Methods for explaining Top-N recommendations through subgroup discovery
Explainable Artificial Intelligence (XAI) has received a lot of attention over the past decade, with the proposal of many methods explaining black box classifiers such as neural networks. Despite the ubiquity of recommender systems in the digital world, only few researchers have attempted to explain...
Saved in:
Published in | Data mining and knowledge discovery Vol. 37; no. 2; pp. 833 - 872 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2023
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
ISSN | 1384-5810 1573-756X |
DOI | 10.1007/s10618-022-00897-2 |
Cover
Loading…
Abstract | Explainable Artificial Intelligence (XAI) has received a lot of attention over the past decade, with the proposal of many methods explaining black box classifiers such as neural networks. Despite the ubiquity of recommender systems in the digital world, only few researchers have attempted to explain their functioning, whereas one major obstacle to their use is the problem of societal acceptability and trustworthiness. Indeed, recommender systems direct user choices to a large extent and their impact is important as they give access to only a small part of the range of items (e.g., products and/or services), as the submerged part of the iceberg. Consequently, they limit access to other resources. The potentially negative effects of these systems have been pointed out as phenomena like echo chambers and winner-take-all effects, because the internal logic of these systems is to likely enclose the consumer in a “déjà vu” loop. Therefore, it is crucial to provide explanations of such recommender systems and to identify the user data that led the respective system to make the individual recommendations. This then makes it possible to evaluate recommender systems not only regarding their effectiveness (i.e., their capability to recommend an item that was actually chosen by the user), but also with respect to the diversity, relevance and timeliness of the active data used for the recommendation. In this paper, we propose a deep analysis of two state-of-the-art models learnt on four datasets based on the identification of the items or the sequences of items actively used by the models. Our proposed methods are based on subgroup discovery with different pattern languages (i.e., itemsets and sequences). Specifically, we provide interpretable explanations of the recommendations of the Top-N items, which are useful to compare different models. Ultimately, these can then be used to present simple and understandable patterns to explain the reasons behind a generated recommendation to the user. |
---|---|
AbstractList | Explainable Artificial Intelligence (XAI) has received a lot of attention over the past decade, with the proposal of many methods explaining black box classifiers such as neural networks. Despite the ubiquity of recommender systems in the digital world, only few researchers have attempted to explain their functioning, whereas one major obstacle to their use is the problem of societal acceptability and trustworthiness. Indeed, recommender systems direct user choices to a large extent and their impact is important as they give access to only a small part of the range of items (e.g., products and/or services), as the submerged part of the iceberg. Consequently, they limit access to other resources. The potentially negative effects of these systems have been pointed out as phenomena like echo chambers and winner-take-all effects, because the internal logic of these systems is to likely enclose the consumer in a “déjà vu” loop. Therefore, it is crucial to provide explanations of such recommender systems and to identify the user data that led the respective system to make the individual recommendations. This then makes it possible to evaluate recommender systems not only regarding their effectiveness (i.e., their capability to recommend an item that was actually chosen by the user), but also with respect to the diversity, relevance and timeliness of the active data used for the recommendation. In this paper, we propose a deep analysis of two state-of-the-art models learnt on four datasets based on the identification of the items or the sequences of items actively used by the models. Our proposed methods are based on subgroup discovery with different pattern languages (i.e., itemsets and sequences). Specifically, we provide interpretable explanations of the recommendations of the Top-N items, which are useful to compare different models. Ultimately, these can then be used to present simple and understandable patterns to explain the reasons behind a generated recommendation to the user. |
Author | Iferroudjene, Mouloud Lonjarret, Corentin Atzmueller, Martin Plantevit, Marc Robardet, Céline |
Author_xml | – sequence: 1 givenname: Mouloud surname: Iferroudjene fullname: Iferroudjene, Mouloud organization: École nationale Supérieure d’Informatique (ESI) – sequence: 2 givenname: Corentin surname: Lonjarret fullname: Lonjarret, Corentin organization: INSA Lyon, CNRS, LIRIS UMR 5205, Univ. Lyon – sequence: 3 givenname: Céline orcidid: 0000-0002-8583-9408 surname: Robardet fullname: Robardet, Céline email: celine.robardet@insa-lyon.fr organization: INSA Lyon, CNRS, LIRIS UMR 5205, Univ. Lyon – sequence: 4 givenname: Marc surname: Plantevit fullname: Plantevit, Marc organization: Laboratoire de Recherche de l’EPITA (LRE) – sequence: 5 givenname: Martin surname: Atzmueller fullname: Atzmueller, Martin organization: Semantic Information Systems Group, Osnabrück University, German Research Center for Artificial Intelligence (DFKI) |
BackLink | https://hal.science/hal-03845678$$DView record in HAL |
BookMark | eNp9kEFPAjEQhRujiYD-AU-bePJQnbZb2h4JUTBBvWDirenudmEJbNd2IfLvLazRxAOnmUzeN_Pm9dF57WqL0A2BewIgHgKBIZEYKMUAUglMz1CPcMGw4MOP89gzmWIuCVyifggrAOCUQQ9NXmy7dEVISucT-9WsTVVX9SKZuwa_Jt7mbrOxdWHaytUhaZfebRfLJGyzReyapKhC7nbW76_QRWnWwV7_1AF6f3qcj6d49jZ5Ho9mOGdKtFhkShlOWAnSypKmhU2LlFJJgQkhVJpamUb7hRkKyUpFOM-zkiiimCEq44YN0F23d2nWuvHVxvi9dqbS09FMH2YQH-WR3pGove20jXefWxtavXJbX0d7msZjAgiHNKpop8q9C8Hb8nctAX0IV3fh6hiuPoaraYTkPyiv2mNIrTfV-jTKOjTEO_XC-j9XJ6hvIKiO2A |
CitedBy_id | crossref_primary_10_1007_s11257_024_09400_6 |
Cites_doi | 10.2307/2332226 10.1145/1824795.1824798 10.1007/s10462-005-4612-x 10.1023/A:1007652502315 10.1007/s10462-005-4607-7 10.1007/s10618-021-00744-w 10.1007/s10994-019-05856-5 10.1002/widm.1144 10.1007/s10618-015-0436-8 10.1007/s10618-014-0368-8 10.1016/0004-3702(92)90087-E 10.1109/TKDE.2004.77 10.1007/3-540-61286-6_186 10.1145/2939672.2939778 10.1109/CVPR.2019.01103 10.1109/DSAA.2019.00022 10.1109/DSAA49011.2020.00067 10.1145/335191.335372 10.1145/3159652.3159656 10.1109/ICDM.2014.10 10.4324/9780203963784 10.1007/11871637_6 10.1109/ICDM.2018.00035 10.1145/3106426.3109436 10.1145/3097983.3098039 10.1145/1111449.1111475 10.1007/978-3-642-04125-9_7 10.1007/978-0-387-85820-3_15 10.1007/3-540-63223-9_108 10.1145/2766462.2767755 10.1007/11536406_35 10.1007/978-3-642-33486-3_18 10.1609/aaai.v32i1.11491 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U 1XC VOOES |
DOI | 10.1007/s10618-022-00897-2 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (OCUL) Computing Database Research Library Research Library (Corporate) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science |
EISSN | 1573-756X |
EndPage | 872 |
ExternalDocumentID | oai_HAL_hal_03845678v1 10_1007_s10618_022_00897_2 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M2O M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U 1XC VOOES |
ID | FETCH-LOGICAL-c397t-7b99a513f08e8f24de4d4228203777944e84897da6783f9155cbf19193a19b5a3 |
IEDL.DBID | BENPR |
ISSN | 1384-5810 |
IngestDate | Fri May 09 12:26:58 EDT 2025 Sat Aug 16 17:51:42 EDT 2025 Tue Jul 01 00:40:32 EDT 2025 Thu Apr 24 23:09:33 EDT 2025 Fri Feb 21 02:44:19 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c397t-7b99a513f08e8f24de4d4228203777944e84897da6783f9155cbf19193a19b5a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8583-9408 0000-0002-3662-5681 0000-0001-7070-2874 0000-0003-4636-5753 |
OpenAccessLink | https://hal.science/hal-03845678 |
PQID | 2779701504 |
PQPubID | 43030 |
PageCount | 40 |
ParticipantIDs | hal_primary_oai_HAL_hal_03845678v1 proquest_journals_2779701504 crossref_primary_10_1007_s10618_022_00897_2 crossref_citationtrail_10_1007_s10618_022_00897_2 springer_journals_10_1007_s10618_022_00897_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Data mining and knowledge discovery |
PublicationTitleAbbrev | Data Min Knowl Disc |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V Springer |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer |
References | Lemmerich, Atzmueller, Puppe (CR17) 2016; 30 Schank (CR34) 1986 Sørmo, Cassens, Aamodt (CR35) 2005; 24 Atzmueller (CR1) 2015; 5 CR18 McSherry (CR24) 2005; 24 CR16 CR38 CR15 CR37 CR36 CR13 Fournier-Viger, Lin, Kiran, Koh, Thomas (CR7) 2017; 1 CR10 CR32 CR31 CR30 Zaki (CR41) 2001; 42 CR2 Fürnkranz, Kliegr, Paulheim (CR8) 2020; 109 Henelius, Puolamäki, Boström, Asker, Papapetrou (CR12) 2014; 28 CR4 CR3 CR6 CR5 CR29 CR28 CR9 Wick, Thompson (CR39) 1992; 54 CR26 Mabroukeh, Ezeife (CR20) 2010; 43 CR25 Roth-Berghofer, Schulz, Leake, Bahls (CR33) 2007; 28 CR23 CR22 Pei, Han, Mortazavi-Asl, Wang, Pinto, Chen, Dayal, Hsu (CR27) 2004; 16 CR21 Kendall (CR14) 1938; 30 CR40 Harper, Konstan (CR11) 2015; 5 Lonjarret, Auburtin, Robardet, Plantevit (CR19) 2021; 35 897_CR23 D McSherry (897_CR24) 2005; 24 897_CR22 F Sørmo (897_CR35) 2005; 24 897_CR25 MJ Zaki (897_CR41) 2001; 42 J Fürnkranz (897_CR8) 2020; 109 F Lemmerich (897_CR17) 2016; 30 897_CR26 897_CR29 897_CR28 897_CR40 897_CR21 NR Mabroukeh (897_CR20) 2010; 43 897_CR9 J Pei (897_CR27) 2004; 16 T Roth-Berghofer (897_CR33) 2007; 28 MG Kendall (897_CR14) 1938; 30 MR Wick (897_CR39) 1992; 54 A Henelius (897_CR12) 2014; 28 897_CR36 897_CR13 C Lonjarret (897_CR19) 2021; 35 897_CR16 897_CR38 897_CR15 897_CR37 897_CR18 FM Harper (897_CR11) 2015; 5 897_CR4 M Atzmueller (897_CR1) 2015; 5 897_CR5 897_CR6 P Fournier-Viger (897_CR7) 2017; 1 897_CR30 897_CR2 897_CR10 897_CR32 897_CR3 897_CR31 RC Schank (897_CR34) 1986 |
References_xml | – ident: CR22 – ident: CR18 – volume: 1 start-page: 54 issue: 1 year: 2017 end-page: 77 ident: CR7 article-title: A survey of sequential pattern mining publication-title: Data Sci Pattern Recognit – volume: 5 start-page: 19:1 issue: 4 year: 2015 end-page: 19:19 ident: CR11 article-title: The movielens datasets: history and context publication-title: ACM TiiS – ident: CR4 – ident: CR2 – ident: CR16 – ident: CR37 – ident: CR30 – volume: 30 start-page: 81 issue: 1/2 year: 1938 end-page: 93 ident: CR14 article-title: A new measure of rank correlation publication-title: Biometrika doi: 10.2307/2332226 – ident: CR10 – volume: 43 start-page: 3:1 issue: 1 year: 2010 end-page: 3:41 ident: CR20 article-title: A taxonomy of sequential pattern mining algorithms publication-title: ACM Comput Surv doi: 10.1145/1824795.1824798 – volume: 24 start-page: 179 issue: 2 year: 2005 end-page: 197 ident: CR24 article-title: Explanation in recommender systems publication-title: Artif Intell Rev doi: 10.1007/s10462-005-4612-x – volume: 42 start-page: 31 issue: 1–2 year: 2001 end-page: 60 ident: CR41 article-title: Spade: an efficient algorithm for mining frequent sequences publication-title: Mach Learn doi: 10.1023/A:1007652502315 – ident: CR6 – ident: CR29 – ident: CR40 – ident: CR25 – ident: CR23 – volume: 24 start-page: 109 issue: 2 year: 2005 end-page: 143 ident: CR35 article-title: Explanation in case-based reasoning: perspectives and goals publication-title: Artif Intell Rev doi: 10.1007/s10462-005-4607-7 – ident: CR21 – volume: 35 start-page: 1087 issue: 3 year: 2021 end-page: 1133 ident: CR19 article-title: Sequential recommendation with metric models based on frequent sequences publication-title: Data Min Knowl Discov doi: 10.1007/s10618-021-00744-w – volume: 109 start-page: 853 issue: 4 year: 2020 end-page: 898 ident: CR8 article-title: On cognitive preferences and the plausibility of rule-based models publication-title: Mach Learn doi: 10.1007/s10994-019-05856-5 – year: 1986 ident: CR34 publication-title: Explanation patterns: understanding mechanically and creatively – volume: 28 start-page: 122 issue: 4 year: 2007 ident: CR33 article-title: Explanation-aware computing publication-title: AI Mag – ident: CR3 – ident: CR15 – ident: CR38 – volume: 5 start-page: 35 issue: 1 year: 2015 end-page: 49 ident: CR1 article-title: Subgroup discovery publication-title: WIREs Data Min Knowl Discov doi: 10.1002/widm.1144 – volume: 30 start-page: 711 issue: 3 year: 2016 end-page: 762 ident: CR17 article-title: Fast exhaustive subgroup discovery with numerical target concepts publication-title: Data Min Knowl Discov doi: 10.1007/s10618-015-0436-8 – ident: CR31 – volume: 28 start-page: 1503 issue: 5–6 year: 2014 end-page: 1529 ident: CR12 article-title: A peek into the black box: exploring classifiers by randomization publication-title: Data Min Knowl Discov doi: 10.1007/s10618-014-0368-8 – ident: CR13 – ident: CR9 – ident: CR32 – ident: CR36 – ident: CR5 – ident: CR28 – ident: CR26 – volume: 54 start-page: 33 issue: 1–2 year: 1992 end-page: 70 ident: CR39 article-title: Reconstructive expert system explanation publication-title: Artif Intell doi: 10.1016/0004-3702(92)90087-E – volume: 16 start-page: 1424 issue: 11 year: 2004 end-page: 1440 ident: CR27 article-title: Mining sequential patterns by pattern-growth: the prefixspan approach publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2004.77 – ident: 897_CR6 – ident: 897_CR15 doi: 10.1007/3-540-61286-6_186 – ident: 897_CR26 – volume: 16 start-page: 1424 issue: 11 year: 2004 ident: 897_CR27 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2004.77 – ident: 897_CR30 doi: 10.1145/2939672.2939778 – ident: 897_CR4 – ident: 897_CR28 doi: 10.1109/CVPR.2019.01103 – volume: 28 start-page: 122 issue: 4 year: 2007 ident: 897_CR33 publication-title: AI Mag – volume-title: Explanation patterns: understanding mechanically and creatively year: 1986 ident: 897_CR34 – ident: 897_CR22 doi: 10.1109/DSAA.2019.00022 – ident: 897_CR18 doi: 10.1109/DSAA49011.2020.00067 – volume: 109 start-page: 853 issue: 4 year: 2020 ident: 897_CR8 publication-title: Mach Learn doi: 10.1007/s10994-019-05856-5 – volume: 35 start-page: 1087 issue: 3 year: 2021 ident: 897_CR19 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-021-00744-w – ident: 897_CR10 doi: 10.1145/335191.335372 – ident: 897_CR36 doi: 10.1145/3159652.3159656 – ident: 897_CR5 doi: 10.1109/ICDM.2014.10 – ident: 897_CR21 doi: 10.4324/9780203963784 – ident: 897_CR3 doi: 10.1007/11871637_6 – ident: 897_CR13 doi: 10.1109/ICDM.2018.00035 – ident: 897_CR9 doi: 10.1145/3106426.3109436 – ident: 897_CR38 doi: 10.1145/3097983.3098039 – volume: 42 start-page: 31 issue: 1–2 year: 2001 ident: 897_CR41 publication-title: Mach Learn doi: 10.1023/A:1007652502315 – ident: 897_CR29 doi: 10.1145/1111449.1111475 – ident: 897_CR2 doi: 10.1007/978-3-642-04125-9_7 – ident: 897_CR25 – ident: 897_CR37 doi: 10.1007/978-0-387-85820-3_15 – ident: 897_CR40 doi: 10.1007/3-540-63223-9_108 – volume: 24 start-page: 109 issue: 2 year: 2005 ident: 897_CR35 publication-title: Artif Intell Rev doi: 10.1007/s10462-005-4607-7 – volume: 5 start-page: 19:1 issue: 4 year: 2015 ident: 897_CR11 publication-title: ACM TiiS – ident: 897_CR23 doi: 10.1145/2766462.2767755 – ident: 897_CR32 doi: 10.1007/11536406_35 – volume: 5 start-page: 35 issue: 1 year: 2015 ident: 897_CR1 publication-title: WIREs Data Min Knowl Discov doi: 10.1002/widm.1144 – volume: 30 start-page: 711 issue: 3 year: 2016 ident: 897_CR17 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-015-0436-8 – ident: 897_CR16 doi: 10.1007/978-3-642-33486-3_18 – volume: 54 start-page: 33 issue: 1–2 year: 1992 ident: 897_CR39 publication-title: Artif Intell doi: 10.1016/0004-3702(92)90087-E – volume: 24 start-page: 179 issue: 2 year: 2005 ident: 897_CR24 publication-title: Artif Intell Rev doi: 10.1007/s10462-005-4612-x – volume: 30 start-page: 81 issue: 1/2 year: 1938 ident: 897_CR14 publication-title: Biometrika doi: 10.2307/2332226 – volume: 28 start-page: 1503 issue: 5–6 year: 2014 ident: 897_CR12 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-014-0368-8 – volume: 1 start-page: 54 issue: 1 year: 2017 ident: 897_CR7 publication-title: Data Sci Pattern Recognit – volume: 43 start-page: 3:1 issue: 1 year: 2010 ident: 897_CR20 publication-title: ACM Comput Surv doi: 10.1145/1824795.1824798 – ident: 897_CR31 doi: 10.1609/aaai.v32i1.11491 |
SSID | ssj0005230 |
Score | 2.4105937 |
Snippet | Explainable Artificial Intelligence (XAI) has received a lot of attention over the past decade, with the proposal of many methods explaining black box... |
SourceID | hal proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 833 |
SubjectTerms | Application Papers Artificial Intelligence Chemistry and Earth Sciences Computer Science Data Mining and Knowledge Discovery Explainable artificial intelligence Icebergs Information Retrieval Information Storage and Retrieval Neural networks Physics Recommender systems Statistics for Engineering Subgroups System effectiveness |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86EXzxYypWpwTxTQNtPtrmcYhziNvTBnsrSZviw76wm-h_76VNtykq-NqmLbnL5e6a-90PoRsqUy0UV8RXYUx4HmgwKUmJ5DqLIPHRQljscK8fdof8aSRGDhRW1NXu9ZFkuVNvgN3CICa2-hz8lowIbLw7wubusIqHtL1R2MEqbHDMiYgD30Flfn7HF3e0_WKLITcizW-Ho6XP6RyifRcs4nal3SO0ZaZNdFATMWBnl020W9ZxpsUxeuyVjNAFhlgUm_f5uCKAwIPZnPSxzX4nE-N4lArsSHpwsdQlugNbjK6t6fw4QcPOw-C-SxxXAkkholiQSEupRMByPzZxTnlmeGa7e1GfRRHYHDcxhwlnCpwTy21T-FTnkKtJpgIJ2mKnqDGdTc0ZwkyH1CiRZ0IKniqto1RowyIa5mHKlPBQUIssSV0jcctnMU7WLZCtmBMQc1KKOaEeul09M6_aaPw5-ho0sRpoO2B328-JveaDVgXM4S3wUKtWVOLsrkgozDWyP3G4h-5q5a1v__7J8_8Nv0B7lne-KkZrocbidWkuITpZ6KtyMX4CT8PX2Q priority: 102 providerName: Springer Nature |
Title | Methods for explaining Top-N recommendations through subgroup discovery |
URI | https://link.springer.com/article/10.1007/s10618-022-00897-2 https://www.proquest.com/docview/2779701504 https://hal.science/hal-03845678 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-t6wsvjA0QHVtlTbyBReKP2H5C3dQPMVZN0yqNp8hOHPGwtYV0CP57zomzDiT26jiJfOf7su_uB_COmcJJKyxNbKapqFKHImUYNcKVCgMfJ2WoHb6YZ7OF-Hwjb-KBWx3TKjud2CjqclWEM_KPTCmjQnguPq2_04AaFW5XI4RGD_qogjUGX_3T8fzy6lGSB2_rhLWgUqdJLJuJxXNZqmnIZkc7aBRlf5mm3reQGPnI6_znorSxP5MX8Dw6jmTUcnofdvzyAPY6UAYSZfQlTC8aTOiaoDdK_K_1bQsBQa5XazonIf69u_MRSakmEaaH1Peuqe8goUo3ZHX-fgWLyfj6bEYjWgIt0KfYUOWMsTLlVaK9rpgovShDfy-WcIW0E8JrgcssLZonXoW28IWrMFoz3KYG-cVfw-5ytfRvgHCXMW9lVUojRWGdU4V0niuWVVnBrRxA2hEqL2Ir8YBocZtvmyAH4uZI3Lwhbs4G8P7hnXXbSOPJ2SdI_4eJoQf2bPQlD2MJ8lLiGn6mAzjq2JNHyavz7T4ZwIeOZdvH___l4dNfewvPAtJ8m352BLubH_f-GP2RjRtCT0-mQ-iPpl_Px8O4BXF0wUZ_ABb03Lg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB615QAX3qgLBSwEJ7BI_IjtA0IVsN3S3T1tpd6MnTji0O5umy3QP8VvxJM43YJEb70mji3PjOcRz8wH8JqZ0ksnHM1coamocx-PlGHUCF-pGPh4KbF2eDItRofi65E82oDffS0MplX2OrFV1NWixH_k75lSRmF4Lj4uTymiRuHtag-h0YnFQbj4GUO25sP-58jfN4wNv8w-jWhCFaBltL0rqrwxTua8znTQNRNVEBX2wWIZV3ENIYIW2qjKRTXOa2yfXvo6RjWGu9zEffE47ybcEpwbPFF6uHclpYR3VclaUKnzLBXppFK9ItcUc-ej1TWKsr8M4eZ3TMO84uP-cy3bWrvhfbib3FSy28nVA9gI84dwr4eAIEkjPIK9SYtA3ZDo-5Lwa3ncAU6Q2WJJpwSj7ZOTkHCbGpJAgUhz7ttqEoI1wZhDevEYDm-Eik9ga76Yh20g3BcsOFlX0khROu9VKX3gihV1UXInB5D3hLJlalyO-BnHdt1yGYlrI3FtS1zLBvD28ptl17bj2tGvIv0vB2LH7dHu2OKzLPJSxj38yAew07PHpnPe2LVUDuBdz7L16_8v-fT62V7C7dFsMrbj_enBM7iDGPdd4tsObK3OzsPz6Amt_ItW_Ah8u2l5_wPG4hLI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61Wwlx4Y1YKGAhOIHVxI84PiBUaJctbVcVaqXeTJw44tDuLmQL9K_x65hJnG5BordeE8eWZ8bziGfmA3gpbOl1oQqeFFnOVZ16PFJWcKt8ZTDw8VpT7fD-JBsfqU_H-ngFfve1MJRW2evEVlFXs5L-kW8IY6yh8Fxt1DEt4mBr9G7-jROCFN209nAanYjshvOfGL41b3e2kNevhBhtH34Y84gwwEu0wwtuvLWFTmWd5CGvhaqCqqgnlkikwfWUCrnKrakKVOmyplbqpa8xwrGySC3uUeK8q7BmMCpKBrD2fnty8PlSgonsapRzxXWeJrFkJxbuZWnOKZMebbA1XPxlFle_UlLmJY_3n0va1vaN7sCt6LSyzU7K7sJKmN6D2z0gBIv64T583G_xqBuGnjALv-YnHfwEO5zN-YRR7H16GiKKU8MiRBBrznxbW8KoQpgySs8fwNG10PEhDKazaXgETPpMhELXlbZalYX3ptQ-SCOyOitloYeQ9oRyZWxjTmgaJ27ZgJmI65C4riWuE0N4ffHNvGviceXoF0j_i4HUf3u8uefoWYK81LiHH-kQ1nv2uHjqG7eU0SG86Vm2fP3_JR9fPdtzuIGy7vZ2JrtP4CYB3ndZcOswWHw_C0_RLVr4Z1H-GHy5bpH_A4YYGFo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methods+for+explaining+Top-N+recommendations+through+subgroup+discovery&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Iferroudjene%2C+Mouloud&rft.au=Lonjarret%2C+Corentin&rft.au=Robardet%2C+C%C3%A9line&rft.au=Plantevit%2C+Marc&rft.date=2023-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=37&rft.issue=2&rft.spage=833&rft.epage=872&rft_id=info:doi/10.1007%2Fs10618-022-00897-2&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon |