Finite‐Element Analysis of Oscillations in Damaged Pipeline Sections Reinforced With a Composite Material

This work treats a finite‐element analysis of the oscillations in damaged pipeline sections reinforced with a composite wrap performed by ANSYS software when the thickness of the composite wrap was 2.0, 3.0, and 4.0 mm, while the length of the wrap was 400, 600, and 800 mm, respectively. The outcome...

Full description

Saved in:
Bibliographic Details
Published inModelling and Simulation in Engineering Vol. 2024; no. 1
Main Authors Moldagaliyev, Arman, Zhangabay, Nurlan, Bonopera, Marco, Raimberdiyev, Talzhan, Yeshimbetov, Shairbek, Galymzhan, Seraliyev, Anarbayev, Yermek
Format Journal Article
LanguageEnglish
Published New York John Wiley & Sons, Inc 2024
Wiley
Subjects
Online AccessGet full text
ISSN1687-5591
1687-5605
DOI10.1155/2024/2827002

Cover

Loading…
Abstract This work treats a finite‐element analysis of the oscillations in damaged pipeline sections reinforced with a composite wrap performed by ANSYS software when the thickness of the composite wrap was 2.0, 3.0, and 4.0 mm, while the length of the wrap was 400, 600, and 800 mm, respectively. The outcome showed that to compensate for the stress concentration in the damaged zone of a pipeline with a thickness between 11.9 and 14.3 mm, the thickness of the composite wrap should be 2 ÷ 4 mm, that is, not lower than 17% of the original pipeline thickness at thinning and not lower than 34% of the original pipeline thickness at large cracks. An increment in the pipeline thickness from 11.9 up to 14.3 mm with a reinforced composite lining leads to an increment in the first oscillation frequency not higher than 0.1%. The lowest fundamental frequency was at a pipeline with lining located at the restrained supports, while the highest frequency was between two free‐moving supports in the middle span. The difference between the first frequencies did not exceed the percentage of 4%. By applying a composite lining with a length of 20% of the pipeline length between a restrained support and a longitudinally movable one and a thickness of 33.6% of the nominal pipeline thickness, we were able to increase the frequency spectrum of the oscillations in comparison with the unreinforced pipeline. Therefore, for the fundamental frequency, this increment was equal to 13.9% for the operating pressure and almost four times for the critical one. Consequently, the developed approach can be used as an adjustment method for damaged pipeline sections characterized by low critical frequencies.
AbstractList This work treats a finite-element analysis of the oscillations in damaged pipeline sections reinforced with a composite wrap performed by ANSYS software when the thickness of the composite wrap was 2.0, 3.0, and 4.0mm, while the length of the wrap was 400, 600, and 800mm, respectively. The outcome showed that to compensate for the stress concentration in the damaged zone of a pipeline with a thickness between 11.9 and 14.3mm, the thickness of the composite wrap should be 2÷4mm, that is, not lower than 17% of the original pipeline thickness at thinning and not lower than 34% of the original pipeline thickness at large cracks. An increment in the pipeline thickness from 11.9 up to 14.3mm with a reinforced composite lining leads to an increment in the first oscillation frequency not higher than 0.1%. The lowest fundamental frequency was at a pipeline with lining located at the restrained supports, while the highest frequency was between two free-moving supports in the middle span. The difference between the first frequencies did not exceed the percentage of 4%. By applying a composite lining with a length of 20% of the pipeline length between a restrained support and a longitudinally movable one and a thickness of 33.6% of the nominal pipeline thickness, we were able to increase the frequency spectrum of the oscillations in comparison with the unreinforced pipeline. Therefore, for the fundamental frequency, this increment was equal to 13.9% for the operating pressure and almost four times for the critical one. Consequently, the developed approach can be used as an adjustment method for damaged pipeline sections characterized by low critical frequencies.
This work treats a finite‐element analysis of the oscillations in damaged pipeline sections reinforced with a composite wrap performed by ANSYS software when the thickness of the composite wrap was 2.0, 3.0, and 4.0 mm, while the length of the wrap was 400, 600, and 800 mm, respectively. The outcome showed that to compensate for the stress concentration in the damaged zone of a pipeline with a thickness between 11.9 and 14.3 mm, the thickness of the composite wrap should be 2 ÷ 4 mm, that is, not lower than 17% of the original pipeline thickness at thinning and not lower than 34% of the original pipeline thickness at large cracks. An increment in the pipeline thickness from 11.9 up to 14.3 mm with a reinforced composite lining leads to an increment in the first oscillation frequency not higher than 0.1%. The lowest fundamental frequency was at a pipeline with lining located at the restrained supports, while the highest frequency was between two free‐moving supports in the middle span. The difference between the first frequencies did not exceed the percentage of 4%. By applying a composite lining with a length of 20% of the pipeline length between a restrained support and a longitudinally movable one and a thickness of 33.6% of the nominal pipeline thickness, we were able to increase the frequency spectrum of the oscillations in comparison with the unreinforced pipeline. Therefore, for the fundamental frequency, this increment was equal to 13.9% for the operating pressure and almost four times for the critical one. Consequently, the developed approach can be used as an adjustment method for damaged pipeline sections characterized by low critical frequencies.
This work treats a finite-element analysis of the oscillations in damaged pipeline sections reinforced with a composite wrap performed by ANSYS software when the thickness of the composite wrap was 2.0, 3.0, and 4.0 mm, while the length of the wrap was 400, 600, and 800 mm, respectively. The outcome showed that to compensate for the stress concentration in the damaged zone of a pipeline with a thickness between 11.9 and 14.3 mm, the thickness of the composite wrap should be 2÷4 mm, that is, not lower than 17% of the original pipeline thickness at thinning and not lower than 34% of the original pipeline thickness at large cracks. An increment in the pipeline thickness from 11.9 up to 14.3 mm with a reinforced composite lining leads to an increment in the first oscillation frequency not higher than 0.1%. The lowest fundamental frequency was at a pipeline with lining located at the restrained supports, while the highest frequency was between two free-moving supports in the middle span. The difference between the first frequencies did not exceed the percentage of 4%. By applying a composite lining with a length of 20% of the pipeline length between a restrained support and a longitudinally movable one and a thickness of 33.6% of the nominal pipeline thickness, we were able to increase the frequency spectrum of the oscillations in comparison with the unreinforced pipeline. Therefore, for the fundamental frequency, this increment was equal to 13.9% for the operating pressure and almost four times for the critical one. Consequently, the developed approach can be used as an adjustment method for damaged pipeline sections characterized by low critical frequencies.
Audience Academic
Author Zhangabay, Nurlan
Anarbayev, Yermek
Raimberdiyev, Talzhan
Moldagaliyev, Arman
Galymzhan, Seraliyev
Bonopera, Marco
Yeshimbetov, Shairbek
Author_xml – sequence: 1
  givenname: Arman
  orcidid: 0000-0002-4286-8401
  surname: Moldagaliyev
  fullname: Moldagaliyev, Arman
– sequence: 2
  givenname: Nurlan
  orcidid: 0000-0002-8153-1449
  surname: Zhangabay
  fullname: Zhangabay, Nurlan
– sequence: 3
  givenname: Marco
  orcidid: 0000-0003-3819-2389
  surname: Bonopera
  fullname: Bonopera, Marco
– sequence: 4
  givenname: Talzhan
  surname: Raimberdiyev
  fullname: Raimberdiyev, Talzhan
– sequence: 5
  givenname: Shairbek
  surname: Yeshimbetov
  fullname: Yeshimbetov, Shairbek
– sequence: 6
  givenname: Seraliyev
  surname: Galymzhan
  fullname: Galymzhan, Seraliyev
– sequence: 7
  givenname: Yermek
  surname: Anarbayev
  fullname: Anarbayev, Yermek
BookMark eNpVkd9qFDEUxgepYK298wECXglum_8zc7msrS5UKq3iZTibnKypM5M1yYK98xF8Rp_ErFOFkouEc77zO-T7njdHU5ywaV4yesaYUueccnnOO95Syp80x0x37UJpqo7-vVXPnjWnOYcNlbJVQmh63Hy7DFMo-Pvnr4sBR5wKWU4w3OeQSfTkOtswDFBCnDIJE3kLI2zRkY9hh0OYkNyinZs3GCYfk63NL6F8JUBWcdzFXNnkAxRMAYYXzVMPQ8bTh_uk-Xx58Wn1fnF1_W69Wl4trOjbsug1dlJZDVQ4lMz5VlLQVmreom61hq53vUIAh4r7vhceW--l9wy57ZkQJ8165roId2aXwgjp3kQI5m8hpq2BVIId0DgKG_BS2412kisLru6TkjKxQe87VlmvZtYuxe97zMXcxX2qFmUjGGVdNbHrqupsVm2hQg9OlAS2HodjsDUnH2p92dG2laqnvA68fjRQNQV_lC3sczbr25vH2jez1qaYc0L__0uMmkP05hC9eYhe_AHHOKK7
Cites_doi 10.1016/j.engfailanal.2023.107276
10.3390/jcs7090373
10.1016/j.tws.2020.107213
10.1016/j.jlp.2016.02.008
10.1007/s11069-011-9754-3
10.1016/j.ijpvp.2022.104841
10.15587/1729-4061.2023.287025
10.1016/j.jpse.2021.08.004
10.12989/sem.2018.67.3.255
10.15587/1729-4061.2023.279098
10.3390/app14051790
10.1016/j.engfailanal.2020.104607
10.1016/j.cscm.2022.e01776
10.1016/j.engfailanal.2020.105013
10.1016/j.ijpvp.2019.103932
10.3390/ma17091963
10.12989/sem.2021.77.1.001
10.1016/j.proeng.2010.03.129
10.24411/0131-4270-2020-10410
10.1002/stco.201510022
10.1016/j.ijpvp.2023.104906
10.1016/j.engfailanal.2006.11.002
10.1016/j.engfailanal.2023.107215
10.1016/j.petrol.2021.108752
10.1016/j.jlp.2017.03.024
10.1016/j.cscm.2023.e02233
10.1201/b16295
10.1016/j.jlp.2017.03.002
10.1016/j.jlp.2016.09.016
10.1016/j.cscm.2023.e02376
10.1016/0308-0161(96)00009-9
10.1016/j.ress.2023.109170
10.1016/j.tws.2023.110595
ContentType Journal Article
Copyright COPYRIGHT 2024 John Wiley & Sons, Inc.
Copyright © 2024 Arman Moldagaliyev et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: COPYRIGHT 2024 John Wiley & Sons, Inc.
– notice: Copyright © 2024 Arman Moldagaliyev et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID AAYXX
CITATION
ISR
7SC
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CWDGH
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.1155/2024/2827002
DatabaseName CrossRef
Gale In Context: Science
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
Middle East & Africa Database
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Middle East & Africa Database
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1687-5605
Editor Xing-er Wang
Editor_xml – fullname: Xing-er Wang
ExternalDocumentID oai_doaj_org_article_d0abaf46cb6d425cad1df44013beff81
A807745902
10_1155_2024_2827002
GeographicLocations Kazakhstan
GeographicLocations_xml – name: Kazakhstan
GroupedDBID 0R~
123
188
24P
29M
2UF
2WC
4.4
5VS
8FE
8FG
8R4
8R5
AAFWJ
AAJEY
AAYXX
ABDBF
ABJCF
ABUWG
ACCMX
ACGFO
ACIWK
ACUHS
ADBBV
ADMLS
AFKRA
AFPKN
AINHJ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BPHCQ
C1A
CCPQU
CITATION
CS3
CWDGH
E3Z
EBS
EJD
ESX
GROUPED_DOAJ
H13
HCIFZ
I-F
IAO
IL9
ISR
ITC
K6V
K7-
KQ8
L6V
M7S
MK~
OK1
OVT
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
RHU
RNS
TR2
TUS
UGNYK
UNMZH
~8M
M~E
7SC
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
FR3
GNUQQ
JQ2
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PUEGO
ID FETCH-LOGICAL-c397t-96e845c6a03de41df740a6c4627e6766a89d95eaade52f993fe7ff4ff1e2c9133
IEDL.DBID BENPR
ISSN 1687-5591
IngestDate Wed Aug 27 00:41:01 EDT 2025
Fri Jul 25 19:13:52 EDT 2025
Tue Oct 15 04:49:26 EDT 2024
Sat Oct 12 03:45:44 EDT 2024
Tue Jul 01 01:25:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-96e845c6a03de41df740a6c4627e6766a89d95eaade52f993fe7ff4ff1e2c9133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3819-2389
0000-0002-8153-1449
0000-0002-4286-8401
OpenAccessLink https://www.proquest.com/docview/3101836088?pq-origsite=%requestingapplication%
PQID 3101836088
PQPubID 237773
ParticipantIDs doaj_primary_oai_doaj_org_article_d0abaf46cb6d425cad1df44013beff81
proquest_journals_3101836088
gale_infotracacademiconefile_A807745902
gale_incontextgauss_ISR_A807745902
crossref_primary_10_1155_2024_2827002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Modelling and Simulation in Engineering
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References e_1_2_9_52_2
e_1_2_9_10_2
e_1_2_9_33_2
e_1_2_9_56_2
Barbero J. (e_1_2_9_60_2) 2013
e_1_2_9_12_2
e_1_2_9_31_2
e_1_2_9_54_2
e_1_2_9_14_2
e_1_2_9_37_2
e_1_2_9_16_2
e_1_2_9_35_2
e_1_2_9_58_2
e_1_2_9_18_2
e_1_2_9_39_2
e_1_2_9_41_2
e_1_2_9_20_2
e_1_2_9_45_2
e_1_2_9_22_2
e_1_2_9_43_2
e_1_2_9_6_2
e_1_2_9_4_2
e_1_2_9_2_2
e_1_2_9_8_2
El-Nemr A. M. (e_1_2_9_28_2) 2016
e_1_2_9_24_2
e_1_2_9_49_2
e_1_2_9_26_2
e_1_2_9_47_2
e_1_2_9_51_2
e_1_2_9_30_2
e_1_2_9_34_2
e_1_2_9_55_2
e_1_2_9_11_2
e_1_2_9_32_2
e_1_2_9_53_2
API (American Petroleum Institute) (e_1_2_9_50_2) 2018
e_1_2_9_13_2
e_1_2_9_38_2
e_1_2_9_59_2
e_1_2_9_15_2
e_1_2_9_36_2
e_1_2_9_57_2
e_1_2_9_17_2
e_1_2_9_19_2
e_1_2_9_40_2
e_1_2_9_21_2
e_1_2_9_23_2
e_1_2_9_42_2
e_1_2_9_7_2
e_1_2_9_5_2
e_1_2_9_3_2
e_1_2_9_1_2
El-Nemr A. M. (e_1_2_9_29_2) 2016
Basiev K. D. (e_1_2_9_44_2) 2018; 7
e_1_2_9_9_2
e_1_2_9_25_2
e_1_2_9_48_2
e_1_2_9_27_2
e_1_2_9_46_2
References_xml – ident: e_1_2_9_39_2
  doi: 10.1016/j.engfailanal.2023.107276
– ident: e_1_2_9_38_2
– ident: e_1_2_9_32_2
  doi: 10.3390/jcs7090373
– ident: e_1_2_9_2_2
– ident: e_1_2_9_10_2
– ident: e_1_2_9_18_2
  doi: 10.1016/j.tws.2020.107213
– ident: e_1_2_9_24_2
  doi: 10.1016/j.jlp.2016.02.008
– ident: e_1_2_9_8_2
– start-page: 2138
  volume-title: In Insights and Innovations in Structural Engineering, Mechanics and Computation
  year: 2016
  ident: e_1_2_9_29_2
– ident: e_1_2_9_25_2
  doi: 10.1007/s11069-011-9754-3
– ident: e_1_2_9_42_2
  doi: 10.1016/j.ijpvp.2022.104841
– ident: e_1_2_9_56_2
  doi: 10.15587/1729-4061.2023.287025
– ident: e_1_2_9_17_2
  doi: 10.1016/j.jpse.2021.08.004
– ident: e_1_2_9_31_2
  doi: 10.12989/sem.2018.67.3.255
– start-page: 2122
  volume-title: In Insights and Innovations in Structural Engineering, Mechanics and Computation
  year: 2016
  ident: e_1_2_9_28_2
– ident: e_1_2_9_59_2
– ident: e_1_2_9_36_2
  doi: 10.15587/1729-4061.2023.279098
– ident: e_1_2_9_48_2
– ident: e_1_2_9_34_2
  doi: 10.3390/app14051790
– ident: e_1_2_9_4_2
– ident: e_1_2_9_54_2
– ident: e_1_2_9_1_2
– ident: e_1_2_9_51_2
– ident: e_1_2_9_13_2
– ident: e_1_2_9_23_2
  doi: 10.1016/j.engfailanal.2020.104607
– ident: e_1_2_9_33_2
  doi: 10.1016/j.cscm.2022.e01776
– ident: e_1_2_9_20_2
  doi: 10.1016/j.engfailanal.2020.105013
– ident: e_1_2_9_27_2
  doi: 10.1016/j.ijpvp.2019.103932
– ident: e_1_2_9_35_2
  doi: 10.3390/ma17091963
– ident: e_1_2_9_30_2
  doi: 10.12989/sem.2021.77.1.001
– ident: e_1_2_9_37_2
  doi: 10.1016/j.proeng.2010.03.129
– ident: e_1_2_9_52_2
– ident: e_1_2_9_5_2
  doi: 10.24411/0131-4270-2020-10410
– ident: e_1_2_9_57_2
– ident: e_1_2_9_12_2
– ident: e_1_2_9_21_2
  doi: 10.1002/stco.201510022
– ident: e_1_2_9_49_2
– ident: e_1_2_9_26_2
– ident: e_1_2_9_47_2
  doi: 10.1016/j.ijpvp.2023.104906
– ident: e_1_2_9_45_2
  doi: 10.1016/j.engfailanal.2006.11.002
– ident: e_1_2_9_53_2
– ident: e_1_2_9_19_2
  doi: 10.1016/j.engfailanal.2023.107215
– ident: e_1_2_9_41_2
  doi: 10.1016/j.petrol.2021.108752
– ident: e_1_2_9_9_2
– ident: e_1_2_9_11_2
– ident: e_1_2_9_6_2
– ident: e_1_2_9_7_2
  doi: 10.1016/j.jlp.2017.03.024
– ident: e_1_2_9_15_2
  doi: 10.1016/j.cscm.2023.e02233
– volume-title: Finite Element Analisys of Composite Wraps Using ANSYS
  year: 2013
  ident: e_1_2_9_60_2
  doi: 10.1201/b16295
– ident: e_1_2_9_3_2
– ident: e_1_2_9_22_2
  doi: 10.1016/j.jlp.2017.03.002
– ident: e_1_2_9_43_2
  doi: 10.1016/j.jlp.2016.09.016
– volume: 7
  start-page: 96
  year: 2018
  ident: e_1_2_9_44_2
  article-title: Influence of elastic strain energy of compressed gas on the development of corrosion and mechanical-corrosion cracks in the main gas pipelines
  publication-title: Gas Industry
– ident: e_1_2_9_14_2
  doi: 10.1016/j.cscm.2023.e02376
– ident: e_1_2_9_46_2
  doi: 10.1016/0308-0161(96)00009-9
– ident: e_1_2_9_40_2
  doi: 10.1016/j.ress.2023.109170
– ident: e_1_2_9_55_2
– volume-title: API Specification 5L
  year: 2018
  ident: e_1_2_9_50_2
– ident: e_1_2_9_58_2
– ident: e_1_2_9_16_2
  doi: 10.1016/j.tws.2023.110595
SSID ssib044753360
ssj0063810
Score 2.2830079
Snippet This work treats a finite‐element analysis of the oscillations in damaged pipeline sections reinforced with a composite wrap performed by ANSYS software when...
This work treats a finite-element analysis of the oscillations in damaged pipeline sections reinforced with a composite wrap performed by ANSYS software when...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
SubjectTerms Analysis
Composite materials
Corrosion
Cracks
Finite element method
Gases
Influence
Pipe lines
Steel pipes
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLZQT3BAjIEo65CFQJyi5oftJMdutNqQBqilojfLsf1YJEirNv3_956TTOMwceEaW5HzPef9sL73mbEPNsscJCqOZOGrSJhURFXqqkiWmYhNYpUtqBv55qu6WosvG7l5cNUXccI6eeAOuKmLTWVAKFsph_vLGpc4EFQVVB4gNF2nGPOGYqrzwYp0qwaau5RU4YspFhf5cHwyBKCg0_-YNw4hZvGCPe9zQz7r1nTCnvjmJXv2QDHwlNWLmpLEaN6xvvmgKcK3wL9hNPvdU9t43fDP5g86C8e_1ztqOvd8FWhXOLj0QS_V4uDPur3lhpNbIPqW5zemDZvyFVsv5j8ur6L-toTIYk7RRqXyhZBWmThzXiBIOYKtrFBp7lWulClKV0pvjPMyBUxLwOcAAiDxqS2xVH3NRs228W8YhzKLIQUpcyfxTdYg9KWTpN3iIRFuzD4OEOpdJ4qhQzEhpSaodQ_1mF0QvvdzSMo6PEAD697A-l8GHrP3ZB1NYhUNsWF-mePhoK9XSz0rYsxeSYBmzD71k2Db7o01fXMBfg_pW_01czJYWfe_60FnpFuWKfS4b__Hks_YU4KhO6mZsFG7P_pzzF3a6l3YpncItO5a
  priority: 102
  providerName: Directory of Open Access Journals
Title Finite‐Element Analysis of Oscillations in Damaged Pipeline Sections Reinforced With a Composite Material
URI https://www.proquest.com/docview/3101836088
https://doaj.org/article/d0abaf46cb6d425cad1df44013beff81
Volume 2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbo9gKHiqfYUlYWAnGKmoftJCfUx24XpC3Vlqq9WY4fbaQ2WXbTK7-dGceh5QCXRIqtPOblmcnMZ0I-6iwzLhFxxAtbRUylLKpSU0W8zFisEi10gd3Ii1Mxv2DfrvhVSLhtQlnlYBO9oTatxhz5fobQUpkApfiy-hnhrlH4dzVsobFFtsEEF3xEtg-np2fLQaIQzS7zXQq9bRaIZ4UhmADVAl86GUrhOccsANuHACQfUizDIuWx_P9lsf0yNHtOdoL_SA96hr8gT2zzkjx7hCr4itSzGh3JaNpXhtMBd4S2jn6HFe82lL_RuqHH6g4MiqFn9Qob0y0996VZMLi0HlNVw-Bl3d1QRdF0YImXpQvVecF9TS5m0x9H8yjsqBBp8Du6qBS2YFwLFWfGssS4HBgiNBNpbkUuhCpKU3KrlLE8deC6OJs7x5xLbKpLCGffkFHTNvYtoa7MYpc6znPD4U5aCcNKwxHfxbqEmTH5NJBQrnrgDOkDDs4lkloGUo_JIdL3zxyEu_YX2vW1DNojTawq5ZjQFTwl5VoZeHeGoWFlnSuSMfmA3JEIaNFgxcy1ut9s5NfzpTwoYvBwEaRmTD6HSa7t1kqr0IAA34MYWH_N3Bu4LINKb-SDAO7-f_gdeYof2Odp9sioW9_b9-C5dNWEbBWzk0kQUjgfXR6fzCc-DwDHxa_pb-lf73w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaq9gAcEKsYWqiFqDhFzWI7yQGhLjOaoZ2hmraiN-N4KZHaZDqTCvGn-I28l8QsB7j1GluJ_fz2vPeZkLc6SYyLRBjwzBYBUzELitgUAc8TFqpIC51hN_J0Jsbn7OMFv1gjP3wvDJZVep3YKmpTa8yR7yYILZUIEIoPi5sAb43Cv6v-Co2OLY7s928Qsq3eTw7hfHfieDQ8OxgH_a0CgQbb2wS5sBnjWqgwMZZFxqWwKKGZiFMrUiFUlpucW6WM5bED8-1s6hxzLrKxziNMgILK3wA3Iwcp2tgfzk7mnoMRPS9puyI6WyAQPwtDPgGiDL575EvvOcesA9uFgCf1KR1vFNu7A_5lIVqzN3pEHvb-Kt3rGOwxWbPVE_LgDxTDp6Qclei4BsOuEp16nBNaO_oJLOxVX25Hy4oeqmtQYIaelAtshLf0tC0Fg8G5bTFcNQx-LpuvVFFUVVhSZulUNa2gPCPnd0Lr52S9qiv7glCXJ6GLHeep4fAmrYRhueGIJ2NdxMyA7HgSykUH1CHbAIdziaSWPakHZB_p-2sOwmu3D-rlpeylVZpQFcoxoQv4Ssy1MrB2hqFoYZ3LogF5g6cjEUCjwgqdS3W7WsnJ6VzuZSF41AiKMyDv-kmubpZKq77hAfaDmFt_zdzypyx7FbKSvxn-5f-Ht8m98dn0WB5PZkeb5D5utssRbZH1ZnlrX4HX1BSve1al5MtdS8dPWekowA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTkLwgLiKwgALMfEUNRfbSR4Q2mirlbFSdUzszTi-jEjQlDYT4q_x6zgnsbk8wNteY-fi43PPOZ8Jea6zzLhExBEvbBUxlbKoSk0V8TJjsUq00AV2I5_MxdEZe3POz3fIj9ALg2WVQSd2ito0GnPkowyhpTIBQjFyvixiMZ6-Wn-N8AQp_NMajtPoWeTYfv8G4dv25WwMe72fptPJ-9dHkT9hINJgh9uoFLZgXAsVZ8ayxLgcPlBoJtLcilwIVZSm5FYpY3nqwJQ7mzvHnEtsqssEk6Gg_nfhLlEMyO7hZL5YBm5GJL2s65Do7YJALC0M_wSINfjxSSjD5xwzEGwEwU8e0jvBQHbnCPzLWnQmcHqL3PS-Kz3ome022bGrO-TGH4iGd0k9rdGJjSZ9VToNmCe0cfQdWNvPvvSO1is6Vl9AmRm6qNfYFG_paVcWBoNL2-G5ahj8ULefqKKotrC8zNIT1XZCc4-cXQmt75PBqlnZB4S6Motd6jjPDYcnaSUMKw1HbBnrEmaGZD-QUK570A7ZBTucSyS19KQekkOk7685CLXdXWg2F9JLrjSxqpRjQlfwlpRrZeDbGYallXWuSIbkGe6ORDCNFbLlhbrcbuXsdCkPihi8awTIGZIXfpJr2o3Syjc_wHoQf-uvmXthl6VXJ1v5m_kf_n_4KbkGUiHfzubHj8h1XGufLtojg3ZzaR-DA9VWTzynUvLxqoXjJwJcLOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite-Element+Analysis+of+Oscillations+in+Damaged+Pipeline+Sections+Reinforced+With+a+Composite+Material&rft.jtitle=Modelling+and+Simulation+in+Engineering&rft.au=Moldagaliyev%2C+Arman&rft.au=Zhangabay%2C+Nurlan&rft.au=Bonopera%2C+Marco&rft.au=Raimberdiyev%2C+Talzhan&rft.date=2024&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1687-5591&rft.volume=2024&rft_id=info:doi/10.1155%2F2024%2F2827002&rft.externalDocID=A807745902
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5591&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5591&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5591&client=summon