A collaborative filtering method based on artificial immune network

A system is seriously required for helping users to find their path on the shopping and entertainment web sites where the amounts of on-line information vastly increase. Therefore, recommender systems, new type of internet based software tool, appeared, and became an appealing subject for researcher...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 36; no. 4; pp. 8324 - 8332
Main Authors Merve Acilar, A., Arslan, Ahmet
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2009
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2008.10.029

Cover

Abstract A system is seriously required for helping users to find their path on the shopping and entertainment web sites where the amounts of on-line information vastly increase. Therefore, recommender systems, new type of internet based software tool, appeared, and became an appealing subject for researchers. Collaborative filtering (CF) technique based on user is the one of the method widely used by recommender systems but they have some problems for waiting to be developed solutions that are more efficient. One of these mainly problems is data sparsity. While the number of products is increase, the ratio of common rated products is decrease so calculating the computations of neighbourhood become difficult. The other one is scalability which is the performance problem of the existing algorithms on the datasets has large amounts of information. In this article, we tackle these two questions: (1) how the data sparsity can be reduced ? (2) How to make recommendation algorithms more scalable? We present an approach to addressing the both of these problems at the same time by using a new CF model, constructed based on the Artificial Immune Network Algorithm (aiNet). It is chosen because aiNet is capable of reducing sparsity and providing the scalability of dataset via describing data structure, including their spatial distribution and cluster inter-relations. The new user-item ratings dataset reduced by applying aiNet (aiNetDS) given more stable results and produced predictions more quickly than the raw user-item ratings dataset (rawDS). Besides, the effects of using clustering for forming the neighbourhoods to the system performance are investigated. For this, both of these dataset are clustered by using k-means algorithm and then these cluster partitions are used as neighbourhoods. As a result, it has been shown that the clustered aiNetDS is given more accurate and quick results than the others are.
AbstractList A system is seriously required for helping users to find their path on the shopping and entertainment web sites where the amounts of on-line information vastly increase. Therefore, recommender systems, new type of internet based software tool, appeared, and became an appealing subject for researchers. Collaborative filtering (CF) technique based on user is the one of the method widely used by recommender systems but they have some problems for waiting to be developed solutions that are more efficient. One of these mainly problems is data sparsity. While the number of products is increase, the ratio of common rated products is decrease so calculating the computations of neighbourhood become difficult. The other one is scalability which is the performance problem of the existing algorithms on the datasets has large amounts of information. In this article, we tackle these two questions: (1) how the data sparsity can be reduced ? (2) How to make recommendation algorithms more scalable? We present an approach to addressing the both of these problems at the same time by using a new CF model, constructed based on the Artificial Immune Network Algorithm (aiNet). It is chosen because aiNet is capable of reducing sparsity and providing the scalability of dataset via describing data structure, including their spatial distribution and cluster inter-relations. The new user-item ratings dataset reduced by applying aiNet (aiNetDS) given more stable results and produced predictions more quickly than the raw user-item ratings dataset (rawDS). Besides, the effects of using clustering for forming the neighbourhoods to the system performance are investigated. For this, both of these dataset are clustered by using k-means algorithm and then these cluster partitions are used as neighbourhoods. As a result, it has been shown that the clustered aiNetDS is given more accurate and quick results than the others are.
A system is seriously required for helping users to find their path on the shopping and entertainment web sites where the amounts of on-line information vastly increase. Therefore, recommender systems, new type of internet based software tool, appeared, and became an appealing subject for researchers. Collaborative filtering (CF) technique based on user is the one of the method widely used by recommender systems but they have some problems for waiting to be developed solutions that are more efficient. One of these mainly problems is data sparsity. While the number of products is increase, the ratio of common rated products is decrease so calculating the computations of neighbourhood become difficult. The other one is scalability which is the performance problem of the existing algorithms on the datasets has large amounts of information. In this article, we tackle these two questions: (1) how the data sparsity can be reduced ? (2) How to make recommendation algorithms more scalable? We present an approach to addressing the both of these problems at the same time by using a new CF model, constructed based on the Artificial Immune Network Algorithm (aiNet). It is chosen because aiNet is capable of reducing sparsity and providing the scalability of dataset via describing data structure, including their spatial distribution and cluster inter-relations. The new user-item ratings dataset reduced by applying aiNet (aiNetDS) given more stable results and produced predictions more quickly than the raw user-item ratings dataset (rawDS). Besides, the effects of using clustering for forming the neighbourhoods to the system performance are investigated. For this, both of these dataset are clustered by using k-means algorithm and then these cluster partitions are used as neighbourhoods. As a result, it has been shown that the clustered aiNetDS is given more accurate and quick results than the others are.
Author Merve Acilar, A.
Arslan, Ahmet
Author_xml – sequence: 1
  givenname: A.
  surname: Merve Acilar
  fullname: Merve Acilar, A.
  email: msakiroglu@selcuk.edu.tr, msakiroglu@hotmail.com
– sequence: 2
  givenname: Ahmet
  surname: Arslan
  fullname: Arslan, Ahmet
BookMark eNp9kD1PwzAQhi1UJErhDzB5Ykuw46SOJZaq4kuqxAKz5TpncEnsYrut-Pc4KhNDp5Nevc_p7rlEE-cdIHRDSUkJnd9tSogHVVaEtDkoSSXO0JS2nBVzLtgETYloeFFTXl-gyxg3hFBOCJ-i5QJr3_dq7YNKdg_Y2D5BsO4DD5A-fYfXKkKHvcMqJGustqrHdhh2DrCDdPDh6wqdG9VHuP6bM_T--PC2fC5Wr08vy8Wq0EzwVLS1Uoxz1RBoGmNMvTZ1zaqmokYxwvOhnNVNK5qu7SrBRCuYFooxQoSCzmg2Q7fHvdvgv3cQkxxs1JCvd-B3UeaqmNOG5WJ1LOrgYwxg5DbYQYUfSYkcfcmNHH3J0deYZV8Zav9B2qbsxLsUlO1Po_dHFPL3ewtBRm3BaehsAJ1k5-0p_BeDQIhe
CitedBy_id crossref_primary_10_1016_j_eswa_2021_114917
crossref_primary_10_1016_j_eswa_2011_09_094
crossref_primary_10_1109_ACCESS_2019_2891544
crossref_primary_10_1142_S0219622010003919
crossref_primary_10_1016_j_asoc_2012_11_046
crossref_primary_10_3233_JIFS_191225
crossref_primary_10_1108_DTA_04_2022_0172
crossref_primary_10_2753_JEC1086_4415160104
crossref_primary_10_52547_jsdp_18_4_89
crossref_primary_10_1007_s00607_015_0448_7
crossref_primary_10_1080_01969722_2020_1871229
crossref_primary_10_1016_j_procs_2020_01_006
crossref_primary_10_3233_KES220013
crossref_primary_10_3233_IDT_200217
crossref_primary_10_1016_j_eswa_2019_112906
crossref_primary_10_1016_j_asoc_2021_107552
crossref_primary_10_1109_ACCESS_2024_3496318
crossref_primary_10_2197_ipsjjip_30_361
crossref_primary_10_1007_s42979_023_02207_z
crossref_primary_10_1016_j_ipm_2013_02_004
crossref_primary_10_1016_j_eswa_2012_02_038
crossref_primary_10_1007_s11047_010_9228_7
crossref_primary_10_1016_j_procs_2023_12_212
crossref_primary_10_5391_JKIIS_2011_21_2_224
crossref_primary_10_52547_jsdp_19_1_1
crossref_primary_10_1007_s10462_015_9443_9
crossref_primary_10_1016_j_chb_2016_11_010
crossref_primary_10_1007_s00500_016_2212_0
crossref_primary_10_1088_1757_899X_909_1_012072
crossref_primary_10_11627_jksie_2024_47_2_155
crossref_primary_10_1016_j_aei_2015_04_005
crossref_primary_10_1016_j_neucom_2024_128932
crossref_primary_10_1016_j_compind_2018_05_004
crossref_primary_10_1016_j_knosys_2013_03_012
crossref_primary_10_1007_s12652_020_01997_x
crossref_primary_10_1109_TKDE_2016_2615039
crossref_primary_10_1016_j_asoc_2018_07_001
crossref_primary_10_2139_ssrn_3365525
crossref_primary_10_3233_IFS_151559
crossref_primary_10_1007_s00521_011_0674_7
crossref_primary_10_1007_s10586_017_1505_0
crossref_primary_10_32628_CSEIT1952312
crossref_primary_10_25046_aj030630
crossref_primary_10_1016_j_future_2018_04_025
crossref_primary_10_1080_17517575_2017_1293301
crossref_primary_10_1016_j_eij_2015_06_005
crossref_primary_10_4018_IJWP_2018070105
Cites_doi 10.1007/978-3-540-72830-6_27
10.21236/ADA439541
10.1016/j.ins.2007.07.024
10.1145/358916.358995
10.1007/s10852-004-5336-7
10.2139/ssrn.2832023
10.1016/j.ipm.2006.07.005
10.1109/ITI.2006.1708508
10.1016/S0957-4174(03)00138-6
10.1016/j.eswa.2004.10.015
10.1023/A:1006544522159
10.1145/138859.138867
10.1016/j.im.2004.01.008
10.1016/j.eswa.2006.10.005
10.1109/TSMCA.2003.818877
10.1145/192844.192905
10.1145/963770.963775
10.1016/j.eswa.2004.08.013
10.1023/A:1011419012209
ContentType Journal Article
Copyright 2008 Elsevier Ltd
Copyright_xml – notice: 2008 Elsevier Ltd
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2008.10.029
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 8332
ExternalDocumentID 10_1016_j_eswa_2008_10_029
S0957417408007100
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c397t-84aa377a50e55fff4bf4432521fa3076797345895d8d2939893c9a33009aedfc3
IEDL.DBID AIKHN
ISSN 0957-4174
IngestDate Fri Sep 05 03:51:19 EDT 2025
Tue Jul 01 03:12:00 EDT 2025
Thu Apr 24 23:01:26 EDT 2025
Fri Feb 23 02:30:20 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords aiNet
Collaborative filtering
Sparsity
Scalability
Recommender systems
Artificial immune system
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-84aa377a50e55fff4bf4432521fa3076797345895d8d2939893c9a33009aedfc3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 33096153
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_33096153
crossref_primary_10_1016_j_eswa_2008_10_029
crossref_citationtrail_10_1016_j_eswa_2008_10_029
elsevier_sciencedirect_doi_10_1016_j_eswa_2008_10_029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2009
2009-05-00
20090501
PublicationDateYYYYMMDD 2009-05-01
PublicationDate_xml – month: 05
  year: 2009
  text: May 2009
PublicationDecade 2000
PublicationTitle Expert systems with applications
PublicationYear 2009
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References (pp. 473–480).
Pennock, D. M., Horvitz, E., Lawrence, S., & Lee Giles, C. (2000). Collaborative filtering by personality diagnosis: a hybrid memory- and model-based approach. In
Sarwar, B. (2001). Sparsity, scalability, and distribution in recommender systems. PhD thesis, University of Minnesota.
Goldberg, Roeder, Gupta, Perkins (bib13) 2000; 4
Huang, Chen, Zeng (bib16) 2004; 22
Jerne (bib17) 1974
Billsus, D., & Pazzini, M. J. (1998). Learning collaborative information filters. In
Nottingham, UK.
Cho, Cho, Kim (bib7) 2005; 28
Cheung, Tsui, Liu (bib6) 2004; 34
Morrison, T. (2003). Similarity measure building for website recommendation within an artificial immune system. Ph.D. Thesis, University of Nottingham.
Aickelin, U., & Chen, Q. (2004). On affinity measures for artificial immune system movie recommenders. In
de Castro, Von Zuben (bib11) 2001
Cho, Kim (bib8) 2004; 26
Resnick P., Lacovou N., Suchak M., Bergstrom P., & Riedl J.
(pp. 241–250). Philadelphia, PA.
Claypool, M., Gokhale, A., & Miranda, T. (1999). Combining content-based and collaborative filters in an online newspaper. In
Li, Lu, Xuefeng (bib19) 2005; 28
Sarwar, B. M., Karypis, G., Kontsan, J. A. & Riedl, J. T. (2000). Application of dimensionality reduction in recommender system – A case study. In ACM WebKDD 2000 web mining for e-commerce workshop (pp. 82–90). ACM Press.
Sakiroglu, A. M. (2005). A recommender system based on artificial immune for web sites. Master thesis, University of Selcuk.
Li, Myaeng, Kim (bib20) 2007; 43
(pp. 43–52).
1994). GroupLens: An open architecture for collaborative filtering of netnews. In
Li, Q., & Kim, M. K. (2003). Clustering approach for hybrid recommender system, In
Liu, Ke, Lee, Lee (bib21) 2008; 34
(pp. 367–372). Cavtat, Croatia.
.
Sobecki, Szczepański (bib33) 2007; 4496/2007
Morgan Kaufmann Publishers Inc. (pp. 46–54, 93).
Goldberg, Nichols, Oki, Terry (bib12) 1992; 35
de Castro, Timmis (bib10) 2002
Pazzini (bib26) 1999; 13
Schafer, Konstan, Riedl (bib32) 2001
Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empirical analysis of predictive algorithms for collaborative fitlering. In
Ahn (bib1) 2008; 178
Han, Kamber (bib14) 2001
Herlocker, J., Konstan, J. A., & Riedl, J. (2000). Explaining collaborative filtering recommendations. In
Liu, Shih (bib22) 2005; 42
Cayzer, Aickelin (bib5) 2005; 4
Mihaljevic, B., Cvitas, A., & Zagar, M. (2006). Recommender system model based on artificial immune system. In
(pp. 175–186).
10.1016/j.eswa.2008.10.029_bib27
10.1016/j.eswa.2008.10.029_bib25
10.1016/j.eswa.2008.10.029_bib28
Goldberg (10.1016/j.eswa.2008.10.029_bib13) 2000; 4
10.1016/j.eswa.2008.10.029_bib29
Han (10.1016/j.eswa.2008.10.029_bib14) 2001
de Castro (10.1016/j.eswa.2008.10.029_bib10) 2002
10.1016/j.eswa.2008.10.029_bib23
Ahn (10.1016/j.eswa.2008.10.029_bib1) 2008; 178
10.1016/j.eswa.2008.10.029_bib4
10.1016/j.eswa.2008.10.029_bib3
10.1016/j.eswa.2008.10.029_bib2
Liu (10.1016/j.eswa.2008.10.029_bib21) 2008; 34
Cheung (10.1016/j.eswa.2008.10.029_bib6) 2004; 34
Huang (10.1016/j.eswa.2008.10.029_bib16) 2004; 22
Cayzer (10.1016/j.eswa.2008.10.029_bib5) 2005; 4
Li (10.1016/j.eswa.2008.10.029_bib20) 2007; 43
Cho (10.1016/j.eswa.2008.10.029_bib7) 2005; 28
10.1016/j.eswa.2008.10.029_bib15
Sobecki (10.1016/j.eswa.2008.10.029_bib33) 2007; 4496/2007
de Castro (10.1016/j.eswa.2008.10.029_bib11) 2001
10.1016/j.eswa.2008.10.029_bib18
10.1016/j.eswa.2008.10.029_bib30
Schafer (10.1016/j.eswa.2008.10.029_bib32) 2001
Goldberg (10.1016/j.eswa.2008.10.029_bib12) 1992; 35
10.1016/j.eswa.2008.10.029_bib9
10.1016/j.eswa.2008.10.029_bib31
Li (10.1016/j.eswa.2008.10.029_bib19) 2005; 28
Liu (10.1016/j.eswa.2008.10.029_bib22) 2005; 42
Cho (10.1016/j.eswa.2008.10.029_bib8) 2004; 26
Pazzini (10.1016/j.eswa.2008.10.029_bib26) 1999; 13
Jerne (10.1016/j.eswa.2008.10.029_bib17) 1974
References_xml – volume: 34
  start-page: 143
  year: 2004
  end-page: 148
  ident: bib6
  article-title: Extended latent class models for collaborative filtering
  publication-title: IEEE Transactions on Systems Man and Cybernetics – Part A: Systems and Humans
– reference: Pennock, D. M., Horvitz, E., Lawrence, S., & Lee Giles, C. (2000). Collaborative filtering by personality diagnosis: a hybrid memory- and model-based approach. In
– reference: (pp. 175–186).
– reference: Aickelin, U., & Chen, Q. (2004). On affinity measures for artificial immune system movie recommenders. In
– reference: Herlocker, J., Konstan, J. A., & Riedl, J. (2000). Explaining collaborative filtering recommendations. In
– volume: 26
  start-page: 233
  year: 2004
  end-page: 246
  ident: bib8
  article-title: Application of web usage mining and product taxonomy to collaborative recommendations in e-commerce
  publication-title: Expert System with Applications
– reference: Resnick P., Lacovou N., Suchak M., Bergstrom P., & Riedl J.
– reference: , Morgan Kaufmann Publishers Inc. (pp. 46–54, 93).
– volume: 28
  start-page: 67
  year: 2005
  end-page: 77
  ident: bib19
  article-title: A hybrid collaborative filtering method for multiple-interests and multiple-content recommendation in E-Commerce
  publication-title: Expert System with Applications
– volume: 22
  start-page: 116
  year: 2004
  end-page: 142
  ident: bib16
  article-title: Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering
  publication-title: ACM Transactions on Information Systems
– volume: 34
  start-page: 700
  year: 2008
  end-page: 716
  ident: bib21
  article-title: Knowledge maps for composite e-services: A mining-based system platform coupling with recommendations
  publication-title: Expert Systems with Applications
– reference: Sarwar, B. (2001). Sparsity, scalability, and distribution in recommender systems. PhD thesis, University of Minnesota.
– year: 2001
  ident: bib32
  article-title: E-Commerce recommendation applications
– reference: Claypool, M., Gokhale, A., & Miranda, T. (1999). Combining content-based and collaborative filters in an online newspaper. In
– reference: Sakiroglu, A. M. (2005). A recommender system based on artificial immune for web sites. Master thesis, University of Selcuk.
– volume: 13
  start-page: 393
  year: 1999
  end-page: 408
  ident: bib26
  article-title: A framework for collaborative, content based and demografic filtering
  publication-title: Artificial Intelligence Review
– volume: 42
  start-page: 387
  year: 2005
  end-page: 400
  ident: bib22
  article-title: Integrating AHP and data mining for product recommendation based on customer lifetime value
  publication-title: Information & Management
– volume: 4
  start-page: 133
  year: 2000
  end-page: 151
  ident: bib13
  article-title: Eigentaste: A constant time collaborative filtering algorithm
  publication-title: Information Retrieval
– reference: Li, Q., & Kim, M. K. (2003). Clustering approach for hybrid recommender system, In
– year: 2002
  ident: bib10
  article-title: Artificial immune systems: A new computational intelligence approach
– start-page: 39
  year: 1974
  ident: bib17
  article-title: Clonal selection in a lymphocyte network
  publication-title: Cellular selection and regulation in the immune response
– volume: 43
  start-page: 473
  year: 2007
  end-page: 487
  ident: bib20
  article-title: A probabilistic music recommender considering user opinions and audio features
  publication-title: Information Processing and Management
– reference: (pp. 367–372). Cavtat, Croatia.
– volume: 4496/2007
  start-page: 258
  year: 2007
  end-page: 266
  ident: bib33
  article-title: Wiki-news interface agent based on AIS methods
  publication-title: Lecture Notes in Computer Science
– reference: Mihaljevic, B., Cvitas, A., & Zagar, M. (2006). Recommender system model based on artificial immune system. In
– reference: .
– reference: Sarwar, B. M., Karypis, G., Kontsan, J. A. & Riedl, J. T. (2000). Application of dimensionality reduction in recommender system – A case study. In ACM WebKDD 2000 web mining for e-commerce workshop (pp. 82–90). ACM Press.
– reference: (pp. 473–480).
– reference: (pp. 43–52).
– reference: 1994). GroupLens: An open architecture for collaborative filtering of netnews. In
– reference: Billsus, D., & Pazzini, M. J. (1998). Learning collaborative information filters. In
– start-page: 231
  year: 2001
  end-page: 259
  ident: bib11
  article-title: aiNet: An artificial immune network for data analysis
  publication-title: Data mining: a heuristic approach
– volume: 4
  start-page: 181
  year: 2005
  end-page: 198
  ident: bib5
  article-title: A recommender system based on idiotypic artificial immune networks
  publication-title: Journal of Mathematical Modelling and Algorithms
– reference: (pp. 241–250). Philadelphia, PA.
– reference: Morrison, T. (2003). Similarity measure building for website recommendation within an artificial immune system. Ph.D. Thesis, University of Nottingham.
– reference: , Nottingham, UK.
– volume: 35
  start-page: 12
  year: 1992
  ident: bib12
  article-title: Using collaborative filtering to weave an information tapestry
  publication-title: Communications of the ACM
– reference: Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empirical analysis of predictive algorithms for collaborative fitlering. In
– year: 2001
  ident: bib14
  article-title: Data mining: Concepts and techniques
– volume: 178
  start-page: 37
  year: 2008
  end-page: 51
  ident: bib1
  article-title: A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem
  publication-title: Information Sciences
– volume: 28
  start-page: 359
  year: 2005
  end-page: 369
  ident: bib7
  article-title: Mining changes in customer buying behaviour for collaborative recommendations
  publication-title: Expert System with Applications
– volume: 4496/2007
  start-page: 258
  year: 2007
  ident: 10.1016/j.eswa.2008.10.029_bib33
  article-title: Wiki-news interface agent based on AIS methods
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/978-3-540-72830-6_27
– ident: 10.1016/j.eswa.2008.10.029_bib3
– ident: 10.1016/j.eswa.2008.10.029_bib29
– ident: 10.1016/j.eswa.2008.10.029_bib27
– ident: 10.1016/j.eswa.2008.10.029_bib31
  doi: 10.21236/ADA439541
– year: 2002
  ident: 10.1016/j.eswa.2008.10.029_bib10
– volume: 178
  start-page: 37
  year: 2008
  ident: 10.1016/j.eswa.2008.10.029_bib1
  article-title: A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2007.07.024
– ident: 10.1016/j.eswa.2008.10.029_bib15
  doi: 10.1145/358916.358995
– volume: 4
  start-page: 181
  issue: 2
  year: 2005
  ident: 10.1016/j.eswa.2008.10.029_bib5
  article-title: A recommender system based on idiotypic artificial immune networks
  publication-title: Journal of Mathematical Modelling and Algorithms
  doi: 10.1007/s10852-004-5336-7
– ident: 10.1016/j.eswa.2008.10.029_bib9
– ident: 10.1016/j.eswa.2008.10.029_bib2
  doi: 10.2139/ssrn.2832023
– start-page: 231
  year: 2001
  ident: 10.1016/j.eswa.2008.10.029_bib11
  article-title: aiNet: An artificial immune network for data analysis
– volume: 43
  start-page: 473
  year: 2007
  ident: 10.1016/j.eswa.2008.10.029_bib20
  article-title: A probabilistic music recommender considering user opinions and audio features
  publication-title: Information Processing and Management
  doi: 10.1016/j.ipm.2006.07.005
– ident: 10.1016/j.eswa.2008.10.029_bib23
  doi: 10.1109/ITI.2006.1708508
– volume: 26
  start-page: 233
  year: 2004
  ident: 10.1016/j.eswa.2008.10.029_bib8
  article-title: Application of web usage mining and product taxonomy to collaborative recommendations in e-commerce
  publication-title: Expert System with Applications
  doi: 10.1016/S0957-4174(03)00138-6
– ident: 10.1016/j.eswa.2008.10.029_bib25
– start-page: 39
  year: 1974
  ident: 10.1016/j.eswa.2008.10.029_bib17
  article-title: Clonal selection in a lymphocyte network
– year: 2001
  ident: 10.1016/j.eswa.2008.10.029_bib32
– volume: 28
  start-page: 359
  year: 2005
  ident: 10.1016/j.eswa.2008.10.029_bib7
  article-title: Mining changes in customer buying behaviour for collaborative recommendations
  publication-title: Expert System with Applications
  doi: 10.1016/j.eswa.2004.10.015
– volume: 13
  start-page: 393
  issue: 5–6
  year: 1999
  ident: 10.1016/j.eswa.2008.10.029_bib26
  article-title: A framework for collaborative, content based and demografic filtering
  publication-title: Artificial Intelligence Review
  doi: 10.1023/A:1006544522159
– ident: 10.1016/j.eswa.2008.10.029_bib30
– volume: 35
  start-page: 12
  year: 1992
  ident: 10.1016/j.eswa.2008.10.029_bib12
  article-title: Using collaborative filtering to weave an information tapestry
  publication-title: Communications of the ACM
  doi: 10.1145/138859.138867
– volume: 42
  start-page: 387
  year: 2005
  ident: 10.1016/j.eswa.2008.10.029_bib22
  article-title: Integrating AHP and data mining for product recommendation based on customer lifetime value
  publication-title: Information & Management
  doi: 10.1016/j.im.2004.01.008
– ident: 10.1016/j.eswa.2008.10.029_bib4
– volume: 34
  start-page: 700
  year: 2008
  ident: 10.1016/j.eswa.2008.10.029_bib21
  article-title: Knowledge maps for composite e-services: A mining-based system platform coupling with recommendations
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2006.10.005
– ident: 10.1016/j.eswa.2008.10.029_bib18
– year: 2001
  ident: 10.1016/j.eswa.2008.10.029_bib14
– volume: 34
  start-page: 143
  issue: 1
  year: 2004
  ident: 10.1016/j.eswa.2008.10.029_bib6
  article-title: Extended latent class models for collaborative filtering
  publication-title: IEEE Transactions on Systems Man and Cybernetics – Part A: Systems and Humans
  doi: 10.1109/TSMCA.2003.818877
– ident: 10.1016/j.eswa.2008.10.029_bib28
  doi: 10.1145/192844.192905
– volume: 22
  start-page: 116
  issue: 1
  year: 2004
  ident: 10.1016/j.eswa.2008.10.029_bib16
  article-title: Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering
  publication-title: ACM Transactions on Information Systems
  doi: 10.1145/963770.963775
– volume: 28
  start-page: 67
  year: 2005
  ident: 10.1016/j.eswa.2008.10.029_bib19
  article-title: A hybrid collaborative filtering method for multiple-interests and multiple-content recommendation in E-Commerce
  publication-title: Expert System with Applications
  doi: 10.1016/j.eswa.2004.08.013
– volume: 4
  start-page: 133
  issue: 2
  year: 2000
  ident: 10.1016/j.eswa.2008.10.029_bib13
  article-title: Eigentaste: A constant time collaborative filtering algorithm
  publication-title: Information Retrieval
  doi: 10.1023/A:1011419012209
SSID ssj0017007
Score 2.2413387
Snippet A system is seriously required for helping users to find their path on the shopping and entertainment web sites where the amounts of on-line information vastly...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8324
SubjectTerms aiNet
Artificial immune system
Collaborative filtering
Recommender systems
Scalability
Sparsity
Title A collaborative filtering method based on artificial immune network
URI https://dx.doi.org/10.1016/j.eswa.2008.10.029
https://www.proquest.com/docview/33096153
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED71sbDwRpRH8cCGQpPYTuKxqqgKiC5QqVvkJLZUhNKKtrDx2znHTgUIMbBadhSfz3efdd_dAVzSOA40DZUXoYKYB4rwkjAvvIxlseJJkNOqbsHDOBpN2N2UTxswqHNhDK3S2X5r0ytr7UZ6Tpq9xWzWe0RwgO4wZgbzmBo1TWiHVES8Be3-7f1ovAkmxL7Nmsb5nlngcmcszUst36WlVBqSV4U0f_VPPyx15X6Gu7DtcCPp21_bg4Yq92Gn7slA3BU9gEGffDnaN0X0zMTD0UER2yyaGL9VkHlJzDZt_QgyM1kiipSWE34Ik-HN02DkuUYJXo5wYuUlTEoUuuS-4lxrzTLNGA3RM2uJdziKRUwZTwQvkgLdu0CMkgtJKeIrqQqd0yNolfNSHQOhzC_CMMj9oIhYxkQWBNLnOkl0gS81xTsQ1OJJc1dF3DSzeElruthzakRq21viGIq0A1ebNQtbQ-PP2byWevpNE1I08n-uu6iPKMUrYuIeslTz9TLFjQqDa0_--eVT2LIxJENzPIPW6nWtzhGKrLIuNK8_gq5TuE8HuNu2
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdoCFN6K86oENRU1iO4-xqqha-lhopW6Rk9hSEUor2sLf5xw7CBDqwGrZUXw-3_dZ9wK4p2HoKepLJ0AF0Q-U2In8LHdSloaSR15Gy7oF40nQn7GnOZ_XoFvlwuiwSmv7jU0vrbUdaVtptleLRfsZyQHCYcg059E1avagwTi-9urQ6AyG_cmXMyF0TdY0znf0Aps7Y8K85PpDmJBKHeRVMs0_8emXpS7hp3cMh5Y3ko75tROoyeIUjqqeDMRe0TPodsi3o32XRC20PxwBiphm0UTjVk6WBdHbNPUjyEJniUhSmJjwc5j1HqfdvmMbJTgZ0omNEzEhUOiCu5JzpRRLFWPUR2RWAu9wEMYhZTyKeR7lCO8xcpQsFpQivxIyVxm9gHqxLOQlEMrc3Pe9zPXygKUsTj1PuFxFkcrxpSZ5E7xKPElmq4jrZhavSRUu9pJokZr2ljiGIm3Cw9ealamhsXM2r6Se_NCEBI38znWt6ogSvCLa7yEKudyuE9xorHnt1T-_3IL9_nQ8SkaDyfAaDow_SYc83kB987aVt0hLNumdVbtPTpLdpQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+collaborative+filtering+method+based+on+artificial+immune+network&rft.jtitle=Expert+systems+with+applications&rft.au=Merve+Acilar%2C+A.&rft.au=Arslan%2C+Ahmet&rft.date=2009-05-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=36&rft.issue=4&rft.spage=8324&rft.epage=8332&rft_id=info:doi/10.1016%2Fj.eswa.2008.10.029&rft.externalDocID=S0957417408007100
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon