Methods for explaining Top-N recommendations through subgroup discovery

Explainable Artificial Intelligence (XAI) has received a lot of attention over the past decade, with the proposal of many methods explaining black box classifiers such as neural networks. Despite the ubiquity of recommender systems in the digital world, only few researchers have attempted to explain...

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 37; no. 2; pp. 833 - 872
Main Authors Iferroudjene, Mouloud, Lonjarret, Corentin, Robardet, Céline, Plantevit, Marc, Atzmueller, Martin
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2023
Springer Nature B.V
Springer
Subjects
Online AccessGet full text
ISSN1384-5810
1573-756X
DOI10.1007/s10618-022-00897-2

Cover

Loading…
Abstract Explainable Artificial Intelligence (XAI) has received a lot of attention over the past decade, with the proposal of many methods explaining black box classifiers such as neural networks. Despite the ubiquity of recommender systems in the digital world, only few researchers have attempted to explain their functioning, whereas one major obstacle to their use is the problem of societal acceptability and trustworthiness. Indeed, recommender systems direct user choices to a large extent and their impact is important as they give access to only a small part of the range of items (e.g., products and/or services), as the submerged part of the iceberg. Consequently, they limit access to other resources. The potentially negative effects of these systems have been pointed out as phenomena like echo chambers and winner-take-all effects, because the internal logic of these systems is to likely enclose the consumer in a “déjà vu” loop. Therefore, it is crucial to provide explanations of such recommender systems and to identify the user data that led the respective system to make the individual recommendations. This then makes it possible to evaluate recommender systems not only regarding their effectiveness (i.e., their capability to recommend an item that was actually chosen by the user), but also with respect to the diversity, relevance and timeliness of the active data used for the recommendation. In this paper, we propose a deep analysis of two state-of-the-art models learnt on four datasets based on the identification of the items or the sequences of items actively used by the models. Our proposed methods are based on subgroup discovery with different pattern languages (i.e., itemsets and sequences). Specifically, we provide interpretable explanations of the recommendations of the Top-N items, which are useful to compare different models. Ultimately, these can then be used to present simple and understandable patterns to explain the reasons behind a generated recommendation to the user.
AbstractList Explainable Artificial Intelligence (XAI) has received a lot of attention over the past decade, with the proposal of many methods explaining black box classifiers such as neural networks. Despite the ubiquity of recommender systems in the digital world, only few researchers have attempted to explain their functioning, whereas one major obstacle to their use is the problem of societal acceptability and trustworthiness. Indeed, recommender systems direct user choices to a large extent and their impact is important as they give access to only a small part of the range of items (e.g., products and/or services), as the submerged part of the iceberg. Consequently, they limit access to other resources. The potentially negative effects of these systems have been pointed out as phenomena like echo chambers and winner-take-all effects, because the internal logic of these systems is to likely enclose the consumer in a “déjà vu” loop. Therefore, it is crucial to provide explanations of such recommender systems and to identify the user data that led the respective system to make the individual recommendations. This then makes it possible to evaluate recommender systems not only regarding their effectiveness (i.e., their capability to recommend an item that was actually chosen by the user), but also with respect to the diversity, relevance and timeliness of the active data used for the recommendation. In this paper, we propose a deep analysis of two state-of-the-art models learnt on four datasets based on the identification of the items or the sequences of items actively used by the models. Our proposed methods are based on subgroup discovery with different pattern languages (i.e., itemsets and sequences). Specifically, we provide interpretable explanations of the recommendations of the Top-N items, which are useful to compare different models. Ultimately, these can then be used to present simple and understandable patterns to explain the reasons behind a generated recommendation to the user.
Author Iferroudjene, Mouloud
Lonjarret, Corentin
Atzmueller, Martin
Plantevit, Marc
Robardet, Céline
Author_xml – sequence: 1
  givenname: Mouloud
  surname: Iferroudjene
  fullname: Iferroudjene, Mouloud
  organization: École nationale Supérieure d’Informatique (ESI)
– sequence: 2
  givenname: Corentin
  surname: Lonjarret
  fullname: Lonjarret, Corentin
  organization: INSA Lyon, CNRS, LIRIS UMR 5205, Univ. Lyon
– sequence: 3
  givenname: Céline
  orcidid: 0000-0002-8583-9408
  surname: Robardet
  fullname: Robardet, Céline
  email: celine.robardet@insa-lyon.fr
  organization: INSA Lyon, CNRS, LIRIS UMR 5205, Univ. Lyon
– sequence: 4
  givenname: Marc
  surname: Plantevit
  fullname: Plantevit, Marc
  organization: Laboratoire de Recherche de l’EPITA (LRE)
– sequence: 5
  givenname: Martin
  surname: Atzmueller
  fullname: Atzmueller, Martin
  organization: Semantic Information Systems Group, Osnabrück University, German Research Center for Artificial Intelligence (DFKI)
BackLink https://hal.science/hal-03845678$$DView record in HAL
BookMark eNp9kEFPAjEQhRujiYD-AU-bePJQnbZb2h4JUTBBvWDirenudmEJbNd2IfLvLazRxAOnmUzeN_Pm9dF57WqL0A2BewIgHgKBIZEYKMUAUglMz1CPcMGw4MOP89gzmWIuCVyifggrAOCUQQ9NXmy7dEVISucT-9WsTVVX9SKZuwa_Jt7mbrOxdWHaytUhaZfebRfLJGyzReyapKhC7nbW76_QRWnWwV7_1AF6f3qcj6d49jZ5Ho9mOGdKtFhkShlOWAnSypKmhU2LlFJJgQkhVJpamUb7hRkKyUpFOM-zkiiimCEq44YN0F23d2nWuvHVxvi9dqbS09FMH2YQH-WR3pGove20jXefWxtavXJbX0d7msZjAgiHNKpop8q9C8Hb8nctAX0IV3fh6hiuPoaraYTkPyiv2mNIrTfV-jTKOjTEO_XC-j9XJ6hvIKiO2A
CitedBy_id crossref_primary_10_1007_s11257_024_09400_6
Cites_doi 10.2307/2332226
10.1145/1824795.1824798
10.1007/s10462-005-4612-x
10.1023/A:1007652502315
10.1007/s10462-005-4607-7
10.1007/s10618-021-00744-w
10.1007/s10994-019-05856-5
10.1002/widm.1144
10.1007/s10618-015-0436-8
10.1007/s10618-014-0368-8
10.1016/0004-3702(92)90087-E
10.1109/TKDE.2004.77
10.1007/3-540-61286-6_186
10.1145/2939672.2939778
10.1109/CVPR.2019.01103
10.1109/DSAA.2019.00022
10.1109/DSAA49011.2020.00067
10.1145/335191.335372
10.1145/3159652.3159656
10.1109/ICDM.2014.10
10.4324/9780203963784
10.1007/11871637_6
10.1109/ICDM.2018.00035
10.1145/3106426.3109436
10.1145/3097983.3098039
10.1145/1111449.1111475
10.1007/978-3-642-04125-9_7
10.1007/978-0-387-85820-3_15
10.1007/3-540-63223-9_108
10.1145/2766462.2767755
10.1007/11536406_35
10.1007/978-3-642-33486-3_18
10.1609/aaai.v32i1.11491
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
1XC
VOOES
DOI 10.1007/s10618-022-00897-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (OCUL)
Computing Database
Research Library
Research Library (Corporate)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList

ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-756X
EndPage 872
ExternalDocumentID oai_HAL_hal_03845678v1
10_1007_s10618_022_00897_2
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
1XC
VOOES
ID FETCH-LOGICAL-c397t-7b99a513f08e8f24de4d4228203777944e84897da6783f9155cbf19193a19b5a3
IEDL.DBID BENPR
ISSN 1384-5810
IngestDate Fri May 09 12:26:58 EDT 2025
Sat Aug 16 17:51:42 EDT 2025
Tue Jul 01 00:40:32 EDT 2025
Thu Apr 24 23:09:33 EDT 2025
Fri Feb 21 02:44:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-7b99a513f08e8f24de4d4228203777944e84897da6783f9155cbf19193a19b5a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8583-9408
0000-0002-3662-5681
0000-0001-7070-2874
0000-0003-4636-5753
OpenAccessLink https://hal.science/hal-03845678
PQID 2779701504
PQPubID 43030
PageCount 40
ParticipantIDs hal_primary_oai_HAL_hal_03845678v1
proquest_journals_2779701504
crossref_primary_10_1007_s10618_022_00897_2
crossref_citationtrail_10_1007_s10618_022_00897_2
springer_journals_10_1007_s10618_022_00897_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Springer
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer
References Lemmerich, Atzmueller, Puppe (CR17) 2016; 30
Schank (CR34) 1986
Sørmo, Cassens, Aamodt (CR35) 2005; 24
Atzmueller (CR1) 2015; 5
CR18
McSherry (CR24) 2005; 24
CR16
CR38
CR15
CR37
CR36
CR13
Fournier-Viger, Lin, Kiran, Koh, Thomas (CR7) 2017; 1
CR10
CR32
CR31
CR30
Zaki (CR41) 2001; 42
CR2
Fürnkranz, Kliegr, Paulheim (CR8) 2020; 109
Henelius, Puolamäki, Boström, Asker, Papapetrou (CR12) 2014; 28
CR4
CR3
CR6
CR5
CR29
CR28
CR9
Wick, Thompson (CR39) 1992; 54
CR26
Mabroukeh, Ezeife (CR20) 2010; 43
CR25
Roth-Berghofer, Schulz, Leake, Bahls (CR33) 2007; 28
CR23
CR22
Pei, Han, Mortazavi-Asl, Wang, Pinto, Chen, Dayal, Hsu (CR27) 2004; 16
CR21
Kendall (CR14) 1938; 30
CR40
Harper, Konstan (CR11) 2015; 5
Lonjarret, Auburtin, Robardet, Plantevit (CR19) 2021; 35
897_CR23
D McSherry (897_CR24) 2005; 24
897_CR22
F Sørmo (897_CR35) 2005; 24
897_CR25
MJ Zaki (897_CR41) 2001; 42
J Fürnkranz (897_CR8) 2020; 109
F Lemmerich (897_CR17) 2016; 30
897_CR26
897_CR29
897_CR28
897_CR40
897_CR21
NR Mabroukeh (897_CR20) 2010; 43
897_CR9
J Pei (897_CR27) 2004; 16
T Roth-Berghofer (897_CR33) 2007; 28
MG Kendall (897_CR14) 1938; 30
MR Wick (897_CR39) 1992; 54
A Henelius (897_CR12) 2014; 28
897_CR36
897_CR13
C Lonjarret (897_CR19) 2021; 35
897_CR16
897_CR38
897_CR15
897_CR37
897_CR18
FM Harper (897_CR11) 2015; 5
897_CR4
M Atzmueller (897_CR1) 2015; 5
897_CR5
897_CR6
P Fournier-Viger (897_CR7) 2017; 1
897_CR30
897_CR2
897_CR10
897_CR32
897_CR3
897_CR31
RC Schank (897_CR34) 1986
References_xml – ident: CR22
– ident: CR18
– volume: 1
  start-page: 54
  issue: 1
  year: 2017
  end-page: 77
  ident: CR7
  article-title: A survey of sequential pattern mining
  publication-title: Data Sci Pattern Recognit
– volume: 5
  start-page: 19:1
  issue: 4
  year: 2015
  end-page: 19:19
  ident: CR11
  article-title: The movielens datasets: history and context
  publication-title: ACM TiiS
– ident: CR4
– ident: CR2
– ident: CR16
– ident: CR37
– ident: CR30
– volume: 30
  start-page: 81
  issue: 1/2
  year: 1938
  end-page: 93
  ident: CR14
  article-title: A new measure of rank correlation
  publication-title: Biometrika
  doi: 10.2307/2332226
– ident: CR10
– volume: 43
  start-page: 3:1
  issue: 1
  year: 2010
  end-page: 3:41
  ident: CR20
  article-title: A taxonomy of sequential pattern mining algorithms
  publication-title: ACM Comput Surv
  doi: 10.1145/1824795.1824798
– volume: 24
  start-page: 179
  issue: 2
  year: 2005
  end-page: 197
  ident: CR24
  article-title: Explanation in recommender systems
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-005-4612-x
– volume: 42
  start-page: 31
  issue: 1–2
  year: 2001
  end-page: 60
  ident: CR41
  article-title: Spade: an efficient algorithm for mining frequent sequences
  publication-title: Mach Learn
  doi: 10.1023/A:1007652502315
– ident: CR6
– ident: CR29
– ident: CR40
– ident: CR25
– ident: CR23
– volume: 24
  start-page: 109
  issue: 2
  year: 2005
  end-page: 143
  ident: CR35
  article-title: Explanation in case-based reasoning: perspectives and goals
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-005-4607-7
– ident: CR21
– volume: 35
  start-page: 1087
  issue: 3
  year: 2021
  end-page: 1133
  ident: CR19
  article-title: Sequential recommendation with metric models based on frequent sequences
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-021-00744-w
– volume: 109
  start-page: 853
  issue: 4
  year: 2020
  end-page: 898
  ident: CR8
  article-title: On cognitive preferences and the plausibility of rule-based models
  publication-title: Mach Learn
  doi: 10.1007/s10994-019-05856-5
– year: 1986
  ident: CR34
  publication-title: Explanation patterns: understanding mechanically and creatively
– volume: 28
  start-page: 122
  issue: 4
  year: 2007
  ident: CR33
  article-title: Explanation-aware computing
  publication-title: AI Mag
– ident: CR3
– ident: CR15
– ident: CR38
– volume: 5
  start-page: 35
  issue: 1
  year: 2015
  end-page: 49
  ident: CR1
  article-title: Subgroup discovery
  publication-title: WIREs Data Min Knowl Discov
  doi: 10.1002/widm.1144
– volume: 30
  start-page: 711
  issue: 3
  year: 2016
  end-page: 762
  ident: CR17
  article-title: Fast exhaustive subgroup discovery with numerical target concepts
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-015-0436-8
– ident: CR31
– volume: 28
  start-page: 1503
  issue: 5–6
  year: 2014
  end-page: 1529
  ident: CR12
  article-title: A peek into the black box: exploring classifiers by randomization
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-014-0368-8
– ident: CR13
– ident: CR9
– ident: CR32
– ident: CR36
– ident: CR5
– ident: CR28
– ident: CR26
– volume: 54
  start-page: 33
  issue: 1–2
  year: 1992
  end-page: 70
  ident: CR39
  article-title: Reconstructive expert system explanation
  publication-title: Artif Intell
  doi: 10.1016/0004-3702(92)90087-E
– volume: 16
  start-page: 1424
  issue: 11
  year: 2004
  end-page: 1440
  ident: CR27
  article-title: Mining sequential patterns by pattern-growth: the prefixspan approach
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2004.77
– ident: 897_CR6
– ident: 897_CR15
  doi: 10.1007/3-540-61286-6_186
– ident: 897_CR26
– volume: 16
  start-page: 1424
  issue: 11
  year: 2004
  ident: 897_CR27
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2004.77
– ident: 897_CR30
  doi: 10.1145/2939672.2939778
– ident: 897_CR4
– ident: 897_CR28
  doi: 10.1109/CVPR.2019.01103
– volume: 28
  start-page: 122
  issue: 4
  year: 2007
  ident: 897_CR33
  publication-title: AI Mag
– volume-title: Explanation patterns: understanding mechanically and creatively
  year: 1986
  ident: 897_CR34
– ident: 897_CR22
  doi: 10.1109/DSAA.2019.00022
– ident: 897_CR18
  doi: 10.1109/DSAA49011.2020.00067
– volume: 109
  start-page: 853
  issue: 4
  year: 2020
  ident: 897_CR8
  publication-title: Mach Learn
  doi: 10.1007/s10994-019-05856-5
– volume: 35
  start-page: 1087
  issue: 3
  year: 2021
  ident: 897_CR19
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-021-00744-w
– ident: 897_CR10
  doi: 10.1145/335191.335372
– ident: 897_CR36
  doi: 10.1145/3159652.3159656
– ident: 897_CR5
  doi: 10.1109/ICDM.2014.10
– ident: 897_CR21
  doi: 10.4324/9780203963784
– ident: 897_CR3
  doi: 10.1007/11871637_6
– ident: 897_CR13
  doi: 10.1109/ICDM.2018.00035
– ident: 897_CR9
  doi: 10.1145/3106426.3109436
– ident: 897_CR38
  doi: 10.1145/3097983.3098039
– volume: 42
  start-page: 31
  issue: 1–2
  year: 2001
  ident: 897_CR41
  publication-title: Mach Learn
  doi: 10.1023/A:1007652502315
– ident: 897_CR29
  doi: 10.1145/1111449.1111475
– ident: 897_CR2
  doi: 10.1007/978-3-642-04125-9_7
– ident: 897_CR25
– ident: 897_CR37
  doi: 10.1007/978-0-387-85820-3_15
– ident: 897_CR40
  doi: 10.1007/3-540-63223-9_108
– volume: 24
  start-page: 109
  issue: 2
  year: 2005
  ident: 897_CR35
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-005-4607-7
– volume: 5
  start-page: 19:1
  issue: 4
  year: 2015
  ident: 897_CR11
  publication-title: ACM TiiS
– ident: 897_CR23
  doi: 10.1145/2766462.2767755
– ident: 897_CR32
  doi: 10.1007/11536406_35
– volume: 5
  start-page: 35
  issue: 1
  year: 2015
  ident: 897_CR1
  publication-title: WIREs Data Min Knowl Discov
  doi: 10.1002/widm.1144
– volume: 30
  start-page: 711
  issue: 3
  year: 2016
  ident: 897_CR17
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-015-0436-8
– ident: 897_CR16
  doi: 10.1007/978-3-642-33486-3_18
– volume: 54
  start-page: 33
  issue: 1–2
  year: 1992
  ident: 897_CR39
  publication-title: Artif Intell
  doi: 10.1016/0004-3702(92)90087-E
– volume: 24
  start-page: 179
  issue: 2
  year: 2005
  ident: 897_CR24
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-005-4612-x
– volume: 30
  start-page: 81
  issue: 1/2
  year: 1938
  ident: 897_CR14
  publication-title: Biometrika
  doi: 10.2307/2332226
– volume: 28
  start-page: 1503
  issue: 5–6
  year: 2014
  ident: 897_CR12
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-014-0368-8
– volume: 1
  start-page: 54
  issue: 1
  year: 2017
  ident: 897_CR7
  publication-title: Data Sci Pattern Recognit
– volume: 43
  start-page: 3:1
  issue: 1
  year: 2010
  ident: 897_CR20
  publication-title: ACM Comput Surv
  doi: 10.1145/1824795.1824798
– ident: 897_CR31
  doi: 10.1609/aaai.v32i1.11491
SSID ssj0005230
Score 2.4105937
Snippet Explainable Artificial Intelligence (XAI) has received a lot of attention over the past decade, with the proposal of many methods explaining black box...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 833
SubjectTerms Application Papers
Artificial Intelligence
Chemistry and Earth Sciences
Computer Science
Data Mining and Knowledge Discovery
Explainable artificial intelligence
Icebergs
Information Retrieval
Information Storage and Retrieval
Neural networks
Physics
Recommender systems
Statistics for Engineering
Subgroups
System effectiveness
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86EXzxYypWpwTxTQNtPtrmcYhziNvTBnsrSZviw76wm-h_76VNtykq-NqmLbnL5e6a-90PoRsqUy0UV8RXYUx4HmgwKUmJ5DqLIPHRQljscK8fdof8aSRGDhRW1NXu9ZFkuVNvgN3CICa2-hz8lowIbLw7wubusIqHtL1R2MEqbHDMiYgD30Flfn7HF3e0_WKLITcizW-Ho6XP6RyifRcs4nal3SO0ZaZNdFATMWBnl020W9ZxpsUxeuyVjNAFhlgUm_f5uCKAwIPZnPSxzX4nE-N4lArsSHpwsdQlugNbjK6t6fw4QcPOw-C-SxxXAkkholiQSEupRMByPzZxTnlmeGa7e1GfRRHYHDcxhwlnCpwTy21T-FTnkKtJpgIJ2mKnqDGdTc0ZwkyH1CiRZ0IKniqto1RowyIa5mHKlPBQUIssSV0jcctnMU7WLZCtmBMQc1KKOaEeul09M6_aaPw5-ho0sRpoO2B328-JveaDVgXM4S3wUKtWVOLsrkgozDWyP3G4h-5q5a1v__7J8_8Nv0B7lne-KkZrocbidWkuITpZ6KtyMX4CT8PX2Q
  priority: 102
  providerName: Springer Nature
Title Methods for explaining Top-N recommendations through subgroup discovery
URI https://link.springer.com/article/10.1007/s10618-022-00897-2
https://www.proquest.com/docview/2779701504
https://hal.science/hal-03845678
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-t6wsvjA0QHVtlTbyBReKP2H5C3dQPMVZN0yqNp8hOHPGwtYV0CP57zomzDiT26jiJfOf7su_uB_COmcJJKyxNbKapqFKHImUYNcKVCgMfJ2WoHb6YZ7OF-Hwjb-KBWx3TKjud2CjqclWEM_KPTCmjQnguPq2_04AaFW5XI4RGD_qogjUGX_3T8fzy6lGSB2_rhLWgUqdJLJuJxXNZqmnIZkc7aBRlf5mm3reQGPnI6_znorSxP5MX8Dw6jmTUcnofdvzyAPY6UAYSZfQlTC8aTOiaoDdK_K_1bQsBQa5XazonIf69u_MRSakmEaaH1Peuqe8goUo3ZHX-fgWLyfj6bEYjWgIt0KfYUOWMsTLlVaK9rpgovShDfy-WcIW0E8JrgcssLZonXoW28IWrMFoz3KYG-cVfw-5ytfRvgHCXMW9lVUojRWGdU4V0niuWVVnBrRxA2hEqL2Ir8YBocZtvmyAH4uZI3Lwhbs4G8P7hnXXbSOPJ2SdI_4eJoQf2bPQlD2MJ8lLiGn6mAzjq2JNHyavz7T4ZwIeOZdvH___l4dNfewvPAtJ8m352BLubH_f-GP2RjRtCT0-mQ-iPpl_Px8O4BXF0wUZ_ABb03Lg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB615QAX3qgLBSwEJ7BI_IjtA0IVsN3S3T1tpd6MnTji0O5umy3QP8VvxJM43YJEb70mji3PjOcRz8wH8JqZ0ksnHM1coamocx-PlGHUCF-pGPh4KbF2eDItRofi65E82oDffS0MplX2OrFV1NWixH_k75lSRmF4Lj4uTymiRuHtag-h0YnFQbj4GUO25sP-58jfN4wNv8w-jWhCFaBltL0rqrwxTua8znTQNRNVEBX2wWIZV3ENIYIW2qjKRTXOa2yfXvo6RjWGu9zEffE47ybcEpwbPFF6uHclpYR3VclaUKnzLBXppFK9ItcUc-ej1TWKsr8M4eZ3TMO84uP-cy3bWrvhfbib3FSy28nVA9gI84dwr4eAIEkjPIK9SYtA3ZDo-5Lwa3ncAU6Q2WJJpwSj7ZOTkHCbGpJAgUhz7ttqEoI1wZhDevEYDm-Eik9ga76Yh20g3BcsOFlX0khROu9VKX3gihV1UXInB5D3hLJlalyO-BnHdt1yGYlrI3FtS1zLBvD28ptl17bj2tGvIv0vB2LH7dHu2OKzLPJSxj38yAew07PHpnPe2LVUDuBdz7L16_8v-fT62V7C7dFsMrbj_enBM7iDGPdd4tsObK3OzsPz6Amt_ItW_Ah8u2l5_wPG4hLI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61Wwlx4Y1YKGAhOIHVxI84PiBUaJctbVcVaqXeTJw44tDuLmQL9K_x65hJnG5BordeE8eWZ8bziGfmA3gpbOl1oQqeFFnOVZ16PFJWcKt8ZTDw8VpT7fD-JBsfqU_H-ngFfve1MJRW2evEVlFXs5L-kW8IY6yh8Fxt1DEt4mBr9G7-jROCFN209nAanYjshvOfGL41b3e2kNevhBhtH34Y84gwwEu0wwtuvLWFTmWd5CGvhaqCqqgnlkikwfWUCrnKrakKVOmyplbqpa8xwrGySC3uUeK8q7BmMCpKBrD2fnty8PlSgonsapRzxXWeJrFkJxbuZWnOKZMebbA1XPxlFle_UlLmJY_3n0va1vaN7sCt6LSyzU7K7sJKmN6D2z0gBIv64T583G_xqBuGnjALv-YnHfwEO5zN-YRR7H16GiKKU8MiRBBrznxbW8KoQpgySs8fwNG10PEhDKazaXgETPpMhELXlbZalYX3ptQ-SCOyOitloYeQ9oRyZWxjTmgaJ27ZgJmI65C4riWuE0N4ffHNvGviceXoF0j_i4HUf3u8uefoWYK81LiHH-kQ1nv2uHjqG7eU0SG86Vm2fP3_JR9fPdtzuIGy7vZ2JrtP4CYB3ndZcOswWHw_C0_RLVr4Z1H-GHy5bpH_A4YYGFo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methods+for+explaining+Top-N+recommendations+through+subgroup+discovery&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Iferroudjene%2C+Mouloud&rft.au=Lonjarret%2C+Corentin&rft.au=Robardet%2C+C%C3%A9line&rft.au=Plantevit%2C+Marc&rft.date=2023-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=37&rft.issue=2&rft.spage=833&rft.epage=872&rft_id=info:doi/10.1007%2Fs10618-022-00897-2&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon