Object Detection in Autonomous Vehicles under Adverse Weather: A Review of Traditional and Deep Learning Approaches
Enhancing the environmental perception of autonomous vehicles (AVs) in intelligent transportation systems requires computer vision technology to be effective in detecting objects and obstacles, particularly in adverse weather conditions. Adverse weather circumstances present serious difficulties for...
Saved in:
Published in | Algorithms Vol. 17; no. 3; p. 103 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Enhancing the environmental perception of autonomous vehicles (AVs) in intelligent transportation systems requires computer vision technology to be effective in detecting objects and obstacles, particularly in adverse weather conditions. Adverse weather circumstances present serious difficulties for object-detecting systems, which are essential to contemporary safety procedures, infrastructure for monitoring, and intelligent transportation. AVs primarily depend on image processing algorithms that utilize a wide range of onboard visual sensors for guidance and decisionmaking. Ensuring the consistent identification of critical elements such as vehicles, pedestrians, and road lanes, even in adverse weather, is a paramount objective. This paper not only provides a comprehensive review of the literature on object detection (OD) under adverse weather conditions but also delves into the ever-evolving realm of the architecture of AVs, challenges for automated vehicles in adverse weather, the basic structure of OD, and explores the landscape of traditional and deep learning (DL) approaches for OD within the realm of AVs. These approaches are essential for advancing the capabilities of AVs in recognizing and responding to objects in their surroundings. This paper further investigates previous research that has employed both traditional and DL methodologies for the detection of vehicles, pedestrians, and road lanes, effectively linking these approaches with the evolving field of AVs. Moreover, this paper offers an in-depth analysis of the datasets commonly employed in AV research, with a specific focus on the detection of key elements in various environmental conditions, and then summarizes the evaluation matrix. We expect that this review paper will help scholars to gain a better understanding of this area of research. |
---|---|
AbstractList | Enhancing the environmental perception of autonomous vehicles (AVs) in intelligent transportation systems requires computer vision technology to be effective in detecting objects and obstacles, particularly in adverse weather conditions. Adverse weather circumstances present serious difficulties for object-detecting systems, which are essential to contemporary safety procedures, infrastructure for monitoring, and intelligent transportation. AVs primarily depend on image processing algorithms that utilize a wide range of onboard visual sensors for guidance and decisionmaking. Ensuring the consistent identification of critical elements such as vehicles, pedestrians, and road lanes, even in adverse weather, is a paramount objective. This paper not only provides a comprehensive review of the literature on object detection (OD) under adverse weather conditions but also delves into the ever-evolving realm of the architecture of AVs, challenges for automated vehicles in adverse weather, the basic structure of OD, and explores the landscape of traditional and deep learning (DL) approaches for OD within the realm of AVs. These approaches are essential for advancing the capabilities of AVs in recognizing and responding to objects in their surroundings. This paper further investigates previous research that has employed both traditional and DL methodologies for the detection of vehicles, pedestrians, and road lanes, effectively linking these approaches with the evolving field of AVs. Moreover, this paper offers an in-depth analysis of the datasets commonly employed in AV research, with a specific focus on the detection of key elements in various environmental conditions, and then summarizes the evaluation matrix. We expect that this review paper will help scholars to gain a better understanding of this area of research. |
Audience | Academic |
Author | Asim, Muhammad ELAffendi, Mohammed Zhang, Zuping Chen, Junhong Tahir, Noor Ul Ain |
Author_xml | – sequence: 1 givenname: Noor Ul Ain orcidid: 0009-0002-6696-5449 surname: Tahir fullname: Tahir, Noor Ul Ain – sequence: 2 givenname: Zuping orcidid: 0000-0002-2528-7808 surname: Zhang fullname: Zhang, Zuping – sequence: 3 givenname: Muhammad orcidid: 0000-0002-6423-9809 surname: Asim fullname: Asim, Muhammad – sequence: 4 givenname: Junhong orcidid: 0000-0002-4874-9550 surname: Chen fullname: Chen, Junhong – sequence: 5 givenname: Mohammed orcidid: 0000-0001-9349-1985 surname: ELAffendi fullname: ELAffendi, Mohammed |
BookMark | eNplkU1rVDEYhYNUsK0u_AcBVy6mzce9-XB3qVULAwWpugyZ5M1MhplkTHIr_nszjoooWbzhzTkPnJwLdJZyAoReUnLFuSbXlkrCCSX8CTqnWuvFoDQ_--v-DF3UuiVEjFrQc1TvV1twDb-F1kfMCceEp7nllPd5rvgzbKLbQcVz8lDw5B-hVMBfwLYNlDd4wh_hMcI3nAN-KNbHI8PusE2-M-GAl2BLimmNp8OhZOs2UJ-jp8HuKrz4NS_Rp3e3DzcfFsv793c303LhuJZtIaR3igc2KiKZloE571xPJkCScSSCW04VUwN1q0EE4HwUvkfvry4wOYz8Et2duD7brTmUuLflu8k2mp-LXNbGlnaMZ9QoyUpy71nwg4JR-4F1PgmBrAI41lmvTqwe4usMtZltnktPWg3TSlLGBaVddXVSrW2HxhRyK9b142EfXW8qxL6fpFKs86nohuuTwZVca4FgXGz2-IfdGHeGEnOs1fyptTte_-P4Hex_7Q9--qId |
CitedBy_id | crossref_primary_10_3389_fphy_2024_1398678 crossref_primary_10_3390_a17110526 crossref_primary_10_1007_s11042_024_20219_6 crossref_primary_10_32604_cmc_2024_055049 crossref_primary_10_1002_cpe_8241 crossref_primary_10_3390_biomimetics10010038 crossref_primary_10_1016_j_cviu_2024_104222 crossref_primary_10_3390_computers14030093 crossref_primary_10_3934_math_20241693 crossref_primary_10_3389_frsc_2025_1561404 crossref_primary_10_3390_math12101514 crossref_primary_10_1016_j_engappai_2024_109994 crossref_primary_10_3390_app14177958 crossref_primary_10_1016_j_eswa_2025_127055 crossref_primary_10_1177_20427530241282254 crossref_primary_10_3390_s24123938 crossref_primary_10_3390_s25030912 crossref_primary_10_1109_ACCESS_2025_3537800 crossref_primary_10_1038_s41598_025_86743_z |
Cites_doi | 10.3389/fnbot.2023.1058723 10.1177/09544070211036311 10.1016/j.isprsjprs.2022.12.021 10.1016/0001-4575(93)90076-9 10.1109/JSEN.2001.936931 10.1007/978-3-030-01264-9 10.1177/0278364916679498 10.1109/IROS45743.2020.9341406 10.1175/BAMS-D-17-0107.1 10.1109/ICCCE58854.2023.10246071 10.1109/IVS.2018.8500543 10.1109/MSP.2020.2984801 10.3390/s19030648 10.1016/j.eswa.2018.12.005 10.1109/ACCESS.2020.3026192 10.1109/ICDSAAI55433.2022.10028795 10.1016/j.imavis.2017.09.008 10.1109/IEEECONF49454.2021.9382618 10.1109/TPAMI.2019.2926463 10.1109/5.726791 10.1109/SMAP59435.2023.10255190 10.1007/s11042-016-4184-6 10.1109/TPAMI.2016.2577031 10.1109/ICCV.2019.00972 10.1109/ICCES54183.2022.9835814 10.3390/s22218577 10.1109/ACCESS.2019.2909992 10.1109/ISADS.2015.24 10.1007/978-3-030-19562-5 10.1109/CVPR42600.2020.00466 10.1007/s11263-018-1072-8 10.1109/TPAMI.2015.2389824 10.1007/978-3-030-01231-1_25 10.1109/IIH-MSP.2015.82 10.1109/ITEC55900.2023.10187020 10.4271/2008-01-0910 10.1109/ICCV.2017.324 10.3390/machines5010006 10.4028/www.scientific.net/AMM.513-517.3651 10.1109/MVT.2019.2892497 10.1109/ICRA40945.2020.9197385 10.3390/s21217267 10.1007/s10514-022-10072-7 10.3390/electronics11172748 10.1117/12.2587993 10.3390/s17051065 10.1109/CVPR42600.2020.00271 10.3390/s20226532 10.1177/03611981211051334 10.1007/s11116-016-9745-z 10.1007/s12652-019-01668-6 10.1177/0278364913491297 10.3390/ai3020019 10.1371/journal.pone.0189145 10.3991/ijoe.v9iS6.2828 10.1109/CVPR.2016.352 10.1109/CVPR.2014.81 10.1109/ICCCSP52374.2021.9465512 10.1109/TITS.2013.2294646 10.1109/AICCSA.2017.35 10.1109/ISTEL.2018.8661069 10.1109/ICCAR.2019.8813346 10.1109/CVPR42600.2020.00252 10.1109/TSMC.2018.2872891 10.1177/02783649231160195 10.1016/j.eswa.2014.10.024 10.5220/0005540501910198 10.1109/CVPR42600.2020.01164 10.1109/ITSC.2006.1706726 10.1109/ACCESS.2021.3076530 10.1109/CAC51589.2020.9326819 10.3390/electronics12102312 10.1109/CVPR42600.2020.01170 10.1109/ICRAMET53537.2021.9650473 10.1007/978-3-319-46448-0_2 10.1109/ICCV.2015.169 10.1007/11881599_147 10.1109/TPAMI.2019.2897684 10.1109/IV47402.2020.9304681 10.1007/3-540-45665-1_21 10.1109/MSP.2016.2628914 10.1109/TITS.2014.2321108 10.1109/ICRA48506.2021.9562089 10.1016/j.iatssr.2019.11.005 10.1109/ICCV.2017.534 10.1109/TITS.2020.3013099 10.1002/rob.20147 10.1177/0278364915614638 10.1109/ICECCT52121.2021.9616881 10.3390/electronics11040556 10.1109/ACCESS.2020.2982539 10.1016/j.ijtst.2021.06.003 10.1109/25.69979 10.1109/CVPR.2017.106 10.1007/s11042-022-12347-8 10.1049/iet-its.2017.0047 10.1007/s11235-022-00930-1 10.1016/j.eswa.2020.113816 10.1109/TIV.2016.2578706 10.1109/CVPR42600.2020.01079 10.1109/CSCI46756.2018.00074 10.1109/UCC56403.2022.00072 10.1117/12.2558989 10.1134/S1054661818020049 10.1109/CVPR.2019.00895 10.1109/ICCV48922.2021.01059 10.1109/TITS.2011.2181366 10.3390/s20164646 10.1109/ICCV.1999.790410 10.1177/0278364920979368 10.1109/TITS.2018.2791533 10.1109/ITT56123.2022.9863963 10.1109/IPAS.2016.7880072 10.1109/IROS51168.2021.9636162 10.1109/TETCI.2020.3007905 10.1007/s11042-021-10954-5 10.24996/ijs.2021.62.6.30 10.1109/IMCCC.2018.00211 10.1145/3377049.3377105 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U DOA |
DOI | 10.3390/a17030103 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1999-4893 |
ExternalDocumentID | oai_doaj_org_article_8570b73dd2fd48e59d423a30ff0bfec2 A788242316 10_3390_a17030103 |
GeographicLocations | United Kingdom Germany |
GeographicLocations_xml | – name: United Kingdom – name: Germany |
GroupedDBID | 23M 2WC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC J9A K6V K7- KQ8 L6V M7S MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS TR2 TUS PMFND 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQGLB PQUKI Q9U PUEGO |
ID | FETCH-LOGICAL-c397t-67dc83f25807297f2cdcc1036e7055063a3182841cb46fe3356d301e70cf27453 |
IEDL.DBID | BENPR |
ISSN | 1999-4893 |
IngestDate | Wed Aug 27 01:31:39 EDT 2025 Fri Jul 25 09:54:06 EDT 2025 Tue Jun 10 21:10:38 EDT 2025 Tue Jul 01 03:23:17 EDT 2025 Thu Apr 24 23:04:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c397t-67dc83f25807297f2cdcc1036e7055063a3182841cb46fe3356d301e70cf27453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9349-1985 0000-0002-4874-9550 0000-0002-2528-7808 0009-0002-6696-5449 0000-0002-6423-9809 |
OpenAccessLink | https://www.proquest.com/docview/2987123611?pq-origsite=%requestingapplication% |
PQID | 2987123611 |
PQPubID | 2032439 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8570b73dd2fd48e59d423a30ff0bfec2 proquest_journals_2987123611 gale_infotracacademiconefile_A788242316 crossref_citationtrail_10_3390_a17030103 crossref_primary_10_3390_a17030103 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Algorithms |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_94 ref_137 ref_136 ref_92 Ghosh (ref_133) 2021; 80 ref_138 Son (ref_154) 2015; 42 Zang (ref_13) 2019; 14 ref_14 ref_131 Ragesh (ref_144) 2019; 7 ref_11 ref_99 ref_130 ref_98 Ewecker (ref_112) 2023; 47 ref_97 ref_95 ref_134 Yang (ref_114) 2018; 12 Arora (ref_132) 2022; 81 Choi (ref_77) 2018; 19 ref_17 Jia (ref_101) 2014; 513 Khan (ref_163) 2022; 11 Tumas (ref_148) 2020; 8 Razzok (ref_141) 2023; 12 Tian (ref_110) 2013; 9 ref_125 ref_128 ref_127 Ding (ref_164) 2017; 76 ref_129 ref_25 ref_24 ref_23 ref_120 ref_22 ref_21 ref_122 Mehra (ref_10) 2020; 22 ref_121 ref_123 Lai (ref_147) 2021; Volume 1777 Li (ref_135) 2022; Volume 2284 ref_28 ref_27 Rose (ref_159) 2014; 15 ref_26 Andrey (ref_8) 1993; 25 Wojtyra (ref_142) 2020; 8 ref_71 ref_158 ref_70 Carullo (ref_42) 2001; 1 Kamemura (ref_44) 2008; 1 Abdullah (ref_107) 2021; 62 ref_79 Wang (ref_151) 2006; Volume 4223 ref_78 ref_153 ref_152 ref_76 ref_155 ref_74 ref_157 Burnett (ref_80) 2023; 42 ref_156 Hsieh (ref_160) 2014; 15 Leibe (ref_93) 2016; Volume 9905 ref_83 ref_82 ref_81 Bansal (ref_5) 2018; 45 Gharaibeh (ref_12) 2022; 3 ref_149 ref_140 ref_89 LeCun (ref_87) 1998; 86 ref_88 ref_143 ref_85 ref_146 ref_84 ref_145 Braun (ref_72) 2019; 41 Maddern (ref_73) 2017; 36 Yang (ref_20) 2018; 69 Pitropov (ref_62) 2021; 40 Hnewa (ref_18) 2020; 38 ref_58 Nguyen (ref_162) 2018; 21 ref_57 ref_56 ref_55 ref_54 Chen (ref_150) 2018; Volume 10985 ref_53 Paden (ref_49) 2016; 1 Abbas (ref_19) 2021; 19 Wang (ref_106) 2022; 236 Yoneda (ref_15) 2019; 43 Trenberth (ref_7) 2018; 99 Badue (ref_4) 2021; 165 ref_60 ref_68 Zhang (ref_124) 2019; 121 ref_161 ref_67 ref_66 ref_65 ref_166 ref_64 ref_165 ref_63 ref_168 Zheng (ref_103) 2018; 28 Sakaridis (ref_69) 2018; 126 Wu (ref_108) 2012; 13 Patole (ref_40) 2017; 34 ref_115 ref_116 ref_118 Geiger (ref_51) 2013; 32 Iftikhar (ref_2) 2022; 80 ref_35 Akata (ref_75) 2021; Volume 12544 ref_34 Asim (ref_86) 2020; 4 ref_33 Sun (ref_52) 2021; 9 Huang (ref_59) 2019; 42 ref_32 ref_31 ref_30 ref_113 Lee (ref_117) 2002; Volume 2388 ref_39 ref_38 Kuang (ref_111) 2018; 49 Wang (ref_139) 2023; 17 ref_37 Fan (ref_119) 2013; 40 Huang (ref_126) 2010; Volume 6216 Ren (ref_90) 2016; 39 ref_104 Briefs (ref_29) 2015; 46 ref_105 Krishnaveni (ref_167) 2020; 13 Shladover (ref_50) 1991; 40 ref_109 ref_47 ref_46 ref_45 Thrun (ref_36) 2006; 23 ref_43 ref_100 ref_41 ref_102 Haris (ref_169) 2022; 2676 ref_1 Ushani (ref_61) 2016; 35 ref_3 ref_48 ref_9 Zhang (ref_16) 2023; 196 Vedaldi (ref_96) 2020; Volume 12346 He (ref_91) 2015; 37 ref_6 |
References_xml | – volume: 17 start-page: 1058723 year: 2023 ident: ref_139 article-title: Real-time vehicle target detection in inclement weather conditions based on YOLOv4 publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2023.1058723 – ident: ref_9 – ident: ref_100 – volume: 236 start-page: 1607 year: 2022 ident: ref_106 article-title: Vehicle detection in severe weather based on pseudo-visual search and HOG–LBP feature fusion publication-title: Proc. Inst. Mech. Eng. Part D J. Automob. Eng. doi: 10.1177/09544070211036311 – volume: 196 start-page: 146 year: 2023 ident: ref_16 article-title: Perception and sensing for autonomous vehicles under adverse weather conditions: A survey publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2022.12.021 – volume: 25 start-page: 465 year: 1993 ident: ref_8 article-title: A temporal analysis of rain-related crash risk publication-title: Accid. Anal. Prev. doi: 10.1016/0001-4575(93)90076-9 – volume: 1 start-page: 143 year: 2001 ident: ref_42 article-title: An ultrasonic sensor for distance measurement in automotive applications publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2001.936931 – ident: ref_70 doi: 10.1007/978-3-030-01264-9 – ident: ref_1 – volume: 36 start-page: 3 year: 2017 ident: ref_73 article-title: 1 year, 1000 km: The oxford robotcar dataset publication-title: Int. J. Robot. Res. doi: 10.1177/0278364916679498 – ident: ref_123 – ident: ref_94 – volume: 46 start-page: 1 year: 2015 ident: ref_29 article-title: Mcity Grand Opening publication-title: Res. Rev. – ident: ref_79 doi: 10.1109/IROS45743.2020.9341406 – volume: 99 start-page: 289 year: 2018 ident: ref_7 article-title: How often does it really rain? publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-17-0107.1 – ident: ref_31 – ident: ref_27 – ident: ref_165 doi: 10.1109/ICCCE58854.2023.10246071 – ident: ref_39 doi: 10.1109/IVS.2018.8500543 – volume: 38 start-page: 53 year: 2020 ident: ref_18 article-title: Object detection under rainy conditions for autonomous vehicles: A review of state-of-the-art and emerging techniques publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2020.2984801 – volume: Volume 1777 start-page: 012057 year: 2021 ident: ref_147 article-title: Research on pedestrian detection using optimized mask R-CNN algorithm in low-light road environment publication-title: Journal of Physics: Conference Series – volume: 12 start-page: 1557 year: 2023 ident: ref_141 article-title: Pedestrian detection under weather conditions using conditional generative adversarial network publication-title: Int. J. Artif. Intell. – ident: ref_48 doi: 10.3390/s19030648 – volume: 121 start-page: 38 year: 2019 ident: ref_124 article-title: Autonomous path tracking control of intelligent electric vehicles based on lane detection and optimal preview method publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.12.005 – volume: 8 start-page: 174394 year: 2020 ident: ref_142 article-title: Real world object detection dataset for quadcopter unmanned aerial vehicle detection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3026192 – ident: ref_152 – ident: ref_17 doi: 10.1109/ICDSAAI55433.2022.10028795 – ident: ref_45 – volume: 69 start-page: 143 year: 2018 ident: ref_20 article-title: Vehicle detection in intelligent transportation systems and its applications under varying environments: A review publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2017.09.008 – ident: ref_116 doi: 10.1109/IEEECONF49454.2021.9382618 – volume: 42 start-page: 2702 year: 2019 ident: ref_59 article-title: The apolloscape open dataset for autonomous driving and its application publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2926463 – volume: 86 start-page: 2278 year: 1998 ident: ref_87 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – ident: ref_130 doi: 10.1109/SMAP59435.2023.10255190 – volume: 21 start-page: 822 year: 2018 ident: ref_162 article-title: A study on real-time detection method of lane and vehicle for lane change assistant system using vision system on highway publication-title: Eng. Sci. Technol. Int. J. – volume: 76 start-page: 22979 year: 2017 ident: ref_164 article-title: Fast lane detection based on bird’s eye view and improved random sample consensus algorithm publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-016-4184-6 – volume: 39 start-page: 1137 year: 2016 ident: ref_90 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – ident: ref_28 – ident: ref_97 doi: 10.1109/ICCV.2019.00972 – ident: ref_21 doi: 10.1109/ICCES54183.2022.9835814 – ident: ref_30 – ident: ref_140 doi: 10.3390/s22218577 – ident: ref_3 – ident: ref_115 – volume: 7 start-page: 47864 year: 2019 ident: ref_144 article-title: Pedestrian detection in automotive safety: Understanding state-of-the-art publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2909992 – ident: ref_47 – ident: ref_128 doi: 10.1109/ISADS.2015.24 – ident: ref_104 doi: 10.1007/978-3-030-19562-5 – ident: ref_157 – ident: ref_65 doi: 10.1109/CVPR42600.2020.00466 – volume: 126 start-page: 973 year: 2018 ident: ref_69 article-title: Semantic foggy scene understanding with synthetic data publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-018-1072-8 – volume: 37 start-page: 1904 year: 2015 ident: ref_91 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2389824 – ident: ref_67 – volume: 19 start-page: 838 year: 2021 ident: ref_19 article-title: A comprehensive review of vehicle detection using computer vision publication-title: TELKOMNIKA Telecommun. Comput. Electron. Control – ident: ref_76 doi: 10.1007/978-3-030-01231-1_25 – ident: ref_127 doi: 10.1109/IIH-MSP.2015.82 – ident: ref_153 doi: 10.1109/ITEC55900.2023.10187020 – volume: 1 start-page: 301 year: 2008 ident: ref_44 article-title: Development of a long-range ultrasonic sensor for automotive application publication-title: SAE Int. J. Passeng. Cars-Electron. Electr. Syst. doi: 10.4271/2008-01-0910 – ident: ref_98 doi: 10.1109/ICCV.2017.324 – ident: ref_46 doi: 10.3390/machines5010006 – volume: 513 start-page: 3651 year: 2014 ident: ref_101 article-title: Detection of Traffic and Road Condition Based on SVM and PHOW publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.513-517.3651 – volume: 14 start-page: 103 year: 2019 ident: ref_13 article-title: The impact of adverse weather conditions on autonomous vehicles: How rain, snow, fog, and hail affect the performance of a self-driving car publication-title: IEEE Veh. Technol. Mag. doi: 10.1109/MVT.2019.2892497 – ident: ref_74 doi: 10.1109/ICRA40945.2020.9197385 – ident: ref_99 doi: 10.3390/s21217267 – ident: ref_6 – ident: ref_143 – volume: 47 start-page: 313 year: 2023 ident: ref_112 article-title: Provident vehicle detection at night for advanced driver assistance systems publication-title: Auton. Robot. doi: 10.1007/s10514-022-10072-7 – ident: ref_25 – ident: ref_138 doi: 10.3390/electronics11172748 – ident: ref_81 – ident: ref_33 – ident: ref_35 doi: 10.1117/12.2587993 – ident: ref_145 doi: 10.3390/s17051065 – ident: ref_58 doi: 10.1109/CVPR42600.2020.00271 – ident: ref_14 doi: 10.3390/s20226532 – volume: 2676 start-page: 342 year: 2022 ident: ref_169 article-title: Lane lines detection under complex environment by fusion of detection and prediction models publication-title: Transp. Res. Rec. doi: 10.1177/03611981211051334 – volume: 45 start-page: 641 year: 2018 ident: ref_5 article-title: Are we ready to embrace connected and self-driving vehicles? A case study of Texans publication-title: Transportation doi: 10.1007/s11116-016-9745-z – volume: 13 start-page: 4123 year: 2020 ident: ref_167 article-title: Novel deep learning framework for broadcasting abnormal events obtained from surveillance applications publication-title: J. Ambient. Intell. Humaniz. Comput. doi: 10.1007/s12652-019-01668-6 – volume: 32 start-page: 1231 year: 2013 ident: ref_51 article-title: Vision meets robotics: The kitti dataset publication-title: Int. J. Robot. Res. doi: 10.1177/0278364913491297 – volume: 3 start-page: 303 year: 2022 ident: ref_12 article-title: Detection in adverse weather conditions for autonomous vehicles via deep learning publication-title: AI doi: 10.3390/ai3020019 – ident: ref_113 doi: 10.1371/journal.pone.0189145 – ident: ref_22 – volume: 9 start-page: 60 year: 2013 ident: ref_110 article-title: Vehicle Detection and Tracking at Night in Video Surveillance publication-title: Int. J. Online Eng. doi: 10.3991/ijoe.v9iS6.2828 – ident: ref_60 doi: 10.1109/CVPR.2016.352 – ident: ref_88 doi: 10.1109/CVPR.2014.81 – volume: Volume 10985 start-page: 335 year: 2018 ident: ref_150 article-title: Pedestrian detection at night based on faster R-CNN and far infrared images publication-title: Intelligent Robotics and Applications – ident: ref_105 doi: 10.1109/ICCCSP52374.2021.9465512 – volume: 15 start-page: 6 year: 2014 ident: ref_160 article-title: Symmetrical SURF and its applications to vehicle detection and vehicle make and model recognition publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2013.2294646 – ident: ref_168 – ident: ref_118 doi: 10.1109/AICCSA.2017.35 – ident: ref_32 – ident: ref_55 – ident: ref_149 doi: 10.1109/ISTEL.2018.8661069 – ident: ref_109 doi: 10.1109/ICCAR.2019.8813346 – ident: ref_26 – ident: ref_84 – ident: ref_136 – ident: ref_56 doi: 10.1109/CVPR42600.2020.00252 – volume: 49 start-page: 71 year: 2018 ident: ref_111 article-title: Feature selection based on tensor decomposition and object proposal for night-time multiclass vehicle detection publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2018.2872891 – volume: 42 start-page: 33 year: 2023 ident: ref_80 article-title: Boreas: A multi-season autonomous driving dataset publication-title: Int. J. Robot. Res. doi: 10.1177/02783649231160195 – volume: 42 start-page: 1816 year: 2015 ident: ref_154 article-title: Real-time illumination invariant lane detection for lane departure warning system publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.10.024 – ident: ref_23 doi: 10.5220/0005540501910198 – ident: ref_57 doi: 10.1109/CVPR42600.2020.01164 – ident: ref_121 doi: 10.1109/ITSC.2006.1706726 – volume: 9 start-page: 69061 year: 2021 ident: ref_52 article-title: Motion planning for mobile robots—Focusing on deep reinforcement learning: A systematic review publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3076530 – ident: ref_137 doi: 10.1109/CAC51589.2020.9326819 – ident: ref_146 doi: 10.3390/electronics12102312 – ident: ref_68 doi: 10.1109/CVPR42600.2020.01170 – ident: ref_122 doi: 10.1109/ICRAMET53537.2021.9650473 – volume: Volume 9905 start-page: 21 year: 2016 ident: ref_93 article-title: Ssd: Single shot multibox detector publication-title: Computer Vision–ECCV 2016 doi: 10.1007/978-3-319-46448-0_2 – ident: ref_89 doi: 10.1109/ICCV.2015.169 – volume: Volume 4223 start-page: 1182 year: 2006 ident: ref_151 article-title: Optical camera based pedestrian detection in rainy or snowy weather publication-title: Fuzzy Systems and Knowledge Discovery doi: 10.1007/11881599_147 – volume: 41 start-page: 1844 year: 2019 ident: ref_72 article-title: Eurocity persons: A novel benchmark for person detection in traffic scenes publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2897684 – ident: ref_37 doi: 10.1109/IV47402.2020.9304681 – volume: Volume 2388 start-page: 268 year: 2002 ident: ref_117 article-title: Real-time pedestrian detection using support vector machines publication-title: Pattern Recognition with Support Vector Machines. SVM 2002 doi: 10.1007/3-540-45665-1_21 – volume: Volume 2284 start-page: 012015 year: 2022 ident: ref_135 article-title: Vehicle detection in foggy weather based on an enhanced YOLO method publication-title: Journal of Physics: Conference Series – volume: 34 start-page: 22 year: 2017 ident: ref_40 article-title: Automotive radars: A review of signal processing techniques publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2016.2628914 – ident: ref_156 – ident: ref_41 – volume: 15 start-page: 2615 year: 2014 ident: ref_159 article-title: An integrated vehicle navigation system utilizing lane-detection and lateral position estimation systems in difficult environments for GPS publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2014.2321108 – ident: ref_78 doi: 10.1109/ICRA48506.2021.9562089 – ident: ref_38 – volume: 43 start-page: 253 year: 2019 ident: ref_15 article-title: Automated driving recognition technologies for adverse weather conditions publication-title: IATSS Res. doi: 10.1016/j.iatssr.2019.11.005 – ident: ref_71 doi: 10.1109/ICCV.2017.534 – volume: 22 start-page: 4256 year: 2020 ident: ref_10 article-title: ReViewNet: A fast and resource optimized network for enabling safe autonomous driving in hazy weather conditions publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3013099 – volume: 23 start-page: 661 year: 2006 ident: ref_36 article-title: Stanley: The robot that won the DARPA Grand Challenge publication-title: J. Field Robot. doi: 10.1002/rob.20147 – volume: 35 start-page: 1023 year: 2016 ident: ref_61 article-title: University of Michigan North Campus long-term vision and lidar dataset publication-title: Int. J. Robot. Res. doi: 10.1177/0278364915614638 – ident: ref_166 doi: 10.1109/ICECCT52121.2021.9616881 – ident: ref_11 doi: 10.3390/electronics11040556 – volume: 8 start-page: 62775 year: 2020 ident: ref_148 article-title: Pedestrian detection in severe weather conditions publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2982539 – ident: ref_24 – volume: 11 start-page: 468 year: 2022 ident: ref_163 article-title: Weather and surface condition detection based on road-side webcams: Application of pre-trained convolutional neural network publication-title: Int. J. Transp. Sci. Technol. doi: 10.1016/j.ijtst.2021.06.003 – ident: ref_34 – volume: 40 start-page: 114 year: 1991 ident: ref_50 article-title: Automated vehicle control developments in the PATH program publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/25.69979 – ident: ref_92 doi: 10.1109/CVPR.2017.106 – volume: 81 start-page: 18715 year: 2022 ident: ref_132 article-title: Automatic vehicle detection system in different environment conditions using fast R-CNN publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-12347-8 – volume: 12 start-page: 75 year: 2018 ident: ref_114 article-title: Real-time vehicle detection and counting in complex traffic scenes using background subtraction model with low-rank decomposition publication-title: IET Intell. Transp. Syst. doi: 10.1049/iet-its.2017.0047 – volume: 80 start-page: 545 year: 2022 ident: ref_2 article-title: Advance generalization technique through 3D CNN to overcome the false positives pedestrian in autonomous vehicles publication-title: Telecommun. Syst. doi: 10.1007/s11235-022-00930-1 – volume: 165 start-page: 113816 year: 2021 ident: ref_4 article-title: Self-driving cars: A survey publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113816 – volume: 1 start-page: 33 year: 2016 ident: ref_49 article-title: A survey of motion planning and control techniques for self-driving urban vehicles publication-title: IEEE Trans. Intell. Veh. doi: 10.1109/TIV.2016.2578706 – ident: ref_95 doi: 10.1109/CVPR42600.2020.01079 – volume: Volume 12346 start-page: 213 year: 2020 ident: ref_96 article-title: End-to-end object detection with transformers publication-title: Computer Vision–ECCV 2020 – ident: ref_102 – ident: ref_63 – ident: ref_125 – volume: Volume 12544 start-page: 404 year: 2021 ident: ref_75 article-title: 4Seasons: A cross-season dataset for multi-weather SLAM in autonomous driving publication-title: Pattern Recognition – ident: ref_129 doi: 10.1109/CSCI46756.2018.00074 – volume: Volume 6216 start-page: 301 year: 2010 ident: ref_126 article-title: An adaptive method for detecting lane boundary in night scene publication-title: Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence – ident: ref_53 doi: 10.1109/UCC56403.2022.00072 – ident: ref_64 doi: 10.1117/12.2558989 – volume: 40 start-page: 199 year: 2013 ident: ref_119 article-title: Research of Pedestrian Tracking Based on HOG Feature and Haar Feature publication-title: Comput. Sci. – volume: 28 start-page: 254 year: 2018 ident: ref_103 article-title: Improved lane line detection algorithm based on Hough transform publication-title: Pattern Recognit. Image Anal. doi: 10.1134/S1054661818020049 – ident: ref_66 doi: 10.1109/CVPR.2019.00895 – ident: ref_54 doi: 10.1109/ICCV48922.2021.01059 – volume: 13 start-page: 817 year: 2012 ident: ref_108 article-title: Adaptive vehicle detector approach for complex environments publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2011.2181366 – ident: ref_134 doi: 10.3390/s20164646 – ident: ref_83 doi: 10.1109/ICCV.1999.790410 – ident: ref_85 – volume: 40 start-page: 681 year: 2021 ident: ref_62 article-title: Canadian adverse driving conditions dataset publication-title: Int. J. Robot. Res. doi: 10.1177/0278364920979368 – ident: ref_158 – volume: 19 start-page: 934 year: 2018 ident: ref_77 article-title: KAIST multi-spectral day/night data set for autonomous and assisted driving publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2018.2791533 – ident: ref_131 doi: 10.1109/ITT56123.2022.9863963 – ident: ref_155 doi: 10.1109/IPAS.2016.7880072 – ident: ref_82 doi: 10.1109/IROS51168.2021.9636162 – ident: ref_43 – volume: 4 start-page: 742 year: 2020 ident: ref_86 article-title: A review on computational intelligence techniques in cloud and edge computing publication-title: IEEE Trans. Emerg. Top. Comput. Intell. doi: 10.1109/TETCI.2020.3007905 – volume: 80 start-page: 25985 year: 2021 ident: ref_133 article-title: On-road vehicle detection in varying weather conditions using faster R-CNN with several region proposal networks publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-021-10954-5 – volume: 62 start-page: 2040 year: 2021 ident: ref_107 article-title: Vehicles detection system at different weather conditions publication-title: Iraqi J. Sci. doi: 10.24996/ijs.2021.62.6.30 – ident: ref_120 doi: 10.1109/IMCCC.2018.00211 – ident: ref_161 doi: 10.1145/3377049.3377105 |
SSID | ssj0065961 |
Score | 2.4905708 |
SecondaryResourceType | review_article |
Snippet | Enhancing the environmental perception of autonomous vehicles (AVs) in intelligent transportation systems requires computer vision technology to be effective... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 103 |
SubjectTerms | Algorithms Artificial intelligence Automatic vehicle identification systems Automation Autonomous vehicles Computer vision Deep learning Driverless cars Evolution Fatalities Fog Image processing intelligent transportation system Intelligent transportation systems Literature reviews Machine learning Neural networks object detection Object recognition Pedestrians Roads & highways Sensors Snow Surveillance System effectiveness traditional approaches Traffic accidents & safety Transportation planning Weather |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJy--xfpiEEEvRdtu0663-lgWQb34uoU8dUG6Yuv_d6ZJFw-KF69tCMlkJvNNMvmGscNEI-w0qYqVUS6mm8BYqXwY8yIx1qH5SUNvh29u-eRheP2cP38r9UU5YZ4e2AvuhAjYVZEZkzozLG0-MtihzE6dO1XO6m73RZ_XB1N-D-b5iCeeRyjDoP5EJqTYSV8ZK3ifjqT_t6248y_jFbYUgCFUfkCrbMHWa2y5L7oAwQbXWXOn6OgELm3bZVHVMK2h-mzpcQJG8fBoX7tMN6DXYR_QFVxuLDx5qHcGFfjrAJg5QEdlpv4wEGRtsE_7DoFx9QWqQDdumw32ML66v5jEoXJCrBFftChpo8vMpXlJxOCFS7XRGqfPLZHnICqRaMromBKthtzZLMu5QfngX-0wTM2zTTaoZ7XdYsB5qa3KuXPE1O5SZSQvZCa1diUvSxOx416iQgdacapu8SYwvCDhi7nwI3Ywb_ruuTR-anROyzJvQPTX3QdUChGUQvylFBE7okUVZKQ4GC3DWwOcEtFdiQoDfwKSCY_Ybr_uIlhvI9IRhpHESpNs_8dodthiilDIZ67tskH78Wn3EMq0ar_T2i8lifIe priority: 102 providerName: Directory of Open Access Journals |
Title | Object Detection in Autonomous Vehicles under Adverse Weather: A Review of Traditional and Deep Learning Approaches |
URI | https://www.proquest.com/docview/2987123611 https://doaj.org/article/8570b73dd2fd48e59d423a30ff0bfec2 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9RAEJ8IvPjiB2o8xMuEmMhLA22v28UXU5STmAiEiPK22U8gIb3zWv5_Z7bb80V97W6b7ux87-xvAN7lltxOV5jMOBMyPgnMjKlmmahz5wOJn3Z8d_jbmTi9mn29rq5Twq1LZZWjToyK2i0s58gPCgqOI1JI_nH5K-OuUXy6mlpobMAWqWBJwdfW8cnZxeWoi0V1JPIBT6ik4P5A58zg-dghK1mhCNb_L5Uc7cz8GTxJDiI2w44-h0e-3YanY_MFTLL4ArpzwykU_Oz7WE3V4l2LzUPPlxQomscf_jZWvCHfElthbLzcefw5uHwfsMHhWAAXAclgubshKYi6dfRNv8SEvHqDTYId991LuJqffP90mqUOCpklP6Mnijsry1BUkgHC61BYZy0tX3gG0SHvRJNIk4HKrZmJ4MuyEo7oQ6M2ULhala9gs120_jWgENJ6U4kQGLE9FMZpUetSWxukkNJNYH-kqLIJXpy7XNwrCjOY-GpN_AnsracuB0yNv0065m1ZT2AY7PhgsbpRSaoUo_ObunSuCG4mfXXkiNt0eRjCoQneFhN4z5uqWFjpZ6xOdw5oSQx7pZqaAgx6JRcT2B33XSUp7tQfntv5__AbeFyQszPUpu3CZr968G_JWenNFDbk_Ms08eU0hvy_Ae7G7AI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLWqsoANUB5iaCkWAsEm6thJnAxShQJlmNIHmxa6c_0slVAynWSE-Kl-I_c6zrABdt3GTuTY92n7nkPIS2Yg7LRcJ9pqn-BJYKJ1niWiYNZ5UD9lsXb46FjMTrPPZ_nZGrkeamHwWuVgE4Ohto3BPfIdDslxQAph7-ZXCbJG4enqQKHRi8WB-_UTUrZ2d38P1vcV59OPJx9mSWQVSAz43g5GYU2Zep6XCJpdeG6sMQwMuUNgGfDYCsQcjDYzOhPepWkuLGgBtBoPKRyyRIDJv5Wl6QQ1qpx-Giy_yCeC9ehF0DjeUQzViQ18XNHnBWqAfzmA4NWm98ndGI7SqpefDbLm6gfk3kD1QKPmPyTtF40bNnTPdeHuVk0va1otOyyJaJYt_eq-h_t1FGvSFjTQPLeOfusDzLe0ov0hBG08BfdoL_stSKpqC990cxpxXi9oFUHOXfuInN7IzD4m63VTuyeEClEap3PhPeLDe66tEoVKlTG-FGVpR-TNMKPSRDBz5NT4ISGpwcmXq8kfkRerrvMeweNvnd7jsqw6IOh2eNAsLmTUYYlcALpIreXeZqXLJxZkW6Vj78faO8NH5DUuqkTTAIMxKlY4wC8hyJasCkhn4BUmRmRrWHcZbUYr_0j40_83Pye3ZydHh_Jw__hgk9zhEGb1t-K2yHq3WLpnECZ1ejvIJiXnN60MvwEWNCNC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VqYS48EaEFlghEFysZNfx2kFCyCWNWgqhQhR623pfbSVkh9gR4q_x65ix1-EC3Hq115a9O8_dme8DeMYNhp1W6Ehb7SM6CYy0TiaRTLl1HtWvsNQ7_GEhD04m706T0y341ffCUFllbxNbQ20rQ3vkI4HJcYsUwkc-lEUcz-Zvlt8jYpCik9aeTqMTkSP38wemb_Xrwxmu9XMh5vuf3x5EgWEgMuiHG_wia7LYiyQjAO3UC2ON4WjUHYHMoPcuUOTRgHOjJ9K7OE6kRY3Au8ZjOkeMEWj-t1PMisYD2N7bXxx_6v2ATKaSd1hGcTwdjwpOysV7dq7gAVuigH-5g9bHzW_BjRCcsryTptuw5co7cLMnfmDBDtyF-qOm7Rs2c01byVWyy5Ll64YaJKp1zb64i7bajlGH2oq1pM-1Y1-7cPMVy1l3JMEqz9BZ2stuQ5IVpcV3uiULqK_nLA-Q566-BydXMrf3YVBWpXsATMrMOJ1I7wkt3gttC5kWcWGMz2SW2SG87GdUmQBtTgwb3xSmODT5ajP5Q3i6Gbrs8Dz-NmiPlmUzgCC42wvV6lwFjVbEDKDT2Frh7SRzydSipBfx2Pux9s6IIbygRVVkKPBjTBH6HfCXCHJL5SkmN_gIl0PY7dddBQtSqz_y_vD_t5_ANVQE9f5wcbQD1wXGXF2J3C4MmtXaPcKYqdGPg3AyOLtqffgNh1so1A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Object+Detection+in+Autonomous+Vehicles+under+Adverse+Weather%3A+A+Review+of+Traditional+and+Deep+Learning+Approaches&rft.jtitle=Algorithms&rft.au=Tahir%2C+Noor+Ul+Ain&rft.au=Zhang%2C+Zuping&rft.au=Asim%2C+Muhammad&rft.au=Chen%2C+Junhong&rft.date=2024-03-01&rft.pub=MDPI+AG&rft.issn=1999-4893&rft.eissn=1999-4893&rft.volume=17&rft.issue=3&rft_id=info:doi/10.3390%2Fa17030103&rft.externalDocID=A788242316 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon |