Comprehensive analysis on investigating water-saving potentials of irrigated cotton in semi-arid area in China
Deficit irrigation is a common strategy to reduce water use and improve the sustainability of cotton production. However, the effects of water deficits on crop productivity and quality are subject to genotype by management by environmental interactions. This study investigated effects of water defic...
Saved in:
Published in | Agricultural water management Vol. 301; p. 108960 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deficit irrigation is a common strategy to reduce water use and improve the sustainability of cotton production. However, the effects of water deficits on crop productivity and quality are subject to genotype by management by environmental interactions. This study investigated effects of water deficits and frequency of irrigation on cotton performance grown in semi-arid region, Xinjiang, the main cotton-growing area in China. Two field trials (2020 and 2021) with split experimental design, including main factors of three irrigation levels (moderate-deficit, mild-deficit and full-irrigation) and split factors of three irrigation frequencies (4, 8 and 12 days) were conducted. Results from two trials both showed little negative influence of irrigation levels on yield, and higher irrigation frequency improved yield under same irrigation level. Significant effects of irrigation levels on yield components were found in 2021, with a 22 % increase in boll number and an 18 % reduction in boll weight under moderate-deficit irrigation compared with those under full-irrigation. Interactions between irrigation levels and frequencies significantly affected harvest index (HI), showing that reduced irrigation might be beneficial for improving HI. However, decreased fibre length while increased fibre micronaire were found under deficit irrigation. A strong association between radiation use efficiency (RUE) and boll growth rate was observed, suggesting that RUE might be the driving force of yield formation. A tight correlation between both biomass and transpiration efficiency versus delta temperature between air and canopy (ΔTair-canopy) was observed, suggesting ΔTair-canopy could be used as an efficient tool to assess plant production under deficit irrigation. This study provided an improved understanding of the physiological basis of cotton yield formation and further identified a high-throughput and instantaneous method to monitor effects of deficit irrigation on crop productivity.
•High irrigation frequency could be a promising alternative for water saving in semi-arid areas.•Deficit irrigation increased fibre micronaire and reduced length.•Reduced irrigation could stimulate dry matter to root at early stage and to boll at flowering stage.•Delta air to canopy temperature is a promising surrogate for biomass and transpiration efficiency in cotton. |
---|---|
AbstractList | Deficit irrigation is a common strategy to reduce water use and improve the sustainability of cotton production. However, the effects of water deficits on crop productivity and quality are subject to genotype by management by environmental interactions. This study investigated effects of water deficits and frequency of irrigation on cotton performance grown in semi-arid region, Xinjiang, the main cotton-growing area in China. Two field trials (2020 and 2021) with split experimental design, including main factors of three irrigation levels (moderate-deficit, mild-deficit and full-irrigation) and split factors of three irrigation frequencies (4, 8 and 12 days) were conducted. Results from two trials both showed little negative influence of irrigation levels on yield, and higher irrigation frequency improved yield under same irrigation level. Significant effects of irrigation levels on yield components were found in 2021, with a 22 % increase in boll number and an 18 % reduction in boll weight under moderate-deficit irrigation compared with those under full-irrigation. Interactions between irrigation levels and frequencies significantly affected harvest index (HI), showing that reduced irrigation might be beneficial for improving HI. However, decreased fibre length while increased fibre micronaire were found under deficit irrigation. A strong association between radiation use efficiency (RUE) and boll growth rate was observed, suggesting that RUE might be the driving force of yield formation. A tight correlation between both biomass and transpiration efficiency versus delta temperature between air and canopy (ΔTair-canopy) was observed, suggesting ΔTair-canopy could be used as an efficient tool to assess plant production under deficit irrigation. This study provided an improved understanding of the physiological basis of cotton yield formation and further identified a high-throughput and instantaneous method to monitor effects of deficit irrigation on crop productivity.
•High irrigation frequency could be a promising alternative for water saving in semi-arid areas.•Deficit irrigation increased fibre micronaire and reduced length.•Reduced irrigation could stimulate dry matter to root at early stage and to boll at flowering stage.•Delta air to canopy temperature is a promising surrogate for biomass and transpiration efficiency in cotton. Deficit irrigation is a common strategy to reduce water use and improve the sustainability of cotton production. However, the effects of water deficits on crop productivity and quality are subject to genotype by management by environmental interactions. This study investigated effects of water deficits and frequency of irrigation on cotton performance grown in semi-arid region, Xinjiang, the main cotton-growing area in China. Two field trials (2020 and 2021) with split experimental design, including main factors of three irrigation levels (moderate-deficit, mild-deficit and full-irrigation) and split factors of three irrigation frequencies (4, 8 and 12 days) were conducted. Results from two trials both showed little negative influence of irrigation levels on yield, and higher irrigation frequency improved yield under same irrigation level. Significant effects of irrigation levels on yield components were found in 2021, with a 22 % increase in boll number and an 18 % reduction in boll weight under moderate-deficit irrigation compared with those under full-irrigation. Interactions between irrigation levels and frequencies significantly affected harvest index (HI), showing that reduced irrigation might be beneficial for improving HI. However, decreased fibre length while increased fibre micronaire were found under deficit irrigation. A strong association between radiation use efficiency (RUE) and boll growth rate was observed, suggesting that RUE might be the driving force of yield formation. A tight correlation between both biomass and transpiration efficiency versus delta temperature between air and canopy (ΔTair-canopy) was observed, suggesting ΔTair-canopy could be used as an efficient tool to assess plant production under deficit irrigation. This study provided an improved understanding of the physiological basis of cotton yield formation and further identified a high-throughput and instantaneous method to monitor effects of deficit irrigation on crop productivity. |
ArticleNumber | 108960 |
Author | Xiong, Shiwu Zhi, Xiaoyu Yang, Beifang Li, Yabing George-Jaeggli, Barbara Lei, Yaping Feng, Lu Xin, Minghua Zhang, Shijie Han, Yingchun Chen, Qiaomin Li, Xiaofei Wang, Zhanbiao Ma, Yunzhen Wang, Guoping Jiao, Yahui |
Author_xml | – sequence: 1 givenname: Xiaoyu surname: Zhi fullname: Zhi, Xiaoyu organization: State Key Laboratory of Cotton Bio-breeding and Integrated Utilization / Institute of Cotton Research of CAAS – sequence: 2 givenname: Barbara surname: George-Jaeggli fullname: George-Jaeggli, Barbara organization: Hermitage Research Facility, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Warwick, QLD, Australia – sequence: 3 givenname: Yingchun surname: Han fullname: Han, Yingchun organization: State Key Laboratory of Cotton Bio-breeding and Integrated Utilization / Institute of Cotton Research of CAAS – sequence: 4 givenname: Qiaomin surname: Chen fullname: Chen, Qiaomin organization: School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD, Australia – sequence: 5 givenname: Shijie surname: Zhang fullname: Zhang, Shijie organization: Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China – sequence: 6 givenname: Lu surname: Feng fullname: Feng, Lu organization: State Key Laboratory of Cotton Bio-breeding and Integrated Utilization / Institute of Cotton Research of CAAS – sequence: 7 givenname: Yaping surname: Lei fullname: Lei, Yaping organization: State Key Laboratory of Cotton Bio-breeding and Integrated Utilization / Institute of Cotton Research of CAAS – sequence: 8 givenname: Xiaofei surname: Li fullname: Li, Xiaofei organization: State Key Laboratory of Cotton Bio-breeding and Integrated Utilization / Institute of Cotton Research of CAAS – sequence: 9 givenname: Guoping surname: Wang fullname: Wang, Guoping organization: State Key Laboratory of Cotton Bio-breeding and Integrated Utilization / Institute of Cotton Research of CAAS – sequence: 10 givenname: Zhanbiao surname: Wang fullname: Wang, Zhanbiao organization: State Key Laboratory of Cotton Bio-breeding and Integrated Utilization / Institute of Cotton Research of CAAS – sequence: 11 givenname: Shiwu surname: Xiong fullname: Xiong, Shiwu organization: State Key Laboratory of Cotton Bio-breeding and Integrated Utilization / Institute of Cotton Research of CAAS – sequence: 12 givenname: Minghua surname: Xin fullname: Xin, Minghua organization: State Key Laboratory of Cotton Bio-breeding and Integrated Utilization / Institute of Cotton Research of CAAS – sequence: 13 givenname: Yahui surname: Jiao fullname: Jiao, Yahui organization: State Key Laboratory of Cotton Bio-breeding and Integrated Utilization / Institute of Cotton Research of CAAS – sequence: 14 givenname: Yunzhen surname: Ma fullname: Ma, Yunzhen organization: State Key Laboratory of Cotton Bio-breeding and Integrated Utilization / Institute of Cotton Research of CAAS – sequence: 15 givenname: Yabing surname: Li fullname: Li, Yabing email: liyabing@caas.cn organization: State Key Laboratory of Cotton Bio-breeding and Integrated Utilization / Institute of Cotton Research of CAAS – sequence: 16 givenname: Beifang surname: Yang fullname: Yang, Beifang email: yangbeifang@caas.cn organization: State Key Laboratory of Cotton Bio-breeding and Integrated Utilization / Institute of Cotton Research of CAAS |
BookMark | eNp9kT9v2zAQxYkiAeok_QRdNHaRyz-iKA4ZCqNNAwTo0s7EiTo6NGTSIRkX-falrKJjpwMf3u8dce-GXIUYkJCPjG4ZZf3nwxb2v6FsOeVdVQbd03dkwwYlWs4HcUU2VKihFUp178lNzgdKaUc7tSFhF4-nhM8Ysj9jAwHmt-xzE0Pjwxlz8XsoPuybGo-pzXBeHqdYMBQPczW6xqe0uHBqbCzlQjYZj76F5KcGEsKi7J59gDty7SqFH_7OW_Lr29efu-_t04-Hx92Xp9YKrUqrYYRB9FQAdYIOyCcYJick1xY6lOhUj27UjNGJTlJazUEqJwY-9b11GsUteVxzpwgHc0r-COnNRPDmIsS0N5CKtzMaZ3HUCsZRW92NXGonmeSjk5b3ynJVsz6tWacUX17rSczRZ4vzDAHjazaCSdEPTChRrWK12hRzTuj-rWbULE2Zg7k0ZZamzNpUpe5XCutFzh6TydZjsDj5hLbUL_v_8n8AB1yhfw |
Cites_doi | 10.1371/journal.pone.0217243 10.1007/BF00024003 10.13031/2013.22638 10.1016/j.agrformet.2014.08.003 10.1093/jxb/erl165 10.1016/j.agwat.2009.04.009 10.1007/s13593-015-0338-6 10.1016/j.compag.2019.04.007 10.1016/j.agwat.2021.107027 10.1016/j.agwat.2006.01.010 10.1146/annurev.pp.24.060173.002511 10.1111/jac.12453 10.1016/j.fcr.2018.05.013 10.1016/S1002-0160(15)30071-0 10.1016/j.agwat.2007.08.009 10.1016/j.agwat.2022.107843 10.1016/j.fcr.2016.06.003 10.1016/j.agwat.2017.03.030 10.1300/J144v02n02_09 10.1104/pp.113.219006 10.1016/S0378-3774(02)00156-7 10.1007/s11269-016-1548-7 10.1371/journal.pone.0113409 10.1201/b11005-4 10.1016/j.fcr.2013.05.005 10.1016/j.eja.2019.01.010 10.1016/j.indcrop.2022.115259 10.1016/j.fcr.2013.09.017 10.2134/agronj1969.00021962006100050035x 10.1038/35066500 10.1016/S0378-3774(01)00175-5 10.2307/2401901 |
ContentType | Journal Article |
Copyright | 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.agwat.2024.108960 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1873-2283 |
ExternalDocumentID | oai_doaj_org_article_fceb97abb9c94b259f5152bf5c267c27 10_1016_j_agwat_2024_108960 S0378377424002956 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABGRD ABJNI ABMAC ABQEM ACDAQ ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV ADVLN AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ IHE IMUCA J1W KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RPZ SAB SDF SDG SES SEW SPCBC SSA SSJ SSZ T5K Y6R ~02 ~G- ~KM AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLV HMA HVGLF HZ~ R2- ROL SEP SSH VH1 WUQ XPP ZMT 7S9 L.6 EFKBS |
ID | FETCH-LOGICAL-c397t-9aba83603a0f308e2da8df3529ca4e5ef76efb9110d0d55c92a57f382d66cf9e3 |
IEDL.DBID | DOA |
ISSN | 0378-3774 |
IngestDate | Wed Aug 27 01:31:22 EDT 2025 Wed Jul 02 04:40:36 EDT 2025 Tue Jul 01 04:31:22 EDT 2025 Sat Aug 17 15:40:30 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | PAR HI NumFB RUE Transpiration efficiency WUE ΔTair-canopy Water use efficiency Cotton Canopy temperature TE Radiation use efficiency Deficit irrigation DAS EAT |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c397t-9aba83603a0f308e2da8df3529ca4e5ef76efb9110d0d55c92a57f382d66cf9e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/fceb97abb9c94b259f5152bf5c267c27 |
PQID | 3153681373 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fceb97abb9c94b259f5152bf5c267c27 proquest_miscellaneous_3153681373 crossref_primary_10_1016_j_agwat_2024_108960 elsevier_sciencedirect_doi_10_1016_j_agwat_2024_108960 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 2024-08-00 20240801 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Agricultural water management |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Ertek, Kanber (bib13) 2003; 60 Wu, Yang, Guo, Huang, Lei, Xiong, Han, Wang, Feng, Li, Wang, Chen, Li (bib36) 2022; 186 Gonzalez-Dugo, Zarco-Tejada, Fereres (bib18) 2014; 198–199 Heuer, Nadler (bib21) 2000; 2 Passioura (bib29) 1996; 20 Datta, Ullah, Ferdous, Santiago-Arenas, Attia (bib5) 2019 Gonzalez-Dugo, Lopez-Lopez, Espadafor, Orgaz, Testi, Zarco-Tejada, Lorite, Fereres (bib19) 2019; 105 Monteith (bib28) 1972; 9 Zhi, Han, Mao, Wang, Feng, Yang, Fan, Du, Lu, Li (bib39) 2014; 9 Egea, Padilla-Díaz, Martinez-Guanter, Fernández, Pérez-Ruiz (bib11) 2017; 187 Mira-García, Conejero, Vera, Ruiz-Sánchez (bib27) 2022; 272 Zhi, Han, Xing, Lei, Wang, Feng, Yang, Wang, Li, Xiong, Fan, Li (bib40) 2019; 14 Doorenbos, Kassam (bib8) 1979; 33 Evans (bib14) 2013; 162 George-Jaeggli, Jordan, van Oosterom, Broad, Hammer (bib17) 2013; 149 Hu, Snider, Wang, Zhou, Chastain, Whitaker, Perry, Bourland (bib23) 2018; 224 Bramley, Turner, Siddique (bib1) 2013 Drew, Sudduth, Sadler, Thompson (bib9) 2019; 162 Ermanis, Gobbo, Snider, Cohen, Liakos, Lacerda, Perry, Aaron Bruce, Virk, Vellidis (bib12) 2021; 207 Geerts, Raes (bib16) 2009; 96 DeTar, Penner (bib7) 2007; 50 Schroeder, Kwak, Allen (bib32) 2001; 410 Tsakmakis, Kokkos, Pisinaras, Papaevangelou, Hatzigiannakis, Arampatzis, Gikas, Linker, Zoras, Evagelopoulos, Tsihrintzis, Battilani, Sylaios (bib33) 2017; 31 Webb, P., 2005. Water and Food Insecurity in Developing Countries:Major Challenges for the 21st Century. Lüdecke, Ben-Shachar, Patil, Waggoner, Makowski (bib26) 2021 DeTar (bib6) 2008; 95 Du, Kang, Zhang, Li, Hu (bib10) 2006; 84 Zhang, Luo, Liu, Li, WeiTang, Dong (bib38) 2016; 197 Chai, Gan, Zhao, Xu, Waskom, Niu, Siddique (bib2) 2015; 36 Cheng, Wang, Fan, Zhang, Wang, Li, Sun, Yang, Zhang (bib3) 2021; 255 Khan, Wahid, Ahmad, Tahir, Ahmed, Ahmad, Hasanuzzaman (bib25) 2020 Fereres, Soriano (bib15) 2007; 58 Hsiao (bib22) 1973; 24 Saleh Ravan, Rahemi Karizaki, Biabani, Nakhzari Moghaddam, Gholamali Pour Alamdari (bib31) 2022 Huang, Wang, Guo, Chen, Yao, Chen, Liu, Zhang, Zhang, Xiang (bib24) 2022 Sadras, Villalobos, Fereres (bib30) 2016 Grimes, Yamada, Dickens (bib20) 1969; 61 Wanjura, Upchurch, Mahan, Burke (bib34) 2002; 55 Dai, Dong (bib4) 2014; 155 Yang, Luo, Sun, Wu (bib37) 2015; 25 Dai (10.1016/j.agwat.2024.108960_bib4) 2014; 155 Ertek (10.1016/j.agwat.2024.108960_bib13) 2003; 60 Saleh Ravan (10.1016/j.agwat.2024.108960_bib31) 2022 Wu (10.1016/j.agwat.2024.108960_bib36) 2022; 186 Drew (10.1016/j.agwat.2024.108960_bib9) 2019; 162 Lüdecke (10.1016/j.agwat.2024.108960_bib26) 2021 Sadras (10.1016/j.agwat.2024.108960_bib30) 2016 Yang (10.1016/j.agwat.2024.108960_bib37) 2015; 25 Zhi (10.1016/j.agwat.2024.108960_bib39) 2014; 9 Datta (10.1016/j.agwat.2024.108960_bib5) 2019 DeTar (10.1016/j.agwat.2024.108960_bib7) 2007; 50 Wanjura (10.1016/j.agwat.2024.108960_bib34) 2002; 55 Huang (10.1016/j.agwat.2024.108960_bib24) 2022 Geerts (10.1016/j.agwat.2024.108960_bib16) 2009; 96 Passioura (10.1016/j.agwat.2024.108960_bib29) 1996; 20 Hsiao (10.1016/j.agwat.2024.108960_bib22) 1973; 24 Chai (10.1016/j.agwat.2024.108960_bib2) 2015; 36 Cheng (10.1016/j.agwat.2024.108960_bib3) 2021; 255 Schroeder (10.1016/j.agwat.2024.108960_bib32) 2001; 410 Grimes (10.1016/j.agwat.2024.108960_bib20) 1969; 61 Hu (10.1016/j.agwat.2024.108960_bib23) 2018; 224 Bramley (10.1016/j.agwat.2024.108960_bib1) 2013 Gonzalez-Dugo (10.1016/j.agwat.2024.108960_bib18) 2014; 198–199 Monteith (10.1016/j.agwat.2024.108960_bib28) 1972; 9 Egea (10.1016/j.agwat.2024.108960_bib11) 2017; 187 Zhi (10.1016/j.agwat.2024.108960_bib40) 2019; 14 Evans (10.1016/j.agwat.2024.108960_bib14) 2013; 162 Gonzalez-Dugo (10.1016/j.agwat.2024.108960_bib19) 2019; 105 Zhang (10.1016/j.agwat.2024.108960_bib38) 2016; 197 George-Jaeggli (10.1016/j.agwat.2024.108960_bib17) 2013; 149 Mira-García (10.1016/j.agwat.2024.108960_bib27) 2022; 272 Du (10.1016/j.agwat.2024.108960_bib10) 2006; 84 Ermanis (10.1016/j.agwat.2024.108960_bib12) 2021; 207 10.1016/j.agwat.2024.108960_bib35 Heuer (10.1016/j.agwat.2024.108960_bib21) 2000; 2 Fereres (10.1016/j.agwat.2024.108960_bib15) 2007; 58 Tsakmakis (10.1016/j.agwat.2024.108960_bib33) 2017; 31 Doorenbos (10.1016/j.agwat.2024.108960_bib8) 1979; 33 DeTar (10.1016/j.agwat.2024.108960_bib6) 2008; 95 Khan (10.1016/j.agwat.2024.108960_bib25) 2020 |
References_xml | – volume: 155 start-page: 99 year: 2014 end-page: 110 ident: bib4 article-title: Intensive cotton farming technologies in China: achievements, challenges and countermeasures publication-title: Field Crops Res. – volume: 50 start-page: 495 year: 2007 end-page: 506 ident: bib7 article-title: Airborne remote sensing used to estimate percent canopy cover and to extract canopy temperature from scene temperature in cotton publication-title: Trans. ASABE – volume: 198–199 start-page: 94 year: 2014 end-page: 104 ident: bib18 article-title: Applicability and limitations of using the crop water stress index as an indicator of water deficits in citrus orchards publication-title: Agric. . Meteor. – start-page: 1 year: 2020 end-page: 7 ident: bib25 article-title: World Cotton Production and Consumption: An Overview publication-title: Cotton Production and Uses: Agronomy, Crop Protection, and Postharvest Technologies – start-page: 169 year: 2016 end-page: 188 ident: bib30 article-title: Radiation Interception, Radiation Use Efficiency and Crop Productivity publication-title: Principles of Agronomy for Sustainable Agriculture – volume: 272 year: 2022 ident: bib27 article-title: Water status and thermal response of lime trees to irrigation and shade screen publication-title: Agric. Water Manag. – volume: 105 start-page: 78 year: 2019 end-page: 85 ident: bib19 article-title: Transpiration from canopy temperature: implications for the assessment of crop yield in almond orchards publication-title: Eur. J. Agron. – volume: 20 start-page: 79 year: 1996 end-page: 83 ident: bib29 article-title: Drought and drought tolerance publication-title: Plant Growth Regul. – start-page: 1 year: 2022 end-page: 11 ident: bib31 article-title: Radiation interception and radiation use efficiency response to intraspecific competition in barley (Hordeum vulgare) cultivars publication-title: Gesund Pflanz. – volume: 36 start-page: 3 year: 2015 ident: bib2 article-title: Regulated deficit irrigation for crop production under drought stress. A review publication-title: Agron. Sustain. Dev. – volume: 61 start-page: 769 year: 1969 end-page: 773 ident: bib20 article-title: Functions for cotton (Gossypium hirsutum L.) production from irrigation and nitrogen fertilization variables: I. Yield and evapotranspiration1 publication-title: Agron. J. – volume: 149 start-page: 283 year: 2013 end-page: 290 ident: bib17 article-title: Sorghum dwarfing genes can affect radiation capture and radiation use efficiency publication-title: Field Crops Res. – volume: 14 year: 2019 ident: bib40 article-title: How do cotton light interception and carbohydrate partitioning respond to cropping systems including monoculture, intercropping with wheat, and direct-seeding after wheat? publication-title: PLOS ONE – volume: 162 start-page: 269 year: 2019 end-page: 280 ident: bib9 article-title: Development of a multi-band sensor for crop temperature measurement publication-title: Comput. Electron. Agric. – volume: 255 year: 2021 ident: bib3 article-title: Water productivity and seed cotton yield in response to deficit irrigation: a global meta-analysis publication-title: Agric. Water Manag. – volume: 96 start-page: 1275 year: 2009 end-page: 1284 ident: bib16 article-title: Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas publication-title: Agric. Water Manag. – volume: 224 start-page: 139 year: 2018 end-page: 147 ident: bib23 article-title: Water-induced variation in yield and quality can be explained by altered yield component contributions in field-grown cotton publication-title: Field Crops Res. – start-page: 225 year: 2013 end-page: 268 ident: bib1 article-title: Water Use Efficiency publication-title: Genomics and Breeding for Climate-Resilient Crops: Vol. 2 Target Traits. – volume: 84 start-page: 41 year: 2006 end-page: 52 ident: bib10 article-title: Yield and physiological responses of cotton to partial root-zone irrigation in the oasis field of northwest China publication-title: Agric. Water Manag. – volume: 197 start-page: 1 year: 2016 end-page: 9 ident: bib38 article-title: Effects of deficit irrigation and plant density on the growth, yield and fiber quality of irrigated cotton publication-title: Field Crops Res. – volume: 25 start-page: 910 year: 2015 end-page: 924 ident: bib37 article-title: Effect of deficit irrigation on the growth, water use characteristics and yield of cotton in arid Northwest China publication-title: Pedosphere – start-page: 6 year: 2021 ident: bib26 article-title: performance: an R package for assessment, comparison and testing of statistical models publication-title: J. Open Source Softw. – volume: 187 start-page: 210 year: 2017 end-page: 221 ident: bib11 article-title: Assessing a crop water stress index derived from aerial thermal imaging and infrared thermometry in super-high density olive orchards publication-title: Agric. Water Manag. – year: 2022 ident: bib24 article-title: Hysteresis between winter wheat canopy temperature and atmospheric temperature and its driving factors publication-title: Plant Soil – start-page: 47 year: 2019 end-page: 59 ident: bib5 article-title: Water Management in Cotton publication-title: in: Cotton Production – volume: 33 start-page: 257 year: 1979 ident: bib8 article-title: Yield response to water publication-title: Irrig. Drain. Pap. – volume: 186 year: 2022 ident: bib36 article-title: Adopting different cotton cropping systems may regulate the spatiotemporal variation in soil moisture and affect the growth, WUE and yield of cotton publication-title: Ind. Crops Prod. – volume: 55 start-page: 217 year: 2002 end-page: 237 ident: bib34 article-title: Cotton yield and applied water relationships under drip irrigation publication-title: Agric. Water Manag. – volume: 60 start-page: 1 year: 2003 end-page: 11 ident: bib13 article-title: Effects of different drip irrigation programs on the boll number and shedding percentage and yield of cotton publication-title: Agric. Water Manag. – volume: 9 start-page: 747 year: 1972 end-page: 766 ident: bib28 article-title: Solar radiation and productivity in tropical ecosystems publication-title: J. Appl. Ecol. – volume: 9 year: 2014 ident: bib39 article-title: Light spatial distribution in the canopy and crop development in cotton publication-title: PLOS ONE – volume: 207 start-page: 186 year: 2021 end-page: 196 ident: bib12 article-title: Defining physiological contributions to yield loss in response to irrigation in cotton publication-title: J. Agron. Crop Sci. – reference: Webb, P., 2005. Water and Food Insecurity in Developing Countries:Major Challenges for the 21st Century. – volume: 31 start-page: 563 year: 2017 end-page: 580 ident: bib33 article-title: Operational precise irrigation for cotton cultivation through the coupling of meteorological and crop growth models publication-title: Water Resour. Manag. – volume: 410 start-page: 327 year: 2001 end-page: 330 ident: bib32 article-title: Guard cell abscisic acid signalling and engineering drought hardiness in plants publication-title: Nature – volume: 95 start-page: 69 year: 2008 end-page: 76 ident: bib6 article-title: Yield and growth characteristics for cotton under various irrigation regimes on sandy soil publication-title: Agric. Water Manag. – volume: 24 start-page: 519 year: 1973 end-page: 570 ident: bib22 article-title: Plant responses to water stress publication-title: Annu. Rev. Plant Physiol. – volume: 2 start-page: 229 year: 2000 end-page: 239 ident: bib21 article-title: Physiological parameters, harvest index and yield of deficient irrigated cotton publication-title: J. Crop Prod. – volume: 162 start-page: 1780 year: 2013 end-page: 1793 ident: bib14 article-title: Improving photosynthesis publication-title: Plant Physiol. – volume: 58 start-page: 147 year: 2007 end-page: 159 ident: bib15 article-title: Deficit irrigation for reducing agricultural water use publication-title: J. Exp. Bot. – volume: 14 year: 2019 ident: 10.1016/j.agwat.2024.108960_bib40 article-title: How do cotton light interception and carbohydrate partitioning respond to cropping systems including monoculture, intercropping with wheat, and direct-seeding after wheat? publication-title: PLOS ONE doi: 10.1371/journal.pone.0217243 – volume: 20 start-page: 79 year: 1996 ident: 10.1016/j.agwat.2024.108960_bib29 article-title: Drought and drought tolerance publication-title: Plant Growth Regul. doi: 10.1007/BF00024003 – start-page: 225 year: 2013 ident: 10.1016/j.agwat.2024.108960_bib1 article-title: Water Use Efficiency – volume: 50 start-page: 495 year: 2007 ident: 10.1016/j.agwat.2024.108960_bib7 article-title: Airborne remote sensing used to estimate percent canopy cover and to extract canopy temperature from scene temperature in cotton publication-title: Trans. ASABE doi: 10.13031/2013.22638 – volume: 198–199 start-page: 94 year: 2014 ident: 10.1016/j.agwat.2024.108960_bib18 article-title: Applicability and limitations of using the crop water stress index as an indicator of water deficits in citrus orchards publication-title: Agric. . Meteor. doi: 10.1016/j.agrformet.2014.08.003 – volume: 58 start-page: 147 year: 2007 ident: 10.1016/j.agwat.2024.108960_bib15 article-title: Deficit irrigation for reducing agricultural water use publication-title: J. Exp. Bot. doi: 10.1093/jxb/erl165 – volume: 96 start-page: 1275 year: 2009 ident: 10.1016/j.agwat.2024.108960_bib16 article-title: Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2009.04.009 – volume: 36 start-page: 3 year: 2015 ident: 10.1016/j.agwat.2024.108960_bib2 article-title: Regulated deficit irrigation for crop production under drought stress. A review publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-015-0338-6 – volume: 162 start-page: 269 year: 2019 ident: 10.1016/j.agwat.2024.108960_bib9 article-title: Development of a multi-band sensor for crop temperature measurement publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.04.007 – volume: 255 year: 2021 ident: 10.1016/j.agwat.2024.108960_bib3 article-title: Water productivity and seed cotton yield in response to deficit irrigation: a global meta-analysis publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2021.107027 – start-page: 6 year: 2021 ident: 10.1016/j.agwat.2024.108960_bib26 article-title: performance: an R package for assessment, comparison and testing of statistical models publication-title: J. Open Source Softw. – volume: 84 start-page: 41 year: 2006 ident: 10.1016/j.agwat.2024.108960_bib10 article-title: Yield and physiological responses of cotton to partial root-zone irrigation in the oasis field of northwest China publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2006.01.010 – volume: 24 start-page: 519 year: 1973 ident: 10.1016/j.agwat.2024.108960_bib22 article-title: Plant responses to water stress publication-title: Annu. Rev. Plant Physiol. doi: 10.1146/annurev.pp.24.060173.002511 – volume: 207 start-page: 186 year: 2021 ident: 10.1016/j.agwat.2024.108960_bib12 article-title: Defining physiological contributions to yield loss in response to irrigation in cotton publication-title: J. Agron. Crop Sci. doi: 10.1111/jac.12453 – start-page: 169 year: 2016 ident: 10.1016/j.agwat.2024.108960_bib30 article-title: Radiation Interception, Radiation Use Efficiency and Crop Productivity – volume: 224 start-page: 139 year: 2018 ident: 10.1016/j.agwat.2024.108960_bib23 article-title: Water-induced variation in yield and quality can be explained by altered yield component contributions in field-grown cotton publication-title: Field Crops Res. doi: 10.1016/j.fcr.2018.05.013 – start-page: 1 year: 2020 ident: 10.1016/j.agwat.2024.108960_bib25 article-title: World Cotton Production and Consumption: An Overview – volume: 25 start-page: 910 year: 2015 ident: 10.1016/j.agwat.2024.108960_bib37 article-title: Effect of deficit irrigation on the growth, water use characteristics and yield of cotton in arid Northwest China publication-title: Pedosphere doi: 10.1016/S1002-0160(15)30071-0 – volume: 95 start-page: 69 year: 2008 ident: 10.1016/j.agwat.2024.108960_bib6 article-title: Yield and growth characteristics for cotton under various irrigation regimes on sandy soil publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2007.08.009 – volume: 272 year: 2022 ident: 10.1016/j.agwat.2024.108960_bib27 article-title: Water status and thermal response of lime trees to irrigation and shade screen publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2022.107843 – volume: 197 start-page: 1 year: 2016 ident: 10.1016/j.agwat.2024.108960_bib38 article-title: Effects of deficit irrigation and plant density on the growth, yield and fiber quality of irrigated cotton publication-title: Field Crops Res. doi: 10.1016/j.fcr.2016.06.003 – volume: 187 start-page: 210 year: 2017 ident: 10.1016/j.agwat.2024.108960_bib11 article-title: Assessing a crop water stress index derived from aerial thermal imaging and infrared thermometry in super-high density olive orchards publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2017.03.030 – volume: 2 start-page: 229 year: 2000 ident: 10.1016/j.agwat.2024.108960_bib21 article-title: Physiological parameters, harvest index and yield of deficient irrigated cotton publication-title: J. Crop Prod. doi: 10.1300/J144v02n02_09 – start-page: 1 year: 2022 ident: 10.1016/j.agwat.2024.108960_bib31 article-title: Radiation interception and radiation use efficiency response to intraspecific competition in barley (Hordeum vulgare) cultivars publication-title: Gesund Pflanz. – volume: 33 start-page: 257 year: 1979 ident: 10.1016/j.agwat.2024.108960_bib8 article-title: Yield response to water publication-title: Irrig. Drain. Pap. – volume: 162 start-page: 1780 year: 2013 ident: 10.1016/j.agwat.2024.108960_bib14 article-title: Improving photosynthesis publication-title: Plant Physiol. doi: 10.1104/pp.113.219006 – volume: 60 start-page: 1 year: 2003 ident: 10.1016/j.agwat.2024.108960_bib13 article-title: Effects of different drip irrigation programs on the boll number and shedding percentage and yield of cotton publication-title: Agric. Water Manag. doi: 10.1016/S0378-3774(02)00156-7 – volume: 31 start-page: 563 year: 2017 ident: 10.1016/j.agwat.2024.108960_bib33 article-title: Operational precise irrigation for cotton cultivation through the coupling of meteorological and crop growth models publication-title: Water Resour. Manag. doi: 10.1007/s11269-016-1548-7 – volume: 9 year: 2014 ident: 10.1016/j.agwat.2024.108960_bib39 article-title: Light spatial distribution in the canopy and crop development in cotton publication-title: PLOS ONE doi: 10.1371/journal.pone.0113409 – ident: 10.1016/j.agwat.2024.108960_bib35 doi: 10.1201/b11005-4 – volume: 149 start-page: 283 year: 2013 ident: 10.1016/j.agwat.2024.108960_bib17 article-title: Sorghum dwarfing genes can affect radiation capture and radiation use efficiency publication-title: Field Crops Res. doi: 10.1016/j.fcr.2013.05.005 – volume: 105 start-page: 78 year: 2019 ident: 10.1016/j.agwat.2024.108960_bib19 article-title: Transpiration from canopy temperature: implications for the assessment of crop yield in almond orchards publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2019.01.010 – volume: 186 year: 2022 ident: 10.1016/j.agwat.2024.108960_bib36 article-title: Adopting different cotton cropping systems may regulate the spatiotemporal variation in soil moisture and affect the growth, WUE and yield of cotton publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2022.115259 – year: 2022 ident: 10.1016/j.agwat.2024.108960_bib24 article-title: Hysteresis between winter wheat canopy temperature and atmospheric temperature and its driving factors publication-title: Plant Soil – volume: 155 start-page: 99 year: 2014 ident: 10.1016/j.agwat.2024.108960_bib4 article-title: Intensive cotton farming technologies in China: achievements, challenges and countermeasures publication-title: Field Crops Res. doi: 10.1016/j.fcr.2013.09.017 – volume: 61 start-page: 769 year: 1969 ident: 10.1016/j.agwat.2024.108960_bib20 article-title: Functions for cotton (Gossypium hirsutum L.) production from irrigation and nitrogen fertilization variables: I. Yield and evapotranspiration1 publication-title: Agron. J. doi: 10.2134/agronj1969.00021962006100050035x – volume: 410 start-page: 327 year: 2001 ident: 10.1016/j.agwat.2024.108960_bib32 article-title: Guard cell abscisic acid signalling and engineering drought hardiness in plants publication-title: Nature doi: 10.1038/35066500 – volume: 55 start-page: 217 year: 2002 ident: 10.1016/j.agwat.2024.108960_bib34 article-title: Cotton yield and applied water relationships under drip irrigation publication-title: Agric. Water Manag. doi: 10.1016/S0378-3774(01)00175-5 – volume: 9 start-page: 747 year: 1972 ident: 10.1016/j.agwat.2024.108960_bib28 article-title: Solar radiation and productivity in tropical ecosystems publication-title: J. Appl. Ecol. doi: 10.2307/2401901 – start-page: 47 year: 2019 ident: 10.1016/j.agwat.2024.108960_bib5 article-title: Water Management in Cotton |
SSID | ssj0004047 |
Score | 2.413517 |
Snippet | Deficit irrigation is a common strategy to reduce water use and improve the sustainability of cotton production. However, the effects of water deficits on crop... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 108960 |
SubjectTerms | air biomass canopy Canopy temperature China Cotton Deficit irrigation experimental design genotype harvest index irrigation rates irrigation scheduling micronaire Radiation use efficiency semiarid zones temperature transpiration Transpiration efficiency water conservation Water use efficiency |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07j9QwELZOV0GBeIrlJSNREtZrO3ZSHidOJyRo4KTrLD_GS5BIVtk90fHbmXESVkdBQRlr4ljj8Tziz58Ze7PxTR21EZi5eTqSExNd8yIrDN4B0CGCLWj3T5_N5ZX-eF1fn7Dz5SwMwSpn3z_59OKt55b1rM31ruvWX4SyWF1haadpa6km2m2tLVn5u19HmIcW5ZIxEq5IemEeKhgvv_3pCVApNWHt2sJTeYxOhcT_VpD6y12XGHRxn92bk0d-No3vATuB_iG7e7YdZwINeMR6WuAjfJtw6dzPnCN86Hl3pNTotxyHBGO19_RDge-GA6GG0BT5kHk3jiQFiRNxQ3mT7-FHV2FdnbjHNJNays3bj9nVxYev55fVfKdCFTHzOFStD57ObSgvshINyOSblDELa6PXUEO2BnJADyiSSHUdW-lrm1UjkzExt6CesNN-6OEp40IFo7S0oUlRK7A-C73JRvtko4hCrdjbRZduN1FnuAVT9t0V1TtSvZtUv2LvSd9_RIn3ujQM49bNE-9yhNBaH0IbWx2wdMuYj8mQ6yiNjdKumFlmy90yI-yq-_fXXy9z63CB0a6J72G42TuFMcE0G2XVs__t_Dm7Q08TbvAFOz2MN_ASc5lDeFWM9Td47fNZ priority: 102 providerName: Elsevier |
Title | Comprehensive analysis on investigating water-saving potentials of irrigated cotton in semi-arid area in China |
URI | https://dx.doi.org/10.1016/j.agwat.2024.108960 https://www.proquest.com/docview/3153681373 https://doaj.org/article/fceb97abb9c94b259f5152bf5c267c27 |
Volume | 301 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07j9QwELbgaKBAPMXyWBmJkoDXduykXBCnBcRVnHSd5cd4WaRLTtk90fHbmXESDiigobWc2JqxZz4nn79h7MXKN3XURiBy83QlJyYq8yIrTN4BMCCCLWz3Tydmc6o_nNVnv5T6Ik7YKA88Gu51jhBa60NoY6sDgvWMGViGXEdpbJTlHjnmvPkwNd-IFNrOGkOFzeW33zxRJ6UmVl1bFCmv8lCR6_8tHf0RmEu2Ob7Dbk8wka_H6d1l16C7x26tt8MklQH3WUdbeYAvIwOd-0ldhPcd312JZ3RbjlOCodp7-nTAL_oD8YNw0fE-890wUC9InCQaypN8D-e7Ck_QiXsElNRSamw_YKfH7z6_3VRT9YQqIsY4VK0Pnm5oKC-yEg3I5JuUEW-10WuoIVsDOWCsE0mkuo6t9LXNqpHJmJhbUA_ZUdd38IhxoYJRWtrQpKgVWJ-FXmWjfbJRRKEW7OVsS3cximS4mT321RXTOzK9G02_YG_I3j-7ksJ1aUC_u8nv7l9-XzAze8tNYGEEAfiq3d9Hfz771uFWov8jvoP-cu8URn_TrJRVj__HDJ-wmzTsyBZ8yo4OwyU8QwRzCEt2_dX31ZLdWL__uDlZlqX7A8gM9EQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05b9swFCZSZ2g7FOmFuCcLdKxgWryk0Q0aOE3ipQmQjeDpqkAkQ3bQv18-iqqRDh2yUiQlPJLvEL_3PYQ-z3XFLRMkem4aUnKsgzIvZRGNt_FRIXqZ0O6XK7G8Zt9v-M0BOhlzYQBWmXX_oNOTts4tsyzN2aZpZj8IlTG6iqEdg6slLh6hQ2Cn4hN0uDg7X6726ZEk1RmD_gUMGMmHEsxLr39rwFSWDOB2daKq3BuoxON_z079o7GTGTo9Qs-y_4gXwyc-Rwe-fYGeLtZ95tDwL1ELZ7z3PwdoOtaZdgR3LW72rBrtGsdP8n2x1fBPAW-6HQCH4m7EXcBN30Mv7zBwN6SReOtvmyKG1g7r6GlCSyq-_Qpdn367OlkWuaxCYaPzsStqbTSkblBNAiWVL52uXIiOWG0189wHKXwwUQkSRxznti41l4FWpRPChtrT12jSdq0_RphQIygrpamcZdRLHQibB8G0k5ZYQqfoyyhLtRnYM9QIK_ulkugViF4Nop-iryDvv12B-jo1dP1a5bVXwXpTS21MbWtmYvQWoktWmsBtKaQt5RSJcbXUvZ0Up2r-__ZP49qqeMbg4kS3vrvbKhrNgqjmVNI3D538I3q8vLq8UBdnq_O36Ak8GWCE79Bk19_599G12ZkPeev-AXiB95g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+analysis+on+investigating+water-saving+potentials+of+irrigated+cotton+in+semi-arid+area+in+China&rft.jtitle=Agricultural+water+management&rft.au=Xiaoyu+Zhi&rft.au=Barbara+George-Jaeggli&rft.au=Yingchun+Han&rft.au=Qiaomin+Chen&rft.date=2024-08-01&rft.pub=Elsevier&rft.eissn=1873-2283&rft.volume=301&rft.spage=108960&rft_id=info:doi/10.1016%2Fj.agwat.2024.108960&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fceb97abb9c94b259f5152bf5c267c27 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3774&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3774&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3774&client=summon |