Object Detection in Autonomous Vehicles under Adverse Weather: A Review of Traditional and Deep Learning Approaches

Enhancing the environmental perception of autonomous vehicles (AVs) in intelligent transportation systems requires computer vision technology to be effective in detecting objects and obstacles, particularly in adverse weather conditions. Adverse weather circumstances present serious difficulties for...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms Vol. 17; no. 3; p. 103
Main Authors Tahir, Noor Ul Ain, Zhang, Zuping, Asim, Muhammad, Chen, Junhong, ELAffendi, Mohammed
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Enhancing the environmental perception of autonomous vehicles (AVs) in intelligent transportation systems requires computer vision technology to be effective in detecting objects and obstacles, particularly in adverse weather conditions. Adverse weather circumstances present serious difficulties for object-detecting systems, which are essential to contemporary safety procedures, infrastructure for monitoring, and intelligent transportation. AVs primarily depend on image processing algorithms that utilize a wide range of onboard visual sensors for guidance and decisionmaking. Ensuring the consistent identification of critical elements such as vehicles, pedestrians, and road lanes, even in adverse weather, is a paramount objective. This paper not only provides a comprehensive review of the literature on object detection (OD) under adverse weather conditions but also delves into the ever-evolving realm of the architecture of AVs, challenges for automated vehicles in adverse weather, the basic structure of OD, and explores the landscape of traditional and deep learning (DL) approaches for OD within the realm of AVs. These approaches are essential for advancing the capabilities of AVs in recognizing and responding to objects in their surroundings. This paper further investigates previous research that has employed both traditional and DL methodologies for the detection of vehicles, pedestrians, and road lanes, effectively linking these approaches with the evolving field of AVs. Moreover, this paper offers an in-depth analysis of the datasets commonly employed in AV research, with a specific focus on the detection of key elements in various environmental conditions, and then summarizes the evaluation matrix. We expect that this review paper will help scholars to gain a better understanding of this area of research.
AbstractList Enhancing the environmental perception of autonomous vehicles (AVs) in intelligent transportation systems requires computer vision technology to be effective in detecting objects and obstacles, particularly in adverse weather conditions. Adverse weather circumstances present serious difficulties for object-detecting systems, which are essential to contemporary safety procedures, infrastructure for monitoring, and intelligent transportation. AVs primarily depend on image processing algorithms that utilize a wide range of onboard visual sensors for guidance and decisionmaking. Ensuring the consistent identification of critical elements such as vehicles, pedestrians, and road lanes, even in adverse weather, is a paramount objective. This paper not only provides a comprehensive review of the literature on object detection (OD) under adverse weather conditions but also delves into the ever-evolving realm of the architecture of AVs, challenges for automated vehicles in adverse weather, the basic structure of OD, and explores the landscape of traditional and deep learning (DL) approaches for OD within the realm of AVs. These approaches are essential for advancing the capabilities of AVs in recognizing and responding to objects in their surroundings. This paper further investigates previous research that has employed both traditional and DL methodologies for the detection of vehicles, pedestrians, and road lanes, effectively linking these approaches with the evolving field of AVs. Moreover, this paper offers an in-depth analysis of the datasets commonly employed in AV research, with a specific focus on the detection of key elements in various environmental conditions, and then summarizes the evaluation matrix. We expect that this review paper will help scholars to gain a better understanding of this area of research.
Audience Academic
Author Asim, Muhammad
ELAffendi, Mohammed
Zhang, Zuping
Chen, Junhong
Tahir, Noor Ul Ain
Author_xml – sequence: 1
  givenname: Noor Ul Ain
  orcidid: 0009-0002-6696-5449
  surname: Tahir
  fullname: Tahir, Noor Ul Ain
– sequence: 2
  givenname: Zuping
  orcidid: 0000-0002-2528-7808
  surname: Zhang
  fullname: Zhang, Zuping
– sequence: 3
  givenname: Muhammad
  orcidid: 0000-0002-6423-9809
  surname: Asim
  fullname: Asim, Muhammad
– sequence: 4
  givenname: Junhong
  orcidid: 0000-0002-4874-9550
  surname: Chen
  fullname: Chen, Junhong
– sequence: 5
  givenname: Mohammed
  orcidid: 0000-0001-9349-1985
  surname: ELAffendi
  fullname: ELAffendi, Mohammed
BookMark eNplkU1rVDEYhYNUsK0u_AcBVy6mzce9-XB3qVULAwWpugyZ5M1MhplkTHIr_nszjoooWbzhzTkPnJwLdJZyAoReUnLFuSbXlkrCCSX8CTqnWuvFoDQ_--v-DF3UuiVEjFrQc1TvV1twDb-F1kfMCceEp7nllPd5rvgzbKLbQcVz8lDw5B-hVMBfwLYNlDd4wh_hMcI3nAN-KNbHI8PusE2-M-GAl2BLimmNp8OhZOs2UJ-jp8HuKrz4NS_Rp3e3DzcfFsv793c303LhuJZtIaR3igc2KiKZloE571xPJkCScSSCW04VUwN1q0EE4HwUvkfvry4wOYz8Et2duD7brTmUuLflu8k2mp-LXNbGlnaMZ9QoyUpy71nwg4JR-4F1PgmBrAI41lmvTqwe4usMtZltnktPWg3TSlLGBaVddXVSrW2HxhRyK9b142EfXW8qxL6fpFKs86nohuuTwZVca4FgXGz2-IfdGHeGEnOs1fyptTte_-P4Hex_7Q9--qId
CitedBy_id crossref_primary_10_3389_fphy_2024_1398678
crossref_primary_10_3390_a17110526
crossref_primary_10_1007_s11042_024_20219_6
crossref_primary_10_32604_cmc_2024_055049
crossref_primary_10_1002_cpe_8241
crossref_primary_10_3390_biomimetics10010038
crossref_primary_10_1016_j_cviu_2024_104222
crossref_primary_10_3390_computers14030093
crossref_primary_10_3934_math_20241693
crossref_primary_10_3389_frsc_2025_1561404
crossref_primary_10_3390_math12101514
crossref_primary_10_1016_j_engappai_2024_109994
crossref_primary_10_3390_app14177958
crossref_primary_10_1016_j_eswa_2025_127055
crossref_primary_10_1177_20427530241282254
crossref_primary_10_3390_s24123938
crossref_primary_10_3390_s25030912
crossref_primary_10_1109_ACCESS_2025_3537800
crossref_primary_10_1038_s41598_025_86743_z
Cites_doi 10.3389/fnbot.2023.1058723
10.1177/09544070211036311
10.1016/j.isprsjprs.2022.12.021
10.1016/0001-4575(93)90076-9
10.1109/JSEN.2001.936931
10.1007/978-3-030-01264-9
10.1177/0278364916679498
10.1109/IROS45743.2020.9341406
10.1175/BAMS-D-17-0107.1
10.1109/ICCCE58854.2023.10246071
10.1109/IVS.2018.8500543
10.1109/MSP.2020.2984801
10.3390/s19030648
10.1016/j.eswa.2018.12.005
10.1109/ACCESS.2020.3026192
10.1109/ICDSAAI55433.2022.10028795
10.1016/j.imavis.2017.09.008
10.1109/IEEECONF49454.2021.9382618
10.1109/TPAMI.2019.2926463
10.1109/5.726791
10.1109/SMAP59435.2023.10255190
10.1007/s11042-016-4184-6
10.1109/TPAMI.2016.2577031
10.1109/ICCV.2019.00972
10.1109/ICCES54183.2022.9835814
10.3390/s22218577
10.1109/ACCESS.2019.2909992
10.1109/ISADS.2015.24
10.1007/978-3-030-19562-5
10.1109/CVPR42600.2020.00466
10.1007/s11263-018-1072-8
10.1109/TPAMI.2015.2389824
10.1007/978-3-030-01231-1_25
10.1109/IIH-MSP.2015.82
10.1109/ITEC55900.2023.10187020
10.4271/2008-01-0910
10.1109/ICCV.2017.324
10.3390/machines5010006
10.4028/www.scientific.net/AMM.513-517.3651
10.1109/MVT.2019.2892497
10.1109/ICRA40945.2020.9197385
10.3390/s21217267
10.1007/s10514-022-10072-7
10.3390/electronics11172748
10.1117/12.2587993
10.3390/s17051065
10.1109/CVPR42600.2020.00271
10.3390/s20226532
10.1177/03611981211051334
10.1007/s11116-016-9745-z
10.1007/s12652-019-01668-6
10.1177/0278364913491297
10.3390/ai3020019
10.1371/journal.pone.0189145
10.3991/ijoe.v9iS6.2828
10.1109/CVPR.2016.352
10.1109/CVPR.2014.81
10.1109/ICCCSP52374.2021.9465512
10.1109/TITS.2013.2294646
10.1109/AICCSA.2017.35
10.1109/ISTEL.2018.8661069
10.1109/ICCAR.2019.8813346
10.1109/CVPR42600.2020.00252
10.1109/TSMC.2018.2872891
10.1177/02783649231160195
10.1016/j.eswa.2014.10.024
10.5220/0005540501910198
10.1109/CVPR42600.2020.01164
10.1109/ITSC.2006.1706726
10.1109/ACCESS.2021.3076530
10.1109/CAC51589.2020.9326819
10.3390/electronics12102312
10.1109/CVPR42600.2020.01170
10.1109/ICRAMET53537.2021.9650473
10.1007/978-3-319-46448-0_2
10.1109/ICCV.2015.169
10.1007/11881599_147
10.1109/TPAMI.2019.2897684
10.1109/IV47402.2020.9304681
10.1007/3-540-45665-1_21
10.1109/MSP.2016.2628914
10.1109/TITS.2014.2321108
10.1109/ICRA48506.2021.9562089
10.1016/j.iatssr.2019.11.005
10.1109/ICCV.2017.534
10.1109/TITS.2020.3013099
10.1002/rob.20147
10.1177/0278364915614638
10.1109/ICECCT52121.2021.9616881
10.3390/electronics11040556
10.1109/ACCESS.2020.2982539
10.1016/j.ijtst.2021.06.003
10.1109/25.69979
10.1109/CVPR.2017.106
10.1007/s11042-022-12347-8
10.1049/iet-its.2017.0047
10.1007/s11235-022-00930-1
10.1016/j.eswa.2020.113816
10.1109/TIV.2016.2578706
10.1109/CVPR42600.2020.01079
10.1109/CSCI46756.2018.00074
10.1109/UCC56403.2022.00072
10.1117/12.2558989
10.1134/S1054661818020049
10.1109/CVPR.2019.00895
10.1109/ICCV48922.2021.01059
10.1109/TITS.2011.2181366
10.3390/s20164646
10.1109/ICCV.1999.790410
10.1177/0278364920979368
10.1109/TITS.2018.2791533
10.1109/ITT56123.2022.9863963
10.1109/IPAS.2016.7880072
10.1109/IROS51168.2021.9636162
10.1109/TETCI.2020.3007905
10.1007/s11042-021-10954-5
10.24996/ijs.2021.62.6.30
10.1109/IMCCC.2018.00211
10.1145/3377049.3377105
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOA
DOI 10.3390/a17030103
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1999-4893
ExternalDocumentID oai_doaj_org_article_8570b73dd2fd48e59d423a30ff0bfec2
A788242316
10_3390_a17030103
GeographicLocations United Kingdom
Germany
GeographicLocations_xml – name: United Kingdom
– name: Germany
GroupedDBID 23M
2WC
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
J9A
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
TR2
TUS
PMFND
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQGLB
PQUKI
Q9U
PUEGO
ID FETCH-LOGICAL-c397t-67dc83f25807297f2cdcc1036e7055063a3182841cb46fe3356d301e70cf27453
IEDL.DBID BENPR
ISSN 1999-4893
IngestDate Wed Aug 27 01:31:39 EDT 2025
Fri Jul 25 09:54:06 EDT 2025
Tue Jun 10 21:10:38 EDT 2025
Tue Jul 01 03:23:17 EDT 2025
Thu Apr 24 23:04:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-67dc83f25807297f2cdcc1036e7055063a3182841cb46fe3356d301e70cf27453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9349-1985
0000-0002-4874-9550
0000-0002-2528-7808
0009-0002-6696-5449
0000-0002-6423-9809
OpenAccessLink https://www.proquest.com/docview/2987123611?pq-origsite=%requestingapplication%
PQID 2987123611
PQPubID 2032439
ParticipantIDs doaj_primary_oai_doaj_org_article_8570b73dd2fd48e59d423a30ff0bfec2
proquest_journals_2987123611
gale_infotracacademiconefile_A788242316
crossref_citationtrail_10_3390_a17030103
crossref_primary_10_3390_a17030103
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Algorithms
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_94
ref_137
ref_136
ref_92
Ghosh (ref_133) 2021; 80
ref_138
Son (ref_154) 2015; 42
Zang (ref_13) 2019; 14
ref_14
ref_131
Ragesh (ref_144) 2019; 7
ref_11
ref_99
ref_130
ref_98
Ewecker (ref_112) 2023; 47
ref_97
ref_95
ref_134
Yang (ref_114) 2018; 12
Arora (ref_132) 2022; 81
Choi (ref_77) 2018; 19
ref_17
Jia (ref_101) 2014; 513
Khan (ref_163) 2022; 11
Tumas (ref_148) 2020; 8
Razzok (ref_141) 2023; 12
Tian (ref_110) 2013; 9
ref_125
ref_128
ref_127
Ding (ref_164) 2017; 76
ref_129
ref_25
ref_24
ref_23
ref_120
ref_22
ref_21
ref_122
Mehra (ref_10) 2020; 22
ref_121
ref_123
Lai (ref_147) 2021; Volume 1777
Li (ref_135) 2022; Volume 2284
ref_28
ref_27
Rose (ref_159) 2014; 15
ref_26
Andrey (ref_8) 1993; 25
Wojtyra (ref_142) 2020; 8
ref_71
ref_158
ref_70
Carullo (ref_42) 2001; 1
Kamemura (ref_44) 2008; 1
Abdullah (ref_107) 2021; 62
ref_79
Wang (ref_151) 2006; Volume 4223
ref_78
ref_153
ref_152
ref_76
ref_155
ref_74
ref_157
Burnett (ref_80) 2023; 42
ref_156
Hsieh (ref_160) 2014; 15
Leibe (ref_93) 2016; Volume 9905
ref_83
ref_82
ref_81
Bansal (ref_5) 2018; 45
Gharaibeh (ref_12) 2022; 3
ref_149
ref_140
ref_89
LeCun (ref_87) 1998; 86
ref_88
ref_143
ref_85
ref_146
ref_84
ref_145
Braun (ref_72) 2019; 41
Maddern (ref_73) 2017; 36
Yang (ref_20) 2018; 69
Pitropov (ref_62) 2021; 40
Hnewa (ref_18) 2020; 38
ref_58
Nguyen (ref_162) 2018; 21
ref_57
ref_56
ref_55
ref_54
Chen (ref_150) 2018; Volume 10985
ref_53
Paden (ref_49) 2016; 1
Abbas (ref_19) 2021; 19
Wang (ref_106) 2022; 236
Yoneda (ref_15) 2019; 43
Trenberth (ref_7) 2018; 99
Badue (ref_4) 2021; 165
ref_60
ref_68
Zhang (ref_124) 2019; 121
ref_161
ref_67
ref_66
ref_65
ref_166
ref_64
ref_165
ref_63
ref_168
Zheng (ref_103) 2018; 28
Sakaridis (ref_69) 2018; 126
Wu (ref_108) 2012; 13
Patole (ref_40) 2017; 34
ref_115
ref_116
ref_118
Geiger (ref_51) 2013; 32
Iftikhar (ref_2) 2022; 80
ref_35
Akata (ref_75) 2021; Volume 12544
ref_34
Asim (ref_86) 2020; 4
ref_33
Sun (ref_52) 2021; 9
Huang (ref_59) 2019; 42
ref_32
ref_31
ref_30
ref_113
Lee (ref_117) 2002; Volume 2388
ref_39
ref_38
Kuang (ref_111) 2018; 49
Wang (ref_139) 2023; 17
ref_37
Fan (ref_119) 2013; 40
Huang (ref_126) 2010; Volume 6216
Ren (ref_90) 2016; 39
ref_104
Briefs (ref_29) 2015; 46
ref_105
Krishnaveni (ref_167) 2020; 13
Shladover (ref_50) 1991; 40
ref_109
ref_47
ref_46
ref_45
Thrun (ref_36) 2006; 23
ref_43
ref_100
ref_41
ref_102
Haris (ref_169) 2022; 2676
ref_1
Ushani (ref_61) 2016; 35
ref_3
ref_48
ref_9
Zhang (ref_16) 2023; 196
Vedaldi (ref_96) 2020; Volume 12346
He (ref_91) 2015; 37
ref_6
References_xml – volume: 17
  start-page: 1058723
  year: 2023
  ident: ref_139
  article-title: Real-time vehicle target detection in inclement weather conditions based on YOLOv4
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2023.1058723
– ident: ref_9
– ident: ref_100
– volume: 236
  start-page: 1607
  year: 2022
  ident: ref_106
  article-title: Vehicle detection in severe weather based on pseudo-visual search and HOG–LBP feature fusion
  publication-title: Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
  doi: 10.1177/09544070211036311
– volume: 196
  start-page: 146
  year: 2023
  ident: ref_16
  article-title: Perception and sensing for autonomous vehicles under adverse weather conditions: A survey
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2022.12.021
– volume: 25
  start-page: 465
  year: 1993
  ident: ref_8
  article-title: A temporal analysis of rain-related crash risk
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/0001-4575(93)90076-9
– volume: 1
  start-page: 143
  year: 2001
  ident: ref_42
  article-title: An ultrasonic sensor for distance measurement in automotive applications
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2001.936931
– ident: ref_70
  doi: 10.1007/978-3-030-01264-9
– ident: ref_1
– volume: 36
  start-page: 3
  year: 2017
  ident: ref_73
  article-title: 1 year, 1000 km: The oxford robotcar dataset
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364916679498
– ident: ref_123
– ident: ref_94
– volume: 46
  start-page: 1
  year: 2015
  ident: ref_29
  article-title: Mcity Grand Opening
  publication-title: Res. Rev.
– ident: ref_79
  doi: 10.1109/IROS45743.2020.9341406
– volume: 99
  start-page: 289
  year: 2018
  ident: ref_7
  article-title: How often does it really rain?
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-17-0107.1
– ident: ref_31
– ident: ref_27
– ident: ref_165
  doi: 10.1109/ICCCE58854.2023.10246071
– ident: ref_39
  doi: 10.1109/IVS.2018.8500543
– volume: 38
  start-page: 53
  year: 2020
  ident: ref_18
  article-title: Object detection under rainy conditions for autonomous vehicles: A review of state-of-the-art and emerging techniques
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2020.2984801
– volume: Volume 1777
  start-page: 012057
  year: 2021
  ident: ref_147
  article-title: Research on pedestrian detection using optimized mask R-CNN algorithm in low-light road environment
  publication-title: Journal of Physics: Conference Series
– volume: 12
  start-page: 1557
  year: 2023
  ident: ref_141
  article-title: Pedestrian detection under weather conditions using conditional generative adversarial network
  publication-title: Int. J. Artif. Intell.
– ident: ref_48
  doi: 10.3390/s19030648
– volume: 121
  start-page: 38
  year: 2019
  ident: ref_124
  article-title: Autonomous path tracking control of intelligent electric vehicles based on lane detection and optimal preview method
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.12.005
– volume: 8
  start-page: 174394
  year: 2020
  ident: ref_142
  article-title: Real world object detection dataset for quadcopter unmanned aerial vehicle detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3026192
– ident: ref_152
– ident: ref_17
  doi: 10.1109/ICDSAAI55433.2022.10028795
– ident: ref_45
– volume: 69
  start-page: 143
  year: 2018
  ident: ref_20
  article-title: Vehicle detection in intelligent transportation systems and its applications under varying environments: A review
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2017.09.008
– ident: ref_116
  doi: 10.1109/IEEECONF49454.2021.9382618
– volume: 42
  start-page: 2702
  year: 2019
  ident: ref_59
  article-title: The apolloscape open dataset for autonomous driving and its application
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2926463
– volume: 86
  start-page: 2278
  year: 1998
  ident: ref_87
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– ident: ref_130
  doi: 10.1109/SMAP59435.2023.10255190
– volume: 21
  start-page: 822
  year: 2018
  ident: ref_162
  article-title: A study on real-time detection method of lane and vehicle for lane change assistant system using vision system on highway
  publication-title: Eng. Sci. Technol. Int. J.
– volume: 76
  start-page: 22979
  year: 2017
  ident: ref_164
  article-title: Fast lane detection based on bird’s eye view and improved random sample consensus algorithm
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-016-4184-6
– volume: 39
  start-page: 1137
  year: 2016
  ident: ref_90
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref_28
– ident: ref_97
  doi: 10.1109/ICCV.2019.00972
– ident: ref_21
  doi: 10.1109/ICCES54183.2022.9835814
– ident: ref_30
– ident: ref_140
  doi: 10.3390/s22218577
– ident: ref_3
– ident: ref_115
– volume: 7
  start-page: 47864
  year: 2019
  ident: ref_144
  article-title: Pedestrian detection in automotive safety: Understanding state-of-the-art
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2909992
– ident: ref_47
– ident: ref_128
  doi: 10.1109/ISADS.2015.24
– ident: ref_104
  doi: 10.1007/978-3-030-19562-5
– ident: ref_157
– ident: ref_65
  doi: 10.1109/CVPR42600.2020.00466
– volume: 126
  start-page: 973
  year: 2018
  ident: ref_69
  article-title: Semantic foggy scene understanding with synthetic data
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-018-1072-8
– volume: 37
  start-page: 1904
  year: 2015
  ident: ref_91
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
– ident: ref_67
– volume: 19
  start-page: 838
  year: 2021
  ident: ref_19
  article-title: A comprehensive review of vehicle detection using computer vision
  publication-title: TELKOMNIKA Telecommun. Comput. Electron. Control
– ident: ref_76
  doi: 10.1007/978-3-030-01231-1_25
– ident: ref_127
  doi: 10.1109/IIH-MSP.2015.82
– ident: ref_153
  doi: 10.1109/ITEC55900.2023.10187020
– volume: 1
  start-page: 301
  year: 2008
  ident: ref_44
  article-title: Development of a long-range ultrasonic sensor for automotive application
  publication-title: SAE Int. J. Passeng. Cars-Electron. Electr. Syst.
  doi: 10.4271/2008-01-0910
– ident: ref_98
  doi: 10.1109/ICCV.2017.324
– ident: ref_46
  doi: 10.3390/machines5010006
– volume: 513
  start-page: 3651
  year: 2014
  ident: ref_101
  article-title: Detection of Traffic and Road Condition Based on SVM and PHOW
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.513-517.3651
– volume: 14
  start-page: 103
  year: 2019
  ident: ref_13
  article-title: The impact of adverse weather conditions on autonomous vehicles: How rain, snow, fog, and hail affect the performance of a self-driving car
  publication-title: IEEE Veh. Technol. Mag.
  doi: 10.1109/MVT.2019.2892497
– ident: ref_74
  doi: 10.1109/ICRA40945.2020.9197385
– ident: ref_99
  doi: 10.3390/s21217267
– ident: ref_6
– ident: ref_143
– volume: 47
  start-page: 313
  year: 2023
  ident: ref_112
  article-title: Provident vehicle detection at night for advanced driver assistance systems
  publication-title: Auton. Robot.
  doi: 10.1007/s10514-022-10072-7
– ident: ref_25
– ident: ref_138
  doi: 10.3390/electronics11172748
– ident: ref_81
– ident: ref_33
– ident: ref_35
  doi: 10.1117/12.2587993
– ident: ref_145
  doi: 10.3390/s17051065
– ident: ref_58
  doi: 10.1109/CVPR42600.2020.00271
– ident: ref_14
  doi: 10.3390/s20226532
– volume: 2676
  start-page: 342
  year: 2022
  ident: ref_169
  article-title: Lane lines detection under complex environment by fusion of detection and prediction models
  publication-title: Transp. Res. Rec.
  doi: 10.1177/03611981211051334
– volume: 45
  start-page: 641
  year: 2018
  ident: ref_5
  article-title: Are we ready to embrace connected and self-driving vehicles? A case study of Texans
  publication-title: Transportation
  doi: 10.1007/s11116-016-9745-z
– volume: 13
  start-page: 4123
  year: 2020
  ident: ref_167
  article-title: Novel deep learning framework for broadcasting abnormal events obtained from surveillance applications
  publication-title: J. Ambient. Intell. Humaniz. Comput.
  doi: 10.1007/s12652-019-01668-6
– volume: 32
  start-page: 1231
  year: 2013
  ident: ref_51
  article-title: Vision meets robotics: The kitti dataset
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364913491297
– volume: 3
  start-page: 303
  year: 2022
  ident: ref_12
  article-title: Detection in adverse weather conditions for autonomous vehicles via deep learning
  publication-title: AI
  doi: 10.3390/ai3020019
– ident: ref_113
  doi: 10.1371/journal.pone.0189145
– ident: ref_22
– volume: 9
  start-page: 60
  year: 2013
  ident: ref_110
  article-title: Vehicle Detection and Tracking at Night in Video Surveillance
  publication-title: Int. J. Online Eng.
  doi: 10.3991/ijoe.v9iS6.2828
– ident: ref_60
  doi: 10.1109/CVPR.2016.352
– ident: ref_88
  doi: 10.1109/CVPR.2014.81
– volume: Volume 10985
  start-page: 335
  year: 2018
  ident: ref_150
  article-title: Pedestrian detection at night based on faster R-CNN and far infrared images
  publication-title: Intelligent Robotics and Applications
– ident: ref_105
  doi: 10.1109/ICCCSP52374.2021.9465512
– volume: 15
  start-page: 6
  year: 2014
  ident: ref_160
  article-title: Symmetrical SURF and its applications to vehicle detection and vehicle make and model recognition
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2013.2294646
– ident: ref_168
– ident: ref_118
  doi: 10.1109/AICCSA.2017.35
– ident: ref_32
– ident: ref_55
– ident: ref_149
  doi: 10.1109/ISTEL.2018.8661069
– ident: ref_109
  doi: 10.1109/ICCAR.2019.8813346
– ident: ref_26
– ident: ref_84
– ident: ref_136
– ident: ref_56
  doi: 10.1109/CVPR42600.2020.00252
– volume: 49
  start-page: 71
  year: 2018
  ident: ref_111
  article-title: Feature selection based on tensor decomposition and object proposal for night-time multiclass vehicle detection
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2018.2872891
– volume: 42
  start-page: 33
  year: 2023
  ident: ref_80
  article-title: Boreas: A multi-season autonomous driving dataset
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/02783649231160195
– volume: 42
  start-page: 1816
  year: 2015
  ident: ref_154
  article-title: Real-time illumination invariant lane detection for lane departure warning system
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.10.024
– ident: ref_23
  doi: 10.5220/0005540501910198
– ident: ref_57
  doi: 10.1109/CVPR42600.2020.01164
– ident: ref_121
  doi: 10.1109/ITSC.2006.1706726
– volume: 9
  start-page: 69061
  year: 2021
  ident: ref_52
  article-title: Motion planning for mobile robots—Focusing on deep reinforcement learning: A systematic review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3076530
– ident: ref_137
  doi: 10.1109/CAC51589.2020.9326819
– ident: ref_146
  doi: 10.3390/electronics12102312
– ident: ref_68
  doi: 10.1109/CVPR42600.2020.01170
– ident: ref_122
  doi: 10.1109/ICRAMET53537.2021.9650473
– volume: Volume 9905
  start-page: 21
  year: 2016
  ident: ref_93
  article-title: Ssd: Single shot multibox detector
  publication-title: Computer Vision–ECCV 2016
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref_89
  doi: 10.1109/ICCV.2015.169
– volume: Volume 4223
  start-page: 1182
  year: 2006
  ident: ref_151
  article-title: Optical camera based pedestrian detection in rainy or snowy weather
  publication-title: Fuzzy Systems and Knowledge Discovery
  doi: 10.1007/11881599_147
– volume: 41
  start-page: 1844
  year: 2019
  ident: ref_72
  article-title: Eurocity persons: A novel benchmark for person detection in traffic scenes
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2897684
– ident: ref_37
  doi: 10.1109/IV47402.2020.9304681
– volume: Volume 2388
  start-page: 268
  year: 2002
  ident: ref_117
  article-title: Real-time pedestrian detection using support vector machines
  publication-title: Pattern Recognition with Support Vector Machines. SVM 2002
  doi: 10.1007/3-540-45665-1_21
– volume: Volume 2284
  start-page: 012015
  year: 2022
  ident: ref_135
  article-title: Vehicle detection in foggy weather based on an enhanced YOLO method
  publication-title: Journal of Physics: Conference Series
– volume: 34
  start-page: 22
  year: 2017
  ident: ref_40
  article-title: Automotive radars: A review of signal processing techniques
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2016.2628914
– ident: ref_156
– ident: ref_41
– volume: 15
  start-page: 2615
  year: 2014
  ident: ref_159
  article-title: An integrated vehicle navigation system utilizing lane-detection and lateral position estimation systems in difficult environments for GPS
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2014.2321108
– ident: ref_78
  doi: 10.1109/ICRA48506.2021.9562089
– ident: ref_38
– volume: 43
  start-page: 253
  year: 2019
  ident: ref_15
  article-title: Automated driving recognition technologies for adverse weather conditions
  publication-title: IATSS Res.
  doi: 10.1016/j.iatssr.2019.11.005
– ident: ref_71
  doi: 10.1109/ICCV.2017.534
– volume: 22
  start-page: 4256
  year: 2020
  ident: ref_10
  article-title: ReViewNet: A fast and resource optimized network for enabling safe autonomous driving in hazy weather conditions
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.3013099
– volume: 23
  start-page: 661
  year: 2006
  ident: ref_36
  article-title: Stanley: The robot that won the DARPA Grand Challenge
  publication-title: J. Field Robot.
  doi: 10.1002/rob.20147
– volume: 35
  start-page: 1023
  year: 2016
  ident: ref_61
  article-title: University of Michigan North Campus long-term vision and lidar dataset
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364915614638
– ident: ref_166
  doi: 10.1109/ICECCT52121.2021.9616881
– ident: ref_11
  doi: 10.3390/electronics11040556
– volume: 8
  start-page: 62775
  year: 2020
  ident: ref_148
  article-title: Pedestrian detection in severe weather conditions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2982539
– ident: ref_24
– volume: 11
  start-page: 468
  year: 2022
  ident: ref_163
  article-title: Weather and surface condition detection based on road-side webcams: Application of pre-trained convolutional neural network
  publication-title: Int. J. Transp. Sci. Technol.
  doi: 10.1016/j.ijtst.2021.06.003
– ident: ref_34
– volume: 40
  start-page: 114
  year: 1991
  ident: ref_50
  article-title: Automated vehicle control developments in the PATH program
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/25.69979
– ident: ref_92
  doi: 10.1109/CVPR.2017.106
– volume: 81
  start-page: 18715
  year: 2022
  ident: ref_132
  article-title: Automatic vehicle detection system in different environment conditions using fast R-CNN
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-12347-8
– volume: 12
  start-page: 75
  year: 2018
  ident: ref_114
  article-title: Real-time vehicle detection and counting in complex traffic scenes using background subtraction model with low-rank decomposition
  publication-title: IET Intell. Transp. Syst.
  doi: 10.1049/iet-its.2017.0047
– volume: 80
  start-page: 545
  year: 2022
  ident: ref_2
  article-title: Advance generalization technique through 3D CNN to overcome the false positives pedestrian in autonomous vehicles
  publication-title: Telecommun. Syst.
  doi: 10.1007/s11235-022-00930-1
– volume: 165
  start-page: 113816
  year: 2021
  ident: ref_4
  article-title: Self-driving cars: A survey
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113816
– volume: 1
  start-page: 33
  year: 2016
  ident: ref_49
  article-title: A survey of motion planning and control techniques for self-driving urban vehicles
  publication-title: IEEE Trans. Intell. Veh.
  doi: 10.1109/TIV.2016.2578706
– ident: ref_95
  doi: 10.1109/CVPR42600.2020.01079
– volume: Volume 12346
  start-page: 213
  year: 2020
  ident: ref_96
  article-title: End-to-end object detection with transformers
  publication-title: Computer Vision–ECCV 2020
– ident: ref_102
– ident: ref_63
– ident: ref_125
– volume: Volume 12544
  start-page: 404
  year: 2021
  ident: ref_75
  article-title: 4Seasons: A cross-season dataset for multi-weather SLAM in autonomous driving
  publication-title: Pattern Recognition
– ident: ref_129
  doi: 10.1109/CSCI46756.2018.00074
– volume: Volume 6216
  start-page: 301
  year: 2010
  ident: ref_126
  article-title: An adaptive method for detecting lane boundary in night scene
  publication-title: Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence
– ident: ref_53
  doi: 10.1109/UCC56403.2022.00072
– ident: ref_64
  doi: 10.1117/12.2558989
– volume: 40
  start-page: 199
  year: 2013
  ident: ref_119
  article-title: Research of Pedestrian Tracking Based on HOG Feature and Haar Feature
  publication-title: Comput. Sci.
– volume: 28
  start-page: 254
  year: 2018
  ident: ref_103
  article-title: Improved lane line detection algorithm based on Hough transform
  publication-title: Pattern Recognit. Image Anal.
  doi: 10.1134/S1054661818020049
– ident: ref_66
  doi: 10.1109/CVPR.2019.00895
– ident: ref_54
  doi: 10.1109/ICCV48922.2021.01059
– volume: 13
  start-page: 817
  year: 2012
  ident: ref_108
  article-title: Adaptive vehicle detector approach for complex environments
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2011.2181366
– ident: ref_134
  doi: 10.3390/s20164646
– ident: ref_83
  doi: 10.1109/ICCV.1999.790410
– ident: ref_85
– volume: 40
  start-page: 681
  year: 2021
  ident: ref_62
  article-title: Canadian adverse driving conditions dataset
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364920979368
– ident: ref_158
– volume: 19
  start-page: 934
  year: 2018
  ident: ref_77
  article-title: KAIST multi-spectral day/night data set for autonomous and assisted driving
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2018.2791533
– ident: ref_131
  doi: 10.1109/ITT56123.2022.9863963
– ident: ref_155
  doi: 10.1109/IPAS.2016.7880072
– ident: ref_82
  doi: 10.1109/IROS51168.2021.9636162
– ident: ref_43
– volume: 4
  start-page: 742
  year: 2020
  ident: ref_86
  article-title: A review on computational intelligence techniques in cloud and edge computing
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
  doi: 10.1109/TETCI.2020.3007905
– volume: 80
  start-page: 25985
  year: 2021
  ident: ref_133
  article-title: On-road vehicle detection in varying weather conditions using faster R-CNN with several region proposal networks
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-021-10954-5
– volume: 62
  start-page: 2040
  year: 2021
  ident: ref_107
  article-title: Vehicles detection system at different weather conditions
  publication-title: Iraqi J. Sci.
  doi: 10.24996/ijs.2021.62.6.30
– ident: ref_120
  doi: 10.1109/IMCCC.2018.00211
– ident: ref_161
  doi: 10.1145/3377049.3377105
SSID ssj0065961
Score 2.4905708
SecondaryResourceType review_article
Snippet Enhancing the environmental perception of autonomous vehicles (AVs) in intelligent transportation systems requires computer vision technology to be effective...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 103
SubjectTerms Algorithms
Artificial intelligence
Automatic vehicle identification systems
Automation
Autonomous vehicles
Computer vision
Deep learning
Driverless cars
Evolution
Fatalities
Fog
Image processing
intelligent transportation system
Intelligent transportation systems
Literature reviews
Machine learning
Neural networks
object detection
Object recognition
Pedestrians
Roads & highways
Sensors
Snow
Surveillance
System effectiveness
traditional approaches
Traffic accidents & safety
Transportation planning
Weather
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJy--xfpiEEEvRdtu0663-lgWQb34uoU8dUG6Yuv_d6ZJFw-KF69tCMlkJvNNMvmGscNEI-w0qYqVUS6mm8BYqXwY8yIx1qH5SUNvh29u-eRheP2cP38r9UU5YZ4e2AvuhAjYVZEZkzozLG0-MtihzE6dO1XO6m73RZ_XB1N-D-b5iCeeRyjDoP5EJqTYSV8ZK3ifjqT_t6248y_jFbYUgCFUfkCrbMHWa2y5L7oAwQbXWXOn6OgELm3bZVHVMK2h-mzpcQJG8fBoX7tMN6DXYR_QFVxuLDx5qHcGFfjrAJg5QEdlpv4wEGRtsE_7DoFx9QWqQDdumw32ML66v5jEoXJCrBFftChpo8vMpXlJxOCFS7XRGqfPLZHnICqRaMromBKthtzZLMu5QfngX-0wTM2zTTaoZ7XdYsB5qa3KuXPE1O5SZSQvZCa1diUvSxOx416iQgdacapu8SYwvCDhi7nwI3Ywb_ruuTR-anROyzJvQPTX3QdUChGUQvylFBE7okUVZKQ4GC3DWwOcEtFdiQoDfwKSCY_Ybr_uIlhvI9IRhpHESpNs_8dodthiilDIZ67tskH78Wn3EMq0ar_T2i8lifIe
  priority: 102
  providerName: Directory of Open Access Journals
Title Object Detection in Autonomous Vehicles under Adverse Weather: A Review of Traditional and Deep Learning Approaches
URI https://www.proquest.com/docview/2987123611
https://doaj.org/article/8570b73dd2fd48e59d423a30ff0bfec2
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9RAEJ8IvPjiB2o8xMuEmMhLA22v28UXU5STmAiEiPK22U8gIb3zWv5_Z7bb80V97W6b7ux87-xvAN7lltxOV5jMOBMyPgnMjKlmmahz5wOJn3Z8d_jbmTi9mn29rq5Twq1LZZWjToyK2i0s58gPCgqOI1JI_nH5K-OuUXy6mlpobMAWqWBJwdfW8cnZxeWoi0V1JPIBT6ik4P5A58zg-dghK1mhCNb_L5Uc7cz8GTxJDiI2w44-h0e-3YanY_MFTLL4ArpzwykU_Oz7WE3V4l2LzUPPlxQomscf_jZWvCHfElthbLzcefw5uHwfsMHhWAAXAclgubshKYi6dfRNv8SEvHqDTYId991LuJqffP90mqUOCpklP6Mnijsry1BUkgHC61BYZy0tX3gG0SHvRJNIk4HKrZmJ4MuyEo7oQ6M2ULhala9gs120_jWgENJ6U4kQGLE9FMZpUetSWxukkNJNYH-kqLIJXpy7XNwrCjOY-GpN_AnsracuB0yNv0065m1ZT2AY7PhgsbpRSaoUo_ObunSuCG4mfXXkiNt0eRjCoQneFhN4z5uqWFjpZ6xOdw5oSQx7pZqaAgx6JRcT2B33XSUp7tQfntv5__AbeFyQszPUpu3CZr968G_JWenNFDbk_Ms08eU0hvy_Ae7G7AI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLWqsoANUB5iaCkWAsEm6thJnAxShQJlmNIHmxa6c_0slVAynWSE-Kl-I_c6zrABdt3GTuTY92n7nkPIS2Yg7LRcJ9pqn-BJYKJ1niWiYNZ5UD9lsXb46FjMTrPPZ_nZGrkeamHwWuVgE4Ohto3BPfIdDslxQAph7-ZXCbJG4enqQKHRi8WB-_UTUrZ2d38P1vcV59OPJx9mSWQVSAz43g5GYU2Zep6XCJpdeG6sMQwMuUNgGfDYCsQcjDYzOhPepWkuLGgBtBoPKRyyRIDJv5Wl6QQ1qpx-Giy_yCeC9ehF0DjeUQzViQ18XNHnBWqAfzmA4NWm98ndGI7SqpefDbLm6gfk3kD1QKPmPyTtF40bNnTPdeHuVk0va1otOyyJaJYt_eq-h_t1FGvSFjTQPLeOfusDzLe0ov0hBG08BfdoL_stSKpqC990cxpxXi9oFUHOXfuInN7IzD4m63VTuyeEClEap3PhPeLDe66tEoVKlTG-FGVpR-TNMKPSRDBz5NT4ISGpwcmXq8kfkRerrvMeweNvnd7jsqw6IOh2eNAsLmTUYYlcALpIreXeZqXLJxZkW6Vj78faO8NH5DUuqkTTAIMxKlY4wC8hyJasCkhn4BUmRmRrWHcZbUYr_0j40_83Pye3ZydHh_Jw__hgk9zhEGb1t-K2yHq3WLpnECZ1ejvIJiXnN60MvwEWNCNC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VqYS48EaEFlghEFysZNfx2kFCyCWNWgqhQhR623pfbSVkh9gR4q_x65ix1-EC3Hq115a9O8_dme8DeMYNhp1W6Ehb7SM6CYy0TiaRTLl1HtWvsNQ7_GEhD04m706T0y341ffCUFllbxNbQ20rQ3vkI4HJcYsUwkc-lEUcz-Zvlt8jYpCik9aeTqMTkSP38wemb_Xrwxmu9XMh5vuf3x5EgWEgMuiHG_wia7LYiyQjAO3UC2ON4WjUHYHMoPcuUOTRgHOjJ9K7OE6kRY3Au8ZjOkeMEWj-t1PMisYD2N7bXxx_6v2ATKaSd1hGcTwdjwpOysV7dq7gAVuigH-5g9bHzW_BjRCcsryTptuw5co7cLMnfmDBDtyF-qOm7Rs2c01byVWyy5Ll64YaJKp1zb64i7bajlGH2oq1pM-1Y1-7cPMVy1l3JMEqz9BZ2stuQ5IVpcV3uiULqK_nLA-Q566-BydXMrf3YVBWpXsATMrMOJ1I7wkt3gttC5kWcWGMz2SW2SG87GdUmQBtTgwb3xSmODT5ajP5Q3i6Gbrs8Dz-NmiPlmUzgCC42wvV6lwFjVbEDKDT2Frh7SRzydSipBfx2Pux9s6IIbygRVVkKPBjTBH6HfCXCHJL5SkmN_gIl0PY7dddBQtSqz_y_vD_t5_ANVQE9f5wcbQD1wXGXF2J3C4MmtXaPcKYqdGPg3AyOLtqffgNh1so1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Object+Detection+in+Autonomous+Vehicles+under+Adverse+Weather%3A+A+Review+of+Traditional+and+Deep+Learning+Approaches&rft.jtitle=Algorithms&rft.au=Tahir%2C+Noor+Ul+Ain&rft.au=Zhang%2C+Zuping&rft.au=Asim%2C+Muhammad&rft.au=Chen%2C+Junhong&rft.date=2024-03-01&rft.pub=MDPI+AG&rft.issn=1999-4893&rft.eissn=1999-4893&rft.volume=17&rft.issue=3&rft_id=info:doi/10.3390%2Fa17030103&rft.externalDocID=A788242316
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon