Graph convolutional networks for traffic forecasting with missing values

Traffic forecasting has attracted widespread attention recently. In reality, traffic data usually contains missing values due to sensor or communication errors. The Spatio-temporal feature in traffic data brings more challenges for processing such missing values, for which the classic techniques (e....

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 37; no. 2; pp. 913 - 947
Main Authors Zuo, Jingwei, Zeitouni, Karine, Taher, Yehia, Garcia-Rodriguez, Sandra
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2023
Springer Nature B.V
Springer
Subjects
Online AccessGet full text
ISSN1384-5810
1573-756X
DOI10.1007/s10618-022-00903-7

Cover

Loading…
Abstract Traffic forecasting has attracted widespread attention recently. In reality, traffic data usually contains missing values due to sensor or communication errors. The Spatio-temporal feature in traffic data brings more challenges for processing such missing values, for which the classic techniques (e.g., data imputations) are limited: (1) in temporal axis, the values can be randomly or consecutively missing; (2) in spatial axis, the missing values can happen on one single sensor or on multiple sensors simultaneously. Recent models powered by Graph Neural Networks achieved satisfying performance on traffic forecasting tasks. However, few of them are applicable to such a complex missing-value context. To this end, we propose GCN-M, a Graph Convolutional Network model with the ability to handle the complex missing values in the Spatio-temporal context. Particularly, we jointly model the missing value processing and traffic forecasting tasks, considering both local Spatio-temporal features and global historical patterns in an attention-based memory network. We propose as well a dynamic graph learning module based on the learned local-global features. The experimental results on real-life datasets show the reliability of our proposed method.
AbstractList Traffic forecasting has attracted widespread attention recently. In reality, traffic data usually contains missing values due to sensor or communication errors. The Spatio-temporal feature in traffic data brings more challenges for processing such missing values, for which the classic techniques (e.g., data imputations) are limited: (1) in temporal axis, the values can be randomly or consecutively missing; (2) in spatial axis, the missing values can happen on one single sensor or on multiple sensors simultaneously. Recent models powered by Graph Neural Networks achieved satisfying performance on traffic forecasting tasks. However, few of them are applicable to such a complex missing-value context. To this end, we propose GCN-M, a Graph Convolutional Network model with the ability to handle the complex missing values in the Spatio-temporal context. Particularly, we jointly model the missing value processing and traffic forecasting tasks, considering both local Spatio-temporal features and global historical patterns in an attention-based memory network. We propose as well a dynamic graph learning module based on the learned local-global features. The experimental results on real-life datasets show the reliability of our proposed method.
Author Zeitouni, Karine
Zuo, Jingwei
Taher, Yehia
Garcia-Rodriguez, Sandra
Author_xml – sequence: 1
  givenname: Jingwei
  orcidid: 0000-0002-3251-6939
  surname: Zuo
  fullname: Zuo, Jingwei
  email: jingwei.zuo@tii.ae
  organization: Technology Innovation Institute
– sequence: 2
  givenname: Karine
  surname: Zeitouni
  fullname: Zeitouni, Karine
  organization: DAVID Lab, UVSQ, Université Paris-Saclay
– sequence: 3
  givenname: Yehia
  surname: Taher
  fullname: Taher, Yehia
  organization: DAVID Lab, UVSQ, Université Paris-Saclay
– sequence: 4
  givenname: Sandra
  surname: Garcia-Rodriguez
  fullname: Garcia-Rodriguez, Sandra
  organization: Data Analysis and Systems Intelligence Laboratory, CEA, LIST
BackLink https://hal.science/hal-04069257$$DView record in HAL
BookMark eNp9kEFLAzEQhYMo2Fb_gKcFTx5WJ8lmszmWolYoeFHwFqZpto2um5psK_57s64iePCUl-F7w5s3Joetby0hZxQuKYC8ihRKWuXAWA6ggOfygIyokEmI8ukwaV4VuagoHJNxjM8AIBiHEZnfBtxuMuPbvW92nfMtNllru3cfXmJW-5B1AevamV5bg7Fz7Tp7d90me3Ux9p89NjsbT8hRjU20p9_vhDzeXD_M5vni_vZuNl3khivZ5aWiQpRMsaUEwwuGS2YoXwmskdYlCm4Yq5ai4EJRqNRqhbiiQCtR2QSj5RNyMezdYKO3wb1i-NAenZ5PF7qfQQGlYkLuaWLPB3Yb_FvK2OlnvwvpwqiZlEoCLZRMVDVQJvgYg621cR32VaTTXaMp6L5jPXSsU8f6q2PdW9kf60-if018MMUEt2sbflP94_oEtZ-PyQ
CitedBy_id crossref_primary_10_1177_00368504241283315
crossref_primary_10_1016_j_inffus_2023_102078
crossref_primary_10_1016_j_eswa_2024_123721
crossref_primary_10_3390_electronics13163151
crossref_primary_10_3390_math12111739
crossref_primary_10_1080_19427867_2025_2450577
crossref_primary_10_1007_s00521_024_10888_7
crossref_primary_10_1088_2631_8695_ad9238
crossref_primary_10_3390_machines11111005
crossref_primary_10_1007_s11227_024_06670_0
crossref_primary_10_1109_JSEN_2024_3392938
crossref_primary_10_3390_s25010282
crossref_primary_10_1016_j_ress_2025_110928
crossref_primary_10_1016_j_knosys_2024_112295
crossref_primary_10_1088_2515_7620_ad8108
crossref_primary_10_1145_3706116
crossref_primary_10_1016_j_knosys_2023_110991
crossref_primary_10_1016_j_chaos_2024_115437
crossref_primary_10_1016_j_neucom_2024_128441
crossref_primary_10_1007_s40747_024_01768_7
crossref_primary_10_1080_13658816_2024_2381221
crossref_primary_10_1007_s11518_024_5594_z
crossref_primary_10_1016_j_eswa_2025_127200
Cites_doi 10.1038/s41598-018-24271-9
10.1109/CVPR.2017.113
10.1109/CVPR.2016.90
10.1609/aaai.v35i12.17325
10.1145/3447548.3467275
10.24963/ijcai.2018/505
10.1016/j.inffus.2020.01.002
10.1109/ICDCS51616.2021.00073
10.1007/s10618-019-00619-1
10.1016/j.trc.2020.102671
10.1007/s00521-009-0295-6
10.1007/978-1-4612-4380-9_16
10.1109/TKDE.2021.3056502
10.1016/j.trc.2020.102674
10.1007/978-3-030-92635-9_9
10.1016/j.neucom.2018.08.067
10.1007/s10707-022-00471-4
10.1109/ICDM51629.2021.00206
10.24963/ijcai.2019/264
10.13063/2327-9214.1035
10.1609/aaai.v34i04.6056
10.18637/jss.v045.i03
10.1016/j.eswa.2022.117921
10.1145/3394486.3403118
10.1214/aoms/1177731944
10.1609/aaai.v35i5.16529
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
1XC
VOOES
DOI 10.1007/s10618-022-00903-7
DatabaseName Springer Nature Open Access Journals (LUT & LAB)
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (OCUL)
Computing Database
ProQuest Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef

ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-756X
EndPage 947
ExternalDocumentID oai_HAL_hal_04069257v1
10_1007_s10618_022_00903_7
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PUEGO
Q9U
1XC
VOOES
ID FETCH-LOGICAL-c397t-691556292b70c342ab2c13d5afa1f6a53c228b543591089ddaad101858e42aae3
IEDL.DBID U2A
ISSN 1384-5810
IngestDate Fri Aug 22 06:20:37 EDT 2025
Sat Aug 23 12:59:39 EDT 2025
Thu Apr 24 23:10:25 EDT 2025
Tue Jul 01 00:40:32 EDT 2025
Fri Feb 21 02:44:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Deep learning
Memory networks
Graph convolutional networks
Traffic forecasting
Neural networks
Missing values
Artificial intelligence
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-691556292b70c342ab2c13d5afa1f6a53c228b543591089ddaad101858e42aae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3251-6939
0000-0002-5602-6942
OpenAccessLink https://link.springer.com/10.1007/s10618-022-00903-7
PQID 2779701497
PQPubID 43030
PageCount 35
ParticipantIDs hal_primary_oai_HAL_hal_04069257v1
proquest_journals_2779701497
crossref_citationtrail_10_1007_s10618_022_00903_7
crossref_primary_10_1007_s10618_022_00903_7
springer_journals_10_1007_s10618_022_00903_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Springer
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer
References FriedmanMA comparison of alternative tests of significance for the problem of m rankingsAnn Math Stat19401118692208510.1214/aoms/11777319440063.01455
Van BuurenSGroothuis-OudshoornKmice: multivariate imputation by chained equations in RJ Stat Softw20114516710.18637/jss.v045.i03
WangXMaYWangYTraffic flow prediction via spatial temporal graph neural networkProc Web Conf2020202010821092
Wells BJ, Chagin KM, Nowacki AS, et al (2013) Strategies for handling missing data in electronic health record derived data. EGEMS 1(3)
Wu Z, Pan S, Long G, et al (2019) Graph wavenet for deep spatial-temporal graph modeling. In: Proceedings of the 28th international joint conference on artificial intelligence (IJCAI), pp 1907–1913
Chung J, Gulcehre C, Cho K, et al (2014) Empirical evaluation of gated recurrent neural networks on sequence modeling. In: NIPS 2014 workshop on deep learning
Cirstea RG, Yang B, Guo C (2019) Graph attention recurrent neural networks for correlated time series forecasting. MileTS19@ KDD
DongHDingFTanHLaplacian integration of graph convolutional network with tensor completion for traffic prediction with missing data in inter-city highway networkPhysica A2022586126474
El Hafyani H, Abboud M, Zuo J, et al (2022) Learning the micro-environment from rich trajectories in the context of mobile crowd sensing. Geoinformatica. https://doi.org/10.1007/s10707-022-00471-4
TianYZhangKLiJLSTM-based traffic flow prediction with missing dataNeurocomputing201831829730510.1016/j.neucom.2018.08.067
García-LaencinaPJSancho-GómezJLFigueiras-VidalARPattern classification with missing data: a reviewNeural Comput Appl201019226328210.1007/s00521-009-0295-6
Zhou H, Zhang S, Peng J, et al (2021) Informer: Beyond efficient transformer for long sequence time-series forecasting. In: Proceedings of the 35th AAAI conference on artificial intelligence (AAAI), pp 11,106–11,115
Bai L, Yao L, Li C, et al (2020) Adaptive graph convolutional recurrent network for traffic forecasting. Adv Neural Inf Process Syst (NeurIPS) 33
DemšarJStatistical comparisons of classifiers over multiple data setsJ Mach Learn Res (JMLR)20067113022743601222.68184
Abboud M, El Hafyani H, Zuo J, et al (2021) Micro-environment recognition in the context of environmental crowdsensing. In: Workshops of the EDBT/ICDT joint conference, EDBT/ICDT-WS
CheZPurushothamSChoKRecurrent neural networks for multivariate time series with missing valuesSci Rep20188111210.1038/s41598-018-24271-9
Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 65–70
Lea C, Flynn MD, Vidal R, et al (2017) Temporal convolutional networks for action segmentation and detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 156–165
Wilcoxon F (1992) Individual comparisons by ranking methods. In: Breakthroughs in statistics. Springer, pp 196–202
BatistaGEMonardMCA study of k-nearest neighbour as an imputation methodHis200287251–26048
Han L, Du B, Sun L, et al (2021b) Dynamic and multi-faceted spatio-temporal deep learning for traffic speed forecasting. In: Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining, pp 547–555
Weston J, Chopra S, Bordes A (2015) Memory networks. In: International conference on learning representations (ICLR)
Wu Z, Pan S, Long G, et al (2020) Connecting the dots: multivariate time series forecasting with graph neural networks. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp 753–763
Caltrans (2015) An introduction to the caltrans performance measurement system (pems). https://pems.dot.ca.gov/PeMS_Intro_User_Guide_v5.pdf
BenavoliACoraniGMangiliFShould we really use post-hoc tests based on mean-ranks?J Mach Learn Res (JMLR)201617115216134829251360.62208
Jiang W, Luo J (2022) Graph neural network for traffic forecasting: a survey. Expert Syst Appl 117921
Li F, Feng J, Yan H, et al (2021) Dynamic graph convolutional recurrent network for traffic prediction: benchmark and solution. ACM Trans Knowl Discov Data (TKDD)
Cui Z, Ke R, Pu Z et al (2020a) Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing values. Transp Res Part C Emerg Technol 118(102):674
XiePLiTLiuJUrban flow prediction from spatiotemporal data using machine learning: a surveyInf Fus20205911210.1016/j.inffus.2020.01.002
Zhong W, Suo Q, Jia X, et al (2021) Heterogeneous spatio-temporal graph convolution network for traffic forecasting with missing values. In: 2021 IEEE 41st international conference on distributed computing systems (ICDCS), IEEE, pp 707–717
Han J, Liu H, Zhu H, et al (2021a) Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Proceedings of the 35th AAAI conference on artificial intelligence (AAAI)
Ismail FawazHForestierGWeberJDeep learning for time series classification: a reviewData Min Knowl Discov2019334917963396203910.1007/s10618-019-00619-11458.68196
Tang X, Yao H, Sun Y, et al (2020) Joint modeling of local and global temporal dynamics for multivariate time series forecasting with missing values. In: Proceedings of the 34th AAAI conference on artificial intelligence (AAAI), pp 5956–5963
Li Y, Yu R, Shahabi C, et al (2018) Diffusion convolutional recurrent neural network: data-driven traffic forecasting. In: International conference on learning representations (ICLR)
Guo S, Lin Y, Wan H, et al (2021) Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting. IEEE Trans Knowl Data Eng (TKDE)
Zuo J, Zeitouni K, Taher Y (2021) Smate: Semi-supervised spatio-temporal representation learning on multivariate time series. In: 2021 IEEE international conference on data mining (ICDM), IEEE, pp 1565–1570
Yu B, Yin H, Zhu Z (2018) Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. In: Proceedings of the 27th international joint conference on artificial intelligence (IJCAI)
Cui Z, Lin L, Pu Z et al (2020b) Graph markov network for traffic forecasting with missing data. Transp Res Part C Emerg Technol 117(102):671
Lopez AL (2018) Traffic state estimation and prediction in freeways and urban networks. Ph.D. thesis, Université Grenoble Alpes
He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778
Shang C, Chen J, Bi J (2020) Discrete graph structure learning for forecasting multiple time series. In: International conference on learning representations (ICLR)
Wang S, Gao M, Wang Z et al (2021) Fine-grained spatial-temporal representation learning with missing data completion for traffic flow prediction. In: International conference on collaborative computing: networking. Springer, Applications and Worksharing, pp 138–155
Shleifer S, McCreery C, Chitters V (2019) Incrementally improving graph wavenet performance on traffic prediction. arXiv preprint arXiV:1912.07390
Yoon J, Jarrett D, Van der Schaar M (2019) Time-series generative adversarial networks. Adv Neural Inf Process Syst (NeurIPS) 32
903_CR8
S Van Buuren (903_CR31) 2011; 45
903_CR9
903_CR7
903_CR5
M Friedman (903_CR14) 1940; 11
903_CR2
PJ García-Laencina (903_CR15) 2010; 19
GE Batista (903_CR3) 2002; 87
Z Che (903_CR6) 2018; 8
903_CR19
903_CR18
903_CR17
903_CR16
903_CR38
903_CR37
903_CR36
903_CR13
903_CR35
903_CR34
903_CR33
903_CR10
903_CR41
903_CR40
A Benavoli (903_CR4) 2016; 17
H Ismail Fawaz (903_CR21) 2019; 33
Y Tian (903_CR30) 2018; 318
X Wang (903_CR32) 2020; 2020
P Xie (903_CR39) 2020; 59
903_CR29
903_CR28
903_CR27
903_CR1
903_CR26
903_CR25
903_CR24
J Demšar (903_CR11) 2006; 7
903_CR23
903_CR22
903_CR44
H Dong (903_CR12) 2022; 586
903_CR43
903_CR20
903_CR42
References_xml – reference: Lopez AL (2018) Traffic state estimation and prediction in freeways and urban networks. Ph.D. thesis, Université Grenoble Alpes
– reference: XiePLiTLiuJUrban flow prediction from spatiotemporal data using machine learning: a surveyInf Fus20205911210.1016/j.inffus.2020.01.002
– reference: Jiang W, Luo J (2022) Graph neural network for traffic forecasting: a survey. Expert Syst Appl 117921
– reference: Zuo J, Zeitouni K, Taher Y (2021) Smate: Semi-supervised spatio-temporal representation learning on multivariate time series. In: 2021 IEEE international conference on data mining (ICDM), IEEE, pp 1565–1570
– reference: Chung J, Gulcehre C, Cho K, et al (2014) Empirical evaluation of gated recurrent neural networks on sequence modeling. In: NIPS 2014 workshop on deep learning
– reference: Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 65–70
– reference: DongHDingFTanHLaplacian integration of graph convolutional network with tensor completion for traffic prediction with missing data in inter-city highway networkPhysica A2022586126474
– reference: Wu Z, Pan S, Long G, et al (2020) Connecting the dots: multivariate time series forecasting with graph neural networks. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp 753–763
– reference: CheZPurushothamSChoKRecurrent neural networks for multivariate time series with missing valuesSci Rep20188111210.1038/s41598-018-24271-9
– reference: Li F, Feng J, Yan H, et al (2021) Dynamic graph convolutional recurrent network for traffic prediction: benchmark and solution. ACM Trans Knowl Discov Data (TKDD)
– reference: Zhou H, Zhang S, Peng J, et al (2021) Informer: Beyond efficient transformer for long sequence time-series forecasting. In: Proceedings of the 35th AAAI conference on artificial intelligence (AAAI), pp 11,106–11,115
– reference: García-LaencinaPJSancho-GómezJLFigueiras-VidalARPattern classification with missing data: a reviewNeural Comput Appl201019226328210.1007/s00521-009-0295-6
– reference: Yoon J, Jarrett D, Van der Schaar M (2019) Time-series generative adversarial networks. Adv Neural Inf Process Syst (NeurIPS) 32
– reference: TianYZhangKLiJLSTM-based traffic flow prediction with missing dataNeurocomputing201831829730510.1016/j.neucom.2018.08.067
– reference: FriedmanMA comparison of alternative tests of significance for the problem of m rankingsAnn Math Stat19401118692208510.1214/aoms/11777319440063.01455
– reference: Yu B, Yin H, Zhu Z (2018) Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. In: Proceedings of the 27th international joint conference on artificial intelligence (IJCAI)
– reference: Cirstea RG, Yang B, Guo C (2019) Graph attention recurrent neural networks for correlated time series forecasting. MileTS19@ KDD
– reference: Van BuurenSGroothuis-OudshoornKmice: multivariate imputation by chained equations in RJ Stat Softw20114516710.18637/jss.v045.i03
– reference: El Hafyani H, Abboud M, Zuo J, et al (2022) Learning the micro-environment from rich trajectories in the context of mobile crowd sensing. Geoinformatica. https://doi.org/10.1007/s10707-022-00471-4
– reference: Shang C, Chen J, Bi J (2020) Discrete graph structure learning for forecasting multiple time series. In: International conference on learning representations (ICLR)
– reference: Wilcoxon F (1992) Individual comparisons by ranking methods. In: Breakthroughs in statistics. Springer, pp 196–202
– reference: Ismail FawazHForestierGWeberJDeep learning for time series classification: a reviewData Min Knowl Discov2019334917963396203910.1007/s10618-019-00619-11458.68196
– reference: He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778
– reference: Tang X, Yao H, Sun Y, et al (2020) Joint modeling of local and global temporal dynamics for multivariate time series forecasting with missing values. In: Proceedings of the 34th AAAI conference on artificial intelligence (AAAI), pp 5956–5963
– reference: Cui Z, Lin L, Pu Z et al (2020b) Graph markov network for traffic forecasting with missing data. Transp Res Part C Emerg Technol 117(102):671
– reference: Lea C, Flynn MD, Vidal R, et al (2017) Temporal convolutional networks for action segmentation and detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 156–165
– reference: Zhong W, Suo Q, Jia X, et al (2021) Heterogeneous spatio-temporal graph convolution network for traffic forecasting with missing values. In: 2021 IEEE 41st international conference on distributed computing systems (ICDCS), IEEE, pp 707–717
– reference: Abboud M, El Hafyani H, Zuo J, et al (2021) Micro-environment recognition in the context of environmental crowdsensing. In: Workshops of the EDBT/ICDT joint conference, EDBT/ICDT-WS
– reference: Cui Z, Ke R, Pu Z et al (2020a) Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing values. Transp Res Part C Emerg Technol 118(102):674
– reference: Han L, Du B, Sun L, et al (2021b) Dynamic and multi-faceted spatio-temporal deep learning for traffic speed forecasting. In: Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining, pp 547–555
– reference: Han J, Liu H, Zhu H, et al (2021a) Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Proceedings of the 35th AAAI conference on artificial intelligence (AAAI)
– reference: Shleifer S, McCreery C, Chitters V (2019) Incrementally improving graph wavenet performance on traffic prediction. arXiv preprint arXiV:1912.07390
– reference: Wang S, Gao M, Wang Z et al (2021) Fine-grained spatial-temporal representation learning with missing data completion for traffic flow prediction. In: International conference on collaborative computing: networking. Springer, Applications and Worksharing, pp 138–155
– reference: Caltrans (2015) An introduction to the caltrans performance measurement system (pems). https://pems.dot.ca.gov/PeMS_Intro_User_Guide_v5.pdf
– reference: Guo S, Lin Y, Wan H, et al (2021) Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting. IEEE Trans Knowl Data Eng (TKDE)
– reference: Wells BJ, Chagin KM, Nowacki AS, et al (2013) Strategies for handling missing data in electronic health record derived data. EGEMS 1(3)
– reference: WangXMaYWangYTraffic flow prediction via spatial temporal graph neural networkProc Web Conf2020202010821092
– reference: Wu Z, Pan S, Long G, et al (2019) Graph wavenet for deep spatial-temporal graph modeling. In: Proceedings of the 28th international joint conference on artificial intelligence (IJCAI), pp 1907–1913
– reference: Weston J, Chopra S, Bordes A (2015) Memory networks. In: International conference on learning representations (ICLR)
– reference: Bai L, Yao L, Li C, et al (2020) Adaptive graph convolutional recurrent network for traffic forecasting. Adv Neural Inf Process Syst (NeurIPS) 33
– reference: DemšarJStatistical comparisons of classifiers over multiple data setsJ Mach Learn Res (JMLR)20067113022743601222.68184
– reference: BatistaGEMonardMCA study of k-nearest neighbour as an imputation methodHis200287251–26048
– reference: BenavoliACoraniGMangiliFShould we really use post-hoc tests based on mean-ranks?J Mach Learn Res (JMLR)201617115216134829251360.62208
– reference: Li Y, Yu R, Shahabi C, et al (2018) Diffusion convolutional recurrent neural network: data-driven traffic forecasting. In: International conference on learning representations (ICLR)
– ident: 903_CR27
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: 903_CR6
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-24271-9
– ident: 903_CR23
  doi: 10.1109/CVPR.2017.113
– ident: 903_CR19
  doi: 10.1109/CVPR.2016.90
– volume: 2020
  start-page: 1082
  year: 2020
  ident: 903_CR32
  publication-title: Proc Web Conf
– ident: 903_CR25
– volume: 7
  start-page: 1
  issue: 1
  year: 2006
  ident: 903_CR11
  publication-title: J Mach Learn Res (JMLR)
– ident: 903_CR40
– ident: 903_CR43
  doi: 10.1609/aaai.v35i12.17325
– ident: 903_CR18
  doi: 10.1145/3447548.3467275
– ident: 903_CR41
  doi: 10.24963/ijcai.2018/505
– volume: 59
  start-page: 1
  year: 2020
  ident: 903_CR39
  publication-title: Inf Fus
  doi: 10.1016/j.inffus.2020.01.002
– ident: 903_CR42
  doi: 10.1109/ICDCS51616.2021.00073
– volume: 586
  start-page: 474
  issue: 126
  year: 2022
  ident: 903_CR12
  publication-title: Physica A
– ident: 903_CR2
– volume: 33
  start-page: 917
  issue: 4
  year: 2019
  ident: 903_CR21
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-019-00619-1
– ident: 903_CR10
  doi: 10.1016/j.trc.2020.102671
– volume: 19
  start-page: 263
  issue: 2
  year: 2010
  ident: 903_CR15
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-009-0295-6
– ident: 903_CR36
  doi: 10.1007/978-1-4612-4380-9_16
– ident: 903_CR16
  doi: 10.1109/TKDE.2021.3056502
– ident: 903_CR8
– volume: 87
  start-page: 48
  issue: 251–260
  year: 2002
  ident: 903_CR3
  publication-title: His
– ident: 903_CR9
  doi: 10.1016/j.trc.2020.102674
– ident: 903_CR33
  doi: 10.1007/978-3-030-92635-9_9
– ident: 903_CR7
– ident: 903_CR26
– ident: 903_CR5
– ident: 903_CR28
– volume: 318
  start-page: 297
  year: 2018
  ident: 903_CR30
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.08.067
– volume: 17
  start-page: 152
  issue: 1
  year: 2016
  ident: 903_CR4
  publication-title: J Mach Learn Res (JMLR)
– ident: 903_CR13
  doi: 10.1007/s10707-022-00471-4
– ident: 903_CR44
  doi: 10.1109/ICDM51629.2021.00206
– ident: 903_CR37
  doi: 10.24963/ijcai.2019/264
– ident: 903_CR24
– ident: 903_CR34
  doi: 10.13063/2327-9214.1035
– ident: 903_CR20
– ident: 903_CR29
  doi: 10.1609/aaai.v34i04.6056
– volume: 45
  start-page: 1
  year: 2011
  ident: 903_CR31
  publication-title: J Stat Softw
  doi: 10.18637/jss.v045.i03
– ident: 903_CR22
  doi: 10.1016/j.eswa.2022.117921
– ident: 903_CR38
  doi: 10.1145/3394486.3403118
– ident: 903_CR1
– ident: 903_CR35
– volume: 11
  start-page: 86
  issue: 1
  year: 1940
  ident: 903_CR14
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177731944
– ident: 903_CR17
  doi: 10.1609/aaai.v35i5.16529
SSID ssj0005230
Score 2.5006938
Snippet Traffic forecasting has attracted widespread attention recently. In reality, traffic data usually contains missing values due to sensor or communication...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 913
SubjectTerms Artificial Intelligence
Artificial neural networks
Chemistry and Earth Sciences
Computer Science
Condensed Matter
Context
Data Mining and Knowledge Discovery
Datasets
Deep learning
Disordered Systems and Neural Networks
Experiments
Forecasting
Graph neural networks
Graph representations
Information Storage and Retrieval
Mathematical models
Neural networks
Physics
Sensors
Special Issue of the Journal Track of ECML PKDD 2022
Statistics for Engineering
Task complexity
Traffic information
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT4MwEG7cfPHF30Z0msb4po1QKJQnsxg3YtQnl-yNlFLig2FzoH-_d1C2aeLeCFwhubu2H9e77wi55rHA_x6PxWEWsqDwBctUDn8pAEaUbyIlGhLXl9cwmQRPUzG1AbfKplV2a2KzUOczjTHyOx5FcYR4PrqffzLsGoWnq7aFRo9se7DToIfL0XgtxcNvq4RlwIT0XFs0Y0vnQk8yzGV3MVTBol8bU-8d0yLXMOefY9Jm9xntk10LG-mwtfMB2TLlIdnrWjJQO0OPSDJGAmqKueTWp2BU2aZ6VxQAKq0XClkj8NpoVWHWM8VgLAWDY9yAIv23qY7JZPT49pAw2yyBaYAUNSgXkEHIY55FrvYDrjKuPT8XqlBeESrha85lJgAdAUCQcZ4rlSNbl5AGhJXxT0i_nJXmlFAQ8EM3K2LtStC3ybTEaBVAu5wHMg8d4nWaSrVlEseGFh_pigMZtZuCdtNGu2nkkJvlmHnLo7FR-goMsBRECuxk-JziPRdLdWGd-fYcMujsk9qJV6UrN3HIbWez1eP_P3m2-W3nZAcbzbfZZwPSrxdf5gLgSJ1dNj73A2bH1zI
  priority: 102
  providerName: ProQuest
Title Graph convolutional networks for traffic forecasting with missing values
URI https://link.springer.com/article/10.1007/s10618-022-00903-7
https://www.proquest.com/docview/2779701497
https://hal.science/hal-04069257
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD64DcEX7-J0jiC-aaFNmzR9nGMXvAwRB_pU0jTDB5myTn-_5_SyTVHBp5b0NIVzkvRL8p0vAGc8EjTv8ZxIJtIJJr5wEp3iLAXBiPZtqEUu4no7ksNxcPUoHsuksKxiu1dbkvlIvZLsJj3lEPvcpcUFJ6xBQ-Dcndr1mHdWiB1-kRusAkcozy1TZX6u48vvqPZMZMgVpPltczT_5_S3YbMEi6xTRHcH1ux0F7aqgxhY2S93YT3ncZpsD4YDEqBmxCUv2xS-Py2o3hlDgMrmM02qEXRvjc6I9cxoMZZhwGndgJH8t832YdzvPXSHTnlYgmMQUszRuYgMJI94ErrGD7hOuPH8VOiJ9iZSC99wrhKB6AgBgorSVOuU1LqEsmisrX8A9enr1B4CQwNfuskkMq4KotAmRtFqFUK7lAcqlU3wKp_FplQSpwMtXuKlBjL5OUY_x7mf47AJ54t33godjT-tTzEUC0OSwB52bmIqcylVF8eZD68JrSpScdnxspiHYRTStA_ruKiit3z8-yeP_md-DBt08HzBRmtBfT57tycIT-ZJG2qqP2hDozN4uu7h9bI3urvH0q7stvOW-gnxpdvp
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BPcAFaAtiebRW1Z6K1cSOE-eAECpdst1dTiBxcx3HKw5oeWQB8af4jczkwS6V4MYtSpyHZiae8fibbwC-i1TRuifkaZzHPBpJxXNb4CoFgxErfWJVReI6PI6z0-jvmTqbg8e2FoZgle2cWE3UxaWjHPkvkSRpQvF8sn91zalrFO2uti00arPo-4d7XLKVe71D1O8PIbp_Tn5nvOkqwB363gl-BbrQWKQiTwInI2Fz4UJZKDuy4Si2SjohdK4wjEBPqtOisLYgWiulPQ62XuJz5-FDJGVKEELdPZqBlMi6KllHXOkwaIp0mlK9ONScsPMBpUZ48sIRzp8TDHMmxv1vW7bydt1VWG7CVHZQ29VHmPPjT7DStoBgzYzwGbIjIrxmhF1vbBjvGtfQ8pJhQMwmN5ZYKujYO1sSyppR8pehgVGeghHduC_X4PRdxLgOC-PLsd8AhgNkHOSj1AUa9etzpyk7hqFkISJdxB0IW0kZ1zCXUwONCzPlXCbpGpSuqaRrkg78fL7nqubteHP0N1TA80Ci3M4OBobOBVQajPPaXdiB7VY_pvnRSzM1yw7stjqbXn79lZtvP-0rLGYnw4EZ9I77W7BETe5r5Ns2LExubv0OhkKT_Etlfwz-vbfBPwHv7xMD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BVqp6gT7FAm2tqj21Fokdx86hqlDp7lIo6qFI3FzHcdRDtcBmAfHX-HWdSRyWViq3vUWJ89DMxDMef_MNwFtRKFr3pLzIy5xntVS8dBWuUjAYcTJop1oS129H-eQ4-3qiTlbgpq-FIVhlPye2E3V16ilHviO0LjTF83qnjrCI73ujT2fnnDpI0U5r306jM5GDcH2Fy7fm4_4e6vqdEKMvPz5PeOwwwD364Tl-EbrTXBSi1ImXmXCl8KmslKtdWudOSS-EKRWGFOhVTVFVzlVEcaVMwMEuSHzuKjzQ0iTUPcGMxnfgJbKrUDYZVyZNYsFOLNvLU8MJR59QmoTrv5zi6i-CZN6Jd__Zom093-gxrMWQle12NvYEVsL0Kaz37SBYnB2ewWRM5NeMcOzRnvGuaQczbxgGx2w-c8RYQcfBu4YQ14wSwQyNjXIWjKjHQ_McjpcixhcwmJ5OwwYwHCDzpKwLnxjUdSi9oUwZhpWVyEyVDyHtJWV9ZDGnZhq_7YJ_maRrUbq2la7VQ3h_e89Zx-Fx7-g3qIDbgUS_Pdk9tHQuoTJhnOMu0yFs9_qx8adv7MJEh_Ch19ni8v9fuXn_017DQzR1e7h_dLAFj6jffQeC24bBfHYRXmJUNC9ftebH4Oey7f0P204XMA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+convolutional+networks+for+traffic+forecasting+with+missing+values&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Zuo%2C+Jingwei&rft.au=Zeitouni%2C+Karine&rft.au=Taher%2C+Yehia&rft.au=Garcia-Rodriguez%2C+Sandra&rft.date=2023-03-01&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=37&rft.issue=2&rft.spage=913&rft.epage=947&rft_id=info:doi/10.1007%2Fs10618-022-00903-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10618_022_00903_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon