Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach

Aquatic bacteria like Bacillus subtilis are heavier than water yet they are able to swim up an oxygen gradient and concentrate in a layer below the water surface, which will undergo Rayleigh–Taylor-type instabilities for sufficiently high concentrations. In the literature, a simplified chemotaxis–fl...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 694; pp. 155 - 190
Main Authors Chertock, A., Fellner, K., Kurganov, A., Lorz, A., Markowich, P. A.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 10.03.2012
Subjects
Online AccessGet full text
ISSN0022-1120
1469-7645
DOI10.1017/jfm.2011.534

Cover

Loading…
Abstract Aquatic bacteria like Bacillus subtilis are heavier than water yet they are able to swim up an oxygen gradient and concentrate in a layer below the water surface, which will undergo Rayleigh–Taylor-type instabilities for sufficiently high concentrations. In the literature, a simplified chemotaxis–fluid system has been proposed as a model for bio-convection in modestly diluted cell suspensions. It couples a convective chemotaxis system for the oxygen-consuming and oxytactic bacteria with the incompressible Navier–Stokes equations subject to a gravitational force proportional to the relative surplus of the cell density compared to the water density. In this paper, we derive a high-resolution vorticity-based hybrid finite-volume finite-difference scheme, which allows us to investigate the nonlinear dynamics of a two-dimensional chemotaxis–fluid system with boundary conditions matching an experiment of Hillesdon et al. (Bull. Math. Biol., vol. 57, 1995, pp. 299–344). We present selected numerical examples, which illustrate (i) the formation of sinking plumes, (ii) the possible merging of neighbouring plumes and (iii) the convergence towards numerically stable stationary plumes. The examples with stable stationary plumes show how the surface-directed oxytaxis continuously feeds cells into a high-concentration layer near the surface, from where the fluid flow (recurring upwards in the space between the plumes) transports the cells into the plumes, where then gravity makes the cells sink and constitutes the driving force in maintaining the fluid convection and, thus, in shaping the plumes into (numerically) stable stationary states. Our numerical method is fully capable of solving the coupled chemotaxis–fluid system and enabling a full exploration of its dynamics, which cannot be done in a linearised framework.
AbstractList Abstract Aquatic bacteria like Bacillus subtilis are heavier than water yet they are able to swim up an oxygen gradient and concentrate in a layer below the water surface, which will undergo Rayleigh-Taylor-type instabilities for sufficiently high concentrations. In the literature, a simplified chemotaxis-fluid system has been proposed as a model for bio-convection in modestly diluted cell suspensions. It couples a convective chemotaxis system for the oxygen-consuming and oxytactic bacteria with the incompressible Navier-Stokes equations subject to a gravitational force proportional to the relative surplus of the cell density compared to the water density. In this paper, we derive a high-resolution vorticity-based hybrid finite-volume finite-difference scheme, which allows us to investigate the nonlinear dynamics of a two-dimensional chemotaxis-fluid system with boundary conditions matching an experiment of Hillesdon et al. (Bull. Math. Biol., vol. 57, 1995, pp. 299-344). We present selected numerical examples, which illustrate (i) the formation of sinking plumes, (ii) the possible merging of neighbouring plumes and (iii) the convergence towards numerically stable stationary plumes. The examples with stable stationary plumes show how the surface-directed oxytaxis continuously feeds cells into a high-concentration layer near the surface, from where the fluid flow (recurring upwards in the space between the plumes) transports the cells into the plumes, where then gravity makes the cells sink and constitutes the driving force in maintaining the fluid convection and, thus, in shaping the plumes into (numerically) stable stationary states. Our numerical method is fully capable of solving the coupled chemotaxis-fluid system and enabling a full exploration of its dynamics, which cannot be done in a linearised framework. [PUBLICATION ABSTRACT]
Aquatic bacteria like Bacillus subtilis are heavier than water yet they are able to swim up an oxygen gradient and concentrate in a layer below the water surface, which will undergo Rayleigh–Taylor-type instabilities for sufficiently high concentrations. In the literature, a simplified chemotaxis–fluid system has been proposed as a model for bio-convection in modestly diluted cell suspensions. It couples a convective chemotaxis system for the oxygen-consuming and oxytactic bacteria with the incompressible Navier–Stokes equations subject to a gravitational force proportional to the relative surplus of the cell density compared to the water density. In this paper, we derive a high-resolution vorticity-based hybrid finite-volume finite-difference scheme, which allows us to investigate the nonlinear dynamics of a two-dimensional chemotaxis–fluid system with boundary conditions matching an experiment of Hillesdon et al.  ( Bull. Math. Biol. , vol. 57, 1995, pp. 299–344). We present selected numerical examples, which illustrate (i) the formation of sinking plumes, (ii) the possible merging of neighbouring plumes and (iii) the convergence towards numerically stable stationary plumes. The examples with stable stationary plumes show how the surface-directed oxytaxis continuously feeds cells into a high-concentration layer near the surface, from where the fluid flow (recurring upwards in the space between the plumes) transports the cells into the plumes, where then gravity makes the cells sink and constitutes the driving force in maintaining the fluid convection and, thus, in shaping the plumes into (numerically) stable stationary states. Our numerical method is fully capable of solving the coupled chemotaxis–fluid system and enabling a full exploration of its dynamics, which cannot be done in a linearised framework.
Aquatic bacteria like Bacillus subtilis are heavier than water yet they are able to swim up an oxygen gradient and concentrate in a layer below the water surface, which will undergo Rayleigh-Taylor-type instabilities for sufficiently high concentrations. In the literature, a simplified chemotaxis-fluid system has been proposed as a model for bio-convection in modestly diluted cell suspensions. It couples a convective chemotaxis system for the oxygen-consuming and oxytactic bacteria with the incompressible Navier-Stokes equations subject to a gravitational force proportional to the relative surplus of the cell density compared to the water density. In this paper, we derive a high-resolution vorticity-based hybrid finite-volume finite-difference scheme, which allows us to investigate the nonlinear dynamics of a two-dimensional chemotaxis-fluid system with boundary conditions matching an experiment of Hillesdon et al. (Bull. Math. Biol., vol. 57, 1995, pp. 299-344). We present selected numerical examples, which illustrate (i) the formation of sinking plumes, (ii) the possible merging of neighbouring plumes and (iii) the convergence towards numerically stable stationary plumes. The examples with stable stationary plumes show how the surface-directed oxytaxis continuously feeds cells into a high-concentration layer near the surface, from where the fluid flow (recurring upwards in the space between the plumes) transports the cells into the plumes, where then gravity makes the cells sink and constitutes the driving force in maintaining the fluid convection and, thus, in shaping the plumes into (numerically) stable stationary states. Our numerical method is fully capable of solving the coupled chemotaxis-fluid system and enabling a full exploration of its dynamics, which cannot be done in a linearised framework.
Aquatic bacteria like Bacillus subtilis are heavier than water yet they are able to swim up an oxygen gradient and concentrate in a layer below the water surface, which will undergo Rayleigh–Taylor-type instabilities for sufficiently high concentrations. In the literature, a simplified chemotaxis–fluid system has been proposed as a model for bio-convection in modestly diluted cell suspensions. It couples a convective chemotaxis system for the oxygen-consuming and oxytactic bacteria with the incompressible Navier–Stokes equations subject to a gravitational force proportional to the relative surplus of the cell density compared to the water density. In this paper, we derive a high-resolution vorticity-based hybrid finite-volume finite-difference scheme, which allows us to investigate the nonlinear dynamics of a two-dimensional chemotaxis–fluid system with boundary conditions matching an experiment of Hillesdon et al. (Bull. Math. Biol., vol. 57, 1995, pp. 299–344). We present selected numerical examples, which illustrate (i) the formation of sinking plumes, (ii) the possible merging of neighbouring plumes and (iii) the convergence towards numerically stable stationary plumes. The examples with stable stationary plumes show how the surface-directed oxytaxis continuously feeds cells into a high-concentration layer near the surface, from where the fluid flow (recurring upwards in the space between the plumes) transports the cells into the plumes, where then gravity makes the cells sink and constitutes the driving force in maintaining the fluid convection and, thus, in shaping the plumes into (numerically) stable stationary states. Our numerical method is fully capable of solving the coupled chemotaxis–fluid system and enabling a full exploration of its dynamics, which cannot be done in a linearised framework.
Author Chertock, A.
Markowich, P. A.
Fellner, K.
Lorz, A.
Kurganov, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Chertock
  fullname: Chertock, A.
  organization: 1Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
– sequence: 2
  givenname: K.
  surname: Fellner
  fullname: Fellner, K.
  email: Klemens.Fellner@uni-graz.at
  organization: 2Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK
– sequence: 3
  givenname: A.
  surname: Kurganov
  fullname: Kurganov, A.
  organization: 3Mathematics Department, Tulane University, New Orleans, LA 70118, USA
– sequence: 4
  givenname: A.
  surname: Lorz
  fullname: Lorz, A.
  organization: 2Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK
– sequence: 5
  givenname: P. A.
  surname: Markowich
  fullname: Markowich, P. A.
  organization: 2Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25702019$$DView record in Pascal Francis
BookMark eNqFkcGKFDEQhoOs4OzqzQcIguBhe0wlmc7EmyzqCgse1HNTnU5mMqaTNumG9e3NMIPCsuIpdfj-SlV9l-QipmgJeQlsDQzU24Mb15wBrDdCPiErkK1uVCs3F2TFGOcNAGfPyGUpB8ZAMK1WZPrq4w8fd9d0tHlXC4pxoGXG2aeI-RedwjLaQn2kSE1apmAHavZ2TDPe-9K4sPiBjmmw4V0l9n63b7ItKSzHBjTWcPYGA8VpygnN_jl56jAU--L8XpHvHz98u7lt7r58-nzz_q4xQqu5aXUrOGLfq16ZVvcbtxWSITi0iqFjvN0opoUBKQAQpUUntBVGWZADY05ckTenvvXbn4stczf6YmwIGG1aSget5Bw0k_L_qIBNW2-3FRV99QA9pCXHukinOddKSthW6PUZwlJXdxmj8aWbsh_rRTteJ6-WdOWuT5zJqZRs3R8EWHcU2lWh3VFoV4VWnD_AjT95mjP68K_Q-hzCsc9-2Nm_Ez8a-A19L7US
CODEN JFLSA7
CitedBy_id crossref_primary_10_1063_5_0049141
crossref_primary_10_1016_j_jmaa_2024_128545
crossref_primary_10_1142_S0218202518500239
crossref_primary_10_1007_s00033_021_01565_z
crossref_primary_10_4134_JKMS_2014_51_3_635
crossref_primary_10_1016_j_jde_2016_08_045
crossref_primary_10_1016_j_anihpc_2015_05_002
crossref_primary_10_1017_prm_2023_19
crossref_primary_10_1080_03605302_2013_852224
crossref_primary_10_1088_1361_6544_aa92ec
crossref_primary_10_1016_j_jtbi_2018_06_019
crossref_primary_10_1007_s10915_023_02118_4
crossref_primary_10_1007_s00220_021_04292_8
crossref_primary_10_1088_1361_6544_ab8f7c
crossref_primary_10_1007_s00033_022_01924_4
crossref_primary_10_1016_j_jde_2024_01_006
crossref_primary_10_1016_j_nonrwa_2024_104129
crossref_primary_10_1140_epjp_s13360_022_02496_y
crossref_primary_10_1142_S0218202524500167
crossref_primary_10_3390_e25081224
crossref_primary_10_1016_j_jde_2020_10_024
crossref_primary_10_1016_j_jde_2023_06_041
crossref_primary_10_1088_1361_6544_aa9d5f
crossref_primary_10_1039_C7SM00766C
crossref_primary_10_1016_j_camwa_2014_04_010
crossref_primary_10_1016_j_jde_2019_02_007
crossref_primary_10_1142_S0218202513400071
crossref_primary_10_1007_s00021_018_0392_3
crossref_primary_10_1016_j_jcp_2022_111649
crossref_primary_10_1137_130911536
crossref_primary_10_1098_rsif_2021_0582
crossref_primary_10_1007_s00021_013_0162_1
crossref_primary_10_1142_S0219199724500226
crossref_primary_10_1016_j_nonrwa_2015_07_008
crossref_primary_10_1142_S0218202521500135
crossref_primary_10_1063_5_0005157
crossref_primary_10_1142_S021820252350063X
crossref_primary_10_1002_zamm_202200070
crossref_primary_10_1007_s00526_022_02201_y
crossref_primary_10_1016_j_jmaa_2018_05_041
crossref_primary_10_1016_j_jde_2020_06_041
crossref_primary_10_1140_epjp_s13360_021_01692_6
crossref_primary_10_1051_m2an_2020039
crossref_primary_10_12677_pm_2024_144129
crossref_primary_10_1137_130936920
crossref_primary_10_1016_j_compfluid_2015_10_018
crossref_primary_10_1063_1_4947107
crossref_primary_10_1016_j_ijheatmasstransfer_2019_118677
crossref_primary_10_1007_s13398_016_0374_3
crossref_primary_10_1142_S0218202523500094
crossref_primary_10_1016_j_jde_2022_06_010
crossref_primary_10_1016_j_camwa_2021_01_004
crossref_primary_10_1017_jfm_2022_898
crossref_primary_10_3934_dcds_2015_35_3463
crossref_primary_10_1142_S0218202520400096
crossref_primary_10_1142_S0218202522500166
crossref_primary_10_1016_j_nonrwa_2018_07_028
crossref_primary_10_1016_j_apnum_2018_01_017
crossref_primary_10_1016_j_aml_2024_109361
crossref_primary_10_1080_00036811_2020_1766027
crossref_primary_10_1142_S0218202516400078
crossref_primary_10_4134_JKMS_2016_53_1_127
crossref_primary_10_1016_j_cma_2021_113909
crossref_primary_10_3934_dcds_2013_33_2271
crossref_primary_10_3934_dcds_2022062
crossref_primary_10_1017_jfm_2021_508
crossref_primary_10_1063_1_5038613
crossref_primary_10_1007_s00033_017_0882_9
crossref_primary_10_1016_j_amc_2021_126105
crossref_primary_10_1007_s00033_022_01778_w
crossref_primary_10_1007_s00033_024_02400_x
crossref_primary_10_1016_j_nonrwa_2018_01_006
crossref_primary_10_1142_S021820251550044X
crossref_primary_10_3934_era_2020066
crossref_primary_10_1007_s00033_024_02324_6
crossref_primary_10_1016_j_camwa_2023_06_006
crossref_primary_10_1016_j_euromechflu_2015_03_002
crossref_primary_10_1080_00036811_2020_1767287
crossref_primary_10_1137_16M1083232
crossref_primary_10_1016_j_jfa_2018_12_009
crossref_primary_10_1088_1361_6544_acc3ee
crossref_primary_10_1142_S0218202524500374
crossref_primary_10_1146_annurev_fluid_010518_040558
crossref_primary_10_1088_1742_6596_1592_1_012059
crossref_primary_10_1016_j_compfluid_2014_07_023
crossref_primary_10_1137_21M142085X
crossref_primary_10_1016_j_jcp_2023_112034
crossref_primary_10_1142_S021820251640008X
crossref_primary_10_1016_j_nonrwa_2016_11_006
crossref_primary_10_1142_S021820252250004X
crossref_primary_10_1142_S0218202519500398
crossref_primary_10_1137_24M1628426
crossref_primary_10_1142_S0219530521500275
crossref_primary_10_1016_j_compfluid_2016_05_009
crossref_primary_10_1002_zamm_201500040
crossref_primary_10_1016_j_jde_2018_01_007
crossref_primary_10_1016_j_cma_2019_07_030
crossref_primary_10_1016_j_camwa_2023_09_012
Cites_doi 10.3934/krm.2012.5.51
10.1017/S0022112080001917
10.1080/03605302.2010.497199
10.1137/S1064827501392880
10.1007/BF02460620
10.1142/S0218202510004921
10.1137/040612841
10.1006/jtbi.2002.3077
10.1017/S0022112001007339
10.1073/pnas.0406724102
10.1017/S0022112001005377
10.1016/0021-9991(90)90260-8
10.1007/s00211-008-0188-0
10.1007/3-540-13319-4_20
10.1017/S0022112099006473
10.1137/080739574
10.1017/S0022112098001979
10.1017/S0022112001005547
10.1006/jcph.1996.0066
10.1098/rspa.1933.0146
10.1142/S0218202510004507
10.1137/0721062
10.1017/CBO9780511791253
10.1016/j.fluiddyn.2005.03.002
10.1007/BF02512373
10.1007/978-3-0348-7004-7_8
10.1529/biophysj.107.118257
10.1016/0167-2789(84)90510-4
10.1103/PhysRevLett.99.058102
10.1007/s10955-009-9717-1
10.3934/dcds.2010.28.1437
10.1017/S0022112096007902
10.1137/S003614450036757X
10.1007/s00211-006-0024-3
10.1103/PhysRevLett.93.098103
ContentType Journal Article
Copyright Copyright © Cambridge University Press 2012
2015 INIST-CNRS
Copyright © Cambridge University Press 2012
Copyright_xml – notice: Copyright © Cambridge University Press 2012
– notice: 2015 INIST-CNRS
– notice: Copyright © Cambridge University Press 2012
DBID AAYXX
CITATION
IQODW
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
7TG
KL.
DOI 10.1017/jfm.2011.534
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Research Library Prep
CrossRef
Aerospace Database

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1469-7645
EndPage 190
ExternalDocumentID 2593223921
25702019
10_1017_jfm_2011_534
Genre Feature
GroupedDBID -2P
-DZ
-E.
-~6
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
3V.
4.4
5GY
5VS
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABZCX
ACBEA
ACBMC
ACCHT
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADGEJ
ADKIL
ADOCW
ADVJH
AEBAK
AEHGV
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFRAH
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BMAJL
BPHCQ
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
COF
CS3
D-I
DC4
DOHLZ
DU5
DWQXO
E.L
EBS
EJD
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
I.6
I.7
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LHUNA
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WXY
WYP
ZE2
ZMEZD
ZYDXJ
~02
AATMM
AAYXX
ABVKB
ABXAU
ABXHF
ACDLN
AEUYN
AFZFC
AKMAY
BQFHP
CITATION
PHGZM
PHGZT
-1F
-2V
-~N
6TJ
6~7
8WZ
9M5
A6W
AANRG
ABDMP
ABDPE
ABFSI
ABKAW
ABVFV
ABVZP
ABZUI
ACETC
ACKIV
ACRPL
ADMLS
ADNMO
ADOVH
AEBPU
AEMFK
AENCP
AGQPQ
AI.
ALEEW
BESQT
CAG
CCUQV
CDIZJ
H~9
I.9
IQODW
KAFGG
NMFBF
PQGLB
VH1
VOH
ZJOSE
ZY4
~V1
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
7TG
KL.
ID FETCH-LOGICAL-c397t-69632aabb7b7c69b5f8340a1fae70af02657093c14311aa4eaf39e3c7e14d00f3
IEDL.DBID BENPR
ISSN 0022-1120
IngestDate Tue Aug 05 10:11:31 EDT 2025
Fri Jul 11 03:34:06 EDT 2025
Sat Aug 23 14:07:48 EDT 2025
Mon Jul 21 09:14:58 EDT 2025
Tue Jul 01 01:45:02 EDT 2025
Thu Apr 24 22:59:53 EDT 2025
Wed Mar 13 05:46:49 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords computational methods
bioconvection
micro-organism dynamics
Motility
Bacillus subtilis
Finite volume method
Bacillaceae
Chemotaxis
Modeling
Aquatic environment
Bacillales
Rayleigh Taylor instability
Bacteria
Numerical simulation
Microorganism
Finite difference method
Language English
License https://www.cambridge.org/core/terms
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-69632aabb7b7c69b5f8340a1fae70af02657093c14311aa4eaf39e3c7e14d00f3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 922974418
PQPubID 34769
PageCount 36
ParticipantIDs proquest_miscellaneous_1642219044
proquest_miscellaneous_1315611283
proquest_journals_922974418
pascalfrancis_primary_25702019
crossref_primary_10_1017_jfm_2011_534
crossref_citationtrail_10_1017_jfm_2011_534
cambridge_journals_10_1017_jfm_2011_534
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-03-10
PublicationDateYYYYMMDD 2012-03-10
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-10
  day: 10
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2012
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References S0022112011005349_r30
Chandrasekhar (S0022112011005349_r4) 1981
S0022112011005349_r31
S0022112011005349_r32
S0022112011005349_r10
S0022112011005349_r33
S0022112011005349_r11
S0022112011005349_r16
S0022112011005349_r38
S0022112011005349_r39
Hernandez-Ortiz (S0022112011005349_r20) 2009; 21
S0022112011005349_r17
S0022112011005349_r18
S0022112011005349_r19
S0022112011005349_r12
S0022112011005349_r13
S0022112011005349_r35
S0022112011005349_r14
Higueras (S0022112011005349_r21) 2006; vol. 33
S0022112011005349_r36
S0022112011005349_r15
S0022112011005349_r37
Busse (S0022112011005349_r1) 1985; vol. 45
S0022112011005349_r22
S0022112011005349_r7
S0022112011005349_r8
S0022112011005349_r40
S0022112011005349_r27
Di Francesco (S0022112011005349_r9) 2010; 28
S0022112011005349_r28
S0022112011005349_r29
S0022112011005349_r23
S0022112011005349_r24
S0022112011005349_r25
S0022112011005349_r26
Pareschi (S0022112011005349_r34) 2005; 25
S0022112011005349_r3
S0022112011005349_r5
S0022112011005349_r6
S0022112011005349_r2
References_xml – ident: S0022112011005349_r7
  doi: 10.3934/krm.2012.5.51
– ident: S0022112011005349_r5
  doi: 10.1017/S0022112080001917
– ident: S0022112011005349_r12
  doi: 10.1080/03605302.2010.497199
– volume: 21
  start-page: 204107
  year: 2009
  ident: S0022112011005349_r20
  article-title: Dynamics of confined suspensions of swimming particles
  publication-title: J. Phys.: Condens. Matter
– ident: S0022112011005349_r27
  doi: 10.1137/S1064827501392880
– ident: S0022112011005349_r24
  doi: 10.1007/BF02460620
– ident: S0022112011005349_r14
  doi: 10.1142/S0218202510004921
– volume: vol. 33
  start-page: 129
  volume-title: Ninth International Conference Zaragoza-Pau on Applied Mathematics and Statistics
  year: 2006
  ident: S0022112011005349_r21
– volume-title: Hydrodynamic and Hydromagnetic Stability
  year: 1981
  ident: S0022112011005349_r4
– ident: S0022112011005349_r10
  doi: 10.1137/040612841
– ident: S0022112011005349_r17
  doi: 10.1006/jtbi.2002.3077
– ident: S0022112011005349_r25
  doi: 10.1017/S0022112001007339
– ident: S0022112011005349_r39
  doi: 10.1073/pnas.0406724102
– ident: S0022112011005349_r8
  doi: 10.1017/S0022112001005377
– ident: S0022112011005349_r33
  doi: 10.1016/0021-9991(90)90260-8
– ident: S0022112011005349_r6
  doi: 10.1007/s00211-008-0188-0
– volume: vol. 45
  start-page: 97
  volume-title: Hydrodynamic Instabilities and the Transition to Turbulence
  year: 1985
  ident: S0022112011005349_r1
  doi: 10.1007/3-540-13319-4_20
– ident: S0022112011005349_r16
  doi: 10.1017/S0022112099006473
– ident: S0022112011005349_r3
  doi: 10.1137/080739574
– ident: S0022112011005349_r31
  doi: 10.1017/S0022112098001979
– ident: S0022112011005349_r32
  doi: 10.1017/S0022112001005547
– ident: S0022112011005349_r13
  doi: 10.1006/jcph.1996.0066
– ident: S0022112011005349_r38
  doi: 10.1098/rspa.1933.0146
– ident: S0022112011005349_r28
  doi: 10.1142/S0218202510004507
– ident: S0022112011005349_r37
  doi: 10.1137/0721062
– ident: S0022112011005349_r26
  doi: 10.1017/CBO9780511791253
– ident: S0022112011005349_r29
– ident: S0022112011005349_r22
  doi: 10.1016/j.fluiddyn.2005.03.002
– ident: S0022112011005349_r30
  doi: 10.1007/BF02512373
– ident: S0022112011005349_r2
  doi: 10.1007/978-3-0348-7004-7_8
– ident: S0022112011005349_r40
  doi: 10.1529/biophysj.107.118257
– ident: S0022112011005349_r36
  doi: 10.1016/0167-2789(84)90510-4
– ident: S0022112011005349_r35
  doi: 10.1103/PhysRevLett.99.058102
– ident: S0022112011005349_r19
  doi: 10.1007/s10955-009-9717-1
– volume: 25
  start-page: 129
  year: 2005
  ident: S0022112011005349_r34
  article-title: Implicit–explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxation
  publication-title: J. Sci. Comput.
– volume: 28
  start-page: 1437
  year: 2010
  ident: S0022112011005349_r9
  article-title: Chemotaxis–fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behaviour
  publication-title: Discrete Contin. Dyn. Syst. A
  doi: 10.3934/dcds.2010.28.1437
– ident: S0022112011005349_r23
  doi: 10.1017/S0022112096007902
– ident: S0022112011005349_r18
  doi: 10.1137/S003614450036757X
– ident: S0022112011005349_r15
  doi: 10.1007/s00211-006-0024-3
– ident: S0022112011005349_r11
  doi: 10.1103/PhysRevLett.93.098103
SSID ssj0013097
Score 2.4128869
Snippet Aquatic bacteria like Bacillus subtilis are heavier than water yet they are able to swim up an oxygen gradient and concentrate in a layer below the water...
Aquatic bacteria like Bacillus subtilis are heavier than water yet they are able to swim up an oxygen gradient and concentrate in a layer below the water...
Abstract Aquatic bacteria like Bacillus subtilis are heavier than water yet they are able to swim up an oxygen gradient and concentrate in a layer below the...
SourceID proquest
pascalfrancis
crossref
cambridge
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 155
SubjectTerms Bacteria
Bacteriology
Biological and medical sciences
Boundary conditions
Convection
Density
Dynamical systems
Fluid flow
Fluid mechanics
Fundamental and applied biological sciences. Psychology
Mathematical models
Microbiology
Motility, taxis
Navier-Stokes equations
Nonlinear dynamics
Plumes
Simulation
Title Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach
URI https://www.cambridge.org/core/product/identifier/S0022112011005349/type/journal_article
https://www.proquest.com/docview/922974418
https://www.proquest.com/docview/1315611283
https://www.proquest.com/docview/1642219044
Volume 694
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9RAEB5si6BI1VPptXqsoPigS_Njk93ti6j0LIJF1ELfwv7Iwsk1F5sL6H_f2WSTs0j7dnBDLrff7OxMZvJ9AK-EsTzRNqepdl7CLNZUJFLRzMrUJlZqrf0Lzl9P85Mz9uU8Ow-zOU0YqxxiYheo7cr4Z-SHMkkw9WWxeF__pl40yjdXg4LGFuxgBBZYe-18PD799n3TRogkH-jCMbGIwuS754z-5S56As_MayZveBWunU8PatXgUrle4-K_cN2dQfNHsBuSR_KhR_sx3CmrCTwMiSQJ27SZwP1_WAYncLeb8jTNE6h_9EoJ74h_6RI_EFVZ0vTdeHX5l9Q-VDVkURFFzKqtl3hZRBXhVH8WDXXLdmFJJ55zhBae6phiuR68l1Rt3_5ZkoGp_CmczY9_fjqhQXKBGkxM1jTH_ZgopTXX3ORSZ06kLFKxUyWPlMOCLeORTA1mWXGsFCuVS2WZGl7GzEaRS5_BdrWqyj0gLOZCYThN0FexSM2UcTrJhXU5s8KZaApvxkUvwsZpin7ojBcIT-HhKRCeKbwdIClMYC73AhrLG6xfj9Z1z9hxg93sGrqjsdf1QyM5hYMB7s39jW44hZfjt7gjfZtFVeWqxb-QYk2M3ibSW2yw7MOzImJs_9ZfOYB7eCsJ7QYIn8P2-rItX2AWtNYz2BLzz7Pg8VfQaQkC
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxNBFD7UiqiIl1QxVusIFh_q0N2Z2ZsgImpM7eXFFvq2zhUicbNms2h_lP_RM3tJLNK-9S2wh91Nzj3nzPcBvEy1SZgyMeXKeQqzUNGUZZJGJuOGmUwp5Q84Hx7F4xPx5TQ6XYM__VkYv1bZx8QmUJuZ9v-R72aMYekrwvRd-ZN60ig_XO0ZNFqr2Ldnv7Bjq97ufUT1bjM2-nT8YUw7UgGqMfUuaIwWx6RUKlGJjjMVuZSLQIZO2iSQDluSKMEuX2MdEYZSCisdzyzXiQ2FCQLH8b7X4LrgPPMOlY4-r4YWQZb04ORYxgTdnr1HqP7ufrRwoZFnaF6hOJzLhndKWaFiXMuo8V9yaDLe6D7c7UpV8r61rQewZosB3OvKVtIFhWoAt__BNBzAjWanVFcbUH5teRleE3_EEz8QWRhStbN_OT8jpQ-MFZkURBI9q8sp3hZtCI1H_p5U1E3riSENVc8blPDAynRue18hRd0Om6akx0V_CCdXootHsF7MCvsYiAiTVGLwZugZ2BJHUjvF4tS4WJjU6WAIr5Y_et65aZW3K25JjurJvXpyVM8QdnqV5LrDSfd0HdMLpLeX0mWLD3KB3NY57S6FPYsgCmVD2OzVvXq_pdEP4cXyKvq_H-rIws5q_AocO3C0tpRfIoNNJmamQIgnlz7lOdwcHx8e5Ad7R_ubcAtfi9FmdfEprC_mtX2G9ddCbTVWT-DbVbvZX5L6Q5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sinking%2C+merging+and+stationary+plumes+in+a+coupled+chemotaxis-fluid+model%3A+a+high-resolution+numerical+approach&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Chertock%2C+A&rft.au=Fellner%2C+K&rft.au=Kurganov%2C+A&rft.au=Lorz%2C+A&rft.date=2012-03-10&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=694&rft.spage=155&rft_id=info:doi/10.1017%2Fjfm.2011.534&rft.externalDocID=2593223921
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon