Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach
Aquatic bacteria like Bacillus subtilis are heavier than water yet they are able to swim up an oxygen gradient and concentrate in a layer below the water surface, which will undergo Rayleigh–Taylor-type instabilities for sufficiently high concentrations. In the literature, a simplified chemotaxis–fl...
Saved in:
Published in | Journal of fluid mechanics Vol. 694; pp. 155 - 190 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
10.03.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-1120 1469-7645 |
DOI | 10.1017/jfm.2011.534 |
Cover
Loading…
Abstract | Aquatic bacteria like Bacillus subtilis are heavier than water yet they are able to swim up an oxygen gradient and concentrate in a layer below the water surface, which will undergo Rayleigh–Taylor-type instabilities for sufficiently high concentrations. In the literature, a simplified chemotaxis–fluid system has been proposed as a model for bio-convection in modestly diluted cell suspensions. It couples a convective chemotaxis system for the oxygen-consuming and oxytactic bacteria with the incompressible Navier–Stokes equations subject to a gravitational force proportional to the relative surplus of the cell density compared to the water density. In this paper, we derive a high-resolution vorticity-based hybrid finite-volume finite-difference scheme, which allows us to investigate the nonlinear dynamics of a two-dimensional chemotaxis–fluid system with boundary conditions matching an experiment of Hillesdon et al. (Bull. Math. Biol., vol. 57, 1995, pp. 299–344). We present selected numerical examples, which illustrate (i) the formation of sinking plumes, (ii) the possible merging of neighbouring plumes and (iii) the convergence towards numerically stable stationary plumes. The examples with stable stationary plumes show how the surface-directed oxytaxis continuously feeds cells into a high-concentration layer near the surface, from where the fluid flow (recurring upwards in the space between the plumes) transports the cells into the plumes, where then gravity makes the cells sink and constitutes the driving force in maintaining the fluid convection and, thus, in shaping the plumes into (numerically) stable stationary states. Our numerical method is fully capable of solving the coupled chemotaxis–fluid system and enabling a full exploration of its dynamics, which cannot be done in a linearised framework. |
---|---|
AbstractList | Abstract Aquatic bacteria like Bacillus subtilis are heavier than water yet they are able to swim up an oxygen gradient and concentrate in a layer below the water surface, which will undergo Rayleigh-Taylor-type instabilities for sufficiently high concentrations. In the literature, a simplified chemotaxis-fluid system has been proposed as a model for bio-convection in modestly diluted cell suspensions. It couples a convective chemotaxis system for the oxygen-consuming and oxytactic bacteria with the incompressible Navier-Stokes equations subject to a gravitational force proportional to the relative surplus of the cell density compared to the water density. In this paper, we derive a high-resolution vorticity-based hybrid finite-volume finite-difference scheme, which allows us to investigate the nonlinear dynamics of a two-dimensional chemotaxis-fluid system with boundary conditions matching an experiment of Hillesdon et al. (Bull. Math. Biol., vol. 57, 1995, pp. 299-344). We present selected numerical examples, which illustrate (i) the formation of sinking plumes, (ii) the possible merging of neighbouring plumes and (iii) the convergence towards numerically stable stationary plumes. The examples with stable stationary plumes show how the surface-directed oxytaxis continuously feeds cells into a high-concentration layer near the surface, from where the fluid flow (recurring upwards in the space between the plumes) transports the cells into the plumes, where then gravity makes the cells sink and constitutes the driving force in maintaining the fluid convection and, thus, in shaping the plumes into (numerically) stable stationary states. Our numerical method is fully capable of solving the coupled chemotaxis-fluid system and enabling a full exploration of its dynamics, which cannot be done in a linearised framework. [PUBLICATION ABSTRACT] Aquatic bacteria like Bacillus subtilis are heavier than water yet they are able to swim up an oxygen gradient and concentrate in a layer below the water surface, which will undergo Rayleigh–Taylor-type instabilities for sufficiently high concentrations. In the literature, a simplified chemotaxis–fluid system has been proposed as a model for bio-convection in modestly diluted cell suspensions. It couples a convective chemotaxis system for the oxygen-consuming and oxytactic bacteria with the incompressible Navier–Stokes equations subject to a gravitational force proportional to the relative surplus of the cell density compared to the water density. In this paper, we derive a high-resolution vorticity-based hybrid finite-volume finite-difference scheme, which allows us to investigate the nonlinear dynamics of a two-dimensional chemotaxis–fluid system with boundary conditions matching an experiment of Hillesdon et al. ( Bull. Math. Biol. , vol. 57, 1995, pp. 299–344). We present selected numerical examples, which illustrate (i) the formation of sinking plumes, (ii) the possible merging of neighbouring plumes and (iii) the convergence towards numerically stable stationary plumes. The examples with stable stationary plumes show how the surface-directed oxytaxis continuously feeds cells into a high-concentration layer near the surface, from where the fluid flow (recurring upwards in the space between the plumes) transports the cells into the plumes, where then gravity makes the cells sink and constitutes the driving force in maintaining the fluid convection and, thus, in shaping the plumes into (numerically) stable stationary states. Our numerical method is fully capable of solving the coupled chemotaxis–fluid system and enabling a full exploration of its dynamics, which cannot be done in a linearised framework. Aquatic bacteria like Bacillus subtilis are heavier than water yet they are able to swim up an oxygen gradient and concentrate in a layer below the water surface, which will undergo Rayleigh-Taylor-type instabilities for sufficiently high concentrations. In the literature, a simplified chemotaxis-fluid system has been proposed as a model for bio-convection in modestly diluted cell suspensions. It couples a convective chemotaxis system for the oxygen-consuming and oxytactic bacteria with the incompressible Navier-Stokes equations subject to a gravitational force proportional to the relative surplus of the cell density compared to the water density. In this paper, we derive a high-resolution vorticity-based hybrid finite-volume finite-difference scheme, which allows us to investigate the nonlinear dynamics of a two-dimensional chemotaxis-fluid system with boundary conditions matching an experiment of Hillesdon et al. (Bull. Math. Biol., vol. 57, 1995, pp. 299-344). We present selected numerical examples, which illustrate (i) the formation of sinking plumes, (ii) the possible merging of neighbouring plumes and (iii) the convergence towards numerically stable stationary plumes. The examples with stable stationary plumes show how the surface-directed oxytaxis continuously feeds cells into a high-concentration layer near the surface, from where the fluid flow (recurring upwards in the space between the plumes) transports the cells into the plumes, where then gravity makes the cells sink and constitutes the driving force in maintaining the fluid convection and, thus, in shaping the plumes into (numerically) stable stationary states. Our numerical method is fully capable of solving the coupled chemotaxis-fluid system and enabling a full exploration of its dynamics, which cannot be done in a linearised framework. Aquatic bacteria like Bacillus subtilis are heavier than water yet they are able to swim up an oxygen gradient and concentrate in a layer below the water surface, which will undergo Rayleigh–Taylor-type instabilities for sufficiently high concentrations. In the literature, a simplified chemotaxis–fluid system has been proposed as a model for bio-convection in modestly diluted cell suspensions. It couples a convective chemotaxis system for the oxygen-consuming and oxytactic bacteria with the incompressible Navier–Stokes equations subject to a gravitational force proportional to the relative surplus of the cell density compared to the water density. In this paper, we derive a high-resolution vorticity-based hybrid finite-volume finite-difference scheme, which allows us to investigate the nonlinear dynamics of a two-dimensional chemotaxis–fluid system with boundary conditions matching an experiment of Hillesdon et al. (Bull. Math. Biol., vol. 57, 1995, pp. 299–344). We present selected numerical examples, which illustrate (i) the formation of sinking plumes, (ii) the possible merging of neighbouring plumes and (iii) the convergence towards numerically stable stationary plumes. The examples with stable stationary plumes show how the surface-directed oxytaxis continuously feeds cells into a high-concentration layer near the surface, from where the fluid flow (recurring upwards in the space between the plumes) transports the cells into the plumes, where then gravity makes the cells sink and constitutes the driving force in maintaining the fluid convection and, thus, in shaping the plumes into (numerically) stable stationary states. Our numerical method is fully capable of solving the coupled chemotaxis–fluid system and enabling a full exploration of its dynamics, which cannot be done in a linearised framework. |
Author | Chertock, A. Markowich, P. A. Fellner, K. Lorz, A. Kurganov, A. |
Author_xml | – sequence: 1 givenname: A. surname: Chertock fullname: Chertock, A. organization: 1Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA – sequence: 2 givenname: K. surname: Fellner fullname: Fellner, K. email: Klemens.Fellner@uni-graz.at organization: 2Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK – sequence: 3 givenname: A. surname: Kurganov fullname: Kurganov, A. organization: 3Mathematics Department, Tulane University, New Orleans, LA 70118, USA – sequence: 4 givenname: A. surname: Lorz fullname: Lorz, A. organization: 2Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK – sequence: 5 givenname: P. A. surname: Markowich fullname: Markowich, P. A. organization: 2Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25702019$$DView record in Pascal Francis |
BookMark | eNqFkcGKFDEQhoOs4OzqzQcIguBhe0wlmc7EmyzqCgse1HNTnU5mMqaTNumG9e3NMIPCsuIpdfj-SlV9l-QipmgJeQlsDQzU24Mb15wBrDdCPiErkK1uVCs3F2TFGOcNAGfPyGUpB8ZAMK1WZPrq4w8fd9d0tHlXC4pxoGXG2aeI-RedwjLaQn2kSE1apmAHavZ2TDPe-9K4sPiBjmmw4V0l9n63b7ItKSzHBjTWcPYGA8VpygnN_jl56jAU--L8XpHvHz98u7lt7r58-nzz_q4xQqu5aXUrOGLfq16ZVvcbtxWSITi0iqFjvN0opoUBKQAQpUUntBVGWZADY05ckTenvvXbn4stczf6YmwIGG1aSget5Bw0k_L_qIBNW2-3FRV99QA9pCXHukinOddKSthW6PUZwlJXdxmj8aWbsh_rRTteJ6-WdOWuT5zJqZRs3R8EWHcU2lWh3VFoV4VWnD_AjT95mjP68K_Q-hzCsc9-2Nm_Ez8a-A19L7US |
CODEN | JFLSA7 |
CitedBy_id | crossref_primary_10_1063_5_0049141 crossref_primary_10_1016_j_jmaa_2024_128545 crossref_primary_10_1142_S0218202518500239 crossref_primary_10_1007_s00033_021_01565_z crossref_primary_10_4134_JKMS_2014_51_3_635 crossref_primary_10_1016_j_jde_2016_08_045 crossref_primary_10_1016_j_anihpc_2015_05_002 crossref_primary_10_1017_prm_2023_19 crossref_primary_10_1080_03605302_2013_852224 crossref_primary_10_1088_1361_6544_aa92ec crossref_primary_10_1016_j_jtbi_2018_06_019 crossref_primary_10_1007_s10915_023_02118_4 crossref_primary_10_1007_s00220_021_04292_8 crossref_primary_10_1088_1361_6544_ab8f7c crossref_primary_10_1007_s00033_022_01924_4 crossref_primary_10_1016_j_jde_2024_01_006 crossref_primary_10_1016_j_nonrwa_2024_104129 crossref_primary_10_1140_epjp_s13360_022_02496_y crossref_primary_10_1142_S0218202524500167 crossref_primary_10_3390_e25081224 crossref_primary_10_1016_j_jde_2020_10_024 crossref_primary_10_1016_j_jde_2023_06_041 crossref_primary_10_1088_1361_6544_aa9d5f crossref_primary_10_1039_C7SM00766C crossref_primary_10_1016_j_camwa_2014_04_010 crossref_primary_10_1016_j_jde_2019_02_007 crossref_primary_10_1142_S0218202513400071 crossref_primary_10_1007_s00021_018_0392_3 crossref_primary_10_1016_j_jcp_2022_111649 crossref_primary_10_1137_130911536 crossref_primary_10_1098_rsif_2021_0582 crossref_primary_10_1007_s00021_013_0162_1 crossref_primary_10_1142_S0219199724500226 crossref_primary_10_1016_j_nonrwa_2015_07_008 crossref_primary_10_1142_S0218202521500135 crossref_primary_10_1063_5_0005157 crossref_primary_10_1142_S021820252350063X crossref_primary_10_1002_zamm_202200070 crossref_primary_10_1007_s00526_022_02201_y crossref_primary_10_1016_j_jmaa_2018_05_041 crossref_primary_10_1016_j_jde_2020_06_041 crossref_primary_10_1140_epjp_s13360_021_01692_6 crossref_primary_10_1051_m2an_2020039 crossref_primary_10_12677_pm_2024_144129 crossref_primary_10_1137_130936920 crossref_primary_10_1016_j_compfluid_2015_10_018 crossref_primary_10_1063_1_4947107 crossref_primary_10_1016_j_ijheatmasstransfer_2019_118677 crossref_primary_10_1007_s13398_016_0374_3 crossref_primary_10_1142_S0218202523500094 crossref_primary_10_1016_j_jde_2022_06_010 crossref_primary_10_1016_j_camwa_2021_01_004 crossref_primary_10_1017_jfm_2022_898 crossref_primary_10_3934_dcds_2015_35_3463 crossref_primary_10_1142_S0218202520400096 crossref_primary_10_1142_S0218202522500166 crossref_primary_10_1016_j_nonrwa_2018_07_028 crossref_primary_10_1016_j_apnum_2018_01_017 crossref_primary_10_1016_j_aml_2024_109361 crossref_primary_10_1080_00036811_2020_1766027 crossref_primary_10_1142_S0218202516400078 crossref_primary_10_4134_JKMS_2016_53_1_127 crossref_primary_10_1016_j_cma_2021_113909 crossref_primary_10_3934_dcds_2013_33_2271 crossref_primary_10_3934_dcds_2022062 crossref_primary_10_1017_jfm_2021_508 crossref_primary_10_1063_1_5038613 crossref_primary_10_1007_s00033_017_0882_9 crossref_primary_10_1016_j_amc_2021_126105 crossref_primary_10_1007_s00033_022_01778_w crossref_primary_10_1007_s00033_024_02400_x crossref_primary_10_1016_j_nonrwa_2018_01_006 crossref_primary_10_1142_S021820251550044X crossref_primary_10_3934_era_2020066 crossref_primary_10_1007_s00033_024_02324_6 crossref_primary_10_1016_j_camwa_2023_06_006 crossref_primary_10_1016_j_euromechflu_2015_03_002 crossref_primary_10_1080_00036811_2020_1767287 crossref_primary_10_1137_16M1083232 crossref_primary_10_1016_j_jfa_2018_12_009 crossref_primary_10_1088_1361_6544_acc3ee crossref_primary_10_1142_S0218202524500374 crossref_primary_10_1146_annurev_fluid_010518_040558 crossref_primary_10_1088_1742_6596_1592_1_012059 crossref_primary_10_1016_j_compfluid_2014_07_023 crossref_primary_10_1137_21M142085X crossref_primary_10_1016_j_jcp_2023_112034 crossref_primary_10_1142_S021820251640008X crossref_primary_10_1016_j_nonrwa_2016_11_006 crossref_primary_10_1142_S021820252250004X crossref_primary_10_1142_S0218202519500398 crossref_primary_10_1137_24M1628426 crossref_primary_10_1142_S0219530521500275 crossref_primary_10_1016_j_compfluid_2016_05_009 crossref_primary_10_1002_zamm_201500040 crossref_primary_10_1016_j_jde_2018_01_007 crossref_primary_10_1016_j_cma_2019_07_030 crossref_primary_10_1016_j_camwa_2023_09_012 |
Cites_doi | 10.3934/krm.2012.5.51 10.1017/S0022112080001917 10.1080/03605302.2010.497199 10.1137/S1064827501392880 10.1007/BF02460620 10.1142/S0218202510004921 10.1137/040612841 10.1006/jtbi.2002.3077 10.1017/S0022112001007339 10.1073/pnas.0406724102 10.1017/S0022112001005377 10.1016/0021-9991(90)90260-8 10.1007/s00211-008-0188-0 10.1007/3-540-13319-4_20 10.1017/S0022112099006473 10.1137/080739574 10.1017/S0022112098001979 10.1017/S0022112001005547 10.1006/jcph.1996.0066 10.1098/rspa.1933.0146 10.1142/S0218202510004507 10.1137/0721062 10.1017/CBO9780511791253 10.1016/j.fluiddyn.2005.03.002 10.1007/BF02512373 10.1007/978-3-0348-7004-7_8 10.1529/biophysj.107.118257 10.1016/0167-2789(84)90510-4 10.1103/PhysRevLett.99.058102 10.1007/s10955-009-9717-1 10.3934/dcds.2010.28.1437 10.1017/S0022112096007902 10.1137/S003614450036757X 10.1007/s00211-006-0024-3 10.1103/PhysRevLett.93.098103 |
ContentType | Journal Article |
Copyright | Copyright © Cambridge University Press
2012 2015 INIST-CNRS Copyright © Cambridge University Press 2012 |
Copyright_xml | – notice: Copyright © Cambridge University Press 2012 – notice: 2015 INIST-CNRS – notice: Copyright © Cambridge University Press 2012 |
DBID | AAYXX CITATION IQODW 3V. 7TB 7U5 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W 7TG KL. |
DOI | 10.1017/jfm.2011.534 |
DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student ProQuest Research Library Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Research Library Prep CrossRef Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
EISSN | 1469-7645 |
EndPage | 190 |
ExternalDocumentID | 2593223921 25702019 10_1017_jfm_2011_534 |
Genre | Feature |
GroupedDBID | -2P -DZ -E. -~6 -~X .DC .FH 09C 09E 0E1 0R~ 29K 3V. 4.4 5GY 5VS 74X 74Y 7~V 88I 8FE 8FG 8FH 8G5 8R4 8R5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AARAB AASVR AAUIS AAUKB ABBXD ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTCQ ABUWG ABZCX ACBEA ACBMC ACCHT ACGFO ACGFS ACGOD ACIMK ACIWK ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADGEJ ADKIL ADOCW ADVJH AEBAK AEHGV AEMTW AENEX AENGE AEYYC AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFRAH AFUTZ AGABE AGBYD AGJUD AGLWM AGOOT AHQXX AHRGI AIDUJ AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV AZQEC BBLKV BENPR BGHMG BGLVJ BHPHI BKSAR BLZWO BMAJL BPHCQ C0O CBIIA CCPQU CCQAD CFAFE CHEAL CJCSC COF CS3 D-I DC4 DOHLZ DU5 DWQXO E.L EBS EJD F5P GNUQQ GUQSH HCIFZ HG- HST HZ~ I.6 I.7 IH6 IOEEP IS6 I~P J36 J38 J3A JHPGK JQKCU KCGVB KFECR L6V L98 LHUNA LK5 LW7 M-V M2O M2P M7R M7S NIKVX O9- OYBOY P2P P62 PCBAR PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RIG RNS ROL RR0 S0W S6- S6U SAAAG SC5 T9M TAE TN5 UT1 WFFJZ WH7 WQ3 WXU WXY WYP ZE2 ZMEZD ZYDXJ ~02 AATMM AAYXX ABVKB ABXAU ABXHF ACDLN AEUYN AFZFC AKMAY BQFHP CITATION PHGZM PHGZT -1F -2V -~N 6TJ 6~7 8WZ 9M5 A6W AANRG ABDMP ABDPE ABFSI ABKAW ABVFV ABVZP ABZUI ACETC ACKIV ACRPL ADMLS ADNMO ADOVH AEBPU AEMFK AENCP AGQPQ AI. ALEEW BESQT CAG CCUQV CDIZJ H~9 I.9 IQODW KAFGG NMFBF PQGLB VH1 VOH ZJOSE ZY4 ~V1 7TB 7U5 7UA 7XB 8FD 8FK C1K F1W FR3 H8D H96 KR7 L.G L7M MBDVC PKEHL PQEST PQUKI PRINS PUEGO Q9U 7TG KL. |
ID | FETCH-LOGICAL-c397t-69632aabb7b7c69b5f8340a1fae70af02657093c14311aa4eaf39e3c7e14d00f3 |
IEDL.DBID | BENPR |
ISSN | 0022-1120 |
IngestDate | Tue Aug 05 10:11:31 EDT 2025 Fri Jul 11 03:34:06 EDT 2025 Sat Aug 23 14:07:48 EDT 2025 Mon Jul 21 09:14:58 EDT 2025 Tue Jul 01 01:45:02 EDT 2025 Thu Apr 24 22:59:53 EDT 2025 Wed Mar 13 05:46:49 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | computational methods bioconvection micro-organism dynamics Motility Bacillus subtilis Finite volume method Bacillaceae Chemotaxis Modeling Aquatic environment Bacillales Rayleigh Taylor instability Bacteria Numerical simulation Microorganism Finite difference method |
Language | English |
License | https://www.cambridge.org/core/terms CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c397t-69632aabb7b7c69b5f8340a1fae70af02657093c14311aa4eaf39e3c7e14d00f3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 922974418 |
PQPubID | 34769 |
PageCount | 36 |
ParticipantIDs | proquest_miscellaneous_1642219044 proquest_miscellaneous_1315611283 proquest_journals_922974418 pascalfrancis_primary_25702019 crossref_primary_10_1017_jfm_2011_534 crossref_citationtrail_10_1017_jfm_2011_534 cambridge_journals_10_1017_jfm_2011_534 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-03-10 |
PublicationDateYYYYMMDD | 2012-03-10 |
PublicationDate_xml | – month: 03 year: 2012 text: 2012-03-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Journal of fluid mechanics |
PublicationTitleAlternate | J. Fluid Mech |
PublicationYear | 2012 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | S0022112011005349_r30 Chandrasekhar (S0022112011005349_r4) 1981 S0022112011005349_r31 S0022112011005349_r32 S0022112011005349_r10 S0022112011005349_r33 S0022112011005349_r11 S0022112011005349_r16 S0022112011005349_r38 S0022112011005349_r39 Hernandez-Ortiz (S0022112011005349_r20) 2009; 21 S0022112011005349_r17 S0022112011005349_r18 S0022112011005349_r19 S0022112011005349_r12 S0022112011005349_r13 S0022112011005349_r35 S0022112011005349_r14 Higueras (S0022112011005349_r21) 2006; vol. 33 S0022112011005349_r36 S0022112011005349_r15 S0022112011005349_r37 Busse (S0022112011005349_r1) 1985; vol. 45 S0022112011005349_r22 S0022112011005349_r7 S0022112011005349_r8 S0022112011005349_r40 S0022112011005349_r27 Di Francesco (S0022112011005349_r9) 2010; 28 S0022112011005349_r28 S0022112011005349_r29 S0022112011005349_r23 S0022112011005349_r24 S0022112011005349_r25 S0022112011005349_r26 Pareschi (S0022112011005349_r34) 2005; 25 S0022112011005349_r3 S0022112011005349_r5 S0022112011005349_r6 S0022112011005349_r2 |
References_xml | – ident: S0022112011005349_r7 doi: 10.3934/krm.2012.5.51 – ident: S0022112011005349_r5 doi: 10.1017/S0022112080001917 – ident: S0022112011005349_r12 doi: 10.1080/03605302.2010.497199 – volume: 21 start-page: 204107 year: 2009 ident: S0022112011005349_r20 article-title: Dynamics of confined suspensions of swimming particles publication-title: J. Phys.: Condens. Matter – ident: S0022112011005349_r27 doi: 10.1137/S1064827501392880 – ident: S0022112011005349_r24 doi: 10.1007/BF02460620 – ident: S0022112011005349_r14 doi: 10.1142/S0218202510004921 – volume: vol. 33 start-page: 129 volume-title: Ninth International Conference Zaragoza-Pau on Applied Mathematics and Statistics year: 2006 ident: S0022112011005349_r21 – volume-title: Hydrodynamic and Hydromagnetic Stability year: 1981 ident: S0022112011005349_r4 – ident: S0022112011005349_r10 doi: 10.1137/040612841 – ident: S0022112011005349_r17 doi: 10.1006/jtbi.2002.3077 – ident: S0022112011005349_r25 doi: 10.1017/S0022112001007339 – ident: S0022112011005349_r39 doi: 10.1073/pnas.0406724102 – ident: S0022112011005349_r8 doi: 10.1017/S0022112001005377 – ident: S0022112011005349_r33 doi: 10.1016/0021-9991(90)90260-8 – ident: S0022112011005349_r6 doi: 10.1007/s00211-008-0188-0 – volume: vol. 45 start-page: 97 volume-title: Hydrodynamic Instabilities and the Transition to Turbulence year: 1985 ident: S0022112011005349_r1 doi: 10.1007/3-540-13319-4_20 – ident: S0022112011005349_r16 doi: 10.1017/S0022112099006473 – ident: S0022112011005349_r3 doi: 10.1137/080739574 – ident: S0022112011005349_r31 doi: 10.1017/S0022112098001979 – ident: S0022112011005349_r32 doi: 10.1017/S0022112001005547 – ident: S0022112011005349_r13 doi: 10.1006/jcph.1996.0066 – ident: S0022112011005349_r38 doi: 10.1098/rspa.1933.0146 – ident: S0022112011005349_r28 doi: 10.1142/S0218202510004507 – ident: S0022112011005349_r37 doi: 10.1137/0721062 – ident: S0022112011005349_r26 doi: 10.1017/CBO9780511791253 – ident: S0022112011005349_r29 – ident: S0022112011005349_r22 doi: 10.1016/j.fluiddyn.2005.03.002 – ident: S0022112011005349_r30 doi: 10.1007/BF02512373 – ident: S0022112011005349_r2 doi: 10.1007/978-3-0348-7004-7_8 – ident: S0022112011005349_r40 doi: 10.1529/biophysj.107.118257 – ident: S0022112011005349_r36 doi: 10.1016/0167-2789(84)90510-4 – ident: S0022112011005349_r35 doi: 10.1103/PhysRevLett.99.058102 – ident: S0022112011005349_r19 doi: 10.1007/s10955-009-9717-1 – volume: 25 start-page: 129 year: 2005 ident: S0022112011005349_r34 article-title: Implicit–explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxation publication-title: J. Sci. Comput. – volume: 28 start-page: 1437 year: 2010 ident: S0022112011005349_r9 article-title: Chemotaxis–fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behaviour publication-title: Discrete Contin. Dyn. Syst. A doi: 10.3934/dcds.2010.28.1437 – ident: S0022112011005349_r23 doi: 10.1017/S0022112096007902 – ident: S0022112011005349_r18 doi: 10.1137/S003614450036757X – ident: S0022112011005349_r15 doi: 10.1007/s00211-006-0024-3 – ident: S0022112011005349_r11 doi: 10.1103/PhysRevLett.93.098103 |
SSID | ssj0013097 |
Score | 2.4128869 |
Snippet | Aquatic bacteria like Bacillus subtilis are heavier than water yet they are able to swim up an oxygen gradient and concentrate in a layer below the water... Aquatic bacteria like Bacillus subtilis are heavier than water yet they are able to swim up an oxygen gradient and concentrate in a layer below the water... Abstract Aquatic bacteria like Bacillus subtilis are heavier than water yet they are able to swim up an oxygen gradient and concentrate in a layer below the... |
SourceID | proquest pascalfrancis crossref cambridge |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 155 |
SubjectTerms | Bacteria Bacteriology Biological and medical sciences Boundary conditions Convection Density Dynamical systems Fluid flow Fluid mechanics Fundamental and applied biological sciences. Psychology Mathematical models Microbiology Motility, taxis Navier-Stokes equations Nonlinear dynamics Plumes Simulation |
Title | Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach |
URI | https://www.cambridge.org/core/product/identifier/S0022112011005349/type/journal_article https://www.proquest.com/docview/922974418 https://www.proquest.com/docview/1315611283 https://www.proquest.com/docview/1642219044 |
Volume | 694 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9RAEB5si6BI1VPptXqsoPigS_Njk93ti6j0LIJF1ELfwv7Iwsk1F5sL6H_f2WSTs0j7dnBDLrff7OxMZvJ9AK-EsTzRNqepdl7CLNZUJFLRzMrUJlZqrf0Lzl9P85Mz9uU8Ow-zOU0YqxxiYheo7cr4Z-SHMkkw9WWxeF__pl40yjdXg4LGFuxgBBZYe-18PD799n3TRogkH-jCMbGIwuS754z-5S56As_MayZveBWunU8PatXgUrle4-K_cN2dQfNHsBuSR_KhR_sx3CmrCTwMiSQJ27SZwP1_WAYncLeb8jTNE6h_9EoJ74h_6RI_EFVZ0vTdeHX5l9Q-VDVkURFFzKqtl3hZRBXhVH8WDXXLdmFJJ55zhBae6phiuR68l1Rt3_5ZkoGp_CmczY9_fjqhQXKBGkxM1jTH_ZgopTXX3ORSZ06kLFKxUyWPlMOCLeORTA1mWXGsFCuVS2WZGl7GzEaRS5_BdrWqyj0gLOZCYThN0FexSM2UcTrJhXU5s8KZaApvxkUvwsZpin7ojBcIT-HhKRCeKbwdIClMYC73AhrLG6xfj9Z1z9hxg93sGrqjsdf1QyM5hYMB7s39jW44hZfjt7gjfZtFVeWqxb-QYk2M3ibSW2yw7MOzImJs_9ZfOYB7eCsJ7QYIn8P2-rItX2AWtNYz2BLzz7Pg8VfQaQkC |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxNBFD7UiqiIl1QxVusIFh_q0N2Z2ZsgImpM7eXFFvq2zhUicbNms2h_lP_RM3tJLNK-9S2wh91Nzj3nzPcBvEy1SZgyMeXKeQqzUNGUZZJGJuOGmUwp5Q84Hx7F4xPx5TQ6XYM__VkYv1bZx8QmUJuZ9v-R72aMYekrwvRd-ZN60ig_XO0ZNFqr2Ldnv7Bjq97ufUT1bjM2-nT8YUw7UgGqMfUuaIwWx6RUKlGJjjMVuZSLQIZO2iSQDluSKMEuX2MdEYZSCisdzyzXiQ2FCQLH8b7X4LrgPPMOlY4-r4YWQZb04ORYxgTdnr1HqP7ufrRwoZFnaF6hOJzLhndKWaFiXMuo8V9yaDLe6D7c7UpV8r61rQewZosB3OvKVtIFhWoAt__BNBzAjWanVFcbUH5teRleE3_EEz8QWRhStbN_OT8jpQ-MFZkURBI9q8sp3hZtCI1H_p5U1E3riSENVc8blPDAynRue18hRd0Om6akx0V_CCdXootHsF7MCvsYiAiTVGLwZugZ2BJHUjvF4tS4WJjU6WAIr5Y_et65aZW3K25JjurJvXpyVM8QdnqV5LrDSfd0HdMLpLeX0mWLD3KB3NY57S6FPYsgCmVD2OzVvXq_pdEP4cXyKvq_H-rIws5q_AocO3C0tpRfIoNNJmamQIgnlz7lOdwcHx8e5Ad7R_ubcAtfi9FmdfEprC_mtX2G9ddCbTVWT-DbVbvZX5L6Q5w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sinking%2C+merging+and+stationary+plumes+in+a+coupled+chemotaxis-fluid+model%3A+a+high-resolution+numerical+approach&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Chertock%2C+A&rft.au=Fellner%2C+K&rft.au=Kurganov%2C+A&rft.au=Lorz%2C+A&rft.date=2012-03-10&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=694&rft.spage=155&rft_id=info:doi/10.1017%2Fjfm.2011.534&rft.externalDocID=2593223921 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon |