 0949-183X
1610-2940
0948-5023
IngestDate Thu Jul 10 22:01:48 EDT 2025
Mon Jul 21 06:04:34 EDT 2025
Tue Jul 01 02:45:18 EDT 2025
Thu Apr 24 23:10:54 EDT 2025
Fri Feb 21 02:30:28 EST 2025
Tue Nov 07 23:22:52 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Potential of mean force
Gramicidin
Proton transport
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-a001c45e7d5e27125123ab44f9715ee6a6a5b6ad349c19d1a1a8982bb8134c303
Notes http://dx.doi.org/10.1007/s00894-009-0463-8
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 19198898
PQID 67387872
PQPubID 23479
PageCount 4
ParticipantIDs proquest_miscellaneous_67387872
pubmed_primary_19198898
crossref_citationtrail_10_1007_s00894_009_0463_8
crossref_primary_10_1007_s00894_009_0463_8
springer_journals_10_1007_s00894_009_0463_8
fao_agris_US201301645573
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-08-01
PublicationDateYYYYMMDD 2009-08-01
PublicationDate_xml – month: 08
  year: 2009
  text: 2009-08-01
  day: 01
PublicationDecade 2000
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
PublicationSubtitle Computational Chemistry - Life Sciences - Advanced Materials - New Methods
PublicationTitle Journal of molecular modeling
PublicationTitleAbbrev J Mol Model
PublicationTitleAlternate J Mol Model
PublicationYear 2009
Publisher Berlin/Heidelberg : Springer-Verlag
Springer-Verlag
Publisher_xml – name: Berlin/Heidelberg : Springer-Verlag
– name: Springer-Verlag
References RokitskayaTIKotovaEAAntonenkoYNBiophys J20028286510.1016/S0006-3495(02)75448-91:CAS:528:DC%2BD38XovVCnsg%3D%3D
BrooksBRBruccoleriREOlafsonBDStatesDJSwaminathanSKarplusMJ Comput Chem1983418710.1002/jcc.5400402111:CAS:528:DyaL3sXit1aiu7w%3D
PhilipsLRColeCDHendershotRJCottenMCrossTABusathDDBiophys J199977249210.1016/S0006-3495(99)77085-2
RouxBComp Phys Comm19959127510.1016/0010-4655(95)00053-I1:CAS:528:DyaK2MXps1Wrt7o%3D
JorgensenWLChandrasekharJMaduraJDImpeyRWKleinMLJ Chem Phys19837992610.1063/1.4458691:CAS:528:DyaL3sXksF2htL4%3D
VothGAAcc Chem Res20063914310.1021/ar04020981:CAS:528:DC%2BD28XptFWitg%3D%3D
LeimkuhlerBJSweetCRJ Chem Phys200412110810.1063/1.17407531:CAS:528:DC%2BD2cXltVemt78%3D
PómèsRRouxBBiophys J1998753310.1016/S0006-3495(98)77492-2
NagleJFMorowitzHJProc Natl Acad Sci USA19787529810.1073/pnas.75.1.2981:CAS:528:DyaE1cXhtVSntb0%3D
PómèsRRouxBBiophys J1996711910.1016/S0006-3495(96)79211-1
De GrootBLTielemanDPPohlPGrubmüllerHBiophys J200282293410.1016/S0006-3495(02)75634-8
WallaceBAJ Struct Biol199812112310.1006/jsbi.1997.39481:CAS:528:DyaK1cXjslGht7s%3D
StillingerFHDavidCWJ Chem Phys197869147310.1063/1.4367731:CAS:528:DyaE1cXls12nsLY%3D
GrigorenkoBLNemukhinAVTopolIABurtSKJ Phys Chem A20021061066310.1021/jp026464w1:CAS:528:DC%2BD38XnvVOis7o%3D
TownsleyLETuckerSShamSHintonJFBiochemistry2001401167610.1021/bi010942w1:CAS:528:DC%2BD3MXmsFSqsLg%3D
PómèsRRouxBBiophys J200282230410.1016/S0006-3495(02)75576-8
SwansonJMSMaupinCMChenHPetersenMKXuJWuYVothGAJ Phys Chem B2007111430010.1021/jp070104x1:CAS:528:DC%2BD2sXktFegt70%3D
KumarSBouzidaDSwendsenRHKollmanPARosenbergJMJ Comput Chem199213101110.1002/jcc.5401308121:CAS:528:DyaK38XmtVynsrs%3D
AgmonNChem Phys Lett199524445610.1016/0009-2614(95)00905-J1:CAS:528:DyaK2MXos1Wls7o%3D
MacKerellADJBashfordDBellottMDunbrackRLJEvanseckJDFieldMJFischerSGaoJGouJHaSJoseph-McCarthyDKuchnirLKuczeraKLauFTKMattosCMichnickSNgoTNguyenDTProdhomBReiherWEIRouxBSchelenkrichMSmithJCStoteRStraubJWatanbeMWiórkiewicz-KuczeraJYinDKarplusMJ Phys Chem B1998102358610.1021/jp973084f1:CAS:528:DyaK1cXivVOlsb4%3D
BondSDLeimkuhlerBJLairdBBJ Comp Phys199915111410.1006/jcph.1998.61711:CAS:528:DyaK1MXivFejt74%3D
CornellWDCieplakPBaylyCIGouldIRMerzKMFergusonDMSpellmeyerDCFoxTCaldwellJWKollmanPAJ Amer Chem Soc1995117517910.1021/ja00124a0021:CAS:528:DyaK2MXlsFertrc%3D
Braun-SandSBurykinAChuZTWarshelAJ Phys Chem B200510958310.1021/jp04657831:CAS:528:DC%2BD2cXhtVCntbfJ
SagnellaDELaasonenKKleinMLBiophys J199671117210.1016/S0006-3495(96)79321-91:CAS:528:DyaK28XlsVGnsbY%3D
ChernyshevACukiermanSBiophys J20028218210.1016/S0006-3495(02)75385-X1:CAS:528:DC%2BD38XoslKltg%3D%3D
LE Townsley (463_CR14) 2001; 40
WL Jorgensen (463_CR23) 1983; 79
DE Sagnella (463_CR7) 1996; 71
BJ Leimkuhler (463_CR17) 2004; 121
R Pómès (463_CR6) 1996; 71
FH Stillinger (463_CR21) 1978; 69
SD Bond (463_CR18) 1999; 151
A Chernyshev (463_CR25) 2002; 82
B Roux (463_CR19) 1995; 91
GA Voth (463_CR10) 2006; 39
S Kumar (463_CR20) 1992; 13
WD Cornell (463_CR16) 1995; 117
LR Philips (463_CR4) 1999; 77
JF Nagle (463_CR2) 1978; 75
BA Wallace (463_CR1) 1998; 121
R Pómès (463_CR8) 2002; 82
N Agmon (463_CR3) 1995; 244
TI Rokitskaya (463_CR5) 2002; 82
ADJ MacKerell (463_CR22) 1998; 102
R Pómès (463_CR13) 1998; 75
S Braun-Sand (463_CR12) 2005; 109
JMS Swanson (463_CR11) 2007; 111
BR Brooks (463_CR24) 1983; 4
BL Grigorenko (463_CR15) 2002; 106
BL Groot De (463_CR9) 2002; 82
11751307 - Biophys J. 2002 Jan;82(1 Pt 1):182-92
16851050 - J Phys Chem B. 2005 Jan 13;109(1):583-92
16489734 - Acc Chem Res. 2006 Feb;39(2):143-50
11570868 - Biochemistry. 2001 Oct 2;40(39):11676-86
8804586 - Biophys J. 1996 Jul;71(1):19-39
11964221 - Biophys J. 2002 May;82(5):2304-16
24889800 - J Phys Chem B. 1998 Apr 30;102(18):3586-616
272644 - Proc Natl Acad Sci U S A. 1978 Jan;75(1):298-302
20540928 - Biophys J. 1999 Nov;77(5):2492-501
8873991 - Biophys J. 1996 Sep;71(3):1172-8
17429993 - J Phys Chem B. 2007 May 3;111(17):4300-14
12023216 - Biophys J. 2002 Jun;82(6):2934-42
9649365 - Biophys J. 1998 Jul;75(1):33-40
9618340 - J Struct Biol. 1998;121(2):123-41
11806928 - Biophys J. 2002 Feb;82(2):865-73
15260527 - J Chem Phys. 2004 Jul 1;121(1):108-16
References_xml – reference: CornellWDCieplakPBaylyCIGouldIRMerzKMFergusonDMSpellmeyerDCFoxTCaldwellJWKollmanPAJ Amer Chem Soc1995117517910.1021/ja00124a0021:CAS:528:DyaK2MXlsFertrc%3D
– reference: NagleJFMorowitzHJProc Natl Acad Sci USA19787529810.1073/pnas.75.1.2981:CAS:528:DyaE1cXhtVSntb0%3D
– reference: PómèsRRouxBBiophys J200282230410.1016/S0006-3495(02)75576-8
– reference: PómèsRRouxBBiophys J1996711910.1016/S0006-3495(96)79211-1
– reference: MacKerellADJBashfordDBellottMDunbrackRLJEvanseckJDFieldMJFischerSGaoJGouJHaSJoseph-McCarthyDKuchnirLKuczeraKLauFTKMattosCMichnickSNgoTNguyenDTProdhomBReiherWEIRouxBSchelenkrichMSmithJCStoteRStraubJWatanbeMWiórkiewicz-KuczeraJYinDKarplusMJ Phys Chem B1998102358610.1021/jp973084f1:CAS:528:DyaK1cXivVOlsb4%3D
– reference: Braun-SandSBurykinAChuZTWarshelAJ Phys Chem B200510958310.1021/jp04657831:CAS:528:DC%2BD2cXhtVCntbfJ
– reference: PómèsRRouxBBiophys J1998753310.1016/S0006-3495(98)77492-2
– reference: LeimkuhlerBJSweetCRJ Chem Phys200412110810.1063/1.17407531:CAS:528:DC%2BD2cXltVemt78%3D
– reference: VothGAAcc Chem Res20063914310.1021/ar04020981:CAS:528:DC%2BD28XptFWitg%3D%3D
– reference: BondSDLeimkuhlerBJLairdBBJ Comp Phys199915111410.1006/jcph.1998.61711:CAS:528:DyaK1MXivFejt74%3D
– reference: WallaceBAJ Struct Biol199812112310.1006/jsbi.1997.39481:CAS:528:DyaK1cXjslGht7s%3D
– reference: PhilipsLRColeCDHendershotRJCottenMCrossTABusathDDBiophys J199977249210.1016/S0006-3495(99)77085-2
– reference: TownsleyLETuckerSShamSHintonJFBiochemistry2001401167610.1021/bi010942w1:CAS:528:DC%2BD3MXmsFSqsLg%3D
– reference: GrigorenkoBLNemukhinAVTopolIABurtSKJ Phys Chem A20021061066310.1021/jp026464w1:CAS:528:DC%2BD38XnvVOis7o%3D
– reference: KumarSBouzidaDSwendsenRHKollmanPARosenbergJMJ Comput Chem199213101110.1002/jcc.5401308121:CAS:528:DyaK38XmtVynsrs%3D
– reference: SwansonJMSMaupinCMChenHPetersenMKXuJWuYVothGAJ Phys Chem B2007111430010.1021/jp070104x1:CAS:528:DC%2BD2sXktFegt70%3D
– reference: RouxBComp Phys Comm19959127510.1016/0010-4655(95)00053-I1:CAS:528:DyaK2MXps1Wrt7o%3D
– reference: ChernyshevACukiermanSBiophys J20028218210.1016/S0006-3495(02)75385-X1:CAS:528:DC%2BD38XoslKltg%3D%3D
– reference: De GrootBLTielemanDPPohlPGrubmüllerHBiophys J200282293410.1016/S0006-3495(02)75634-8
– reference: StillingerFHDavidCWJ Chem Phys197869147310.1063/1.4367731:CAS:528:DyaE1cXls12nsLY%3D
– reference: BrooksBRBruccoleriREOlafsonBDStatesDJSwaminathanSKarplusMJ Comput Chem1983418710.1002/jcc.5400402111:CAS:528:DyaL3sXit1aiu7w%3D
– reference: RokitskayaTIKotovaEAAntonenkoYNBiophys J20028286510.1016/S0006-3495(02)75448-91:CAS:528:DC%2BD38XovVCnsg%3D%3D
– reference: SagnellaDELaasonenKKleinMLBiophys J199671117210.1016/S0006-3495(96)79321-91:CAS:528:DyaK28XlsVGnsbY%3D
– reference: JorgensenWLChandrasekharJMaduraJDImpeyRWKleinMLJ Chem Phys19837992610.1063/1.4458691:CAS:528:DyaL3sXksF2htL4%3D
– reference: AgmonNChem Phys Lett199524445610.1016/0009-2614(95)00905-J1:CAS:528:DyaK2MXos1Wls7o%3D
– volume: 77
  start-page: 2492
  year: 1999
  ident: 463_CR4
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(99)77085-2
– volume: 82
  start-page: 865
  year: 2002
  ident: 463_CR5
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(02)75448-9
– volume: 111
  start-page: 4300
  year: 2007
  ident: 463_CR11
  publication-title: J Phys Chem B
  doi: 10.1021/jp070104x
– volume: 151
  start-page: 114
  year: 1999
  ident: 463_CR18
  publication-title: J Comp Phys
  doi: 10.1006/jcph.1998.6171
– volume: 40
  start-page: 11676
  year: 2001
  ident: 463_CR14
  publication-title: Biochemistry
  doi: 10.1021/bi010942w
– volume: 82
  start-page: 2934
  year: 2002
  ident: 463_CR9
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(02)75634-8
– volume: 82
  start-page: 2304
  year: 2002
  ident: 463_CR8
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(02)75576-8
– volume: 75
  start-page: 33
  year: 1998
  ident: 463_CR13
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(98)77492-2
– volume: 117
  start-page: 5179
  year: 1995
  ident: 463_CR16
  publication-title: J Amer Chem Soc
  doi: 10.1021/ja00124a002
– volume: 244
  start-page: 456
  year: 1995
  ident: 463_CR3
  publication-title: Chem Phys Lett
  doi: 10.1016/0009-2614(95)00905-J
– volume: 71
  start-page: 19
  year: 1996
  ident: 463_CR6
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(96)79211-1
– volume: 102
  start-page: 3586
  year: 1998
  ident: 463_CR22
  publication-title: J Phys Chem B
  doi: 10.1021/jp973084f
– volume: 4
  start-page: 187
  year: 1983
  ident: 463_CR24
  publication-title: J Comput Chem
  doi: 10.1002/jcc.540040211
– volume: 71
  start-page: 1172
  year: 1996
  ident: 463_CR7
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(96)79321-9
– volume: 79
  start-page: 926
  year: 1983
  ident: 463_CR23
  publication-title: J Chem Phys
  doi: 10.1063/1.445869
– volume: 91
  start-page: 275
  year: 1995
  ident: 463_CR19
  publication-title: Comp Phys Comm
  doi: 10.1016/0010-4655(95)00053-I
– volume: 106
  start-page: 10663
  year: 2002
  ident: 463_CR15
  publication-title: J Phys Chem A
  doi: 10.1021/jp026464w
– volume: 75
  start-page: 298
  year: 1978
  ident: 463_CR2
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.75.1.298
– volume: 121
  start-page: 108
  year: 2004
  ident: 463_CR17
  publication-title: J Chem Phys
  doi: 10.1063/1.1740753
– volume: 121
  start-page: 123
  year: 1998
  ident: 463_CR1
  publication-title: J Struct Biol
  doi: 10.1006/jsbi.1997.3948
– volume: 39
  start-page: 143
  year: 2006
  ident: 463_CR10
  publication-title: Acc Chem Res
  doi: 10.1021/ar0402098
– volume: 69
  start-page: 1473
  year: 1978
  ident: 463_CR21
  publication-title: J Chem Phys
  doi: 10.1063/1.436773
– volume: 13
  start-page: 1011
  year: 1992
  ident: 463_CR20
  publication-title: J Comput Chem
  doi: 10.1002/jcc.540130812
– volume: 82
  start-page: 182
  year: 2002
  ident: 463_CR25
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(02)75385-X
– volume: 109
  start-page: 583
  year: 2005
  ident: 463_CR12
  publication-title: J Phys Chem B
  doi: 10.1021/jp0465783
– reference: 17429993 - J Phys Chem B. 2007 May 3;111(17):4300-14
– reference: 11806928 - Biophys J. 2002 Feb;82(2):865-73
– reference: 24889800 - J Phys Chem B. 1998 Apr 30;102(18):3586-616
– reference: 8804586 - Biophys J. 1996 Jul;71(1):19-39
– reference: 8873991 - Biophys J. 1996 Sep;71(3):1172-8
– reference: 11964221 - Biophys J. 2002 May;82(5):2304-16
– reference: 9618340 - J Struct Biol. 1998;121(2):123-41
– reference: 16489734 - Acc Chem Res. 2006 Feb;39(2):143-50
– reference: 11570868 - Biochemistry. 2001 Oct 2;40(39):11676-86
– reference: 11751307 - Biophys J. 2002 Jan;82(1 Pt 1):182-92
– reference: 16851050 - J Phys Chem B. 2005 Jan 13;109(1):583-92
– reference: 15260527 - J Chem Phys. 2004 Jul 1;121(1):108-16
– reference: 12023216 - Biophys J. 2002 Jun;82(6):2934-42
– reference: 272644 - Proc Natl Acad Sci U S A. 1978 Jan;75(1):298-302
– reference: 20540928 - Biophys J. 1999 Nov;77(5):2492-501
– reference: 9649365 - Biophys J. 1998 Jul;75(1):33-40
SSID ssj0009047
ssj0001256522
Score 1.8318418
Snippet The results of potential of mean force (PMF) calculations for the distinct stages of proton conduction through the gramicidin A channel, including proton...
SourceID proquest
pubmed
crossref
springer
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1009
SubjectTerms Algorithms
Amino Acid Sequence
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Computer Appl. in Life Sciences
Computer Applications in Chemistry
Computer Simulation
gramicidin
Gramicidin - chemistry
Gramicidin - metabolism
Hydrogen Bonding
Kinetics
Membrane Potentials
Models, Chemical
Models, Molecular
Molecular Medicine
Molecular Sequence Data
Original Paper
Potential of mean force
Protein Binding
Protein Structure, Secondary
Protein Structure, Tertiary
Proton transport
Protons
Theoretical and Computational Chemistry
Water - chemistry
Water - metabolism
Title Modeling negative ion defect migration through the gramicidin A channel
URI https://link.springer.com/article/10.1007/s00894-009-0463-8
https://www.ncbi.nlm.nih.gov/pubmed/19198898
https://www.proquest.com/docview/67387872
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RdoAF8aY8igcmUKQmsRNnLKilAoGEoBJM1sVxq0qQItr-f85OUkAUJKYsTmJ_l9yd_d0D4JQ2Oig0ab8gDGmDImXmpRy1p1FghFoGqctKu72L-gN-_SSeyjzuaRXtXlGSTlMvkt3IWtkytu4wPwo9WYOGoK27jeMaBJ0vByvkozj2gJyZthckfMFmLnvKN3tUG-Jkmav5gyZ11qe3Aeul28g6hZw3YcXkW7B6WXVr24Yr29TMppaz3IxcMW9GiLPM2HAN9joeFZJmZV8euhpmA7PGekzWi3WYzQDOzcsODHrdx8u-VzZJ8DS5EjMPacWaCxNnwgSxc1dCTDkfJrEvjIkIcZFGmIU80X6S-eijTEgEqfRDrsmA7UI9n-RmHxgXKGJSAcMUQ96WhgxXFiWBZRYlog6a0K6gUrqsIG4bWbyoRe1jh64idJVFV8kmnC1ueSvKZ_w1eJ_wVzgi9aYGD4ElVWk3J0QcNuGkEooiYC2pgbmZzKc2Lk2S0qHJ7RWy-nxP4ieS1tqE80p4qvxBp79P4uBfow9hraCXbETgEdRn73NzTF7KLG1Bo3P1fNNtQa13cd9y3-gHOITbAg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5RGMqCeDc8PTCBIjWJnThjhSjluUClbtbFcatKJUW0_f-cnaSAeEhMWZzE-c65--x7AZzRRgeFJu0XRhFtUKTM_Yyj9jUKjFHLMHNZaQ-Pca_PbwdiUOVxz-po99ol6TT1MtmNrJUtY-sO8-PIlw1YIy4g7VLuh51PByvEUZz3gMhM2w9TvvRm_vSUL_aoMcTpT1Tzm5vUWZ_uJmxUtJF1SjlvwYoptqF5WXdr24Fr29TMppazwoxcMW9GiLPc2HAN9jIelZJmVV8euhpmA7PGekzWi3WYzQAuzGQX-t2r58ueXzVJ8DVRibmP9MWaC5PkwoSJoysRZpwP0yQQxsSEuMhizCOe6iDNAwxQpiSCTAYR12TA9mC1mBamBYwLFAmpgGGGEW9LQ4Yrj9PQehYlog49aNdQKV1VELeNLCZqWfvYoasIXWXRVdKD8-Utr2X5jL8Gtwh_hSNSb6r_FFqnKu3mhEgiD05roSgC1jo1sDDTxczGpUlSOjS5_VJWH-9Jg1TSt3pwUQtPVT_o7PdJHPxr9Ck0e88P9-r-5vHuENZLV5ONDjyC1fnbwhwTY5lnJ26FvgOtP9tn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1RkIALYm9ZfeAEitokduIcq0LZKySo1Js1cdyqUkkrWv6fcZYCoiBxysVJnDfOzNhvFoAz2uig0KT9PN-nDYqUiRNz1I5GgQFq6cVZVtpjJ7jp8rue6BV9TqdltHtJSeY5DbZKUzqrT5J-fZ74RpbLlrTNDvYD35EVWOE2GZgWdNdrfjlkIX8lYxLIsWk4XsTnzOaip3yzTZU-jhe5nT8o08wStTdho3AhWTOX-RYsmXQb1lpl57YduLYNzmyaOUvNICvszQh9lhgbusFeh4Nc6qzo0UNXw2yQ1lAPyZKxJrPZwKkZ7UK3ffXSunGKhgmOJrdi5iB9sebChIkwXpi5Lj7GnPej0BXGBIS-iANMfB5pN0pcdFFGJI5Yuj7XZMz2YDkdp6YKjAsUIamDfow-b0hDRiwJIs-yjBJRezVolFApXVQTt00tRmpeBzlDVxG6yqKrZA3O57dM8lIafw2uEv4KB6TqVPfZswQr7eyECP0anJZCUQSsJTgwNeP3qY1Rk6SAaHL7uaw-3xO5kaRvrcFFKTxV_KzT3ydx8K_Rp7D6dNlWD7ed-0NYz1knGyh4BMuzt3dzTM7LLD7JFugHqcTfmg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+negative+ion+defect+migration+through+the+gramicidin+A+channel&rft.jtitle=Journal+of+molecular+modeling&rft.au=Nemukhin%2C+Alexander+V.&rft.au=Kaliman%2C+Ilya+A.&rft.au=Moskovsky%2C+Alexander+A.&rft.date=2009-08-01&rft.issn=1610-2940&rft.eissn=0948-5023&rft.volume=15&rft.issue=8&rft.spage=1009&rft.epage=1012&rft_id=info:doi/10.1007%2Fs00894-009-0463-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00894_009_0463_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0949-183X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0949-183X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0949-183X&client=summon