MAP kinase upregulation after hematopoietic differentiation: role of chemotaxis
Departments of 1 Physiology and Biophysics and 2 Medicine, Wright State University School of Medicine, Dayton 45435; and 3 Research Service, Dayton Veterans Affairs Medical Center, Dayton, Ohio 45428 Mitogen-activated protein kinase (MAPK) isoform p42 is known to be active in exponentially growin...
Saved in:
Published in | American Journal of Physiology: Cell Physiology Vol. 280; no. 1; pp. C183 - C191 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.01.2001
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Departments of 1 Physiology and Biophysics and
2 Medicine, Wright State University School of Medicine,
Dayton 45435; and 3 Research Service, Dayton Veterans
Affairs Medical Center, Dayton, Ohio 45428
Mitogen-activated protein kinase (MAPK) isoform p42
is known to be active in exponentially growing cells at several points of the cell cycle. A high basal activity was present in three cell
lines representative of immature myeloid cells tested: uHL-60, AML-14,
and MPD. However, DMSO-induced differentiation of HL-60 cells (dHL-60)
and subsequent expression of the neutrophilic phenotype occurred with a
concomitant reduction on the basal level of MAPK activity.
Simultaneously, extracellular stimuli like the cytokine granulocyte/macrophage colony-stimulating factor (GM-CSF) induced a
fast (<10 min) and robust response. In terms of MAPK activity, the
more mature the cell was, the higher the corresponding activity, in the
three differentiation series considered: AML-14 < 3D10; MPD < G-MPD; uHL-60 < dHL-60 < neutrophils. Interestingly,
peripheral blood neutrophils expressed the highest (16-fold) MAPK
activation level in response to GM-CSF. Finally, using the specific
MAPK inhibitor PD-98059, we demonstrated that MAPK activation
is needed for neutrophil chemotaxis toward interleukin-8 and its
priming by GM-CSF. Since neutrophils are terminally differentiated
cells, GM-CSF does not serve a purpose in proliferation, and it must trigger the recruitment of selective signal transduction pathways particular to that final stage that includes enhanced physiological functions such as chemotaxis.
mitogen-activated protein kinase; granulocyte/macrophage
colony-stimulating factor; neutrophils; cell differentiation; leukemic
cells |
---|---|
AbstractList | Mitogen-activated protein kinase (MAPK) isoform p42 is known to be active in exponentially growing cells at several points of the cell cycle. A high basal activity was present in three cell lines representative of immature myeloid cells tested: uHL-60, AML-14, and MPD. However, DMSO-induced differentiation of HL-60 cells (dHL-60) and subsequent expression of the neutrophilic phenotype occurred with a concomitant reduction on the basal level of MAPK activity. Simultaneously, extracellular stimuli like the cytokine granulocyte/macrophage colony-stimulating factor (GM-CSF) induced a fast (<10 min) and robust response. In terms of MAPK activity, the more mature the cell was, the higher the corresponding activity, in the three differentiation series considered: AML-14 < 3D10; MPD < G-MPD; uHL-60 < dHL-60 < neutrophils. Interestingly, peripheral blood neutrophils expressed the highest (16-fold) MAPK activation level in response to GM-CSF. Finally, using the specific MAPK inhibitor PD-98059, we demonstrated that MAPK activation is needed for neutrophil chemotaxis toward interleukin-8 and its priming by GM-CSF. Since neutrophils are terminally differentiated cells, GM-CSF does not serve a purpose in proliferation, and it must trigger the recruitment of selective signal transduction pathways particular to that final stage that includes enhanced physiological functions such as chemotaxis. Departments of 1 Physiology and Biophysics and 2 Medicine, Wright State University School of Medicine, Dayton 45435; and 3 Research Service, Dayton Veterans Affairs Medical Center, Dayton, Ohio 45428 Mitogen-activated protein kinase (MAPK) isoform p42 is known to be active in exponentially growing cells at several points of the cell cycle. A high basal activity was present in three cell lines representative of immature myeloid cells tested: uHL-60, AML-14, and MPD. However, DMSO-induced differentiation of HL-60 cells (dHL-60) and subsequent expression of the neutrophilic phenotype occurred with a concomitant reduction on the basal level of MAPK activity. Simultaneously, extracellular stimuli like the cytokine granulocyte/macrophage colony-stimulating factor (GM-CSF) induced a fast (<10 min) and robust response. In terms of MAPK activity, the more mature the cell was, the higher the corresponding activity, in the three differentiation series considered: AML-14 < 3D10; MPD < G-MPD; uHL-60 < dHL-60 < neutrophils. Interestingly, peripheral blood neutrophils expressed the highest (16-fold) MAPK activation level in response to GM-CSF. Finally, using the specific MAPK inhibitor PD-98059, we demonstrated that MAPK activation is needed for neutrophil chemotaxis toward interleukin-8 and its priming by GM-CSF. Since neutrophils are terminally differentiated cells, GM-CSF does not serve a purpose in proliferation, and it must trigger the recruitment of selective signal transduction pathways particular to that final stage that includes enhanced physiological functions such as chemotaxis. mitogen-activated protein kinase; granulocyte/macrophage colony-stimulating factor; neutrophils; cell differentiation; leukemic cells |
Author | Lehman, Jason A Baumann, Michael A Gomez-Cambronero, Julian Paul, Cassandra C |
Author_xml | – sequence: 1 fullname: Lehman, Jason A – sequence: 2 fullname: Paul, Cassandra C – sequence: 3 fullname: Baumann, Michael A – sequence: 4 fullname: Gomez-Cambronero, Julian |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/11121390$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kMlOwzAURS0EgjL8AmTFLsVDJrNDFZMEKouythznuTWkcbAdQf8elxa6YmXLPve9q3OM9jvbAUIXBI8JyemVfOsVtO2YYkzGtIqvY0UqtodG8ZemJC_YPhphVrC0IBk7Qsfev2GMM1rwQ3RECKGEcTxC0-ebl-TddNJDMvQO5kMrg7FdInUAlyxgKYPtrYFgVNIYrcFBF8wPc50420JidaIiZ4P8Mv4UHWjZejjbnifo9e52NnlIn6b3j5Obp1QxXoa0rEuqdIYbVWpdY9wAVZlsoJLQ8HgrWMN5iXOd5bFxLTkleaYoY5XOdF1zdoIuN3N7Zz8G8EEsjV8rkR3YwYuYzStGswiWG1A5670DLXpnltKtBMFi7VJsXYq1SxFdCiIm0WVMnm9XDPUSml1uKy8CfAMszHzxaRyIfrHyxrZ2vhJ3Q9vO4Cv8jt8NFn2jYzb9P_vXaFfmG9aYmoM |
CitedBy_id | crossref_primary_10_1186_s13054_015_0782_3 crossref_primary_10_1189_jlb_0208125 crossref_primary_10_1203_00006450_200111000_00012 crossref_primary_10_1074_jbc_M406892200 crossref_primary_10_1155_2009_790174 crossref_primary_10_1016_j_leukres_2003_11_012 crossref_primary_10_1016_j_cellsig_2004_08_002 crossref_primary_10_1016_j_peptides_2003_07_011 crossref_primary_10_1016_S0006_291X_02_00238_3 crossref_primary_10_3109_10428194_2011_625578 crossref_primary_10_1096_fj_09_130542 crossref_primary_10_1074_jbc_M300376200 crossref_primary_10_1074_jbc_M414066200 crossref_primary_10_1007_s00011_012_0478_y crossref_primary_10_4049_jimmunol_171_12_6846 crossref_primary_10_1080_jmf_11_4_254_257 crossref_primary_10_1016_S0014_5793_03_00828_7 crossref_primary_10_1074_jbc_M109_070524 crossref_primary_10_1016_S1357_2725_03_00144_4 crossref_primary_10_1189_jlb_0504306 crossref_primary_10_1016_j_febslet_2010_11_031 crossref_primary_10_1182_blood_2006_11_060632 crossref_primary_10_1039_C4TX00092G crossref_primary_10_1182_blood_2006_02_005959 crossref_primary_10_1074_jbc_M110_111542 crossref_primary_10_1189_jlb_0710424 |
Cites_doi | 10.1073/pnas.89.16.7551 10.1073/pnas.85.8.2763 10.1126/science.6390681 10.4049/jimmunol.160.4.1982 10.1126/science.286.5443.1362 10.1074/jbc.273.2.1058 10.1016/S0021-9258(20)88256-8 10.1083/jcb.82.2.315 10.1182/blood.V84.4.1064.1064 10.1210/endo.140.9.6980 10.1182/blood.V79.12.3350.3350 10.1042/bj3180247 10.1083/jcb.95.3.720 10.1126/science.282.5392.1312 10.1016/0304-4165(93)90136-V 10.1152/ajpgi.1999.277.6.G1165 10.1002/j.1460-2075.1993.tb05929.x 10.1016/0022-1759(74)90109-4 10.1182/blood.V86.10.3737.bloodjournal86103737 10.1016/0003-2697(89)90181-4 10.1073/pnas.83.16.5968 10.1016/S0021-9258(18)45415-4 10.1016/S0014-5793(98)01685-8 10.1182/blood.V73.1.131.131 10.1074/jbc.271.22.13088 10.1182/blood.V70.5.1233.1233 10.1046/j.1365-2141.1998.00668.x 10.1016/S0024-3205(96)00414-6 10.1016/S0021-9258(17)42478-1 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1152/ajpcell.2001.280.1.c183 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1522-1563 |
EndPage | C191 |
ExternalDocumentID | 10_1152_ajpcell_2001_280_1_C183 11121390 ajpcell_280_1_C183 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, U.S. Gov't, P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: HL-056653 |
GroupedDBID | - 02 23M 2WC 39C 4.4 53G 5GY 5VS 85S ABFLS ABPTK ACGFS ACPRK ADACO ADBBV AENEX AIZTS ALMA_UNASSIGNED_HOLDINGS BAWUL BKOMP C1A DIK DL E3Z EBS EJD F5P GX1 H13 KQ8 O0- OK1 P2P PQEST PQQKQ RAP RHF RHI RPL WH7 WOQ --- 6J9 8M5 AAFWJ ABJNI AFFNX BKKCC BTFSW CGR CUY CVF ECM EIF EMOBN ITBOX NPM RPRKH TR2 W8F XSW YSK ~02 AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c397t-7b72cf40dc7ffb00de2c4ade8aed9c4a63d99705f45269ba92154c2338f4fbb93 |
ISSN | 0363-6143 |
IngestDate | Wed Dec 04 14:24:41 EST 2024 Fri Dec 06 05:31:16 EST 2024 Sat Sep 28 08:46:52 EDT 2024 Mon May 06 12:26:50 EDT 2019 Tue Jan 05 17:57:10 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c397t-7b72cf40dc7ffb00de2c4ade8aed9c4a63d99705f45269ba92154c2338f4fbb93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 11121390 |
PQID | 70558324 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_70558324 pubmed_primary_11121390 crossref_primary_10_1152_ajpcell_2001_280_1_C183 highwire_physiology_ajpcell_280_1_C183 |
PublicationCentury | 2000 |
PublicationDate | 20010101 2001-Jan 2001-01-01 |
PublicationDateYYYYMMDD | 2001-01-01 |
PublicationDate_xml | – month: 01 year: 2001 text: 20010101 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | American Journal of Physiology: Cell Physiology |
PublicationTitleAlternate | Am J Physiol Cell Physiol |
PublicationYear | 2001 |
References | B23 Roberts PJ (B26) 1994; 84 B25 Raines MA (B24) 1992; 79 Okuda K (B20) 1994; 22 B28 B29 Yu G (B30) 1987; 262 Rosmarin AG (B27) 1989; 73 B31 B10 B11 B12 B13 B15 B16 Paul CC (B22) 1995; 86 B17 B18 B19 Erikson E (B8) 1986; 261 B1 B2 B3 B5 Hickstein DD (B14) 1989; 264 B7 B9 Collins SJ. (B4) 1987; 70 Zu YL (B32) 1998; 160 |
References_xml | – ident: B11 doi: 10.1073/pnas.89.16.7551 – ident: B2 doi: 10.1073/pnas.85.8.2763 – ident: B9 doi: 10.1126/science.6390681 – volume: 160 start-page: 1982 year: 1998 ident: B32 publication-title: J Immunol doi: 10.4049/jimmunol.160.4.1982 contributor: fullname: Zu YL – ident: B3 doi: 10.1126/science.286.5443.1362 – ident: B1 doi: 10.1074/jbc.273.2.1058 – volume: 264 start-page: 21812 year: 1989 ident: B14 publication-title: J Biol Chem doi: 10.1016/S0021-9258(20)88256-8 contributor: fullname: Hickstein DD – ident: B19 doi: 10.1083/jcb.82.2.315 – volume: 84 start-page: 1064 year: 1994 ident: B26 publication-title: Blood doi: 10.1182/blood.V84.4.1064.1064 contributor: fullname: Roberts PJ – ident: B15 doi: 10.1210/endo.140.9.6980 – volume: 79 start-page: 3350 year: 1992 ident: B24 publication-title: Blood doi: 10.1182/blood.V79.12.3350.3350 contributor: fullname: Raines MA – ident: B18 doi: 10.1042/bj3180247 – ident: B25 doi: 10.1083/jcb.95.3.720 – ident: B13 doi: 10.1126/science.282.5392.1312 – ident: B31 doi: 10.1016/0304-4165(93)90136-V – ident: B28 doi: 10.1152/ajpgi.1999.277.6.G1165 – ident: B5 doi: 10.1002/j.1460-2075.1993.tb05929.x – ident: B7 doi: 10.1016/0022-1759(74)90109-4 – volume: 86 start-page: 3737 year: 1995 ident: B22 publication-title: Blood doi: 10.1182/blood.V86.10.3737.bloodjournal86103737 contributor: fullname: Paul CC – ident: B17 doi: 10.1016/0003-2697(89)90181-4 – ident: B23 doi: 10.1073/pnas.83.16.5968 – volume: 262 start-page: 17543 year: 1987 ident: B30 publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)45415-4 contributor: fullname: Yu G – ident: B10 doi: 10.1016/S0014-5793(98)01685-8 – volume: 22 start-page: 1111 year: 1994 ident: B20 publication-title: Exp Hematol contributor: fullname: Okuda K – volume: 73 start-page: 131 year: 1989 ident: B27 publication-title: Blood doi: 10.1182/blood.V73.1.131.131 contributor: fullname: Rosmarin AG – ident: B16 doi: 10.1074/jbc.271.22.13088 – volume: 70 start-page: 1233 year: 1987 ident: B4 publication-title: Blood doi: 10.1182/blood.V70.5.1233.1233 contributor: fullname: Collins SJ. – ident: B29 doi: 10.1046/j.1365-2141.1998.00668.x – ident: B12 doi: 10.1016/S0024-3205(96)00414-6 – volume: 261 start-page: 350 year: 1986 ident: B8 publication-title: J Biol Chem doi: 10.1016/S0021-9258(17)42478-1 contributor: fullname: Erikson E |
SSID | ssj0004269 |
Score | 1.7909904 |
Snippet | Departments of 1 Physiology and Biophysics and
2 Medicine, Wright State University School of Medicine,
Dayton 45435; and 3 Research Service, Dayton Veterans... Mitogen-activated protein kinase (MAPK) isoform p42 is known to be active in exponentially growing cells at several points of the cell cycle. A high basal... |
SourceID | proquest crossref pubmed highwire |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | C183 |
SubjectTerms | Cell Differentiation - drug effects Cell Differentiation - physiology Cell Line - cytology Cell Line - drug effects Cell Line - metabolism Chemotaxis - drug effects Chemotaxis - physiology Dimethyl Sulfoxide - pharmacology Granulocyte-Macrophage Colony-Stimulating Factor - metabolism Granulocyte-Macrophage Colony-Stimulating Factor - pharmacology Hematopoiesis - drug effects Hematopoiesis - physiology HL-60 Cells - cytology HL-60 Cells - drug effects HL-60 Cells - metabolism Humans Mitogen-Activated Protein Kinase 1 - drug effects Mitogen-Activated Protein Kinase 1 - metabolism Mitogen-Activated Protein Kinases - drug effects Mitogen-Activated Protein Kinases - metabolism Myeloid Progenitor Cells - cytology Myeloid Progenitor Cells - drug effects Myeloid Progenitor Cells - metabolism Neutrophils - cytology Neutrophils - drug effects Neutrophils - metabolism Phosphorylation - drug effects Ribosomal Protein S6 Kinases - drug effects Ribosomal Protein S6 Kinases - metabolism Tyrosine - metabolism Up-Regulation - drug effects Up-Regulation - physiology |
Title | MAP kinase upregulation after hematopoietic differentiation: role of chemotaxis |
URI | http://ajpcell.physiology.org/cgi/content/abstract/280/1/C183 https://www.ncbi.nlm.nih.gov/pubmed/11121390 https://search.proquest.com/docview/70558324 |
Volume | 280 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZx2AvY2v34e5LD6MvxZ4t27G9tyxsKx3dB6TQNyHLMs1GbJM40Pav25-2k2VJTtpCtxdjFE5R7n453Un3gdC7koiY8ILLG0ZwUMJcuCmPStdPyzxnQeGTXOYOn3wbH51Gx2fx2Wj0ZxC1tG5zj1_dmFfyP1KFMZCrzJL9B8maSWEA3kG-8AQJw_NOMj6Z_Dj8Pa9gIzpcN0vVVd42_u7KsdZNPZd5iqYTSjs38Rw6shDkBgJjF_PV0FQ1dzkDm7WLF1X5LUA_7c79zJCN7Tnvj1WPmexvaDAioxBVkMlqxapiyewR7UcmLxOGgfyW7Eu9EFdul1wmqyrVOq27x7U-sggGRxY6VSsEn1XVZ_JEr3nBKwZnMhyqZqK6PG1gUCnaaaD631zfAWJZUZb9auTFh_T_Aw9m8QKPb1EAn5pFBwxQ9wQMYd9uiToMYGunNPGL_fQUZqYBlWu5h-7LUoyye8PXn4N69aRrqmh-cB9hCIt8f8sSZRXbfj2bppIuX327K9SZRLPH6FGPCzxRwHyCRqLaRXuTClC3uMQH2EJjFz1QTU8v99B3QC1WqMVD1OIOtXgDtXgLtR-wxCyuS2wx-xSdfv40mx65fVsPl4Px27pJnhBeRn7Bk7IErV8IwiNWiJSJIoO3cVhkWeLHZRQD93KWgVUacRKGaRmBAsnCZ2inAry9QBj2Gx6GLGOy3VY8TlORwqqCNEnGMWMkdpCvOUgbVb2Fdl5vTKiRIfB_IEgHEc1p2hg2UXkgNAMQaDJLQJuidNDBTUTXYeKgt1p4FPS4_JRVol6vqKxqBbtr5KDnSqZ2wT0c9u_6JS_RQ_uve4V22uVavAbTuc3fdOj8C0OLxqQ |
link.rule.ids | 314,780,784,27924,27925 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MAP+kinase+upregulation+after+hematopoietic+differentiation%3A+role+of+chemotaxis&rft.jtitle=American+Journal+of+Physiology%3A+Cell+Physiology&rft.au=Lehman%2C+Jason+A&rft.au=Paul%2C+Cassandra+C&rft.au=Baumann%2C+Michael+A&rft.au=Gomez-Cambronero%2C+Julian&rft.date=2001-01-01&rft.issn=0363-6143&rft.eissn=1522-1563&rft.volume=280&rft.issue=1&rft.spage=C183&rft_id=info:doi/10.1152%2Fajpcell.2001.280.1.c183&rft_id=info%3Apmid%2F11121390&rft.externalDBID=n%2Fa&rft.externalDocID=ajpcell_280_1_C183 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-6143&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-6143&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-6143&client=summon |