Experimental investigation of thermal performance of large-sized battery module using hybrid PCM and bottom liquid cooling configuration

•Hybrid PCM and bottom liquid cooling of large battery module were experimentally studied.•Hybrid cooling significantly reduces maximum temperature and temperature nonuniformity.•Battery temperature levels off after melting point C in hybrid cooling instead of ramp-up for PCM cooling.•Hybrid cooling...

Full description

Saved in:
Bibliographic Details
Published inApplied thermal engineering Vol. 159; p. 113968
Main Authors Zhang, Hengyun, Wu, Xiaoyu, Wu, Qingyu, Xu, Shen
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.08.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Hybrid PCM and bottom liquid cooling of large battery module were experimentally studied.•Hybrid cooling significantly reduces maximum temperature and temperature nonuniformity.•Battery temperature levels off after melting point C in hybrid cooling instead of ramp-up for PCM cooling.•Hybrid cooling maintains Tbmax below 50 °C and ΔTb below 3.5 °C in cyclic discharge rate over 5C.•Non-uniformity temperature factor is lower in comparison with others’ work. A hybrid thermal management system (TMS) using phase change material (PCM) and bottom liquid cooling techniques for a large-sized power battery module was experimentally investigated. The system consisted of 106 test batteries in 18650 format, connected with a heat spreading plate, adjacent thermal columns and a cold plate populated with mini-channels installed beneath the module for liquid cooling to form the interconnected thermal structure. The experiment was conducted by heating the test batteries and monitoring representative battery temperatures. Three different heat dissipation options were studied with the same test bench, including the PCM cooling, liquid cooling and the hybrid cooling. Comparing with the liquid cooling, the hybrid cooling reduced the maximum battery temperature and temperature difference at steady-state. A temperature nonuniformity factor is introduced to evaluate the temperature difference across the module of different sizes. In addition, the test with the hybrid cooling for battery module under the cyclic working conditions exhibited sustaining temperature control, which is favorable for the battery module in continuous operation.
AbstractList •Hybrid PCM and bottom liquid cooling of large battery module were experimentally studied.•Hybrid cooling significantly reduces maximum temperature and temperature nonuniformity.•Battery temperature levels off after melting point C in hybrid cooling instead of ramp-up for PCM cooling.•Hybrid cooling maintains Tbmax below 50 °C and ΔTb below 3.5 °C in cyclic discharge rate over 5C.•Non-uniformity temperature factor is lower in comparison with others’ work. A hybrid thermal management system (TMS) using phase change material (PCM) and bottom liquid cooling techniques for a large-sized power battery module was experimentally investigated. The system consisted of 106 test batteries in 18650 format, connected with a heat spreading plate, adjacent thermal columns and a cold plate populated with mini-channels installed beneath the module for liquid cooling to form the interconnected thermal structure. The experiment was conducted by heating the test batteries and monitoring representative battery temperatures. Three different heat dissipation options were studied with the same test bench, including the PCM cooling, liquid cooling and the hybrid cooling. Comparing with the liquid cooling, the hybrid cooling reduced the maximum battery temperature and temperature difference at steady-state. A temperature nonuniformity factor is introduced to evaluate the temperature difference across the module of different sizes. In addition, the test with the hybrid cooling for battery module under the cyclic working conditions exhibited sustaining temperature control, which is favorable for the battery module in continuous operation.
A hybrid thermal management system (TMS) using phase change material (PCM) and bottom liquid cooling techniques for a large-sized power battery module was experimentally investigated. The system consisted of 106 test batteries in 18650 format, connected with a heat spreading plate, adjacent thermal columns and a cold plate populated with mini-channels installed beneath the module for liquid cooling to form the interconnected thermal structure. The experiment was conducted by heating the test batteries and monitoring representative battery temperatures. Three different heat dissipation options were studied with the same test bench, including the PCM cooling, liquid cooling and the hybrid cooling. Comparing with the liquid cooling, the hybrid cooling reduced the maximum battery temperature and temperature difference at steady-state. A temperature nonuniformity factor is introduced to evaluate the temperature difference across the module of different sizes. In addition, the test with the hybrid cooling for battery module under the cyclic working conditions exhibited sustaining temperature control, which is favorable for the battery module in continuous operation.
ArticleNumber 113968
Author Xu, Shen
Zhang, Hengyun
Wu, Xiaoyu
Wu, Qingyu
Author_xml – sequence: 1
  givenname: Hengyun
  orcidid: 0000-0002-2141-9543
  surname: Zhang
  fullname: Zhang, Hengyun
  email: zhanghengyun@sues.edu.cn
– sequence: 2
  givenname: Xiaoyu
  surname: Wu
  fullname: Wu, Xiaoyu
– sequence: 3
  givenname: Qingyu
  surname: Wu
  fullname: Wu, Qingyu
– sequence: 4
  givenname: Shen
  surname: Xu
  fullname: Xu, Shen
BookMark eNqNkM1uFDEQhC2USOSHd7AE19nY4xmPV-KCVvlBCoIDnK1euz3xatae2J6I5Ql4bLxsLtw4datVVa36LslZiAEJ-cDZijMub3YrmOepPGHaw4RhXLWMr1eci7VUb8gFV4NoesnkWd1Fv246wflbcpnzjjHeqqG7IL9vf86Y_B5DgYn68IK5-BGKj4FGR1-zadW4WLdg8HieII3YZP8LLd1CKZgOdB_tMiFdsg8jfTpsk7f02-YLhVA1sZS4p5N_XurVxDgdRSYG58cl_f12Tc4dTBnfvc4r8uPu9vvmoXn8ev958-mxMWI9lEYxJbe8bW0rpKkNGNihs6pzQ-9UZQIge7ntrXIAincdY4DADTcClHE9iivy_pQ7p_i81LZ6F5cU6kvdtnIYukFIVVUfTyqTYs4JnZ4rJEgHzZk-stc7_S97fWSvT-yr_e5kx9rkxWPS2Xis8KxPaIq20f9f0B8gNJtK
CitedBy_id crossref_primary_10_1016_j_applthermaleng_2021_117503
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120495
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123485
crossref_primary_10_1016_j_prime_2024_100526
crossref_primary_10_1016_j_applthermaleng_2022_119680
crossref_primary_10_1016_j_rser_2022_112783
crossref_primary_10_1016_j_applthermaleng_2020_116172
crossref_primary_10_1016_j_applthermaleng_2023_120959
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121380
crossref_primary_10_1016_j_apenergy_2020_115808
crossref_primary_10_1016_j_applthermaleng_2022_118198
crossref_primary_10_1016_j_est_2024_111227
crossref_primary_10_1016_j_applthermaleng_2022_118230
crossref_primary_10_1002_er_7395
crossref_primary_10_1016_j_applthermaleng_2020_116415
crossref_primary_10_1016_j_applthermaleng_2021_117702
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120894
crossref_primary_10_1002_er_7637
crossref_primary_10_1016_j_est_2023_108775
crossref_primary_10_1016_j_ecmx_2022_100215
crossref_primary_10_1002_er_5497
crossref_primary_10_1016_j_renene_2022_06_025
crossref_primary_10_1016_j_jpowsour_2019_227673
crossref_primary_10_1016_j_applthermaleng_2021_117871
crossref_primary_10_1016_j_applthermaleng_2021_117276
crossref_primary_10_1021_acs_energyfuels_3c03973
crossref_primary_10_3390_batteries9060334
crossref_primary_10_1016_j_applthermaleng_2023_121214
crossref_primary_10_1016_j_applthermaleng_2023_121819
crossref_primary_10_1016_j_applthermaleng_2024_122803
crossref_primary_10_1016_j_rser_2021_111301
crossref_primary_10_1016_j_tsep_2021_101094
crossref_primary_10_1002_aenm_202202944
crossref_primary_10_1016_j_applthermaleng_2022_119352
crossref_primary_10_1016_j_csite_2021_101452
crossref_primary_10_1016_j_est_2021_102946
crossref_primary_10_3390_pr11123450
crossref_primary_10_3390_pr11010057
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121259
crossref_primary_10_1016_j_est_2023_109851
crossref_primary_10_1016_j_est_2021_103835
crossref_primary_10_1002_er_6933
crossref_primary_10_1016_j_csite_2023_103750
crossref_primary_10_1016_j_est_2023_108566
crossref_primary_10_1016_j_est_2021_103433
crossref_primary_10_1016_j_egyr_2023_04_214
crossref_primary_10_1016_j_applthermaleng_2022_119501
crossref_primary_10_1016_j_est_2021_102255
crossref_primary_10_1016_j_applthermaleng_2022_119625
crossref_primary_10_1016_j_est_2022_104197
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125680
crossref_primary_10_1016_j_enconman_2019_112319
crossref_primary_10_1016_j_jpowsour_2022_231094
crossref_primary_10_1016_j_ecmx_2022_100310
crossref_primary_10_1016_j_rser_2021_111513
crossref_primary_10_1007_s10973_022_11806_6
crossref_primary_10_1016_j_applthermaleng_2024_123200
crossref_primary_10_1016_j_est_2023_110391
crossref_primary_10_1016_j_enconman_2021_113862
crossref_primary_10_1016_j_applthermaleng_2024_123686
crossref_primary_10_1002_est2_572
crossref_primary_10_1016_j_applthermaleng_2024_122555
crossref_primary_10_1016_j_est_2023_108750
crossref_primary_10_1002_est2_453
crossref_primary_10_4271_14_13_03_0019
crossref_primary_10_1016_j_applthermaleng_2023_120375
crossref_primary_10_3390_en15072515
crossref_primary_10_1002_ente_202101135
crossref_primary_10_1016_j_ijheatmasstransfer_2021_120998
crossref_primary_10_1016_j_est_2022_105646
crossref_primary_10_1016_j_applthermaleng_2023_121710
crossref_primary_10_1002_er_6718
crossref_primary_10_1016_j_est_2024_110447
crossref_primary_10_1016_j_applthermaleng_2022_119173
crossref_primary_10_1016_j_est_2024_111814
crossref_primary_10_1002_ente_202000940
crossref_primary_10_1016_j_rser_2024_114654
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119701
crossref_primary_10_1016_j_applthermaleng_2024_123754
crossref_primary_10_1080_00986445_2021_1980398
crossref_primary_10_3390_sym15071322
crossref_primary_10_1021_acs_energyfuels_2c02923
crossref_primary_10_1016_j_est_2023_108982
crossref_primary_10_1016_j_energy_2021_120336
crossref_primary_10_1016_j_jpowsour_2021_230205
crossref_primary_10_1007_s11431_023_2539_x
crossref_primary_10_1016_j_est_2022_105977
Cites_doi 10.1016/j.applthermaleng.2015.07.033
10.1016/j.jpowsour.2015.04.016
10.1016/j.apenergy.2014.04.092
10.1016/j.energy.2014.04.046
10.1016/j.apenergy.2015.03.080
10.1016/j.jpowsour.2018.08.020
10.1016/j.enconman.2015.06.056
10.1016/j.jpowsour.2015.03.008
10.1016/j.jpowsour.2014.12.027
10.1016/j.apenergy.2016.06.058
10.1016/j.apenergy.2015.12.021
10.1016/j.applthermaleng.2014.07.037
10.1016/j.applthermaleng.2017.03.107
10.1016/j.energy.2016.07.119
10.1016/j.apenergy.2014.01.075
10.1016/j.jclepro.2016.06.056
10.4271/2016-01-1204
10.1016/j.applthermaleng.2017.08.172
10.1016/j.energy.2017.06.168
10.1016/j.jpowsour.2014.07.147
10.1016/j.applthermaleng.2016.01.123
10.1016/0894-1777(88)90043-X
10.1016/S0378-7753(02)00473-1
10.1016/j.rser.2011.07.096
10.1016/j.electacta.2006.10.045
10.1016/j.jpowsour.2003.09.070
10.1016/j.jpowsour.2017.07.009
10.1016/j.jpowsour.2011.02.076
10.4271/2014-01-1919
10.1016/j.jpowsour.2017.07.093
10.1016/j.ijheatmasstransfer.2017.02.057
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Aug 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Aug 2019
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/j.applthermaleng.2019.113968
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5606
ExternalDocumentID 10_1016_j_applthermaleng_2019_113968
S1359431118365608
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c397t-8086b122d236c8740ad74d84f75f8016aa656b5d8faa814400aea1c1c3a8cf5e3
IEDL.DBID AIKHN
ISSN 1359-4311
IngestDate Thu Oct 10 15:52:45 EDT 2024
Thu Sep 26 16:59:02 EDT 2024
Fri Feb 23 02:33:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Phase change material (PCM)
Thermal column
Temperature nonuniformity factor
Heat spreading plate
Liquid cooling
Hybrid cooling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-8086b122d236c8740ad74d84f75f8016aa656b5d8faa814400aea1c1c3a8cf5e3
ORCID 0000-0002-2141-9543
PQID 2267747368
PQPubID 2045278
ParticipantIDs proquest_journals_2267747368
crossref_primary_10_1016_j_applthermaleng_2019_113968
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2019_113968
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Applied thermal engineering
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Hémery, Pra, Robin (b0125) 2014; 270
Fathabadi (b0140) 2014; 70
Masayoshi (b0005) 2009; 21
Wang, Zhang, Xia (b0080) 2017; 109
Putra, Ariantara, Pamungkas (b0015) 2016; 99
Ramadass, Haran, White (b0020) 2002; 112
Schweitzer, Wilke, Khateeb (b0165) 2015; 287
Lv, Yang, Li (b0035) 2016; 178
Javani, Dincer, Naterer (b0105) 2014; 73
D. Pan, S. Xu, C. Lin, et al., Thermal Management of Power Batteries for Electric Vehicles Using Phase Change Materials: A Review, SAE Technical Paper 2016-01-1204, 2016.
Meintz, Zhang, Vijayagopal (b0155) 2017
Wu, Chiang (b0025) 2007; 52
Rao, Wang, Huang (b0130) 2016; 164
Mahamud, Park (b0060) 2011; 196
Arora (b0050) 2018; 400
Lazrak, Fourmigué, Robin (b0115) 2017; 128
Rao, Wang (b0010) 2011; 15
Zhao, Gu, Liu (b0120) 2017; 135
Wu, Yang, Zhang (b0100) 2016; 113
Zhao, Rao, Li (b0070) 2015; 103
Ling, Wang, Fang (b0110) 2015; 148
D.L. Barsotti, S. Boetcher, Novel Battery Cold Plate Design for Increased Passive Cooling, SAE Technical Paper 2014-01-1919, 2014.
Keyser, Pesaran, Li (b0150) 2017
Ling, Chen, Fang (b0095) 2014; 121
Ping, Wang, Huang (b0030) 2014; 129
Moffat (b0160) 1988; 1
Arora (b0055) 2017
Greco, Jiang, Cao (b0090) 2015; 278
Jiang, Huang, Liu (b0040) 2017; 120
Wang, Tseng, Zhao (b0065) 2015; 90
Kim, Lee, Kim (b0145) 2017; 146
D. Kang, C. Chung, et al., Middle or large-sized battery pack case of excellent cooling efficiency, US8658303B2, 2014.
Drake, Martin, Wetz (b0170) 2015; 285
Khateeb, Farid, Selman (b0085) 2004; 128
Wu (10.1016/j.applthermaleng.2019.113968_b0025) 2007; 52
Kim (10.1016/j.applthermaleng.2019.113968_b0145) 2017; 146
10.1016/j.applthermaleng.2019.113968_b0045
Greco (10.1016/j.applthermaleng.2019.113968_b0090) 2015; 278
Keyser (10.1016/j.applthermaleng.2019.113968_b0150) 2017
Fathabadi (10.1016/j.applthermaleng.2019.113968_b0140) 2014; 70
Ramadass (10.1016/j.applthermaleng.2019.113968_b0020) 2002; 112
Rao (10.1016/j.applthermaleng.2019.113968_b0130) 2016; 164
Jiang (10.1016/j.applthermaleng.2019.113968_b0040) 2017; 120
Zhao (10.1016/j.applthermaleng.2019.113968_b0120) 2017; 135
Lv (10.1016/j.applthermaleng.2019.113968_b0035) 2016; 178
Meintz (10.1016/j.applthermaleng.2019.113968_b0155) 2017
Ling (10.1016/j.applthermaleng.2019.113968_b0110) 2015; 148
Schweitzer (10.1016/j.applthermaleng.2019.113968_b0165) 2015; 287
Arora (10.1016/j.applthermaleng.2019.113968_b0055) 2017
Moffat (10.1016/j.applthermaleng.2019.113968_b0160) 1988; 1
Wang (10.1016/j.applthermaleng.2019.113968_b0080) 2017; 109
10.1016/j.applthermaleng.2019.113968_b0135
Wu (10.1016/j.applthermaleng.2019.113968_b0100) 2016; 113
Javani (10.1016/j.applthermaleng.2019.113968_b0105) 2014; 73
10.1016/j.applthermaleng.2019.113968_b0075
Mahamud (10.1016/j.applthermaleng.2019.113968_b0060) 2011; 196
Ping (10.1016/j.applthermaleng.2019.113968_b0030) 2014; 129
Hémery (10.1016/j.applthermaleng.2019.113968_b0125) 2014; 270
Masayoshi (10.1016/j.applthermaleng.2019.113968_b0005) 2009; 21
Khateeb (10.1016/j.applthermaleng.2019.113968_b0085) 2004; 128
Lazrak (10.1016/j.applthermaleng.2019.113968_b0115) 2017; 128
Putra (10.1016/j.applthermaleng.2019.113968_b0015) 2016; 99
Ling (10.1016/j.applthermaleng.2019.113968_b0095) 2014; 121
Rao (10.1016/j.applthermaleng.2019.113968_b0010) 2011; 15
Wang (10.1016/j.applthermaleng.2019.113968_b0065) 2015; 90
Arora (10.1016/j.applthermaleng.2019.113968_b0050) 2018; 400
Zhao (10.1016/j.applthermaleng.2019.113968_b0070) 2015; 103
Drake (10.1016/j.applthermaleng.2019.113968_b0170) 2015; 285
References_xml – start-page: 216
  year: 2017
  end-page: 227
  ident: b0155
  article-title: Enabling fast charging – Vehicle considerations
  publication-title: J. Power Sources
  contributor:
    fullname: Vijayagopal
– year: 2017
  ident: b0055
  article-title: Design of a Modular Battery Pack for Electric Vehicles
  contributor:
    fullname: Arora
– volume: 15
  start-page: 4554
  year: 2011
  end-page: 4571
  ident: b0010
  article-title: A review of power battery thermal energy management
  publication-title: Renew. Sustain. Energy Rev.
  contributor:
    fullname: Wang
– volume: 103
  start-page: 157
  year: 2015
  end-page: 165
  ident: b0070
  article-title: Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery
  publication-title: Energy Convers. Manage.
  contributor:
    fullname: Li
– volume: 285
  start-page: 266
  year: 2015
  end-page: 273
  ident: b0170
  article-title: Heat generation rate measurement in a Li-ion cell at large C-rates through temperature and heat flux measurements
  publication-title: J. Power Sources
  contributor:
    fullname: Wetz
– volume: 146
  start-page: 83
  year: 2017
  end-page: 93
  ident: b0145
  article-title: A study on the activation plan of electric taxi in Seoul
  publication-title: J. Cleaner Prod.
  contributor:
    fullname: Kim
– volume: 128
  start-page: 292
  year: 2004
  end-page: 307
  ident: b0085
  article-title: Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter
  publication-title: J. Power Sources
  contributor:
    fullname: Selman
– volume: 70
  start-page: 529
  year: 2014
  end-page: 538
  ident: b0140
  article-title: High thermal performance lithium-ion battery pack including hybrid active–passive thermal management system for using in hybrid/electric vehicles
  publication-title: Energy
  contributor:
    fullname: Fathabadi
– volume: 278
  start-page: 50
  year: 2015
  end-page: 68
  ident: b0090
  article-title: An investigation of lithium-ion battery thermal management using paraffin/porous-graphite-matrix composite
  publication-title: J. Power Sources
  contributor:
    fullname: Cao
– volume: 1
  start-page: 3
  year: 1988
  end-page: 17
  ident: b0160
  article-title: Describing the uncertainties in experimental results
  publication-title: Exp. Thermal Fluid Sci.
  contributor:
    fullname: Moffat
– volume: 99
  start-page: 784
  year: 2016
  end-page: 789
  ident: b0015
  article-title: Experimental investigation on performance of lithium-ion battery thermal management system using flat plate loop heat pipe for electric vehicle application
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Pamungkas
– volume: 73
  start-page: 307
  year: 2014
  end-page: 316
  ident: b0105
  article-title: Modeling of passive thermal management for electric vehicle battery packs with PCM between cells
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Naterer
– volume: 112
  start-page: 614
  year: 2002
  end-page: 620
  ident: b0020
  article-title: Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part II. Capacity fade analysis
  publication-title: J. Power Sources
  contributor:
    fullname: White
– volume: 400
  start-page: 621
  year: 2018
  end-page: 640
  ident: b0050
  article-title: Selection of thermal management system for modular battery packs of electric vehicles: A review of existing and emerging technologies
  publication-title: J. Power Sources
  contributor:
    fullname: Arora
– volume: 120
  start-page: 1
  year: 2017
  end-page: 9
  ident: b0040
  article-title: Experiment and simulation of thermal management for a tube-shell Li-ion battery pack with composite phase change material
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Liu
– volume: 178
  start-page: 376
  year: 2016
  end-page: 382
  ident: b0035
  article-title: Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins
  publication-title: Appl. Energy
  contributor:
    fullname: Li
– volume: 196
  start-page: 5685
  year: 2011
  end-page: 5696
  ident: b0060
  article-title: Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity
  publication-title: J. Power Sources
  contributor:
    fullname: Park
– volume: 270
  start-page: 349
  year: 2014
  end-page: 358
  ident: b0125
  article-title: Experimental performances of a battery thermal management system using a phase change material
  publication-title: J. Power Sources
  contributor:
    fullname: Robin
– volume: 287
  start-page: 211
  year: 2015
  end-page: 219
  ident: b0165
  article-title: Experimental validation of a 0-D numerical model for phase change thermal management systems in lithium-ion batteries
  publication-title: J. Power Sources
  contributor:
    fullname: Khateeb
– volume: 21
  start-page: 745
  year: 2009
  end-page: 749
  ident: b0005
  article-title: Research and development of electric vehicles for clean transportation
  publication-title: Acta Sci. Circumstant.
  contributor:
    fullname: Masayoshi
– volume: 109
  start-page: 958
  year: 2017
  end-page: 970
  ident: b0080
  article-title: Experimental investigation on the thermal behavior of cylindrical battery with composite paraffin and fin structure
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Xia
– volume: 135
  year: 2017
  ident: b0120
  article-title: Optimization of a phase change material based internal cooling system for cylindrical Li-ion battery pack and a hybrid cooling design
  publication-title: Energy
  contributor:
    fullname: Liu
– volume: 129
  start-page: 261
  year: 2014
  end-page: 273
  ident: b0030
  article-title: Thermal behaviour analysis of lithium-ion battery at elevated temperature using deconvolution method
  publication-title: Appl. Energy
  contributor:
    fullname: Huang
– volume: 164
  start-page: 659
  year: 2016
  end-page: 669
  ident: b0130
  article-title: Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system
  publication-title: Appl. Energy
  contributor:
    fullname: Huang
– volume: 90
  start-page: 521
  year: 2015
  end-page: 529
  ident: b0065
  article-title: Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Zhao
– volume: 121
  start-page: 104
  year: 2014
  end-page: 113
  ident: b0095
  article-title: Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system
  publication-title: Appl. Energy
  contributor:
    fullname: Fang
– volume: 148
  start-page: 403
  year: 2015
  end-page: 409
  ident: b0110
  article-title: A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling
  publication-title: Appl. Energy
  contributor:
    fullname: Fang
– volume: 128
  start-page: 20
  year: 2017
  end-page: 32
  ident: b0115
  article-title: An innovative practical battery thermal management system based on phase change materials: Numerical and experimental investigations
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Robin
– start-page: 228
  year: 2017
  end-page: 236
  ident: b0150
  article-title: Enabling fast charging – battery thermal consideration
  publication-title: J. Power Sources
  contributor:
    fullname: Li
– volume: 52
  start-page: 3719
  year: 2007
  end-page: 3725
  ident: b0025
  article-title: High-rate capability of lithium-ion batteries after storing at elevated temperature
  publication-title: Electrochim. Acta
  contributor:
    fullname: Chiang
– volume: 113
  start-page: 909
  year: 2016
  end-page: 916
  ident: b0100
  article-title: An experimental study of thermal management system using copper mesh-enhanced composite phase change materials for power battery pack
  publication-title: Energy
  contributor:
    fullname: Zhang
– ident: 10.1016/j.applthermaleng.2019.113968_b0045
– volume: 90
  start-page: 521
  year: 2015
  ident: 10.1016/j.applthermaleng.2019.113968_b0065
  article-title: Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.07.033
  contributor:
    fullname: Wang
– volume: 287
  start-page: 211
  year: 2015
  ident: 10.1016/j.applthermaleng.2019.113968_b0165
  article-title: Experimental validation of a 0-D numerical model for phase change thermal management systems in lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.04.016
  contributor:
    fullname: Schweitzer
– volume: 129
  start-page: 261
  year: 2014
  ident: 10.1016/j.applthermaleng.2019.113968_b0030
  article-title: Thermal behaviour analysis of lithium-ion battery at elevated temperature using deconvolution method
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.04.092
  contributor:
    fullname: Ping
– volume: 70
  start-page: 529
  issue: 3
  year: 2014
  ident: 10.1016/j.applthermaleng.2019.113968_b0140
  article-title: High thermal performance lithium-ion battery pack including hybrid active–passive thermal management system for using in hybrid/electric vehicles
  publication-title: Energy
  doi: 10.1016/j.energy.2014.04.046
  contributor:
    fullname: Fathabadi
– volume: 148
  start-page: 403
  year: 2015
  ident: 10.1016/j.applthermaleng.2019.113968_b0110
  article-title: A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.03.080
  contributor:
    fullname: Ling
– volume: 400
  start-page: 621
  year: 2018
  ident: 10.1016/j.applthermaleng.2019.113968_b0050
  article-title: Selection of thermal management system for modular battery packs of electric vehicles: A review of existing and emerging technologies
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.08.020
  contributor:
    fullname: Arora
– volume: 103
  start-page: 157
  year: 2015
  ident: 10.1016/j.applthermaleng.2019.113968_b0070
  article-title: Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2015.06.056
  contributor:
    fullname: Zhao
– volume: 285
  start-page: 266
  year: 2015
  ident: 10.1016/j.applthermaleng.2019.113968_b0170
  article-title: Heat generation rate measurement in a Li-ion cell at large C-rates through temperature and heat flux measurements
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.03.008
  contributor:
    fullname: Drake
– volume: 278
  start-page: 50
  year: 2015
  ident: 10.1016/j.applthermaleng.2019.113968_b0090
  article-title: An investigation of lithium-ion battery thermal management using paraffin/porous-graphite-matrix composite
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.12.027
  contributor:
    fullname: Greco
– volume: 178
  start-page: 376
  year: 2016
  ident: 10.1016/j.applthermaleng.2019.113968_b0035
  article-title: Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.06.058
  contributor:
    fullname: Lv
– volume: 164
  start-page: 659
  year: 2016
  ident: 10.1016/j.applthermaleng.2019.113968_b0130
  article-title: Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.12.021
  contributor:
    fullname: Rao
– volume: 21
  start-page: 745
  issue: 6
  year: 2009
  ident: 10.1016/j.applthermaleng.2019.113968_b0005
  article-title: Research and development of electric vehicles for clean transportation
  publication-title: Acta Sci. Circumstant.
  contributor:
    fullname: Masayoshi
– volume: 73
  start-page: 307
  year: 2014
  ident: 10.1016/j.applthermaleng.2019.113968_b0105
  article-title: Modeling of passive thermal management for electric vehicle battery packs with PCM between cells
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.07.037
  contributor:
    fullname: Javani
– volume: 120
  start-page: 1
  year: 2017
  ident: 10.1016/j.applthermaleng.2019.113968_b0040
  article-title: Experiment and simulation of thermal management for a tube-shell Li-ion battery pack with composite phase change material
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.03.107
  contributor:
    fullname: Jiang
– volume: 113
  start-page: 909
  year: 2016
  ident: 10.1016/j.applthermaleng.2019.113968_b0100
  article-title: An experimental study of thermal management system using copper mesh-enhanced composite phase change materials for power battery pack
  publication-title: Energy
  doi: 10.1016/j.energy.2016.07.119
  contributor:
    fullname: Wu
– volume: 121
  start-page: 104
  year: 2014
  ident: 10.1016/j.applthermaleng.2019.113968_b0095
  article-title: Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.01.075
  contributor:
    fullname: Ling
– volume: 146
  start-page: 83
  year: 2017
  ident: 10.1016/j.applthermaleng.2019.113968_b0145
  article-title: A study on the activation plan of electric taxi in Seoul
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2016.06.056
  contributor:
    fullname: Kim
– ident: 10.1016/j.applthermaleng.2019.113968_b0075
  doi: 10.4271/2016-01-1204
– volume: 128
  start-page: 20
  year: 2017
  ident: 10.1016/j.applthermaleng.2019.113968_b0115
  article-title: An innovative practical battery thermal management system based on phase change materials: Numerical and experimental investigations
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.08.172
  contributor:
    fullname: Lazrak
– volume: 135
  year: 2017
  ident: 10.1016/j.applthermaleng.2019.113968_b0120
  article-title: Optimization of a phase change material based internal cooling system for cylindrical Li-ion battery pack and a hybrid cooling design
  publication-title: Energy
  doi: 10.1016/j.energy.2017.06.168
  contributor:
    fullname: Zhao
– volume: 270
  start-page: 349
  year: 2014
  ident: 10.1016/j.applthermaleng.2019.113968_b0125
  article-title: Experimental performances of a battery thermal management system using a phase change material
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.07.147
  contributor:
    fullname: Hémery
– volume: 99
  start-page: 784
  year: 2016
  ident: 10.1016/j.applthermaleng.2019.113968_b0015
  article-title: Experimental investigation on performance of lithium-ion battery thermal management system using flat plate loop heat pipe for electric vehicle application
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.01.123
  contributor:
    fullname: Putra
– volume: 1
  start-page: 3
  year: 1988
  ident: 10.1016/j.applthermaleng.2019.113968_b0160
  article-title: Describing the uncertainties in experimental results
  publication-title: Exp. Thermal Fluid Sci.
  doi: 10.1016/0894-1777(88)90043-X
  contributor:
    fullname: Moffat
– volume: 112
  start-page: 614
  issue: 2
  year: 2002
  ident: 10.1016/j.applthermaleng.2019.113968_b0020
  article-title: Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part II. Capacity fade analysis
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(02)00473-1
  contributor:
    fullname: Ramadass
– volume: 15
  start-page: 4554
  issue: 9
  year: 2011
  ident: 10.1016/j.applthermaleng.2019.113968_b0010
  article-title: A review of power battery thermal energy management
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2011.07.096
  contributor:
    fullname: Rao
– year: 2017
  ident: 10.1016/j.applthermaleng.2019.113968_b0055
  contributor:
    fullname: Arora
– volume: 52
  start-page: 3719
  issue: 11
  year: 2007
  ident: 10.1016/j.applthermaleng.2019.113968_b0025
  article-title: High-rate capability of lithium-ion batteries after storing at elevated temperature
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2006.10.045
  contributor:
    fullname: Wu
– volume: 128
  start-page: 292
  year: 2004
  ident: 10.1016/j.applthermaleng.2019.113968_b0085
  article-title: Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2003.09.070
  contributor:
    fullname: Khateeb
– start-page: 228
  year: 2017
  ident: 10.1016/j.applthermaleng.2019.113968_b0150
  article-title: Enabling fast charging – battery thermal consideration
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.07.009
  contributor:
    fullname: Keyser
– volume: 196
  start-page: 5685
  issue: 13
  year: 2011
  ident: 10.1016/j.applthermaleng.2019.113968_b0060
  article-title: Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.02.076
  contributor:
    fullname: Mahamud
– ident: 10.1016/j.applthermaleng.2019.113968_b0135
  doi: 10.4271/2014-01-1919
– start-page: 216
  year: 2017
  ident: 10.1016/j.applthermaleng.2019.113968_b0155
  article-title: Enabling fast charging – Vehicle considerations
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.07.093
  contributor:
    fullname: Meintz
– volume: 109
  start-page: 958
  year: 2017
  ident: 10.1016/j.applthermaleng.2019.113968_b0080
  article-title: Experimental investigation on the thermal behavior of cylindrical battery with composite paraffin and fin structure
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.02.057
  contributor:
    fullname: Wang
SSID ssj0012874
Score 2.5942519
Snippet •Hybrid PCM and bottom liquid cooling of large battery module were experimentally studied.•Hybrid cooling significantly reduces maximum temperature and...
A hybrid thermal management system (TMS) using phase change material (PCM) and bottom liquid cooling techniques for a large-sized power battery module was...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 113968
SubjectTerms Batteries
Columns (structural)
Configuration management
Cooling
Energy dissipation
Heat spreading plate
Heat transfer
Hybrid cooling
Hybrid systems
Liquid cooling
Modules
Nonuniformity
Phase change material (PCM)
Phase change materials
Phase transitions
Plates (structural members)
Temperature control
Temperature gradients
Temperature nonuniformity factor
Thermal column
Thermal cycling
Thermal management
Thermodynamics
Title Experimental investigation of thermal performance of large-sized battery module using hybrid PCM and bottom liquid cooling configuration
URI https://dx.doi.org/10.1016/j.applthermaleng.2019.113968
https://www.proquest.com/docview/2267747368
Volume 159
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60guhBfOKjyh68xprmtXsSKZWqKIIK3pZNdrdG2qRqetCDZ3-2M01iVTwInkKWbLLsTGa-ZWa-AdhHH6YEN67DhRaObxPrxJ6JEMgJG3gUV-JUO3xxGfZu_bO74G4GOnUtDKVVVra_tOkTa12NtKrdbI3StHXteoFA94cI2SMGGT4Lc-iOfL8Bc8en573Lz2ACUbpPzl0BrgYnzMP-NM2L4sQEtYaKOpdQrpegPieCuFd_91Q_bPbEEZ0sw1KFINlxucgVmDHZKix-4RVcg_fuF95-lk6pNPKM5ZZVC2GjadEADQ8oKdx5Tl-NZvGEdvOFDXM9HhhG2fF9dv9C5V3sqnPBVIbP5EWRD9kgfRzjaJJT-58-XjOb9selYq3D7Un3ptNzqpYLToLApEB_xcPYbbd12wsT6tandORr7tsosOjLQqVwq-NAc6sUp7jwoTLKTdzEUzyxgfE2oJHlmdkEFuHBW-nQhu0Y5-MpMBLm0AibKO36qAdbENTbK0cls4asU84e5HexSBKLLMWyBUe1LOQ3TZHoBP74hmYtQln9sc8SYSgi4cgL-fa_P7ADC3RX5gk2oVE8jc0uYpci3oPZgzd3r9LQDza-89o
link.rule.ids 315,786,790,4521,24144,27955,27956,45618,45712
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED5BkYA9TGMwrRtsfuA1KvnhxH5CqAKVQSukgcSb5cR2CWqTAukD_AX82btrkhUQD5P2FMmJE8t3ufusu_sOYB99mJbC-p6QRnqRy5yXhjZBICcdDymuJKh2eDiKB1fRr2t-vQL9thaG0iob21_b9IW1bkZ6zW72Znne--2HXKL7Q4QcEoOMWIW1iCd-0IG1o9OzwehvMIEo3RfnLo6rwQnrsL9M86I4MUGtqabOJZTrJanPiSTu1fc91RubvXBEJ5_gY4Mg2VG9yC1YscVn-PCCV3Abno9f8PazfEmlURasdKxZCJstiwZoeEJJ4d5D_mQNSxe0m49sWpr5xDLKjh-zm0cq72IX_SHTBT5TVlU5ZZP8bo6jWUntf8Z4LVw-nteKtQNXJ8eX_YHXtFzwMgQmFforEad-EJggjDPq1qdNEhkRuYQ79GWx1rjVKTfCaS0oLnygrfYzPwu1yBy34RfoFGVhvwJL8OCtTeziIMX5eApMpD2w0mXa-BHqQRd4u71qVjNrqDbl7Fa9FosisahaLF04bGWhXmmKQifwj2_YbUWomj_2QSEMRSSchLH49t8f-Akbg8vhuTo_HZ19h026U-cM7kKnup_bPcQxVfqj0dM_EaP1yg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+investigation+of+thermal+performance+of+large-sized+battery+module+using+hybrid+PCM+and+bottom+liquid+cooling+configuration&rft.jtitle=Applied+thermal+engineering&rft.au=Zhang%2C+Hengyun&rft.au=Wu%2C+Xiaoyu&rft.au=Wu%2C+Qingyu&rft.au=Xu%2C+Shen&rft.date=2019-08-01&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=159&rft_id=info:doi/10.1016%2Fj.applthermaleng.2019.113968&rft.externalDocID=S1359431118365608
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon