Flow sorting of C-genome chromosomes from wild relatives of wheat Aegilops markgrafii, Ae. triuncialis and Ae. cylindrica, and their molecular organization

Aegilops markgrafii (CC) and its natural hybrids Ae. triuncialis (U(t)U(t)C(t)C(t)) and Ae. cylindrica (D(c)D(c)C(c)C(c)) represent a rich reservoir of useful genes for improvement of bread wheat (Triticum aestivum), but the limited information available on their genome structure and the shortage of...

Full description

Saved in:
Bibliographic Details
Published inAnnals of botany Vol. 116; no. 2; pp. 189 - 200
Main Authors Molnár, István, Vrána, Jan, Farkas, András, Kubaláková, Marie, Cseh, András, Molnár-Láng, Márta, Doležel, Jaroslav
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.08.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aegilops markgrafii (CC) and its natural hybrids Ae. triuncialis (U(t)U(t)C(t)C(t)) and Ae. cylindrica (D(c)D(c)C(c)C(c)) represent a rich reservoir of useful genes for improvement of bread wheat (Triticum aestivum), but the limited information available on their genome structure and the shortage of molecular (cyto-) genetic tools hamper the utilization of the extant genetic diversity. This study provides the complete karyotypes in the three species obtained after fluorescent in situ hybridization (FISH) with repetitive DNA probes, and evaluates the potential of flow cytometric chromosome sorting. The flow karyotypes obtained after the analysis of 4',6-diamidino-2-phenylindole (DAPI)-stained chromosomes were characterized and the chromosome content of the peaks on the flow karyotypes was determined by FISH. Twenty-nine conserved orthologous set (COS) markers covering all seven wheat homoeologous chromosome groups were used for PCR with DNA amplified from flow-sorted chromosomes and genomic DNA. FISH with repetitive DNA probes revealed that chromosomes 4C, 5C, 7C(t), T6U(t)S.6U(t)L-5C(t)L, 1C(c) and 5D(c) could be sorted with purities ranging from 66 to 91 %, while the remaining chromosomes could be sorted in groups of 2-5. This identified a partial wheat-C-genome homology for group 4 and 5 chromosomes. In addition, 1C chromosomes were homologous with group 1 of wheat; a small segment from group 2 indicated 1C-2C rearrangement. An extensively rearranged structure of chromosome 7C relative to wheat was also detected. The possibility of purifying Aegilops chromosomes provides an attractive opportunity to investigate the structure and evolution of the Aegilops C genome and to develop molecular tools to facilitate the identification of alien chromatin and support alien introgression breeding in bread wheat.
AbstractList Background and Aims Aegilops markgrafii (CC) and its natural hybrids Ae. triuncialis (U super(t)U super(t)C super(t)C super(t)) and Ae. cylindrica (D super(c)D super(c)C super(c)C super(c)) represent a rich reservoir of useful genes for improvement of bread wheat (Triticum aestivum), but the limited information available on their genome structure and the shortage of molecular (cyto-) genetic tools hamper the utilization of the extant genetic diversity. This study provides the complete karyotypes in the three species obtained after fluorescent in situ hybridization (FISH) with repetitive DNA probes, and evaluates the potential of flow cytometric chromosome sorting.Methods The flow karyotypes obtained after the analysis of 4',6-diamidino-2-phenylindole (DAPI)-stained chromosomes were characterized and the chromosome content of the peaks on the flow karyotypes was determined by FISH. Twenty-nine conserved orthologous set (COS) markers covering all seven wheat homoeologous chromosome groups were used for PCR with DNA amplified from flow-sorted chromosomes and genomic DNA.Key Results FISH with repetitive DNA probes revealed that chromosomes 4C, 5C, 7C super(t), T6U super(t)S.6U super(t)L-5C super(t)L, 1C super(c) and 5D super(c) could be sorted with purities ranging from 66 to 91 %, while the remaining chromosomes could be sorted in groups of 2-5. This identified a partial wheat-C-genome homology for group 4 and 5 chromosomes. In addition, 1C chromosomes were homologous with group 1 of wheat; a small segment from group 2 indicated 1C-2C rearrangement. An extensively rearranged structure of chromosome 7C relative to wheat was also detected.Conclusions The possibility of purifying Aegilops chromosomes provides an attractive opportunity to investigate the structure and evolution of the Aegilops C genome and to develop molecular tools to facilitate the identification of alien chromatin and support alien introgression breeding in bread wheat.
Background and Aims Aegilops markgrafii (CC) and its natural hybrids Ae. triuncialis (U t U t C t C t ) and Ae. cylindrica (D c D c C c C c ) represent a rich reservoir of useful genes for improvement of bread wheat ( Triticum aestivum ), but the limited information available on their genome structure and the shortage of molecular (cyto-) genetic tools hamper the utilization of the extant genetic diversity. This study provides the complete karyotypes in the three species obtained after fluorescent in situ hybridization (FISH) with repetitive DNA probes, and evaluates the potential of flow cytometric chromosome sorting. Methods The flow karyotypes obtained after the analysis of 4',6-diamidino-2-phenylindole (DAPI)-stained chromosomes were characterized and the chromosome content of the peaks on the flow karyotypes was determined by FISH. Twenty-nine conserved orthologous set (COS) markers covering all seven wheat homoeologous chromosome groups were used for PCR with DNA amplified from flow-sorted chromosomes and genomic DNA. Key Results FISH with repetitive DNA probes revealed that chromosomes 4C, 5C, 7C t , T6U t S.6U t L-5C t L, 1C c and 5D c could be sorted with purities ranging from 66 to 91 %, while the remaining chromosomes could be sorted in groups of 2–5. This identified a partial wheat–C-genome homology for group 4 and 5 chromosomes. In addition, 1C chromosomes were homologous with group 1 of wheat; a small segment from group 2 indicated 1C–2C rearrangement. An extensively rearranged structure of chromosome 7C relative to wheat was also detected. Conclusions The possibility of purifying Aegilops chromosomes provides an attractive opportunity to investigate the structure and evolution of the Aegilops C genome and to develop molecular tools to facilitate the identification of alien chromatin and support alien introgression breeding in bread wheat.
Aegilops markgrafii (CC) and its natural hybrids Ae. triuncialis (U(t)U(t)C(t)C(t)) and Ae. cylindrica (D(c)D(c)C(c)C(c)) represent a rich reservoir of useful genes for improvement of bread wheat (Triticum aestivum), but the limited information available on their genome structure and the shortage of molecular (cyto-) genetic tools hamper the utilization of the extant genetic diversity. This study provides the complete karyotypes in the three species obtained after fluorescent in situ hybridization (FISH) with repetitive DNA probes, and evaluates the potential of flow cytometric chromosome sorting. The flow karyotypes obtained after the analysis of 4',6-diamidino-2-phenylindole (DAPI)-stained chromosomes were characterized and the chromosome content of the peaks on the flow karyotypes was determined by FISH. Twenty-nine conserved orthologous set (COS) markers covering all seven wheat homoeologous chromosome groups were used for PCR with DNA amplified from flow-sorted chromosomes and genomic DNA. FISH with repetitive DNA probes revealed that chromosomes 4C, 5C, 7C(t), T6U(t)S.6U(t)L-5C(t)L, 1C(c) and 5D(c) could be sorted with purities ranging from 66 to 91 %, while the remaining chromosomes could be sorted in groups of 2-5. This identified a partial wheat-C-genome homology for group 4 and 5 chromosomes. In addition, 1C chromosomes were homologous with group 1 of wheat; a small segment from group 2 indicated 1C-2C rearrangement. An extensively rearranged structure of chromosome 7C relative to wheat was also detected. The possibility of purifying Aegilops chromosomes provides an attractive opportunity to investigate the structure and evolution of the Aegilops C genome and to develop molecular tools to facilitate the identification of alien chromatin and support alien introgression breeding in bread wheat.
BACKGROUND AND AIMSAegilops markgrafii (CC) and its natural hybrids Ae. triuncialis (U(t)U(t)C(t)C(t)) and Ae. cylindrica (D(c)D(c)C(c)C(c)) represent a rich reservoir of useful genes for improvement of bread wheat (Triticum aestivum), but the limited information available on their genome structure and the shortage of molecular (cyto-) genetic tools hamper the utilization of the extant genetic diversity. This study provides the complete karyotypes in the three species obtained after fluorescent in situ hybridization (FISH) with repetitive DNA probes, and evaluates the potential of flow cytometric chromosome sorting.METHODSThe flow karyotypes obtained after the analysis of 4',6-diamidino-2-phenylindole (DAPI)-stained chromosomes were characterized and the chromosome content of the peaks on the flow karyotypes was determined by FISH. Twenty-nine conserved orthologous set (COS) markers covering all seven wheat homoeologous chromosome groups were used for PCR with DNA amplified from flow-sorted chromosomes and genomic DNA.KEY RESULTSFISH with repetitive DNA probes revealed that chromosomes 4C, 5C, 7C(t), T6U(t)S.6U(t)L-5C(t)L, 1C(c) and 5D(c) could be sorted with purities ranging from 66 to 91 %, while the remaining chromosomes could be sorted in groups of 2-5. This identified a partial wheat-C-genome homology for group 4 and 5 chromosomes. In addition, 1C chromosomes were homologous with group 1 of wheat; a small segment from group 2 indicated 1C-2C rearrangement. An extensively rearranged structure of chromosome 7C relative to wheat was also detected.CONCLUSIONSThe possibility of purifying Aegilops chromosomes provides an attractive opportunity to investigate the structure and evolution of the Aegilops C genome and to develop molecular tools to facilitate the identification of alien chromatin and support alien introgression breeding in bread wheat.
Author Cseh, András
Kubaláková, Marie
Farkas, András
Vrána, Jan
Doležel, Jaroslav
Molnár, István
Molnár-Láng, Márta
Author_xml – sequence: 1
  givenname: István
  surname: Molnár
  fullname: Molnár, István
  organization: Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462 Martonvásár, Hungary
– sequence: 2
  givenname: Jan
  surname: Vrána
  fullname: Vrána, Jan
  organization: Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
– sequence: 3
  givenname: András
  surname: Farkas
  fullname: Farkas, András
  organization: Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462 Martonvásár, Hungary
– sequence: 4
  givenname: Marie
  surname: Kubaláková
  fullname: Kubaláková, Marie
  organization: Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
– sequence: 5
  givenname: András
  surname: Cseh
  fullname: Cseh, András
  organization: Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462 Martonvásár, Hungary
– sequence: 6
  givenname: Márta
  surname: Molnár-Láng
  fullname: Molnár-Láng, Márta
  organization: Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462 Martonvásár, Hungary
– sequence: 7
  givenname: Jaroslav
  surname: Doležel
  fullname: Doležel, Jaroslav
  organization: Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26043745$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v1DAQxS1URLeFC3eQjwg1rR3H_y5I1YoCUiUucLYc28m6OPZiJ7sqX4Uvi9stVTlx8ujNT88z807AUUzRAfAao3OMJLnQqb-YzA5x8gysqkIb0Up0BFaIINpwwrpjcFLKDUKoZRK_AMctQx3hHV2B31ch7WFJefZxhGmA62Z0MU0Omk1OUyq1LHCoJdz7YGF2Qc9-V7XK7jdOz_DSjT6kbYGTzj_GrAfvz6p4Dufsl2i8Dr5AHe29Zm6DjzZ7o8_utXnjfIZTCs4sQWeY8qij_1X_SPEleD7oUNyrh_cUfL_6-G39ubn--unL-vK6MUTyuS5LkOGcMkSF7JnsrRSDldRZSiilXYcwE1LjrudMUj5w3RvbG2l0PZUVmpyCDwff7dJPzhoX56yD2mZfN7pVSXv1byf6jRrTTnUUt1iIavDuwSCnn4srs5p8MS4EHV1aisIc805Ihtn_USZFHRK3d67vD6jJqZTshseJMFJ3wasavDoEX-G3T3d4RP8mXYE3B-CmzCk_6dOW8paSP6m1uI8
CitedBy_id crossref_primary_10_1007_s13237_023_00450_6
crossref_primary_10_1038_s41598_018_34811_y
crossref_primary_10_1038_hdy_2016_36
crossref_primary_10_1002_cbin_10886
crossref_primary_10_3835_plantgenome2018_12_0096
crossref_primary_10_3389_fpls_2017_01743
crossref_primary_10_1186_s12864_017_3567_z
crossref_primary_10_1016_j_biotechadv_2020_107659
crossref_primary_10_1111_tpj_15926
crossref_primary_10_1111_tpj_13657
crossref_primary_10_3389_fpls_2018_01616
crossref_primary_10_1111_tpj_13379
crossref_primary_10_17221_11_2022_CJGPB
crossref_primary_10_1186_s12864_016_3231_z
crossref_primary_10_3389_fpls_2020_00606
crossref_primary_10_1002_cyto_a_24324
crossref_primary_10_1002_cpcy_9
crossref_primary_10_1139_gen_2019_0215
crossref_primary_10_1093_aob_mcx149
crossref_primary_10_1111_tpj_13266
crossref_primary_10_3389_fpls_2020_00710
crossref_primary_10_1002_ps_6498
crossref_primary_10_1111_tpj_15081
crossref_primary_10_1007_s00122_020_03625_w
crossref_primary_10_1186_s12864_022_08516_6
Cites_doi 10.1007/s10142-012-0293-0
10.1534/genetics.104.039180
10.1007/s10681-007-9624-y
10.1007/s00122-014-2282-2
10.1007/978-94-007-7572-5_11
10.1007/s10142-009-0129-8
10.1007/BF00226902
10.1139/g95-063
10.1139/g95-002
10.1038/nature11997
10.1093/aob/mcf008
10.1007/s00438-003-0806-6
10.1093/aob/
10.1007/BF02907241
10.1139/gen-42-3-497
10.1371/journal.pone.0057994
10.1016/j.pbi.2007.01.010
10.1371/journal.pone.0050151
10.1007/s001220050475
10.1007/BF00035277
10.1111/j.1439-0523.1996.tb00878.x
10.1556/AAgr.59.2011.3.7
10.1139/g06-123
10.1159/000121084
10.1139/g03-054
10.1007/BF00042613
10.1093/nar/7.7.1869
10.1038/nature12028
10.1007/BF00222940
10.1371/journal.pone.0070844
10.1159/000082379
10.1111/j.1365-313X.2004.02179.x
10.1007/s00122-002-1182-z
10.1007/s00606-003-0072-4
10.1371/journal.pone.0027708
10.1007/s006060200018
10.1186/1471-2164-15-273
10.1093/aob/mcq215
10.1126/science.1161847
10.1007/s10722-008-9344-8
10.1093/genetics/156.4.2033
10.1126/science.1249721
10.1016/j.tig.2007.11.001
10.1007/s12041-012-0161-7
10.1139/g96-040
10.1139/G07-083
10.1038/nature11650
10.1007/s001220050849
10.1093/jxb/erj124
10.1007/s10577-006-1106-x
10.1016/0092-8674(80)90529-2
10.1186/1471-2164-9-294
10.1105/tpc.110.082537
10.1007/BF02732107
10.1002/cyto.a.10013
10.1007/978-0-387-77489-3_23
10.1126/science.1086132
10.1016/j.ygeno.2010.05.005
10.1139/g05-062
10.1007/s001220050710
10.1073/pnas.1219082110
10.1139/G08-043
10.1111/aab.12043
10.1007/BF00223721
10.1300/J144v01n02_02
10.1139/g93-067
10.1371/journal.pbio.0030038
10.1017/S0016672300010569
10.1139/g96-145
10.1126/science.1251788
10.1007/978-3-642-14228-4_1
10.1007/s00122-011-1674-9
10.1023/A:1009293628638
ContentType Journal Article
Copyright The Author 2015
The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2015
Copyright_xml – notice: The Author 2015
– notice: The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
– notice: The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2015
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
8FD
FR3
P64
RC3
5PM
DOI 10.1093/aob/mcv073
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Genetics Abstracts

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1095-8290
EndPage 200
ExternalDocumentID 10_1093_aob_mcv073
26043745
26525725
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-E4
-~X
.2P
.I3
0R~
1TH
1~5
23M
2WC
2~F
4.4
482
48X
4G.
5GY
5VS
5WA
5WD
6J9
7-5
70D
79B
A8Z
AACTN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAVLN
AAXTN
ABBHK
ABDBF
ABEUO
ABIXL
ABJNI
ABLJU
ABMNT
ABNKS
ABPPZ
ABPTD
ABQLI
ABQTQ
ABWST
ABXSQ
ABXVV
ABZBJ
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACUFI
ACUTJ
ADACV
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADOCK
ADQBN
ADRIX
ADRTK
ADULT
ADVEK
ADYVW
ADZTZ
ADZXQ
AEEJZ
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEUPB
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AKHUL
AKRWK
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AOIJS
APIBT
APWMN
AQVQM
ARIXL
ATGXG
AXUDD
AYOIW
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
CDBKE
COF
CS3
CZ4
DAKXR
DATOO
DILTD
D~K
E3Z
EBD
EBS
EDH
EE~
EJD
EMOBN
ESTFP
ESX
F5P
F9B
FDB
FHSFR
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HYE
HZ~
IOX
IPSME
J21
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
M-Z
M49
N9A
NGC
NLBLG
NOMLY
NU-
NVLIB
O-L
O9-
OAWHX
OBOKY
ODMLO
OJQWA
OJZSN
OK1
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
ROL
ROX
ROZ
RPM
RUSNO
RW1
RXO
SA0
SV3
TEORI
TLC
TN5
TR2
UPT
W8F
WH7
WOQ
X7H
Y6R
YAYTL
YKOAZ
YSK
YXANX
YZZ
ZKX
~02
~91
~KM
--K
1B1
53G
6.Y
71M
AAEDT
AALCJ
AALRI
AAQFI
AAQXK
AAWDT
AAXUO
ABEFU
ABSAR
ABSMQ
ACFRR
ACMRT
ACPQN
ADFGL
ADMUD
AEKPW
AETEA
AFDAS
AFFNX
AFMIJ
AFSWV
AFYAG
AGKRT
AGMDO
AI.
ANFBD
APJGH
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
BYORX
C1A
CAG
CGR
CUY
CVF
CXTWN
DFGAJ
DM4
ECM
EIF
ELUNK
FA8
FEDTE
FGOYB
FIRID
G8K
HVGLF
IHE
KC5
LG5
MBTAY
NEJ
NPM
NTWIH
O0~
OHT
OZT
O~Y
PB-
QBD
R2-
RNI
RPZ
RZF
RZO
SSZ
TCN
UHS
VH1
XOL
XPP
ZCG
ZMT
AAYXX
ACZBC
AFSHK
CITATION
7X8
8FD
FR3
P64
RC3
5PM
ID FETCH-LOGICAL-c397t-8230c77560589b69bd98fd95ed535554401689a14b76957f7abcdbc9ca095d8a3
IEDL.DBID RPM
ISSN 0305-7364
IngestDate Tue Sep 17 21:22:49 EDT 2024
Tue Aug 27 04:43:37 EDT 2024
Fri Aug 16 22:09:52 EDT 2024
Fri Aug 23 03:45:54 EDT 2024
Thu May 23 23:21:15 EDT 2024
Sun Sep 22 12:45:42 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords goatgrass
COS
Poaceae
Aegilops markgrafii
genomic in situ hybridization
Ae. cylindrica
Ae. triuncialis
fluorescence in situ hybridization
physical mapping
GISH
FISH
conserved orthologous set markers
wheat
flow cytometric chromosome sorting
Triticum aestivum
Language English
License The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-8230c77560589b69bd98fd95ed535554401689a14b76957f7abcdbc9ca095d8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26043745
PQID 1698957128
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4512188
proquest_miscellaneous_1717489616
proquest_miscellaneous_1698957128
crossref_primary_10_1093_aob_mcv073
pubmed_primary_26043745
jstor_primary_26525725
PublicationCentury 2000
PublicationDate 2015-08-01
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Annals of botany
PublicationTitleAlternate Ann Bot
PublicationYear 2015
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References 10382296 - Genome. 1999 Jun;42(3):497-503
14608406 - Genome. 2003 Oct;46(5):893-905
25035497 - Science. 2014 Jul 18;345(6194):1249721
12541287 - Cytometry A. 2003 Feb;51(2):127-8; author reply 129
18059548 - Genome. 2007 Nov;50(11):1029-37
7557360 - Genome. 1995 Jun;38(3):479-86
23610408 - Proc Natl Acad Sci U S A. 2013 May 7;110(19):7940-5
18470147 - Genome. 1995 Feb;38(1):8-16
23535596 - Nature. 2013 Apr 4;496(7443):87-90
18469894 - Genome. 1996 Apr;39(2):293-306
15341637 - Plant J. 2004 Sep;39(6):960-8
24553964 - Theor Appl Genet. 2014 May;127(5):1091-104
19575250 - Funct Integr Genomics. 2009 Nov;9(4):473-84
25035500 - Science. 2014 Jul 18;345(6194):1251788
18469963 - Genome. 1996 Dec;39(6):1150-8
10560966 - Chromosome Res. 1999;7(6):431-44
21036694 - Ann Bot. 2011 Jan;107(1):65-76
12715154 - Mol Genet Genomics. 2003 Apr;269(1):60-7
24173081 - Theor Appl Genet. 1995 Jun;90(7-8):1174-9
24202675 - Theor Appl Genet. 1992 Mar;83(5):589-96
18504364 - Cytogenet Genome Res. 2008;120(3-4):351-7
22132127 - PLoS One. 2011;6(11):e27708
23940651 - PLoS One. 2013;8(8):e70844
15753556 - Cytogenet Genome Res. 2005;109(1-3):34-42
18054117 - Trends Genet. 2008 Jan;24(1):24-32
18470003 - Genome. 1993 Jun;36(3):489-94
537913 - Nucleic Acids Res. 1979 Dec 11;7(7):1869-85
18565235 - BMC Genomics. 2008;9:294
11102393 - Genetics. 2000 Dec;156(4):2033-41
23469124 - PLoS One. 2013;8(2):e57994
17426778 - Genome. 2006 Dec;49(12):1628-39
18832645 - Science. 2008 Oct 3;322(5898):101-4
16391676 - Genome. 2005 Dec;48(6):1070-82
24716476 - BMC Genomics. 2014;15:273
18650951 - Genome. 2008 Aug;51(8):616-27
24178027 - Theor Appl Genet. 1994 Nov;89(6):794-800
23192148 - Nature. 2012 Nov 29;491(7426):705-10
12907789 - Science. 2003 Aug 8;301(5634):793-7
17295126 - Chromosome Res. 2007;15(1):51-66
21833553 - Theor Appl Genet. 2011 Dec;123(8):1387-400
15802508 - Genetics. 2005 Jun;170(2):823-9
15685292 - PLoS Biol. 2005 Feb;3(2):e38
23185561 - PLoS One. 2012;7(11):e50151
6244112 - Cell. 1980 Feb;19(2):545-60
17291821 - Curr Opin Plant Biol. 2007 Apr;10(2):176-81
21467582 - Plant Cell. 2011 Apr;23(4):1249-63
22895700 - Funct Integr Genomics. 2012 Aug;12(3):397-416
22942085 - J Genet. 2012 Aug;91(2):155-61
20580815 - Genomics. 2010 Sep;96(3):181-90
16513812 - J Exp Bot. 2006;57(5):1059-78
12096816 - Ann Bot. 2002 Jan;89(1):3-10
23535592 - Nature. 2013 Apr 4;496(7443):91-5
12748776 - Theor Appl Genet. 2003 May;106(7):1248-55
2015090105525390000_116.2.189.62
2015090105525390000_116.2.189.63
2015090105525390000_116.2.189.60
Sears (2015090105525390000_116.2.189.68) 1956; 9
2015090105525390000_116.2.189.61
Dvořák (2015090105525390000_116.2.189.20) 2009
2015090105525390000_116.2.189.15
2015090105525390000_116.2.189.59
2015090105525390000_116.2.189.13
2015090105525390000_116.2.189.57
2015090105525390000_116.2.189.14
2015090105525390000_116.2.189.58
2015090105525390000_116.2.189.11
2015090105525390000_116.2.189.12
2015090105525390000_116.2.189.10
2015090105525390000_116.2.189.54
Váguújfalvi (2015090105525390000_116.2.189.73) 2003; 269
2015090105525390000_116.2.189.19
2015090105525390000_116.2.189.18
2015090105525390000_116.2.189.6
2015090105525390000_116.2.189.7
2015090105525390000_116.2.189.8
2015090105525390000_116.2.189.9
2015090105525390000_116.2.189.3
Eilam (2015090105525390000_116.2.189.23) 2008; 51
2015090105525390000_116.2.189.4
Quarrie (2015090105525390000_116.2.189.56) 1994; 89
2015090105525390000_116.2.189.51
Kilian (2015090105525390000_116.2.189.35) 2011
Vrána (2015090105525390000_116.2.189.76) 2000; 156
Furuta (2015090105525390000_116.2.189.28) 1970; 30
2015090105525390000_116.2.189.48
2015090105525390000_116.2.189.49
2015090105525390000_116.2.189.46
2015090105525390000_116.2.189.47
Van Slageren (2015090105525390000_116.2.189.74) 1994
Badaeva (2015090105525390000_116.2.189.2) 1996; 39
2015090105525390000_116.2.189.45
Doležel (2015090105525390000_116.2.189.17) 2003; 51
2015090105525390000_116.2.189.42
2015090105525390000_116.2.189.43
Molnár-Láng (2015090105525390000_116.2.189.50) 2014
Snape (2015090105525390000_116.2.189.70) 1997; 45
Martin-Sanchez (2015090105525390000_116.2.189.44) 2003; 106
Bai (2015090105525390000_116.2.189.5) 1995; 38
Qi (2015090105525390000_116.2.189.55) 2006; 49
Galiba (2015090105525390000_116.2.189.29) 1995; 90
2015090105525390000_116.2.189.41
2015090105525390000_116.2.189.37
Badaeva (2015090105525390000_116.2.189.1) 1996; 39
2015090105525390000_116.2.189.36
2015090105525390000_116.2.189.33
2015090105525390000_116.2.189.77
2015090105525390000_116.2.189.34
Schneider (2015090105525390000_116.2.189.65) 2005; 48
2015090105525390000_116.2.189.78
2015090105525390000_116.2.189.31
2015090105525390000_116.2.189.75
2015090105525390000_116.2.189.32
2015090105525390000_116.2.189.39
Friebe (2015090105525390000_116.2.189.26) 1992; 83
Linc (2015090105525390000_116.2.189.40) 1999; 42
Muramatsu (2015090105525390000_116.2.189.52) 1973
Kubaláková (2015090105525390000_116.2.189.38) 2003; 46
2015090105525390000_116.2.189.30
2015090105525390000_116.2.189.71
2015090105525390000_116.2.189.72
2015090105525390000_116.2.189.27
2015090105525390000_116.2.189.24
2015090105525390000_116.2.189.25
2015090105525390000_116.2.189.69
2015090105525390000_116.2.189.22
2015090105525390000_116.2.189.66
2015090105525390000_116.2.189.67
2015090105525390000_116.2.189.64
2015090105525390000_116.2.189.21
Doležel (2015090105525390000_116.2.189.16) 1989; 31
Nagaki (2015090105525390000_116.2.189.53) 1995; 38
References_xml – ident: 2015090105525390000_116.2.189.19
  doi: 10.1007/s10142-012-0293-0
– ident: 2015090105525390000_116.2.189.39
  doi: 10.1534/genetics.104.039180
– ident: 2015090105525390000_116.2.189.66
  doi: 10.1007/s10681-007-9624-y
– ident: 2015090105525390000_116.2.189.49
  doi: 10.1007/s00122-014-2282-2
– start-page: 255
  volume-title: Genomics of plant genetic resources, Vol. 1, Managing, sequencing and mining genetic resources
  year: 2014
  ident: 2015090105525390000_116.2.189.50
  article-title: Production and molecular cytogenetic identification of wheat–alien hybrids and introgression lines
  doi: 10.1007/978-94-007-7572-5_11
  contributor:
    fullname: Molnár-Láng
– ident: 2015090105525390000_116.2.189.57
  doi: 10.1007/s10142-009-0129-8
– volume: 83
  start-page: 589
  year: 1992
  ident: 2015090105525390000_116.2.189.26
  article-title: C-banding pattern and polymorphism of Aegilops caudata and chromosomal constitutions of the amphiploid T. aestivum – Ae. caudata and six derived chromosome addition lines
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/BF00226902
  contributor:
    fullname: Friebe
– volume: 38
  start-page: 479
  year: 1995
  ident: 2015090105525390000_116.2.189.53
  article-title: Molecular characterization of a tandem repeat, Afa family, and its distribution among Triticeae
  publication-title: Genome
  doi: 10.1139/g95-063
  contributor:
    fullname: Nagaki
– volume: 38
  start-page: 8
  year: 1995
  ident: 2015090105525390000_116.2.189.5
  article-title: Rust resistance in Triticum cylindricum Ces. (4x, CCDD) and its transfer into durum and hexaploid wheats
  publication-title: Genome
  doi: 10.1139/g95-002
  contributor:
    fullname: Bai
– ident: 2015090105525390000_116.2.189.41
  doi: 10.1038/nature11997
– ident: 2015090105525390000_116.2.189.24
  doi: 10.1093/aob/mcf008
– volume: 269
  start-page: 60
  year: 2003
  ident: 2015090105525390000_116.2.189.73
  article-title: The cold regulated transcriptional activator Cbf3 is linked to the frost-tolerance gene Fr-A2 on wheat chromosome 5A
  publication-title: Molecular Genetics and Genomics
  doi: 10.1007/s00438-003-0806-6
  contributor:
    fullname: Váguújfalvi
– ident: 2015090105525390000_116.2.189.67
  doi: 10.1093/aob/
– volume: 31
  start-page: 113
  year: 1989
  ident: 2015090105525390000_116.2.189.16
  article-title: Analysis of nuclear DNA content in plant cells by flow cytometry
  publication-title: Biologia Plantarum
  doi: 10.1007/BF02907241
  contributor:
    fullname: Doležel
– volume: 42
  start-page: 497
  year: 1999
  ident: 2015090105525390000_116.2.189.40
  article-title: Molecular cytogenetic analysis of Aegilops cylindrica Host
  publication-title: Genome
  doi: 10.1139/gen-42-3-497
  contributor:
    fullname: Linc
– volume: 9
  start-page: 1
  year: 1956
  ident: 2015090105525390000_116.2.189.68
  article-title: The transfer of leaf-rust resistance from Aegilops umbellulata to wheat
  publication-title: Brookhaven Symposia in Biology
  contributor:
    fullname: Sears
– ident: 2015090105525390000_116.2.189.31
  doi: 10.1371/journal.pone.0057994
– ident: 2015090105525390000_116.2.189.7
  doi: 10.1016/j.pbi.2007.01.010
– ident: 2015090105525390000_116.2.189.32
  doi: 10.1371/journal.pone.0050151
– ident: 2015090105525390000_116.2.189.37
  doi: 10.1007/s001220050475
– ident: 2015090105525390000_116.2.189.27
  doi: 10.1007/BF00035277
– ident: 2015090105525390000_116.2.189.36
  doi: 10.1111/j.1439-0523.1996.tb00878.x
– ident: 2015090105525390000_116.2.189.75
  doi: 10.1556/AAgr.59.2011.3.7
– volume: 49
  start-page: 1628
  year: 2006
  ident: 2015090105525390000_116.2.189.55
  article-title: Complex genome rearrangements reveal evolutionary dynamics of pericentromeric regions in the Triticeae
  publication-title: Genome
  doi: 10.1139/g06-123
  contributor:
    fullname: Qi
– ident: 2015090105525390000_116.2.189.58
  doi: 10.1159/000121084
– volume: 46
  start-page: 893
  year: 2003
  ident: 2015090105525390000_116.2.189.38
  article-title: Analysis and sorting of rye (Secale cereale L.) chromosomes using flow cytometry
  publication-title: Genome
  doi: 10.1139/g03-054
  contributor:
    fullname: Kubaláková
– volume-title: Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae): a revision of all taxa closely related to wheat, excluding wild Triticum species, with notes on other genera in the tribe Triticcae, especially Triticum
  year: 1994
  ident: 2015090105525390000_116.2.189.74
  contributor:
    fullname: Van Slageren
– ident: 2015090105525390000_116.2.189.71
  doi: 10.1007/BF00042613
– ident: 2015090105525390000_116.2.189.30
  doi: 10.1093/nar/7.7.1869
– ident: 2015090105525390000_116.2.189.34
  doi: 10.1038/nature12028
– volume: 90
  start-page: 1174
  year: 1995
  ident: 2015090105525390000_116.2.189.29
  article-title: RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/BF00222940
  contributor:
    fullname: Galiba
– ident: 2015090105525390000_116.2.189.48
  doi: 10.1371/journal.pone.0070844
– ident: 2015090105525390000_116.2.189.13
  doi: 10.1159/000082379
– ident: 2015090105525390000_116.2.189.64
  doi: 10.1111/j.1365-313X.2004.02179.x
– volume: 106
  start-page: 1248
  year: 2003
  ident: 2015090105525390000_116.2.189.44
  article-title: A new Hessian fly resistance gene (H30) transferred from the wild grass Aegilops triuncialis to hexaploid wheat
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-002-1182-z
  contributor:
    fullname: Martin-Sanchez
– ident: 2015090105525390000_116.2.189.4
  doi: 10.1007/s00606-003-0072-4
– ident: 2015090105525390000_116.2.189.47
  doi: 10.1371/journal.pone.0027708
– ident: 2015090105525390000_116.2.189.3
  doi: 10.1007/s006060200018
– ident: 2015090105525390000_116.2.189.72
  doi: 10.1186/1471-2164-15-273
– ident: 2015090105525390000_116.2.189.46
  doi: 10.1093/aob/mcq215
– ident: 2015090105525390000_116.2.189.54
  doi: 10.1126/science.1161847
– ident: 2015090105525390000_116.2.189.60
  doi: 10.1007/s10722-008-9344-8
– volume: 156
  start-page: 2033
  year: 2000
  ident: 2015090105525390000_116.2.189.76
  article-title: Flow-sorting of mitotic chromosomes in common wheat (Triticum aestivum L.)
  publication-title: Genetics
  doi: 10.1093/genetics/156.4.2033
  contributor:
    fullname: Vrána
– ident: 2015090105525390000_116.2.189.11
  doi: 10.1126/science.1249721
– ident: 2015090105525390000_116.2.189.25
  doi: 10.1016/j.tig.2007.11.001
– ident: 2015090105525390000_116.2.189.61
  doi: 10.1007/s12041-012-0161-7
– volume: 39
  start-page: 293
  year: 1996
  ident: 2015090105525390000_116.2.189.1
  article-title: Genome differentiation in Aegilops. 1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species
  publication-title: Genome
  doi: 10.1139/g96-040
  contributor:
    fullname: Badaeva
– ident: 2015090105525390000_116.2.189.22
  doi: 10.1139/G07-083
– ident: 2015090105525390000_116.2.189.8
  doi: 10.1038/nature11650
– ident: 2015090105525390000_116.2.189.63
  doi: 10.1007/s001220050849
– ident: 2015090105525390000_116.2.189.12
  doi: 10.1093/jxb/erj124
– ident: 2015090105525390000_116.2.189.18
  doi: 10.1007/s10577-006-1106-x
– ident: 2015090105525390000_116.2.189.6
  doi: 10.1016/0092-8674(80)90529-2
– ident: 2015090105525390000_116.2.189.69
  doi: 10.1186/1471-2164-9-294
– ident: 2015090105525390000_116.2.189.45
  doi: 10.1105/tpc.110.082537
– ident: 2015090105525390000_116.2.189.59
  doi: 10.1007/BF02732107
– volume: 51
  start-page: 127
  year: 2003
  ident: 2015090105525390000_116.2.189.17
  article-title: Nuclear DNA content and genome size of trout and human
  publication-title: Cytometry
  doi: 10.1002/cyto.a.10013
  contributor:
    fullname: Doležel
– start-page: 685
  volume-title: Genetics and genomics of the Triticeae. Plant genetics and genomics: crops and models
  year: 2009
  ident: 2015090105525390000_116.2.189.20
  article-title: Triticeae genome structure and evolution
  doi: 10.1007/978-0-387-77489-3_23
  contributor:
    fullname: Dvořák
– ident: 2015090105525390000_116.2.189.21
  doi: 10.1126/science.1086132
– volume: 30
  start-page: 20
  year: 1970
  ident: 2015090105525390000_116.2.189.28
  article-title: DNA content per nucleus in Aegilops species
  publication-title: Wheat Information Service
  contributor:
    fullname: Furuta
– ident: 2015090105525390000_116.2.189.10
  doi: 10.1016/j.ygeno.2010.05.005
– volume: 48
  start-page: 1070
  year: 2005
  ident: 2015090105525390000_116.2.189.65
  article-title: Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of 5 derived wheat–Aegilops biuncialis addition lines
  publication-title: Genome
  doi: 10.1139/g05-062
  contributor:
    fullname: Schneider
– ident: 2015090105525390000_116.2.189.78
  doi: 10.1007/s001220050710
– ident: 2015090105525390000_116.2.189.42
  doi: 10.1073/pnas.1219082110
– start-page: 719
  volume-title: Proceedings of the 4th international wheat genetics symposium
  year: 1973
  ident: 2015090105525390000_116.2.189.52
  article-title: Genetic homology and cytological differentiation of the homoeologous-group-5 chromosomes of wheat and related species
  contributor:
    fullname: Muramatsu
– volume: 51
  start-page: 616
  year: 2008
  ident: 2015090105525390000_116.2.189.23
  article-title: Nuclear DNA amount and genome downsizing in natural and synthetic allopolyploids of the genera Aegilops and Triticum
  publication-title: Genome
  doi: 10.1139/G08-043
  contributor:
    fullname: Eilam
– ident: 2015090105525390000_116.2.189.15
  doi: 10.1111/aab.12043
– volume: 89
  start-page: 794
  year: 1994
  ident: 2015090105525390000_116.2.189.56
  article-title: Location of a gene regulating drought-induced abscisic acid production on the long arm of chromosome 5A of wheat
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/BF00223721
  contributor:
    fullname: Quarrie
– ident: 2015090105525390000_116.2.189.14
  doi: 10.1300/J144v01n02_02
– volume: 45
  start-page: 265
  year: 1997
  ident: 2015090105525390000_116.2.189.70
  article-title: Mapping frost resistance loci in wheat and comparative mapping with other cereals
  publication-title: Acta Agronomica Hungarica
  contributor:
    fullname: Snape
– ident: 2015090105525390000_116.2.189.51
  doi: 10.1139/g93-067
– ident: 2015090105525390000_116.2.189.77
  doi: 10.1371/journal.pbio.0030038
– ident: 2015090105525390000_116.2.189.62
  doi: 10.1017/S0016672300010569
– volume: 39
  start-page: 1150
  year: 1996
  ident: 2015090105525390000_116.2.189.2
  article-title: Genome differentiation in Aegilops. 2. Physical mapping of 5S and 18S–26S ribosomal RNA gene families in diploid species
  publication-title: Genome
  doi: 10.1139/g96-145
  contributor:
    fullname: Badaeva
– ident: 2015090105525390000_116.2.189.33
  doi: 10.1126/science.1251788
– start-page: 1
  volume-title: Wild crop relatives: genomic and breeding resources, cereals
  year: 2011
  ident: 2015090105525390000_116.2.189.35
  article-title: Aegilops
  doi: 10.1007/978-3-642-14228-4_1
  contributor:
    fullname: Kilian
– ident: 2015090105525390000_116.2.189.9
  doi: 10.1007/s00122-011-1674-9
– ident: 2015090105525390000_116.2.189.43
  doi: 10.1023/A:1009293628638
SSID ssj0002691
Score 2.342419
Snippet Aegilops markgrafii (CC) and its natural hybrids Ae. triuncialis (U(t)U(t)C(t)C(t)) and Ae. cylindrica (D(c)D(c)C(c)C(c)) represent a rich reservoir of useful...
BACKGROUND AND AIMSAegilops markgrafii (CC) and its natural hybrids Ae. triuncialis (U(t)U(t)C(t)C(t)) and Ae. cylindrica (D(c)D(c)C(c)C(c)) represent a rich...
Background and Aims Aegilops markgrafii (CC) and its natural hybrids Ae. triuncialis (U super(t)U super(t)C super(t)C super(t)) and Ae. cylindrica (D super(c)D...
Background and Aims Aegilops markgrafii (CC) and its natural hybrids Ae. triuncialis (U t U t C t C t ) and Ae. cylindrica (D c D c C c C c ) represent a rich...
SourceID pubmedcentral
proquest
crossref
pubmed
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 189
SubjectTerms Aegilops
Chromosomes, Plant - genetics
Conserved Sequence - genetics
Flow Cytometry - methods
Genome, Plant
In Situ Hybridization, Fluorescence
Indoles
Karyotype
Karyotyping
Metaphase
Original
ORIGINAL ARTICLES
Poaceae - genetics
Sequence Homology, Nucleic Acid
Triticum - genetics
Triticum aestivum
Title Flow sorting of C-genome chromosomes from wild relatives of wheat Aegilops markgrafii, Ae. triuncialis and Ae. cylindrica, and their molecular organization
URI https://www.jstor.org/stable/26525725
https://www.ncbi.nlm.nih.gov/pubmed/26043745
https://search.proquest.com/docview/1698957128
https://search.proquest.com/docview/1717489616
https://pubmed.ncbi.nlm.nih.gov/PMC4512188
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF6S0EMvpa-06ost7TFrV499HVNTEwopPTSQm9iXHFFLayw7Ib-lf7azu1ZwSumhNzEaIcGMdr5hZr5B6GMDnmILwUgh8pJAvKZEMaaJ4pVoIOJrGSu659_Y2UX19ZJeHiA6zsLEpn2j20m_7CZ9exV7K1edmY59YtPv57MKolQOmdshOuRlOabou-O3YGlNHjgy4SWrRk5SWU6V19POXINXBw5gFmh9whjTXkBKPYl_Q5t_Nk3uRaH5Y_RoBx_xafrMJ-jA9U_Rg88eIN7tM_RrvvQ3ePCBGWCBfYNnJHCwdg6bq9B2N8DlgMNECQaIbHEaZLkGGejehGMZn7pFu_SrAXdq_XOxVk3bnoBwgjfrdhupOdoBq95GmbkFkGrDSXoSZbHqgLtx4y72e4Oez9HF_MuP2RnZbV8gBjDKhoQKnOGchrqp1ExqK0VjJXWWAkahFSRmTEiVV5ozSXnDlTZWG2kUoDYrVHmMjnrfu5cIO9dYzrg0gc6-UKUQoKmM5LkUn5zjGfowmqBeJZKNOhXHyxpsViebZeg4WudOpWCByrWgGXo_mquGnyNUPFTv_Hao87Aek3KIwf_QgYS2EpLlLEMvkon33pB8JEP8nvHvFAI59_074LORpHvno6_--8nX6CGAM5qaDd-go816694CANrod9HhfwNPCAgx
link.rule.ids 230,315,733,786,790,891,27957,27958,53827,53829
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKQYJLeRa2vIzg2GTJw3Z8LCtWC3QrDi3qLfIr26ibZLXJtip_hT_L2N5U2wohwS2yJ4oif_Z81sx8g9CHApCi44wGcRYlAfhrEghKZSBYmhXg8SV3Ed3pEZ2cpF9PyekWIn0tjEvaV7IM63kV1uWZy61cVGrY54kNv09HKXipCG5ud9Bd2K8x6y_p6wM4pr5RHkA5YAlNe1VSngxFI4eVugBcWxVgaoV9bCHThkvyWYl_4pu30yY3_ND4IfrR_4FPPzkPV50M1c9b4o7__IuP0M6ameIDP_0YbZn6Cbr3qQH2ePUU_RrPm0vcNlZ0YIabAo8CK-9aGazObEZfC48ttsUqGNi3xr5G5gLGwPbSnvj4wMzKebNocSWW57OlKMpyHwZD3C3LlVP9KFssau3G1BXwX20P6X035gIauOqb-eJmo4b0GToZfz4eTYJ1Y4dAAf3pAhvcU4wRG5LlknKpeVZoTowmQH9ICnc-mnERpZJRTljBhFRaKq4EEEKdiWQXbddNbV4gbEyhGWVcWaX8WCRZBpZCcRbx7KMxbIDe92ubL7x-R-7j7kkOYMg9GAZo1y37tUlMrUpsTAboXY-DHPadDaaI2jSrNo9s503CwL3_xQbuymnGaUQH6LnHzsYXPPgGiN1A1bWB1f2-OQNYcfrfa2zs_febb9H9yfH0MD_8cvTtJXoAHJD4nMZXaLtbrsxr4FmdfON21W_LdCom
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagIMSFdyHlZQTHJmlednwsC6vyaNUDlSoukV_ZRt0kq022VftX-LOM7U2VVohDb5EzUWT5s-ezZuYbhD6VgBQV58SP8yjxwV9nPidE-JymeQkeXzAb0d0_IHtH6ffj7HjU6ssm7UtRBc28DprqxOZWLmoZDnli4eH-JAUvFcHNbaHK8C66B3s2ZsNFfX0Ix8Q1ywM4-zQh6aBMypKQtyKs5Rlg2ygBEyPuY4qZRm7JZSb-i3PeTJ0c-aLpY_R7mIVLQTkNVr0I5OUNgcdbTfMJerRmqHjXmTxFd3TzDN3_3AKLvHiO_kzn7TnuWiM-MMNtiSe-kXmtNZYnJrOvg8cOm6IVDCxcYVcrcwZjYHtuTn68q2fVvF10uObL09mSl1W1DYMB7pfVyqp_VB3mjbJj8gJ4sDKH9bYds4ENXA9NfXE7qiV9gY6mX39N9vx1gwdfAg3qfRPkk5RmJjTLBGFCsbxULNMqAxqUpXD3IznjUSooYRktKRdSCckkB2Kocp5soo2mbfQrhLUuFSWUSaOYH_Mkz8GSS0Yjlu9oTT30cVjfYuF0PAoXf08KAEThAOGhTbv0VyYxMWqxceahDwMWCth_JqjCG92uuiIyHTgzCm7-PzZwZ05zRiLioZcOP6M_OAB6iF5D1pWB0f--_gbwYnXA1_jYuvWX79GDwy_T4ue3gx-v0UOggplLbXyDNvrlSr8FutWLd3Zj_QX9hiym
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flow+sorting+of+C-genome+chromosomes+from+wild+relatives+of+wheat+Aegilops+markgrafii%2C+Ae.+triuncialis+and+Ae.+cylindrica%2C+and+their+molecular+organization&rft.jtitle=Annals+of+botany&rft.au=Moln%C3%A1r%2C+Istv%C3%A1n&rft.au=Vr%C3%A1na%2C+Jan&rft.au=Farkas%2C+Andr%C3%A1s&rft.au=Kubal%C3%A1kov%C3%A1%2C+Marie&rft.date=2015-08-01&rft.pub=Oxford+University+Press&rft.issn=0305-7364&rft.eissn=1095-8290&rft.volume=116&rft.issue=2&rft.spage=189&rft.epage=200&rft_id=info:doi/10.1093%2Faob%2Fmcv073&rft.externalDocID=26525725
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-7364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-7364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-7364&client=summon