On the late-time growth of the two-dimensional Richtmyer–Meshkov instability in shock tube experiments

In the present study, shock tube experiments are used to study the very late-time development of the Richtmyer–Meshkov instability from a diffuse, nearly sinusoidal, initial perturbation into a fully turbulent flow. The interface is generated by two opposing gas flows and a perturbation is formed on...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 712; no. na; pp. 354 - 383
Main Authors Morgan, Robert V., Aure, R., Stockero, J. D., Greenough, J. A., Cabot, W., Likhachev, O. A., Jacobs, J. W.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 10.12.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the present study, shock tube experiments are used to study the very late-time development of the Richtmyer–Meshkov instability from a diffuse, nearly sinusoidal, initial perturbation into a fully turbulent flow. The interface is generated by two opposing gas flows and a perturbation is formed on the interface by transversely oscillating the shock tube to create a standing wave. The puncturing of a diaphragm generates a Mach $1. 2$ shock wave that then impacts a density gradient composed of air and SF6, causing the Richtmyer–Meshkov instability to develop in the 2.0 m long test section. The instability is visualized with planar Mie scattering in which smoke particles in the air are illuminated by a Nd:YLF laser sheet, and images are recorded using four high-speed video cameras operating at 6 kHz that allow the recording of the time history of the instability. In addition, particle image velocimetry (PIV) is implemented using a double-pulsed Nd:YAG laser with images recorded using a single CCD camera. Initial modal content, amplitude, and growth rates are reported from the Mie scattering experiments while vorticity and circulation measurements are made using PIV. Amplitude measurements show good early-time agreement but relatively poor late-time agreement with existing nonlinear models. The model of Goncharov (Phys. Rev. Lett., vol. 88, 2002, 134502) agrees with growth rate measurements at intermediate times but fails at late experimental times. Measured background acceleration present in the experiment suggests that the late-time growth rate may be influenced by Rayleigh–Taylor instability induced by the interfacial acceleration. Numerical simulations conducted using the LLNL codes Ares and Miranda show that this acceleration may be caused by the growth of boundary layers, and must be accounted for to produce good agreement with models and simulations. Adding acceleration to the Richtmyer–Meshkov buoyancy–drag model produces improved agreement. It is found that the growth rate and amplitude trends are also modelled well by the Likhachev–Jacobs vortex model (Likhachev & Jacobs, Phys. Fluids, vol. 17, 2005, 031704). Circulation measurements also show good agreement with the circulation value extracted by fitting the vortex model to the experimental data.
AbstractList In the present study, shock tube experiments are used to study the very late-time development of the Richtmyer–Meshkov instability from a diffuse, nearly sinusoidal, initial perturbation into a fully turbulent flow. The interface is generated by two opposing gas flows and a perturbation is formed on the interface by transversely oscillating the shock tube to create a standing wave. The puncturing of a diaphragm generates a Mach<inline-graphic href='S0022112012004260_inline1' mime-subtype='gif' type='simple'/>$1. 2$shock wave that then impacts a density gradient composed of air and SF6, causing the Richtmyer–Meshkov instability to develop in the 2.0 m long test section. The instability is visualized with planar Mie scattering in which smoke particles in the air are illuminated by a Nd:YLF laser sheet, and images are recorded using four high-speed video cameras operating at 6 kHz that allow the recording of the time history of the instability. In addition, particle image velocimetry (PIV) is implemented using a double-pulsed Nd:YAG laser with images recorded using a single CCD camera. Initial modal content, amplitude, and growth rates are reported from the Mie scattering experiments while vorticity and circulation measurements are made using PIV. Amplitude measurements show good early-time agreement but relatively poor late-time agreement with existing nonlinear models. The model of Goncharov agrees with growth rate measurements at intermediate times but fails at late experimental times. Measured background acceleration present in the experiment suggests that the late-time growth rate may be influenced by Rayleigh–Taylor instability induced by the interfacial acceleration. Numerical simulations conducted using the LLNL codes Ares and Miranda show that this acceleration may be caused by the growth of boundary layers, and must be accounted for to produce good agreement with models and simulations. Adding acceleration to the Richtmyer–Meshkov buoyancy–drag model produces improved agreement. It is found that the growth rate and amplitude trends are also modelled well by the Likhachev–Jacobs vortex model. Here, circulation measurements also show good agreement with the circulation value extracted by fitting the vortex model to the experimental data.
Abstract In the present study, shock tube experiments are used to study the very late-time development of the Richtmyer–Meshkov instability from a diffuse, nearly sinusoidal, initial perturbation into a fully turbulent flow. The interface is generated by two opposing gas flows and a perturbation is formed on the interface by transversely oscillating the shock tube to create a standing wave. The puncturing of a diaphragm generates a Mach $1. 2$ shock wave that then impacts a density gradient composed of air and SF 6 , causing the Richtmyer–Meshkov instability to develop in the 2.0 m long test section. The instability is visualized with planar Mie scattering in which smoke particles in the air are illuminated by a Nd:YLF laser sheet, and images are recorded using four high-speed video cameras operating at 6 kHz that allow the recording of the time history of the instability. In addition, particle image velocimetry (PIV) is implemented using a double-pulsed Nd:YAG laser with images recorded using a single CCD camera. Initial modal content, amplitude, and growth rates are reported from the Mie scattering experiments while vorticity and circulation measurements are made using PIV. Amplitude measurements show good early-time agreement but relatively poor late-time agreement with existing nonlinear models. The model of Goncharov ( Phys. Rev. Lett. , vol. 88, 2002, 134502) agrees with growth rate measurements at intermediate times but fails at late experimental times. Measured background acceleration present in the experiment suggests that the late-time growth rate may be influenced by Rayleigh–Taylor instability induced by the interfacial acceleration. Numerical simulations conducted using the LLNL codes Ares and Miranda show that this acceleration may be caused by the growth of boundary layers, and must be accounted for to produce good agreement with models and simulations. Adding acceleration to the Richtmyer–Meshkov buoyancy–drag model produces improved agreement. It is found that the growth rate and amplitude trends are also modelled well by the Likhachev–Jacobs vortex model (Likhachev & Jacobs, Phys. Fluids , vol. 17, 2005, 031704). Circulation measurements also show good agreement with the circulation value extracted by fitting the vortex model to the experimental data.
In the present study, shock tube experiments are used to study the very late-time development of the Richtmyer–Meshkov instability from a diffuse, nearly sinusoidal, initial perturbation into a fully turbulent flow. The interface is generated by two opposing gas flows and a perturbation is formed on the interface by transversely oscillating the shock tube to create a standing wave. The puncturing of a diaphragm generates a Mach $1. 2$ shock wave that then impacts a density gradient composed of air and SF6, causing the Richtmyer–Meshkov instability to develop in the 2.0 m long test section. The instability is visualized with planar Mie scattering in which smoke particles in the air are illuminated by a Nd:YLF laser sheet, and images are recorded using four high-speed video cameras operating at 6 kHz that allow the recording of the time history of the instability. In addition, particle image velocimetry (PIV) is implemented using a double-pulsed Nd:YAG laser with images recorded using a single CCD camera. Initial modal content, amplitude, and growth rates are reported from the Mie scattering experiments while vorticity and circulation measurements are made using PIV. Amplitude measurements show good early-time agreement but relatively poor late-time agreement with existing nonlinear models. The model of Goncharov (Phys. Rev. Lett., vol. 88, 2002, 134502) agrees with growth rate measurements at intermediate times but fails at late experimental times. Measured background acceleration present in the experiment suggests that the late-time growth rate may be influenced by Rayleigh–Taylor instability induced by the interfacial acceleration. Numerical simulations conducted using the LLNL codes Ares and Miranda show that this acceleration may be caused by the growth of boundary layers, and must be accounted for to produce good agreement with models and simulations. Adding acceleration to the Richtmyer–Meshkov buoyancy–drag model produces improved agreement. It is found that the growth rate and amplitude trends are also modelled well by the Likhachev–Jacobs vortex model (Likhachev & Jacobs, Phys. Fluids, vol. 17, 2005, 031704). Circulation measurements also show good agreement with the circulation value extracted by fitting the vortex model to the experimental data.
Abstract In the present study, shock tube experiments are used to study the very late-time development of the Richtmyer-Meshkov instability from a diffuse, nearly sinusoidal, initial perturbation into a fully turbulent flow. The interface is generated by two opposing gas flows and a perturbation is formed on the interface by transversely oscillating the shock tube to create a standing wave. The puncturing of a diaphragm generates a Mach [formula omitted, refer to PDF] shock wave that then impacts a density gradient composed of air and SF6, causing the Richtmyer-Meshkov instability to develop in the 2.0 m long test section. The instability is visualized with planar Mie scattering in which smoke particles in the air are illuminated by a Nd:YLF laser sheet, and images are recorded using four high-speed video cameras operating at 6 kHz that allow the recording of the time history of the instability. In addition, particle image velocimetry (PIV) is implemented using a double-pulsed Nd:YAG laser with images recorded using a single CCD camera. Initial modal content, amplitude, and growth rates are reported from the Mie scattering experiments while vorticity and circulation measurements are made using PIV. Amplitude measurements show good early-time agreement but relatively poor late-time agreement with existing nonlinear models. The model of Goncharov (Phys. Rev. Lett., vol. 88, 2002, 134502) agrees with growth rate measurements at intermediate times but fails at late experimental times. Measured background acceleration present in the experiment suggests that the late-time growth rate may be influenced by Rayleigh-Taylor instability induced by the interfacial acceleration. Numerical simulations conducted using the LLNL codes Ares and Miranda show that this acceleration may be caused by the growth of boundary layers, and must be accounted for to produce good agreement with models and simulations. Adding acceleration to the Richtmyer-Meshkov buoyancy-drag model produces improved agreement. It is found that the growth rate and amplitude trends are also modelled well by the Likhachev-Jacobs vortex model (Likhachev & Jacobs, Phys. Fluids, vol. 17, 2005, 031704). Circulation measurements also show good agreement with the circulation value extracted by fitting the vortex model to the experimental data. [PUBLICATION ABSTRACT]
Author Stockero, J. D.
Aure, R.
Greenough, J. A.
Cabot, W.
Likhachev, O. A.
Morgan, Robert V.
Jacobs, J. W.
Author_xml – sequence: 1
  givenname: Robert V.
  surname: Morgan
  fullname: Morgan, Robert V.
  email: rvm@email.arizona.edu
  organization: Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721, USA
– sequence: 2
  givenname: R.
  surname: Aure
  fullname: Aure, R.
  organization: Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721, USA
– sequence: 3
  givenname: J. D.
  surname: Stockero
  fullname: Stockero, J. D.
  organization: Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721, USA
– sequence: 4
  givenname: J. A.
  surname: Greenough
  fullname: Greenough, J. A.
  organization: Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
– sequence: 5
  givenname: W.
  surname: Cabot
  fullname: Cabot, W.
  organization: Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
– sequence: 6
  givenname: O. A.
  surname: Likhachev
  fullname: Likhachev, O. A.
  organization: Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721, USA
– sequence: 7
  givenname: J. W.
  surname: Jacobs
  fullname: Jacobs, J. W.
  organization: Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26701923$$DView record in Pascal Francis
https://www.osti.gov/servlets/purl/1559909$$D View this record in Osti.gov
BookMark eNptkMFuEzEQhi1UJNLCjQewQNzYMLY39vqIKqBIRZUQnC2vd7brdGMH26Hkxjvwhn0SHBIhDpxmNPrmn_n_c3IWYkBCnjNYMmDqzXrcLDkwvmy5fEQWrJW6UbJdnZEFAOcNYxyekPOc1wBMgFYLMt0EWiaksy3YFL9BepvifZloHP_My31shjoO2cdgZ_rZu6ls9pgefv76hHm6i9-pD7nY3s--7GtP8xTdHS27Hin-2GI6bJf8lDwe7Zzx2alekK_v3325vGqubz58vHx73TihVWmU0y2MUklQTgjZCc4c1zgMrHMdQAcrPgjXokIBSo7j0Fea9WzoBqe0EuKCvDjqxly8yc4XdJOLIaArhq1WWoOu0MsjtE3x2w5zMeu4S9VfNoxLqToheVep10fKpZhzwtFsqxmb9oaBOQRuauDmELipgVf81UnUZmfnMdngfP67w6UCpvnhw-VJ1m765Idb_Of6_4R_A0sQklY
CODEN JFLSA7
CitedBy_id crossref_primary_10_1063_1_4993464
crossref_primary_10_1016_j_hedp_2019_100705
crossref_primary_10_1063_5_0119355
crossref_primary_10_1017_jfm_2020_295
crossref_primary_10_1063_5_0105926
crossref_primary_10_1017_jfm_2019_416
crossref_primary_10_1088_1674_1056_ab928a
crossref_primary_10_1017_jfm_2020_1080
crossref_primary_10_1017_jfm_2022_357
crossref_primary_10_1063_5_0177419
crossref_primary_10_1016_j_physrep_2017_07_005
crossref_primary_10_1017_jfm_2019_330
crossref_primary_10_1017_jfm_2020_620
crossref_primary_10_1103_PhysRevE_92_013023
crossref_primary_10_1115_1_4026858
crossref_primary_10_1063_5_0167248
crossref_primary_10_1115_1_4038532
crossref_primary_10_1139_cjp_2016_0633
crossref_primary_10_1017_jfm_2023_395
crossref_primary_10_1063_5_0180581
crossref_primary_10_1007_s00193_023_01124_7
crossref_primary_10_1063_5_0179296
crossref_primary_10_1103_PhysRevFluids_5_024101
crossref_primary_10_1017_jfm_2017_664
crossref_primary_10_1007_s00348_015_2035_2
crossref_primary_10_1063_1_4928338
crossref_primary_10_1016_j_jcp_2018_06_028
crossref_primary_10_1063_1_4826135
crossref_primary_10_1002_ctpp_202100170
crossref_primary_10_1017_jfm_2016_476
crossref_primary_10_1007_s00193_014_0537_0
Cites_doi 10.1016/j.jcp.2004.09.011
10.1007/BF01416035
10.1063/1.3555635
10.1103/PhysRevLett.88.134502
10.2514/3.11696
10.1016/j.jcp.2009.08.010
10.1063/1.2728937
10.1080/0002889758507357
10.1063/1.1621628
10.1017/S0022112009005771
10.1103/PhysRevE.84.026303
10.1115/1.3625776
10.1063/1.1447914
10.1063/1.1863276
10.1088/0169-5983/43/6/065506
10.2514/8.3282
10.1103/PhysRevE.67.036301
10.1017/S0022112010005367
10.1063/1.869416
10.1103/PhysRevLett.100.254503
10.13182/FST07-A1640
10.1007/s00193-008-0154-x
10.1063/1.872191
10.1063/1.1711205
10.1016/S0893-9659(97)00094-3
10.1063/1.3276269
10.1063/1.1852574
10.1063/1.870456
10.1063/1.1362529
10.1088/0031-8949/2008/T132/014013
10.1063/1.868794
10.1063/1.1693980
10.1063/1.869202
10.1063/1.3638616
10.1103/PhysRevE.83.056320
10.1063/1.869033
10.1086/146048
10.1002/zamm.19210010401
10.1063/1.864541
10.1016/j.jcp.2003.10.012
10.1002/cpa.3160130207
10.1002/fld.1650141003
10.1103/PhysRevE.76.026319
10.1063/1.3592173
10.1103/PhysRevLett.70.583
10.1103/PhysRevE.67.026319
10.1088/0957-0233/1/11/013
10.1098/rspa.1950.0052
10.1103/PhysRevLett.80.1654
10.1063/1.1706147
10.1051/0004-6361:20054512
10.1007/978-3-662-03637-2
10.1017/S0022112099004838
10.1017/S0022112008002905
10.1007/978-3-642-85829-1
10.1088/0957-0233/2/10/013
10.1063/1.3576187
10.1098/rsta.2009.0252
10.1063/1.858562
10.1017/S0022112002008844
10.1017/S0022112008002723
10.1017/S002211209500187X
ContentType Journal Article
Copyright 2012 Cambridge University Press
2014 INIST-CNRS
Copyright_xml – notice: 2012 Cambridge University Press
– notice: 2014 INIST-CNRS
CorporateAuthor Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
CorporateAuthor_xml – name: Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
DBID IQODW
AAYXX
CITATION
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PQEST
PQQKQ
PQUKI
PTHSS
Q9U
S0W
OIOZB
OTOTI
DOI 10.1017/jfm.2012.426
DatabaseName Pascal-Francis
CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Research Library Prep
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Research Library Prep
ProQuest Central Student
Technology Collection
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
DocumentTitleAlternate On the late-time growth of the two-dimensional RMI
R. V. Morgan and others
EISSN 1469-7645
EndPage 383
ExternalDocumentID 1559909
2858743821
10_1017_jfm_2012_426
26701923
Genre Feature
GroupedDBID -2P
-DZ
-E.
-~6
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
3V.
4.4
5GY
5VS
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABZCX
ACBEA
ACBMC
ACCHT
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADGEJ
ADKIL
ADOCW
ADVJH
AEBAK
AEHGV
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFRAH
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BMAJL
BPHCQ
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
COF
CS3
D-I
DC4
DOHLZ
DU5
DWQXO
E.L
EBS
EJD
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
I.6
I.7
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LHUNA
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WXY
WYP
ZE2
ZMEZD
ZYDXJ
~02
-1F
-2V
-~N
08R
6TJ
6~7
8W4
8WZ
9M5
A6W
ABBJB
ABDMP
ABFLS
ABFSI
ABKAW
ABTAH
ABTRL
ABVFV
ABZUI
ACETC
ACKIV
ADOVH
AEBPU
AENCP
AHGVY
AI.
AIAFM
ALEEW
BESQT
BQFHP
CAG
CCUQV
CDIZJ
G8K
H~9
I.9
IOO
IPNFZ
IQODW
KAFGG
KC5
NMFBF
PQEST
PQUKI
VH1
VOH
ZJOSE
ZY4
~V1
AAYXX
ABVZP
ABXAU
CITATION
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
Q9U
OIOZB
OTOTI
ID FETCH-LOGICAL-c397t-7c940f67607c3368321c29edd18c8008052d3c4e7e3076ffdb0f61b1d8dc79733
IEDL.DBID 8FG
ISSN 0022-1120
IngestDate Thu May 18 22:33:37 EDT 2023
Sat Oct 05 12:24:44 EDT 2024
Thu Sep 26 17:01:07 EDT 2024
Fri Nov 25 01:08:00 EST 2022
Wed Mar 13 05:57:47 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue na
Keywords compressible flows
nonlinear instability
instability
Interfaces
Compressible fluid
Shock waves
Test facilities
Turbulent flow
Stability
Particle image velocimetry
Shock tubes
Mie scattering
Experimental study
Velocity measurement
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-7c940f67607c3368321c29edd18c8008052d3c4e7e3076ffdb0f61b1d8dc79733
Notes AC52-07NA27344
LLNL-JRNL-524231
USDOE National Nuclear Security Administration (NNSA)
OpenAccessLink https://www.osti.gov/servlets/purl/1559909
PQID 1266783628
PQPubID 34769
PageCount 30
ParticipantIDs osti_scitechconnect_1559909
proquest_journals_1266783628
crossref_primary_10_1017_jfm_2012_426
pascalfrancis_primary_26701923
cambridge_journals_10_1017_jfm_2012_426
PublicationCentury 2000
PublicationDate 2012-12-10
PublicationDateYYYYMMDD 2012-12-10
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-10
  day: 10
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
– name: United States
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2012
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References S0022112012004260_r47
S0022112012004260_r48
S0022112012004260_r49
S0022112012004260_r10
S0022112012004260_r54
S0022112012004260_r11
S0022112012004260_r55
S0022112012004260_r56
S0022112012004260_r12
S0022112012004260_r13
S0022112012004260_r57
S0022112012004260_r51
S0022112012004260_r52
S0022112012004260_r53
Rayleigh (S0022112012004260_r50) 1900
S0022112012004260_r18
S0022112012004260_r19
S0022112012004260_r58
S0022112012004260_r14
S0022112012004260_r15
S0022112012004260_r59
S0022112012004260_r16
S0022112012004260_r17
S0022112012004260_r21
S0022112012004260_r65
S0022112012004260_r22
S0022112012004260_r66
S0022112012004260_r23
S0022112012004260_r67
S0022112012004260_r24
S0022112012004260_r68
S0022112012004260_r61
S0022112012004260_r62
S0022112012004260_r63
S0022112012004260_r20
S0022112012004260_r64
S0022112012004260_r60
S0022112012004260_r8
S0022112012004260_r7
S0022112012004260_r6
S0022112012004260_r5
S0022112012004260_r9
S0022112012004260_r29
Mirels (S0022112012004260_r42) 1956
S0022112012004260_r4
S0022112012004260_r25
S0022112012004260_r69
S0022112012004260_r3
S0022112012004260_r26
S0022112012004260_r27
S0022112012004260_r2
S0022112012004260_r1
S0022112012004260_r28
S0022112012004260_r32
S0022112012004260_r33
S0022112012004260_r34
S0022112012004260_r35
S0022112012004260_r30
S0022112012004260_r31
Mirels (S0022112012004260_r43) 1957
Meshkov (S0022112012004260_r39) 1969; 4
S0022112012004260_r36
S0022112012004260_r37
S0022112012004260_r38
S0022112012004260_r44
S0022112012004260_r45
S0022112012004260_r46
S0022112012004260_r40
S0022112012004260_r41
References_xml – ident: S0022112012004260_r11
  doi: 10.1016/j.jcp.2004.09.011
– ident: S0022112012004260_r63
  doi: 10.1007/BF01416035
– ident: S0022112012004260_r16
  doi: 10.1063/1.3555635
– ident: S0022112012004260_r15
  doi: 10.1103/PhysRevLett.88.134502
– ident: S0022112012004260_r56
– ident: S0022112012004260_r67
  doi: 10.2514/3.11696
– ident: S0022112012004260_r30
  doi: 10.1016/j.jcp.2009.08.010
– ident: S0022112012004260_r9
  doi: 10.1063/1.2728937
– ident: S0022112012004260_r34
  doi: 10.1080/0002889758507357
– ident: S0022112012004260_r47
  doi: 10.1063/1.1621628
– ident: S0022112012004260_r31
  doi: 10.1017/S0022112009005771
– ident: S0022112012004260_r38
  doi: 10.1103/PhysRevE.84.026303
– ident: S0022112012004260_r1
  doi: 10.1115/1.3625776
– ident: S0022112012004260_r62
  doi: 10.1063/1.1447914
– ident: S0022112012004260_r33
  doi: 10.1063/1.1863276
– ident: S0022112012004260_r57
  doi: 10.1088/0169-5983/43/6/065506
– ident: S0022112012004260_r14
  doi: 10.2514/8.3282
– ident: S0022112012004260_r65
– ident: S0022112012004260_r37
  doi: 10.1103/PhysRevE.67.036301
– ident: S0022112012004260_r35
  doi: 10.1017/S0022112010005367
– ident: S0022112012004260_r26
  doi: 10.1063/1.869416
– ident: S0022112012004260_r36
  doi: 10.1103/PhysRevLett.100.254503
– ident: S0022112012004260_r44
  doi: 10.13182/FST07-A1640
– ident: S0022112012004260_r2
  doi: 10.1007/s00193-008-0154-x
– ident: S0022112012004260_r66
  doi: 10.1063/1.872191
– ident: S0022112012004260_r7
  doi: 10.1063/1.1711205
– ident: S0022112012004260_r69
  doi: 10.1016/S0893-9659(97)00094-3
– volume: 4
  start-page: 151
  year: 1969
  ident: S0022112012004260_r39
  article-title: Instability of the interface of two gases accelerated by a shock wave
  publication-title: Izv. Akad. Nauk. SSSR Maekh. Zhidk. Gaza.
  contributor:
    fullname: Meshkov
– ident: S0022112012004260_r12
  doi: 10.1063/1.3276269
– ident: S0022112012004260_r24
  doi: 10.1063/1.1852574
– ident: S0022112012004260_r48
  doi: 10.1063/1.870456
– ident: S0022112012004260_r46
  doi: 10.1063/1.1362529
– ident: S0022112012004260_r4
  doi: 10.1088/0031-8949/2008/T132/014013
– ident: S0022112012004260_r25
  doi: 10.1063/1.868794
– ident: S0022112012004260_r40
  doi: 10.1063/1.1693980
– ident: S0022112012004260_r68
  doi: 10.1063/1.869202
– ident: S0022112012004260_r59
  doi: 10.1063/1.3638616
– ident: S0022112012004260_r20
  doi: 10.1103/PhysRevE.83.056320
– ident: S0022112012004260_r6
  doi: 10.1063/1.869033
– ident: S0022112012004260_r32
  doi: 10.1086/146048
– ident: S0022112012004260_r61
  doi: 10.1002/zamm.19210010401
– ident: S0022112012004260_r5
  doi: 10.1063/1.864541
– ident: S0022112012004260_r10
  doi: 10.1016/j.jcp.2003.10.012
– year: 1957
  ident: S0022112012004260_r43
  article-title: Nonuniformities in shock-tube flow due to unsteady-boundary-layer action
  publication-title: NACA
  contributor:
    fullname: Mirels
– ident: S0022112012004260_r51
  doi: 10.1002/cpa.3160130207
– ident: S0022112012004260_r3
  doi: 10.1002/fld.1650141003
– ident: S0022112012004260_r55
  doi: 10.1103/PhysRevE.76.026319
– ident: S0022112012004260_r13
  doi: 10.1063/1.3592173
– ident: S0022112012004260_r23
  doi: 10.1103/PhysRevLett.70.583
– ident: S0022112012004260_r41
  doi: 10.1103/PhysRevE.67.026319
– ident: S0022112012004260_r27
  doi: 10.1088/0957-0233/1/11/013
– volume-title: Investigation of the Character of the Equilibrium of an Incompressible Heavy Fluid of Variable Density
  year: 1900
  ident: S0022112012004260_r50
  contributor:
    fullname: Rayleigh
– year: 1956
  ident: S0022112012004260_r42
  article-title: Attenuation in a shock-tube due to unsteady-boundary-layer action
  publication-title: NACA
  contributor:
    fullname: Mirels
– ident: S0022112012004260_r58
  doi: 10.1098/rspa.1950.0052
– ident: S0022112012004260_r53
  doi: 10.1103/PhysRevLett.80.1654
– ident: S0022112012004260_r52
  doi: 10.1063/1.1706147
– ident: S0022112012004260_r29
  doi: 10.1051/0004-6361:20054512
– ident: S0022112012004260_r49
  doi: 10.1007/978-3-662-03637-2
– ident: S0022112012004260_r19
  doi: 10.1017/S0022112099004838
– ident: S0022112012004260_r18
  doi: 10.1017/S0022112008002905
– ident: S0022112012004260_r54
  doi: 10.1007/978-3-642-85829-1
– ident: S0022112012004260_r28
  doi: 10.1088/0957-0233/2/10/013
– ident: S0022112012004260_r17
  doi: 10.1063/1.3576187
– ident: S0022112012004260_r45
  doi: 10.1098/rsta.2009.0252
– ident: S0022112012004260_r21
  doi: 10.1063/1.858562
– ident: S0022112012004260_r8
  doi: 10.1017/S0022112002008844
– ident: S0022112012004260_r60
  doi: 10.1017/S0022112008002723
– ident: S0022112012004260_r22
  doi: 10.1017/S002211209500187X
– ident: S0022112012004260_r64
SSID ssj0013097
Score 2.2818289
Snippet In the present study, shock tube experiments are used to study the very late-time development of the Richtmyer–Meshkov instability from a diffuse, nearly...
Abstract In the present study, shock tube experiments are used to study the very late-time development of the Richtmyer–Meshkov instability from a diffuse,...
Abstract In the present study, shock tube experiments are used to study the very late-time development of the Richtmyer-Meshkov instability from a diffuse,...
SourceID osti
proquest
crossref
pascalfrancis
cambridge
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 354
SubjectTerms Boundary layer
Boundary layers
Cameras
Compressible flows; shock and detonation phenomena
ENGINEERING
Exact sciences and technology
Flow velocity
Fluid dynamics
Fluid mechanics
Fundamental areas of phenomenology (including applications)
Hydrodynamic stability
Interfacial instability
Physics
Shock waves
Shock-wave interactions and shock effects
Turbulent flow
Title On the late-time growth of the two-dimensional Richtmyer–Meshkov instability in shock tube experiments
URI https://www.cambridge.org/core/product/identifier/S0022112012004260/type/journal_article
https://www.proquest.com/docview/1266783628/abstract/
https://www.osti.gov/servlets/purl/1559909
Volume 712
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB3RRZXaQ0u3Rd0CKx9a9eRunE3i5FS1iGWFxIeqInGL4i-WFja0MSD-PTP5WFghuEVJFFl-8fjZfvMG4LNJTCiDuODE3XlUpDGnDQaurTKRjJ1uHPj2D5LpcbR3Ep-swLTLhSFZZRcT60BtSk175COBMwllHITpqFC0C6D96PvlP071o-ictS2m8QJWBXniUc74ZPf-PCHIZOcbjgwjaCXwZB79x1FCugi_RcsGC0sTVa_EAUe6yaLCrnNNzYtH4buekyZr8KYlk-xHg_47WLHzPrxtiSVrh23Vh9cPXAf78LJWferqPbjDOUMCyM6RcHKqMs9OcVXuZ6x09X1_U3JD9v-NdQejLHx_gSSd79tq9re8ZmfELmt97S1es2qG4ZX5K2XZfemA6gMcT3Z-b095W3iBa6QnnkudRYFLZBJIwoqKGekws8aIVKfEMePQjHVkpcUIkThnFL4tlDCp0TKT4_E69Obl3H4EJmxkqQhgGEpciymtrCpUjKtfVyD5EnoAXxc9nrfDp8ob6ZnMEZucsMkRmwF86fDILxsnjife2yCwcmQQZIOrSS-kfU7Hr1mQDWC4hOHiU2Eia7Y7gM0O1AftWfx8n55_vAGvqB2kdxHBJvT8_yu7hazFq2H9Qw5h9efOwdGvO56v6-o
link.rule.ids 230,315,786,790,891,12792,21416,27957,27958,33408,33779,43635,43840
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1dT9swFL2CoontYWyFiQJjftjEkyFJkzh5mrYJVBjtpgkk3qz4i-6DhpEA2r_fvYlbqBC8RYkVWT729bF9fQ7Ae5OaSARJwYm787jIEk4bDFxbZWKRON0q8A1H6eA0PjpLzvyGW-XTKqcxsQnUptS0R74X4kxCNw6i7OPlX06uUXS66i00FmEp7uNSpQNLn_dH33_cnSMEuZjqhSOzCHzqO4lG_3J0ET2MduN5YYW5CapT4kCjfMmiwiZzrdfFg7DdzEUHr-ClJ5HsU4v6a1iwky6seELJ_HCtuvDintpgF5412Z66WgX3bcKQ-LE_SDQ5ucuzc1yN12NWuuZ9fVtyQ7L_rWQHo9v39QWScz601fh3ecN-Eqts8mr_4TOrxhhWWX2tLLuzDKjW4PRg_-TLgHvDBa6RltRc6DwOXCrSQBBGZGKko9waE2Y6I26ZRKavYyssRobUOaOwdKhCkxktctHvv4HOpJzYdWChjS2Z_0WRwDWY0sqqQiW46nUFkq5Q92Bn1uLSD5tKtilnQiI2krCRiE0PPkzxkJetAscj5TYJLInMgeRvNeUJ6VrSsWse5D3YnsNw9qsoFQ3L7cHWFNR79Zl1uo2nP7-D5cHJ8FgeH46-bsJzqhPlvITBFnTqq2v7FplLrbZ99_wP823q5A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+late-time+growth+of+the+two-dimensional+Richtmyer%E2%80%95Meshkov+instability+in+shock+tube+experiments&rft.jtitle=Journal+of+fluid+mechanics&rft.au=MORGAN%2C+Robert+V&rft.au=AURE%2C+R&rft.au=STOCKERO%2C+J.+D&rft.au=GREENOUGH%2C+J.+A&rft.date=2012-12-10&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=712&rft.spage=354&rft.epage=383&rft_id=info:doi/10.1017%2Fjfm.2012.426&rft.externalDBID=n%2Fa&rft.externalDocID=26701923
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon