Graph convolutional networks for traffic forecasting with missing values
Traffic forecasting has attracted widespread attention recently. In reality, traffic data usually contains missing values due to sensor or communication errors. The Spatio-temporal feature in traffic data brings more challenges for processing such missing values, for which the classic techniques (e....
Saved in:
Published in | Data mining and knowledge discovery Vol. 37; no. 2; pp. 913 - 947 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2023
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
ISSN | 1384-5810 1573-756X |
DOI | 10.1007/s10618-022-00903-7 |
Cover
Loading…
Abstract | Traffic forecasting has attracted widespread attention recently. In reality, traffic data usually contains missing values due to sensor or communication errors. The Spatio-temporal feature in traffic data brings more challenges for processing such missing values, for which the classic techniques (e.g., data imputations) are limited: (1) in temporal axis, the values can be randomly or consecutively missing; (2) in spatial axis, the missing values can happen on one single sensor or on multiple sensors simultaneously. Recent models powered by Graph Neural Networks achieved satisfying performance on traffic forecasting tasks. However, few of them are applicable to such a complex missing-value context. To this end, we propose GCN-M, a Graph Convolutional Network model with the ability to handle the complex missing values in the Spatio-temporal context. Particularly, we jointly model the missing value processing and traffic forecasting tasks, considering both local Spatio-temporal features and global historical patterns in an attention-based memory network. We propose as well a dynamic graph learning module based on the learned local-global features. The experimental results on real-life datasets show the reliability of our proposed method. |
---|---|
AbstractList | Traffic forecasting has attracted widespread attention recently. In reality, traffic data usually contains missing values due to sensor or communication errors. The Spatio-temporal feature in traffic data brings more challenges for processing such missing values, for which the classic techniques (e.g., data imputations) are limited: (1) in temporal axis, the values can be randomly or consecutively missing; (2) in spatial axis, the missing values can happen on one single sensor or on multiple sensors simultaneously. Recent models powered by Graph Neural Networks achieved satisfying performance on traffic forecasting tasks. However, few of them are applicable to such a complex missing-value context. To this end, we propose GCN-M, a Graph Convolutional Network model with the ability to handle the complex missing values in the Spatio-temporal context. Particularly, we jointly model the missing value processing and traffic forecasting tasks, considering both local Spatio-temporal features and global historical patterns in an attention-based memory network. We propose as well a dynamic graph learning module based on the learned local-global features. The experimental results on real-life datasets show the reliability of our proposed method. |
Author | Zeitouni, Karine Zuo, Jingwei Taher, Yehia Garcia-Rodriguez, Sandra |
Author_xml | – sequence: 1 givenname: Jingwei orcidid: 0000-0002-3251-6939 surname: Zuo fullname: Zuo, Jingwei email: jingwei.zuo@tii.ae organization: Technology Innovation Institute – sequence: 2 givenname: Karine surname: Zeitouni fullname: Zeitouni, Karine organization: DAVID Lab, UVSQ, Université Paris-Saclay – sequence: 3 givenname: Yehia surname: Taher fullname: Taher, Yehia organization: DAVID Lab, UVSQ, Université Paris-Saclay – sequence: 4 givenname: Sandra surname: Garcia-Rodriguez fullname: Garcia-Rodriguez, Sandra organization: Data Analysis and Systems Intelligence Laboratory, CEA, LIST |
BackLink | https://hal.science/hal-04069257$$DView record in HAL |
BookMark | eNp9kEFLAzEQhYMo2Fb_gKcFTx5WJ8lmszmWolYoeFHwFqZpto2um5psK_57s64iePCUl-F7w5s3Joetby0hZxQuKYC8ihRKWuXAWA6ggOfygIyokEmI8ukwaV4VuagoHJNxjM8AIBiHEZnfBtxuMuPbvW92nfMtNllru3cfXmJW-5B1AevamV5bg7Fz7Tp7d90me3Ux9p89NjsbT8hRjU20p9_vhDzeXD_M5vni_vZuNl3khivZ5aWiQpRMsaUEwwuGS2YoXwmskdYlCm4Yq5ai4EJRqNRqhbiiQCtR2QSj5RNyMezdYKO3wb1i-NAenZ5PF7qfQQGlYkLuaWLPB3Yb_FvK2OlnvwvpwqiZlEoCLZRMVDVQJvgYg621cR32VaTTXaMp6L5jPXSsU8f6q2PdW9kf60-if018MMUEt2sbflP94_oEtZ-PyQ |
CitedBy_id | crossref_primary_10_1177_00368504241283315 crossref_primary_10_1016_j_inffus_2023_102078 crossref_primary_10_1016_j_eswa_2024_123721 crossref_primary_10_3390_electronics13163151 crossref_primary_10_3390_math12111739 crossref_primary_10_1080_19427867_2025_2450577 crossref_primary_10_1007_s00521_024_10888_7 crossref_primary_10_1088_2631_8695_ad9238 crossref_primary_10_3390_machines11111005 crossref_primary_10_1007_s11227_024_06670_0 crossref_primary_10_1109_JSEN_2024_3392938 crossref_primary_10_3390_s25010282 crossref_primary_10_1016_j_ress_2025_110928 crossref_primary_10_1016_j_knosys_2024_112295 crossref_primary_10_1088_2515_7620_ad8108 crossref_primary_10_1145_3706116 crossref_primary_10_1016_j_knosys_2023_110991 crossref_primary_10_1016_j_chaos_2024_115437 crossref_primary_10_1016_j_neucom_2024_128441 crossref_primary_10_1007_s40747_024_01768_7 crossref_primary_10_1080_13658816_2024_2381221 crossref_primary_10_1007_s11518_024_5594_z crossref_primary_10_1016_j_eswa_2025_127200 |
Cites_doi | 10.1038/s41598-018-24271-9 10.1109/CVPR.2017.113 10.1109/CVPR.2016.90 10.1609/aaai.v35i12.17325 10.1145/3447548.3467275 10.24963/ijcai.2018/505 10.1016/j.inffus.2020.01.002 10.1109/ICDCS51616.2021.00073 10.1007/s10618-019-00619-1 10.1016/j.trc.2020.102671 10.1007/s00521-009-0295-6 10.1007/978-1-4612-4380-9_16 10.1109/TKDE.2021.3056502 10.1016/j.trc.2020.102674 10.1007/978-3-030-92635-9_9 10.1016/j.neucom.2018.08.067 10.1007/s10707-022-00471-4 10.1109/ICDM51629.2021.00206 10.24963/ijcai.2019/264 10.13063/2327-9214.1035 10.1609/aaai.v34i04.6056 10.18637/jss.v045.i03 10.1016/j.eswa.2022.117921 10.1145/3394486.3403118 10.1214/aoms/1177731944 10.1609/aaai.v35i5.16529 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | C6C AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U 1XC VOOES |
DOI | 10.1007/s10618-022-00903-7 |
DatabaseName | Springer Nature Open Access Journals (LUT & LAB) CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (OCUL) Computing Database ProQuest Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | CrossRef ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science |
EISSN | 1573-756X |
EndPage | 947 |
ExternalDocumentID | oai_HAL_hal_04069257v1 10_1007_s10618_022_00903_7 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M2O M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PUEGO Q9U 1XC VOOES |
ID | FETCH-LOGICAL-c397t-691556292b70c342ab2c13d5afa1f6a53c228b543591089ddaad101858e42aae3 |
IEDL.DBID | U2A |
ISSN | 1384-5810 |
IngestDate | Fri Aug 22 06:20:37 EDT 2025 Sat Aug 23 12:59:39 EDT 2025 Thu Apr 24 23:10:25 EDT 2025 Tue Jul 01 00:40:32 EDT 2025 Fri Feb 21 02:44:19 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Deep learning Memory networks Graph convolutional networks Traffic forecasting Neural networks Missing values Artificial intelligence |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c397t-691556292b70c342ab2c13d5afa1f6a53c228b543591089ddaad101858e42aae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3251-6939 0000-0002-5602-6942 |
OpenAccessLink | https://link.springer.com/10.1007/s10618-022-00903-7 |
PQID | 2779701497 |
PQPubID | 43030 |
PageCount | 35 |
ParticipantIDs | hal_primary_oai_HAL_hal_04069257v1 proquest_journals_2779701497 crossref_citationtrail_10_1007_s10618_022_00903_7 crossref_primary_10_1007_s10618_022_00903_7 springer_journals_10_1007_s10618_022_00903_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Data mining and knowledge discovery |
PublicationTitleAbbrev | Data Min Knowl Disc |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V Springer |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer |
References | FriedmanMA comparison of alternative tests of significance for the problem of m rankingsAnn Math Stat19401118692208510.1214/aoms/11777319440063.01455 Van BuurenSGroothuis-OudshoornKmice: multivariate imputation by chained equations in RJ Stat Softw20114516710.18637/jss.v045.i03 WangXMaYWangYTraffic flow prediction via spatial temporal graph neural networkProc Web Conf2020202010821092 Wells BJ, Chagin KM, Nowacki AS, et al (2013) Strategies for handling missing data in electronic health record derived data. EGEMS 1(3) Wu Z, Pan S, Long G, et al (2019) Graph wavenet for deep spatial-temporal graph modeling. In: Proceedings of the 28th international joint conference on artificial intelligence (IJCAI), pp 1907–1913 Chung J, Gulcehre C, Cho K, et al (2014) Empirical evaluation of gated recurrent neural networks on sequence modeling. In: NIPS 2014 workshop on deep learning Cirstea RG, Yang B, Guo C (2019) Graph attention recurrent neural networks for correlated time series forecasting. MileTS19@ KDD DongHDingFTanHLaplacian integration of graph convolutional network with tensor completion for traffic prediction with missing data in inter-city highway networkPhysica A2022586126474 El Hafyani H, Abboud M, Zuo J, et al (2022) Learning the micro-environment from rich trajectories in the context of mobile crowd sensing. Geoinformatica. https://doi.org/10.1007/s10707-022-00471-4 TianYZhangKLiJLSTM-based traffic flow prediction with missing dataNeurocomputing201831829730510.1016/j.neucom.2018.08.067 García-LaencinaPJSancho-GómezJLFigueiras-VidalARPattern classification with missing data: a reviewNeural Comput Appl201019226328210.1007/s00521-009-0295-6 Zhou H, Zhang S, Peng J, et al (2021) Informer: Beyond efficient transformer for long sequence time-series forecasting. In: Proceedings of the 35th AAAI conference on artificial intelligence (AAAI), pp 11,106–11,115 Bai L, Yao L, Li C, et al (2020) Adaptive graph convolutional recurrent network for traffic forecasting. Adv Neural Inf Process Syst (NeurIPS) 33 DemšarJStatistical comparisons of classifiers over multiple data setsJ Mach Learn Res (JMLR)20067113022743601222.68184 Abboud M, El Hafyani H, Zuo J, et al (2021) Micro-environment recognition in the context of environmental crowdsensing. In: Workshops of the EDBT/ICDT joint conference, EDBT/ICDT-WS CheZPurushothamSChoKRecurrent neural networks for multivariate time series with missing valuesSci Rep20188111210.1038/s41598-018-24271-9 Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 65–70 Lea C, Flynn MD, Vidal R, et al (2017) Temporal convolutional networks for action segmentation and detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 156–165 Wilcoxon F (1992) Individual comparisons by ranking methods. In: Breakthroughs in statistics. Springer, pp 196–202 BatistaGEMonardMCA study of k-nearest neighbour as an imputation methodHis200287251–26048 Han L, Du B, Sun L, et al (2021b) Dynamic and multi-faceted spatio-temporal deep learning for traffic speed forecasting. In: Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining, pp 547–555 Weston J, Chopra S, Bordes A (2015) Memory networks. In: International conference on learning representations (ICLR) Wu Z, Pan S, Long G, et al (2020) Connecting the dots: multivariate time series forecasting with graph neural networks. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp 753–763 Caltrans (2015) An introduction to the caltrans performance measurement system (pems). https://pems.dot.ca.gov/PeMS_Intro_User_Guide_v5.pdf BenavoliACoraniGMangiliFShould we really use post-hoc tests based on mean-ranks?J Mach Learn Res (JMLR)201617115216134829251360.62208 Jiang W, Luo J (2022) Graph neural network for traffic forecasting: a survey. Expert Syst Appl 117921 Li F, Feng J, Yan H, et al (2021) Dynamic graph convolutional recurrent network for traffic prediction: benchmark and solution. ACM Trans Knowl Discov Data (TKDD) Cui Z, Ke R, Pu Z et al (2020a) Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing values. Transp Res Part C Emerg Technol 118(102):674 XiePLiTLiuJUrban flow prediction from spatiotemporal data using machine learning: a surveyInf Fus20205911210.1016/j.inffus.2020.01.002 Zhong W, Suo Q, Jia X, et al (2021) Heterogeneous spatio-temporal graph convolution network for traffic forecasting with missing values. In: 2021 IEEE 41st international conference on distributed computing systems (ICDCS), IEEE, pp 707–717 Han J, Liu H, Zhu H, et al (2021a) Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Proceedings of the 35th AAAI conference on artificial intelligence (AAAI) Ismail FawazHForestierGWeberJDeep learning for time series classification: a reviewData Min Knowl Discov2019334917963396203910.1007/s10618-019-00619-11458.68196 Tang X, Yao H, Sun Y, et al (2020) Joint modeling of local and global temporal dynamics for multivariate time series forecasting with missing values. In: Proceedings of the 34th AAAI conference on artificial intelligence (AAAI), pp 5956–5963 Li Y, Yu R, Shahabi C, et al (2018) Diffusion convolutional recurrent neural network: data-driven traffic forecasting. In: International conference on learning representations (ICLR) Guo S, Lin Y, Wan H, et al (2021) Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting. IEEE Trans Knowl Data Eng (TKDE) Zuo J, Zeitouni K, Taher Y (2021) Smate: Semi-supervised spatio-temporal representation learning on multivariate time series. In: 2021 IEEE international conference on data mining (ICDM), IEEE, pp 1565–1570 Yu B, Yin H, Zhu Z (2018) Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. In: Proceedings of the 27th international joint conference on artificial intelligence (IJCAI) Cui Z, Lin L, Pu Z et al (2020b) Graph markov network for traffic forecasting with missing data. Transp Res Part C Emerg Technol 117(102):671 Lopez AL (2018) Traffic state estimation and prediction in freeways and urban networks. Ph.D. thesis, Université Grenoble Alpes He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778 Shang C, Chen J, Bi J (2020) Discrete graph structure learning for forecasting multiple time series. In: International conference on learning representations (ICLR) Wang S, Gao M, Wang Z et al (2021) Fine-grained spatial-temporal representation learning with missing data completion for traffic flow prediction. In: International conference on collaborative computing: networking. Springer, Applications and Worksharing, pp 138–155 Shleifer S, McCreery C, Chitters V (2019) Incrementally improving graph wavenet performance on traffic prediction. arXiv preprint arXiV:1912.07390 Yoon J, Jarrett D, Van der Schaar M (2019) Time-series generative adversarial networks. Adv Neural Inf Process Syst (NeurIPS) 32 903_CR8 S Van Buuren (903_CR31) 2011; 45 903_CR9 903_CR7 903_CR5 M Friedman (903_CR14) 1940; 11 903_CR2 PJ García-Laencina (903_CR15) 2010; 19 GE Batista (903_CR3) 2002; 87 Z Che (903_CR6) 2018; 8 903_CR19 903_CR18 903_CR17 903_CR16 903_CR38 903_CR37 903_CR36 903_CR13 903_CR35 903_CR34 903_CR33 903_CR10 903_CR41 903_CR40 A Benavoli (903_CR4) 2016; 17 H Ismail Fawaz (903_CR21) 2019; 33 Y Tian (903_CR30) 2018; 318 X Wang (903_CR32) 2020; 2020 P Xie (903_CR39) 2020; 59 903_CR29 903_CR28 903_CR27 903_CR1 903_CR26 903_CR25 903_CR24 J Demšar (903_CR11) 2006; 7 903_CR23 903_CR22 903_CR44 H Dong (903_CR12) 2022; 586 903_CR43 903_CR20 903_CR42 |
References_xml | – reference: Lopez AL (2018) Traffic state estimation and prediction in freeways and urban networks. Ph.D. thesis, Université Grenoble Alpes – reference: XiePLiTLiuJUrban flow prediction from spatiotemporal data using machine learning: a surveyInf Fus20205911210.1016/j.inffus.2020.01.002 – reference: Jiang W, Luo J (2022) Graph neural network for traffic forecasting: a survey. Expert Syst Appl 117921 – reference: Zuo J, Zeitouni K, Taher Y (2021) Smate: Semi-supervised spatio-temporal representation learning on multivariate time series. In: 2021 IEEE international conference on data mining (ICDM), IEEE, pp 1565–1570 – reference: Chung J, Gulcehre C, Cho K, et al (2014) Empirical evaluation of gated recurrent neural networks on sequence modeling. In: NIPS 2014 workshop on deep learning – reference: Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 65–70 – reference: DongHDingFTanHLaplacian integration of graph convolutional network with tensor completion for traffic prediction with missing data in inter-city highway networkPhysica A2022586126474 – reference: Wu Z, Pan S, Long G, et al (2020) Connecting the dots: multivariate time series forecasting with graph neural networks. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp 753–763 – reference: CheZPurushothamSChoKRecurrent neural networks for multivariate time series with missing valuesSci Rep20188111210.1038/s41598-018-24271-9 – reference: Li F, Feng J, Yan H, et al (2021) Dynamic graph convolutional recurrent network for traffic prediction: benchmark and solution. ACM Trans Knowl Discov Data (TKDD) – reference: Zhou H, Zhang S, Peng J, et al (2021) Informer: Beyond efficient transformer for long sequence time-series forecasting. In: Proceedings of the 35th AAAI conference on artificial intelligence (AAAI), pp 11,106–11,115 – reference: García-LaencinaPJSancho-GómezJLFigueiras-VidalARPattern classification with missing data: a reviewNeural Comput Appl201019226328210.1007/s00521-009-0295-6 – reference: Yoon J, Jarrett D, Van der Schaar M (2019) Time-series generative adversarial networks. Adv Neural Inf Process Syst (NeurIPS) 32 – reference: TianYZhangKLiJLSTM-based traffic flow prediction with missing dataNeurocomputing201831829730510.1016/j.neucom.2018.08.067 – reference: FriedmanMA comparison of alternative tests of significance for the problem of m rankingsAnn Math Stat19401118692208510.1214/aoms/11777319440063.01455 – reference: Yu B, Yin H, Zhu Z (2018) Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. In: Proceedings of the 27th international joint conference on artificial intelligence (IJCAI) – reference: Cirstea RG, Yang B, Guo C (2019) Graph attention recurrent neural networks for correlated time series forecasting. MileTS19@ KDD – reference: Van BuurenSGroothuis-OudshoornKmice: multivariate imputation by chained equations in RJ Stat Softw20114516710.18637/jss.v045.i03 – reference: El Hafyani H, Abboud M, Zuo J, et al (2022) Learning the micro-environment from rich trajectories in the context of mobile crowd sensing. Geoinformatica. https://doi.org/10.1007/s10707-022-00471-4 – reference: Shang C, Chen J, Bi J (2020) Discrete graph structure learning for forecasting multiple time series. In: International conference on learning representations (ICLR) – reference: Wilcoxon F (1992) Individual comparisons by ranking methods. In: Breakthroughs in statistics. Springer, pp 196–202 – reference: Ismail FawazHForestierGWeberJDeep learning for time series classification: a reviewData Min Knowl Discov2019334917963396203910.1007/s10618-019-00619-11458.68196 – reference: He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778 – reference: Tang X, Yao H, Sun Y, et al (2020) Joint modeling of local and global temporal dynamics for multivariate time series forecasting with missing values. In: Proceedings of the 34th AAAI conference on artificial intelligence (AAAI), pp 5956–5963 – reference: Cui Z, Lin L, Pu Z et al (2020b) Graph markov network for traffic forecasting with missing data. Transp Res Part C Emerg Technol 117(102):671 – reference: Lea C, Flynn MD, Vidal R, et al (2017) Temporal convolutional networks for action segmentation and detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 156–165 – reference: Zhong W, Suo Q, Jia X, et al (2021) Heterogeneous spatio-temporal graph convolution network for traffic forecasting with missing values. In: 2021 IEEE 41st international conference on distributed computing systems (ICDCS), IEEE, pp 707–717 – reference: Abboud M, El Hafyani H, Zuo J, et al (2021) Micro-environment recognition in the context of environmental crowdsensing. In: Workshops of the EDBT/ICDT joint conference, EDBT/ICDT-WS – reference: Cui Z, Ke R, Pu Z et al (2020a) Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing values. Transp Res Part C Emerg Technol 118(102):674 – reference: Han L, Du B, Sun L, et al (2021b) Dynamic and multi-faceted spatio-temporal deep learning for traffic speed forecasting. In: Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining, pp 547–555 – reference: Han J, Liu H, Zhu H, et al (2021a) Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Proceedings of the 35th AAAI conference on artificial intelligence (AAAI) – reference: Shleifer S, McCreery C, Chitters V (2019) Incrementally improving graph wavenet performance on traffic prediction. arXiv preprint arXiV:1912.07390 – reference: Wang S, Gao M, Wang Z et al (2021) Fine-grained spatial-temporal representation learning with missing data completion for traffic flow prediction. In: International conference on collaborative computing: networking. Springer, Applications and Worksharing, pp 138–155 – reference: Caltrans (2015) An introduction to the caltrans performance measurement system (pems). https://pems.dot.ca.gov/PeMS_Intro_User_Guide_v5.pdf – reference: Guo S, Lin Y, Wan H, et al (2021) Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting. IEEE Trans Knowl Data Eng (TKDE) – reference: Wells BJ, Chagin KM, Nowacki AS, et al (2013) Strategies for handling missing data in electronic health record derived data. EGEMS 1(3) – reference: WangXMaYWangYTraffic flow prediction via spatial temporal graph neural networkProc Web Conf2020202010821092 – reference: Wu Z, Pan S, Long G, et al (2019) Graph wavenet for deep spatial-temporal graph modeling. In: Proceedings of the 28th international joint conference on artificial intelligence (IJCAI), pp 1907–1913 – reference: Weston J, Chopra S, Bordes A (2015) Memory networks. In: International conference on learning representations (ICLR) – reference: Bai L, Yao L, Li C, et al (2020) Adaptive graph convolutional recurrent network for traffic forecasting. Adv Neural Inf Process Syst (NeurIPS) 33 – reference: DemšarJStatistical comparisons of classifiers over multiple data setsJ Mach Learn Res (JMLR)20067113022743601222.68184 – reference: BatistaGEMonardMCA study of k-nearest neighbour as an imputation methodHis200287251–26048 – reference: BenavoliACoraniGMangiliFShould we really use post-hoc tests based on mean-ranks?J Mach Learn Res (JMLR)201617115216134829251360.62208 – reference: Li Y, Yu R, Shahabi C, et al (2018) Diffusion convolutional recurrent neural network: data-driven traffic forecasting. In: International conference on learning representations (ICLR) – ident: 903_CR27 – volume: 8 start-page: 1 issue: 1 year: 2018 ident: 903_CR6 publication-title: Sci Rep doi: 10.1038/s41598-018-24271-9 – ident: 903_CR23 doi: 10.1109/CVPR.2017.113 – ident: 903_CR19 doi: 10.1109/CVPR.2016.90 – volume: 2020 start-page: 1082 year: 2020 ident: 903_CR32 publication-title: Proc Web Conf – ident: 903_CR25 – volume: 7 start-page: 1 issue: 1 year: 2006 ident: 903_CR11 publication-title: J Mach Learn Res (JMLR) – ident: 903_CR40 – ident: 903_CR43 doi: 10.1609/aaai.v35i12.17325 – ident: 903_CR18 doi: 10.1145/3447548.3467275 – ident: 903_CR41 doi: 10.24963/ijcai.2018/505 – volume: 59 start-page: 1 year: 2020 ident: 903_CR39 publication-title: Inf Fus doi: 10.1016/j.inffus.2020.01.002 – ident: 903_CR42 doi: 10.1109/ICDCS51616.2021.00073 – volume: 586 start-page: 474 issue: 126 year: 2022 ident: 903_CR12 publication-title: Physica A – ident: 903_CR2 – volume: 33 start-page: 917 issue: 4 year: 2019 ident: 903_CR21 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-019-00619-1 – ident: 903_CR10 doi: 10.1016/j.trc.2020.102671 – volume: 19 start-page: 263 issue: 2 year: 2010 ident: 903_CR15 publication-title: Neural Comput Appl doi: 10.1007/s00521-009-0295-6 – ident: 903_CR36 doi: 10.1007/978-1-4612-4380-9_16 – ident: 903_CR16 doi: 10.1109/TKDE.2021.3056502 – ident: 903_CR8 – volume: 87 start-page: 48 issue: 251–260 year: 2002 ident: 903_CR3 publication-title: His – ident: 903_CR9 doi: 10.1016/j.trc.2020.102674 – ident: 903_CR33 doi: 10.1007/978-3-030-92635-9_9 – ident: 903_CR7 – ident: 903_CR26 – ident: 903_CR5 – ident: 903_CR28 – volume: 318 start-page: 297 year: 2018 ident: 903_CR30 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.08.067 – volume: 17 start-page: 152 issue: 1 year: 2016 ident: 903_CR4 publication-title: J Mach Learn Res (JMLR) – ident: 903_CR13 doi: 10.1007/s10707-022-00471-4 – ident: 903_CR44 doi: 10.1109/ICDM51629.2021.00206 – ident: 903_CR37 doi: 10.24963/ijcai.2019/264 – ident: 903_CR24 – ident: 903_CR34 doi: 10.13063/2327-9214.1035 – ident: 903_CR20 – ident: 903_CR29 doi: 10.1609/aaai.v34i04.6056 – volume: 45 start-page: 1 year: 2011 ident: 903_CR31 publication-title: J Stat Softw doi: 10.18637/jss.v045.i03 – ident: 903_CR22 doi: 10.1016/j.eswa.2022.117921 – ident: 903_CR38 doi: 10.1145/3394486.3403118 – ident: 903_CR1 – ident: 903_CR35 – volume: 11 start-page: 86 issue: 1 year: 1940 ident: 903_CR14 publication-title: Ann Math Stat doi: 10.1214/aoms/1177731944 – ident: 903_CR17 doi: 10.1609/aaai.v35i5.16529 |
SSID | ssj0005230 |
Score | 2.5006938 |
Snippet | Traffic forecasting has attracted widespread attention recently. In reality, traffic data usually contains missing values due to sensor or communication... |
SourceID | hal proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 913 |
SubjectTerms | Artificial Intelligence Artificial neural networks Chemistry and Earth Sciences Computer Science Condensed Matter Context Data Mining and Knowledge Discovery Datasets Deep learning Disordered Systems and Neural Networks Experiments Forecasting Graph neural networks Graph representations Information Storage and Retrieval Mathematical models Neural networks Physics Sensors Special Issue of the Journal Track of ECML PKDD 2022 Statistics for Engineering Task complexity Traffic information |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT4MwEG7cfPHF30Z0msb4po1QKJQnsxg3YtQnl-yNlFLig2FzoH-_d1C2aeLeCFwhubu2H9e77wi55rHA_x6PxWEWsqDwBctUDn8pAEaUbyIlGhLXl9cwmQRPUzG1AbfKplV2a2KzUOczjTHyOx5FcYR4PrqffzLsGoWnq7aFRo9se7DToIfL0XgtxcNvq4RlwIT0XFs0Y0vnQk8yzGV3MVTBol8bU-8d0yLXMOefY9Jm9xntk10LG-mwtfMB2TLlIdnrWjJQO0OPSDJGAmqKueTWp2BU2aZ6VxQAKq0XClkj8NpoVWHWM8VgLAWDY9yAIv23qY7JZPT49pAw2yyBaYAUNSgXkEHIY55FrvYDrjKuPT8XqlBeESrha85lJgAdAUCQcZ4rlSNbl5AGhJXxT0i_nJXmlFAQ8EM3K2LtStC3ybTEaBVAu5wHMg8d4nWaSrVlEseGFh_pigMZtZuCdtNGu2nkkJvlmHnLo7FR-goMsBRECuxk-JziPRdLdWGd-fYcMujsk9qJV6UrN3HIbWez1eP_P3m2-W3nZAcbzbfZZwPSrxdf5gLgSJ1dNj73A2bH1zI priority: 102 providerName: ProQuest |
Title | Graph convolutional networks for traffic forecasting with missing values |
URI | https://link.springer.com/article/10.1007/s10618-022-00903-7 https://www.proquest.com/docview/2779701497 https://hal.science/hal-04069257 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD64DcEX7-J0jiC-aaFNmzR9nGMXvAwRB_pU0jTDB5myTn-_5_SyTVHBp5b0NIVzkvRL8p0vAGc8EjTv8ZxIJtIJJr5wEp3iLAXBiPZtqEUu4no7ksNxcPUoHsuksKxiu1dbkvlIvZLsJj3lEPvcpcUFJ6xBQ-Dcndr1mHdWiB1-kRusAkcozy1TZX6u48vvqPZMZMgVpPltczT_5_S3YbMEi6xTRHcH1ux0F7aqgxhY2S93YT3ncZpsD4YDEqBmxCUv2xS-Py2o3hlDgMrmM02qEXRvjc6I9cxoMZZhwGndgJH8t832YdzvPXSHTnlYgmMQUszRuYgMJI94ErrGD7hOuPH8VOiJ9iZSC99wrhKB6AgBgorSVOuU1LqEsmisrX8A9enr1B4CQwNfuskkMq4KotAmRtFqFUK7lAcqlU3wKp_FplQSpwMtXuKlBjL5OUY_x7mf47AJ54t33godjT-tTzEUC0OSwB52bmIqcylVF8eZD68JrSpScdnxspiHYRTStA_ruKiit3z8-yeP_md-DBt08HzBRmtBfT57tycIT-ZJG2qqP2hDozN4uu7h9bI3urvH0q7stvOW-gnxpdvp |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BPcAFaAtiebRW1Z6K1cSOE-eAECpdst1dTiBxcx3HKw5oeWQB8af4jczkwS6V4MYtSpyHZiae8fibbwC-i1TRuifkaZzHPBpJxXNb4CoFgxErfWJVReI6PI6z0-jvmTqbg8e2FoZgle2cWE3UxaWjHPkvkSRpQvF8sn91zalrFO2uti00arPo-4d7XLKVe71D1O8PIbp_Tn5nvOkqwB363gl-BbrQWKQiTwInI2Fz4UJZKDuy4Si2SjohdK4wjEBPqtOisLYgWiulPQ62XuJz5-FDJGVKEELdPZqBlMi6KllHXOkwaIp0mlK9ONScsPMBpUZ48sIRzp8TDHMmxv1vW7bydt1VWG7CVHZQ29VHmPPjT7DStoBgzYzwGbIjIrxmhF1vbBjvGtfQ8pJhQMwmN5ZYKujYO1sSyppR8pehgVGeghHduC_X4PRdxLgOC-PLsd8AhgNkHOSj1AUa9etzpyk7hqFkISJdxB0IW0kZ1zCXUwONCzPlXCbpGpSuqaRrkg78fL7nqubteHP0N1TA80Ci3M4OBobOBVQajPPaXdiB7VY_pvnRSzM1yw7stjqbXn79lZtvP-0rLGYnw4EZ9I77W7BETe5r5Ns2LExubv0OhkKT_Etlfwz-vbfBPwHv7xMD |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BVqp6gT7FAm2tqj21Fokdx86hqlDp7lIo6qFI3FzHcdRDtcBmAfHX-HWdSRyWViq3vUWJ89DMxDMef_MNwFtRKFr3pLzIy5xntVS8dBWuUjAYcTJop1oS129H-eQ4-3qiTlbgpq-FIVhlPye2E3V16ilHviO0LjTF83qnjrCI73ujT2fnnDpI0U5r306jM5GDcH2Fy7fm4_4e6vqdEKMvPz5PeOwwwD364Tl-EbrTXBSi1ImXmXCl8KmslKtdWudOSS-EKRWGFOhVTVFVzlVEcaVMwMEuSHzuKjzQ0iTUPcGMxnfgJbKrUDYZVyZNYsFOLNvLU8MJR59QmoTrv5zi6i-CZN6Jd__Zom093-gxrMWQle12NvYEVsL0Kaz37SBYnB2ewWRM5NeMcOzRnvGuaQczbxgGx2w-c8RYQcfBu4YQ14wSwQyNjXIWjKjHQ_McjpcixhcwmJ5OwwYwHCDzpKwLnxjUdSi9oUwZhpWVyEyVDyHtJWV9ZDGnZhq_7YJ_maRrUbq2la7VQ3h_e89Zx-Fx7-g3qIDbgUS_Pdk9tHQuoTJhnOMu0yFs9_qx8adv7MJEh_Ch19ni8v9fuXn_017DQzR1e7h_dLAFj6jffQeC24bBfHYRXmJUNC9ftebH4Oey7f0P204XMA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+convolutional+networks+for+traffic+forecasting+with+missing+values&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Zuo%2C+Jingwei&rft.au=Zeitouni%2C+Karine&rft.au=Taher%2C+Yehia&rft.au=Garcia-Rodriguez%2C+Sandra&rft.date=2023-03-01&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=37&rft.issue=2&rft.spage=913&rft.epage=947&rft_id=info:doi/10.1007%2Fs10618-022-00903-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10618_022_00903_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon |