Left ventricular mechanical limitations to stroke volume in healthy humans during incremental exercise
During incremental exercise, stroke volume (SV) plateaus at 40–50% of maximal exercise capacity. In healthy individuals, left ventricular (LV) twist and untwisting (“LV twist mechanics”) contribute to the generation of SV at rest, but whether the plateau in SV during incremental exercise is related...
Saved in:
Published in | American journal of physiology. Heart and circulatory physiology Vol. 301; no. 2; pp. H478 - H487 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
01.08.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 0363-6135 1522-1539 1522-1539 |
DOI | 10.1152/ajpheart.00314.2011 |
Cover
Loading…
Abstract | During incremental exercise, stroke volume (SV) plateaus at 40–50% of maximal exercise capacity. In healthy individuals, left ventricular (LV) twist and untwisting (“LV twist mechanics”) contribute to the generation of SV at rest, but whether the plateau in SV during incremental exercise is related to a blunting in LV twist mechanics remains unknown. To test this hypothesis, nine healthy young males performed continuous and discontinuous incremental supine cycling exercise up to 90% peak power in a randomized order. During both exercise protocols, end-diastolic volume (EDV), end-systolic volume (ESV), and SV reached a plateau at submaximal exercise intensities while heart rate increased continuously. Similar to LV volumes, two-dimensional speckle tracking-derived LV twist and untwisting velocity increased gradually from rest (all P < 0.001) and then leveled off at submaximal intensities. During continuous exercise, LV twist mechanics were linearly related to ESV, SV, heart rate, and cardiac output (all P < 0.01) while the relationship with EDV was exponential. In diastole, the increase in apical untwisting was significantly larger than that of basal untwisting ( P < 0.01), emphasizing the importance of dynamic apical function. In conclusion, during incremental exercise, the plateau in LV twist mechanics and their close relationship with SV and cardiac output indicate a mechanical limitation in maximizing LV output during high exercise intensities. However, LV twist mechanics do not appear to be the sole factor limiting LV output, since EDV reaches its maximum before the plateau in LV twist mechanics, suggesting additional limitations in diastolic filling to the heart. |
---|---|
AbstractList | During incremental exercise, stroke volume (SV) plateaus at 40-50% of maximal exercise capacity. In healthy individuals, left ventricular (LV) twist and untwisting ("LV twist mechanics") contribute to the generation of SV at rest, but whether the plateau in SV during incremental exercise is related to a blunting in LV twist mechanics remains unknown. To test this hypothesis, nine healthy young males performed continuous and discontinuous incremental supine cycling exercise up to 90% peak power in a randomized order. During both exercise protocols, end-diastolic volume (EDV), end-systolic volume (ESV), and SV reached a plateau at submaximal exercise intensities while heart rate increased continuously. Similar to LV volumes, two-dimensional speckle tracking-derived LV twist and untwisting velocity increased gradually from rest (all P < 0.001) and then leveled off at submaximal intensities. During continuous exercise, LV twist mechanics were linearly related to ESV, SV, heart rate, and cardiac output (all P < 0.01) while the relationship with EDV was exponential. In diastole, the increase in apical untwisting was significantly larger than that of basal untwisting (P < 0.01), emphasizing the importance of dynamic apical function. In conclusion, during incremental exercise, the plateau in LV twist mechanics and their close relationship with SV and cardiac output indicate a mechanical limitation in maximizing LV output during high exercise intensities. However, LV twist mechanics do not appear to be the sole factor limiting LV output, since EDV reaches its maximum before the plateau in LV twist mechanics, suggesting additional limitations in diastolic filling to the heart. During incremental exercise, stroke volume (SV) plateaus at 40-50% of maximal exercise capacity. In healthy individuals, left ventricular (LV) twist and untwisting ("LV twist mechanics") contribute to the generation of SV at rest, but whether the plateau in SV during incremental exercise is related to a blunting in LV twist mechanics remains unknown. To test this hypothesis, nine healthy young males performed continuous and discontinuous incremental supine cycling exercise up to 90% peak power in a randomized order. During both exercise protocols, end-diastolic volume (EDV), end-systolic volume (ESV), and SV reached a plateau at submaximal exercise intensities while heart rate increased continuously. Similar to LV volumes, two-dimensional speckle tracking-derived LV twist and untwisting velocity increased gradually from rest (all P < 0.001) and then leveled off at submaximal intensities. During continuous exercise, LV twist mechanics were linearly related to ESV, SV, heart rate, and cardiac output (all P < 0.01) while the relationship with EDV was exponential. In diastole, the increase in apical untwisting was significantly larger than that of basal untwisting (P < 0.01), emphasizing the importance of dynamic apical function. In conclusion, during incremental exercise, the plateau in LV twist mechanics and their close relationship with SV and cardiac output indicate a mechanical limitation in maximizing LV output during high exercise intensities. However, LV twist mechanics do not appear to be the sole factor limiting LV output, since EDV reaches its maximum before the plateau in LV twist mechanics, suggesting additional limitations in diastolic filling to the heart. [PUBLICATION ABSTRACT] During incremental exercise, stroke volume (SV) plateaus at 40-50% of maximal exercise capacity. In healthy individuals, left ventricular (LV) twist and untwisting ("LV twist mechanics") contribute to the generation of SV at rest, but whether the plateau in SV during incremental exercise is related to a blunting in LV twist mechanics remains unknown. To test this hypothesis, nine healthy young males performed continuous and discontinuous incremental supine cycling exercise up to 90% peak power in a randomized order. During both exercise protocols, end-diastolic volume (EDV), end-systolic volume (ESV), and SV reached a plateau at submaximal exercise intensities while heart rate increased continuously. Similar to LV volumes, two-dimensional speckle tracking-derived LV twist and untwisting velocity increased gradually from rest (all P < 0.001) and then leveled off at submaximal intensities. During continuous exercise, LV twist mechanics were linearly related to ESV, SV, heart rate, and cardiac output (all P < 0.01) while the relationship with EDV was exponential. In diastole, the increase in apical untwisting was significantly larger than that of basal untwisting (P < 0.01), emphasizing the importance of dynamic apical function. In conclusion, during incremental exercise, the plateau in LV twist mechanics and their close relationship with SV and cardiac output indicate a mechanical limitation in maximizing LV output during high exercise intensities. However, LV twist mechanics do not appear to be the sole factor limiting LV output, since EDV reaches its maximum before the plateau in LV twist mechanics, suggesting additional limitations in diastolic filling to the heart.During incremental exercise, stroke volume (SV) plateaus at 40-50% of maximal exercise capacity. In healthy individuals, left ventricular (LV) twist and untwisting ("LV twist mechanics") contribute to the generation of SV at rest, but whether the plateau in SV during incremental exercise is related to a blunting in LV twist mechanics remains unknown. To test this hypothesis, nine healthy young males performed continuous and discontinuous incremental supine cycling exercise up to 90% peak power in a randomized order. During both exercise protocols, end-diastolic volume (EDV), end-systolic volume (ESV), and SV reached a plateau at submaximal exercise intensities while heart rate increased continuously. Similar to LV volumes, two-dimensional speckle tracking-derived LV twist and untwisting velocity increased gradually from rest (all P < 0.001) and then leveled off at submaximal intensities. During continuous exercise, LV twist mechanics were linearly related to ESV, SV, heart rate, and cardiac output (all P < 0.01) while the relationship with EDV was exponential. In diastole, the increase in apical untwisting was significantly larger than that of basal untwisting (P < 0.01), emphasizing the importance of dynamic apical function. In conclusion, during incremental exercise, the plateau in LV twist mechanics and their close relationship with SV and cardiac output indicate a mechanical limitation in maximizing LV output during high exercise intensities. However, LV twist mechanics do not appear to be the sole factor limiting LV output, since EDV reaches its maximum before the plateau in LV twist mechanics, suggesting additional limitations in diastolic filling to the heart. |
Author | Shave, Rob Stöhr, Eric J. González-Alonso, José |
Author_xml | – sequence: 1 givenname: Eric J. surname: Stöhr fullname: Stöhr, Eric J. organization: Centre for Sports Medicine and Human Performance, Brunel University, Uxbridge; and – sequence: 2 givenname: José surname: González-Alonso fullname: González-Alonso, José organization: Centre for Sports Medicine and Human Performance, Brunel University, Uxbridge; and – sequence: 3 givenname: Rob surname: Shave fullname: Shave, Rob organization: Centre for Sports Medicine and Human Performance, Brunel University, Uxbridge; and, Cardiff School of Sport, University of Wales Institute Cardiff, Cardiff, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21572016$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtPHDEQhK2IKCwkvyASsrjkNBs_xvb4iBB5SCvlkpxHjqed9eKxF9uD4N_HGxYOHHLqQ39V3ao6QycxRUDoIyVrSgX7bHb7LZhc14Rw2q8ZofQNWrUN66jg-gStCJe8k5SLU3RWyo4QIpTk79Apo0I1Xq6Q24Cr-B5izd4uwWQ8g92a6K0JOPjZV1N9igXXhEvN6RbwfQrLDNhH3M6Hun3E22U2DZmW7OOftrAZ5ubYHOABsvUF3qO3zoQCH47zHP36cvPz-lu3-fH1-_XVprNcq9oJM5BBSSt7O0xKK0mcc1pbyrmenGIASmsthDO9VtYwOQgy9UwKRSn0E-fn6NOT7z6nuwVKHWdfLIRgIqSljMNAtFaMHsjLV-QuLTm25xrEmJa90A26OELL7xmmcZ_9bPLj-JxfA_gTYHMqJYN7QSgZDy2Nzy2N_1oaDy01lX6lssecazY-_Ff7F9GkmrQ |
CODEN | AJPPDI |
CitedBy_id | crossref_primary_10_3390_app13063813 crossref_primary_10_1152_ajpheart_00733_2017 crossref_primary_10_1152_ajpheart_00938_2012 crossref_primary_10_3390_cells11030383 crossref_primary_10_1139_apnm_2017_0608 crossref_primary_10_3390_jcdd9120438 crossref_primary_10_1113_EP085423 crossref_primary_10_1113_expphysiol_2012_067488 crossref_primary_10_14814_phy2_12872 crossref_primary_10_1113_EP085623 crossref_primary_10_1038_s41587_023_01800_0 crossref_primary_10_1152_ajpheart_00256_2020 crossref_primary_10_1016_j_jsams_2021_01_007 crossref_primary_10_1113_EP087165 crossref_primary_10_1152_ajpheart_00057_2016 crossref_primary_10_23736_S0022_4707_23_14971_1 crossref_primary_10_1142_S0219519418500148 crossref_primary_10_1152_japplphysiol_00233_2014 crossref_primary_10_1177_0954411915624451 crossref_primary_10_1016_j_healun_2019_01_1305 crossref_primary_10_1111_echo_13020 crossref_primary_10_1038_s41598_019_52679_4 crossref_primary_10_1111_j_1748_1716_2012_02430_x crossref_primary_10_1249_MSS_0000000000002372 crossref_primary_10_1016_j_exger_2017_05_010 crossref_primary_10_1113_JP285760 crossref_primary_10_1016_j_echo_2013_07_007 crossref_primary_10_1152_ajpheart_00997_2011 crossref_primary_10_3389_fphys_2016_00110 crossref_primary_10_1113_jphysiol_2013_262246 crossref_primary_10_1113_jphysiol_2012_227850 crossref_primary_10_1249_MSS_0000000000001326 crossref_primary_10_1111_j_1748_1716_2011_02341_x crossref_primary_10_1152_japplphysiol_00724_2024 crossref_primary_10_1113_EP085081 crossref_primary_10_1253_circj_CJ_16_0965 crossref_primary_10_1113_expphysiol_2014_082503 crossref_primary_10_1152_ajpheart_00667_2017 crossref_primary_10_1371_journal_pone_0154065 crossref_primary_10_1111_eci_12720 crossref_primary_10_1186_1471_2261_12_46 crossref_primary_10_1249_MSS_0000000000002005 crossref_primary_10_14814_phy2_13108 crossref_primary_10_14814_phy2_14433 crossref_primary_10_1007_s00392_017_1143_9 crossref_primary_10_1111_echo_12737 crossref_primary_10_1007_s00421_016_3506_8 crossref_primary_10_1152_japplphysiol_00907_2020 crossref_primary_10_1253_circj_CJ_18_0986 crossref_primary_10_1152_ajpheart_00104_2016 crossref_primary_10_1152_ajpheart_00834_2011 crossref_primary_10_1038_s42003_024_06280_9 crossref_primary_10_1002_jmri_23849 crossref_primary_10_3390_e26010027 crossref_primary_10_3389_fphys_2021_679232 crossref_primary_10_1113_jphysiol_2012_235002 crossref_primary_10_1113_EP086621 crossref_primary_10_1007_s40279_016_0644_4 crossref_primary_10_1249_MSS_0000000000002554 crossref_primary_10_1089_neu_2016_4510 crossref_primary_10_1139_apnm_2018_0544 crossref_primary_10_3390_info13030148 crossref_primary_10_1007_s12350_019_01730_y crossref_primary_10_1113_JP273368 crossref_primary_10_1371_journal_pone_0208749 crossref_primary_10_1016_j_jash_2013_07_004 crossref_primary_10_1152_ajpheart_00720_2020 crossref_primary_10_1152_japplphysiol_00995_2014 |
Cites_doi | 10.1016/j.jacc.2006.08.030 10.1113/jphysiol.2007.149401 10.3109/07853890108998751 10.1152/jappl.1975.38.1.70 10.1161/CIRCIMAGING.110.943522 10.1085/jgp.20028652 10.1113/jphysiol.2008.156323 10.2165/00007256-200939080-00005 10.1007/s10741-009-9151-0 10.1093/eurheartj/ehn006 10.1161/01.CIR.84.3.1016 10.1161/01.RES.58.2.281 10.1161/CIRCULATIONAHA.107.754424 10.1152/ajpheart.1999.277.3.H1053 10.1113/jphysiol.2005.086025 10.1113/eph8702372 10.1161/01.CIR.60.6.1308 10.1053/je.1999.v12.a99246 10.1161/01.RES.0000117769.88862.F8 10.1152/jappl.1964.19.2.268 10.1139/h06-086 10.1016/j.jacc.2005.08.073 10.1161/CIRCIMAGING.109.932921 10.1016/j.echo.2010.02.015 10.1161/CIRCULATIONAHA.104.531558 10.1016/j.hfc.2008.03.001 10.1016/0002-9149(76)90491-4 10.1016/S0006-3495(69)86429-5 10.1016/j.ijcard.2008.05.061 10.1016/j.echo.2008.02.001 10.1016/j.echo.2010.01.015 10.1016/j.jcmg.2009.03.001 10.1016/j.echo.2009.04.028 10.1249/00005768-199409000-00008 10.1113/expphysiol.2010.055137 10.1016/j.jcmg.2009.01.015 10.1161/CIRCULATIONAHA.105.596502 10.1161/01.CIR.62.3.528 10.1253/circj.71.661 |
ContentType | Journal Article |
Copyright | Copyright American Physiological Society Aug 2011 |
Copyright_xml | – notice: Copyright American Physiological Society Aug 2011 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TS 7U7 8FD C1K FR3 P64 7X8 |
DOI | 10.1152/ajpheart.00314.2011 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Physical Education Index Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE Technology Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1522-1539 |
EndPage | H487 |
ExternalDocumentID | 2421689281 21572016 10_1152_ajpheart_00314_2011 |
Genre | Video-Audio Media Randomized Controlled Trial Journal Article Feature |
GroupedDBID | --- 23M 2WC 39C 3O- 4.4 53G 5GY 5VS 6J9 8M5 AAFWJ AAYXX ABJNI ACBEA ACIWK ACPRK ADBBV AENEX AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BKOMP BTFSW C1A CITATION E3Z EBS EJD EMOBN F5P GX1 H13 ITBOX KQ8 OK1 P2P PQQKQ RAP RHI RPL RPRKH TR2 UKR W8F WH7 WOQ XSW YSK YYP ~02 CGR CUY CVF ECM EIF NPM 7QP 7QR 7TS 7U7 8FD C1K FR3 P64 7X8 |
ID | FETCH-LOGICAL-c397t-5a80876c64c8d79760fff99c1339df72ee799955fa497ca26850d4265711e4d33 |
ISSN | 0363-6135 1522-1539 |
IngestDate | Fri Jul 11 09:57:53 EDT 2025 Mon Jun 30 17:08:28 EDT 2025 Thu Apr 03 06:53:39 EDT 2025 Thu Apr 24 23:04:25 EDT 2025 Tue Jul 01 01:16:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c397t-5a80876c64c8d79760fff99c1339df72ee799955fa497ca26850d4265711e4d33 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
PMID | 21572016 |
PQID | 882296459 |
PQPubID | 48261 |
ParticipantIDs | proquest_miscellaneous_880997213 proquest_journals_882296459 pubmed_primary_21572016 crossref_primary_10_1152_ajpheart_00314_2011 crossref_citationtrail_10_1152_ajpheart_00314_2011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-08-00 2011-Aug 20110801 |
PublicationDateYYYYMMDD | 2011-08-01 |
PublicationDate_xml | – month: 08 year: 2011 text: 2011-08-00 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda |
PublicationTitle | American journal of physiology. Heart and circulatory physiology |
PublicationTitleAlternate | Am J Physiol Heart Circ Physiol |
PublicationYear | 2011 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B10 B32 B11 B33 B12 B34 B13 B35 B14 B36 B15 B37 B16 B38 B17 B39 B18 B19 B1 B2 B3 B4 B5 B6 B7 B8 B9 22201176 - Am J Physiol Heart Circ Physiol. 2012 Jan 1;302(1):H375; author reply H376-7 |
References_xml | – ident: B31 doi: 10.1016/j.jacc.2006.08.030 – ident: B21 doi: 10.1113/jphysiol.2007.149401 – ident: B5 doi: 10.3109/07853890108998751 – ident: B12 doi: 10.1152/jappl.1975.38.1.70 – ident: B9 doi: 10.1161/CIRCIMAGING.110.943522 – ident: B17 doi: 10.1085/jgp.20028652 – ident: B24 doi: 10.1113/jphysiol.2008.156323 – ident: B26 doi: 10.2165/00007256-200939080-00005 – ident: B1 doi: 10.1007/s10741-009-9151-0 – ident: B35 doi: 10.1093/eurheartj/ehn006 – ident: B20 doi: 10.1161/01.CIR.84.3.1016 – ident: B18 doi: 10.1161/01.RES.58.2.281 – ident: B6 doi: 10.1161/CIRCULATIONAHA.107.754424 – ident: B8 doi: 10.1152/ajpheart.1999.277.3.H1053 – ident: B22 doi: 10.1113/jphysiol.2005.086025 – ident: B38 doi: 10.1113/eph8702372 – ident: B19 doi: 10.1161/01.CIR.60.6.1308 – ident: B3 doi: 10.1053/je.1999.v12.a99246 – ident: B15 doi: 10.1161/01.RES.0000117769.88862.F8 – ident: B4 doi: 10.1152/jappl.1964.19.2.268 – ident: B10 doi: 10.1139/h06-086 – ident: B29 doi: 10.1016/j.jacc.2005.08.073 – ident: B39 doi: 10.1161/CIRCIMAGING.109.932921 – ident: B13 doi: 10.1016/j.echo.2010.02.015 – ident: B16 doi: 10.1161/CIRCULATIONAHA.104.531558 – ident: B30 doi: 10.1016/j.hfc.2008.03.001 – ident: B36 doi: 10.1016/0002-9149(76)90491-4 – ident: B28 doi: 10.1016/S0006-3495(69)86429-5 – ident: B32 doi: 10.1016/j.ijcard.2008.05.061 – ident: B37 doi: 10.1016/j.echo.2008.02.001 – ident: B11 doi: 10.1016/j.echo.2010.01.015 – ident: B27 doi: 10.1016/j.jcmg.2009.03.001 – ident: B33 doi: 10.1016/j.echo.2009.04.028 – ident: B14 doi: 10.1249/00005768-199409000-00008 – ident: B34 doi: 10.1113/expphysiol.2010.055137 – ident: B7 doi: 10.1016/j.jcmg.2009.01.015 – ident: B23 doi: 10.1161/CIRCULATIONAHA.105.596502 – ident: B25 doi: 10.1161/01.CIR.62.3.528 – ident: B2 doi: 10.1253/circj.71.661 – reference: 22201176 - Am J Physiol Heart Circ Physiol. 2012 Jan 1;302(1):H375; author reply H376-7 |
SSID | ssj0005763 |
Score | 2.3179624 |
Snippet | During incremental exercise, stroke volume (SV) plateaus at 40–50% of maximal exercise capacity. In healthy individuals, left ventricular (LV) twist and... During incremental exercise, stroke volume (SV) plateaus at 40-50% of maximal exercise capacity. In healthy individuals, left ventricular (LV) twist and... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | H478 |
SubjectTerms | Adaptation, Physiological Adult Analysis of Variance Bicycling Biomechanical Phenomena Blood Pressure Cardiovascular system Exercise Exercise Test Heart Rate Heart Ventricles - diagnostic imaging Humans Male Muscle Contraction Muscle, Skeletal - physiology Myocardial Contraction Physiology Stroke Stroke Volume Time Factors Torsion, Mechanical Ultrasonography United Kingdom Ventricular Function, Left Young Adult |
Title | Left ventricular mechanical limitations to stroke volume in healthy humans during incremental exercise |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21572016 https://www.proquest.com/docview/882296459 https://www.proquest.com/docview/880997213 |
Volume | 301 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5FRUJcELQ8QgHtAXEJDom968cxoJYI0gJSIuVm2eu1GkjtynGQkj_JX2JmH7YrSgVcrMh21uudz7PzHkJewY4q05GbOH4eZQ4TeeKkPPUdCdIIT1mY5j5mI5-d-9MF-7jky17vZydqaVunQ7G_Ma_kf6gK54CumCX7D5RtBoUT8BvoC0egMBz_isYzmdcDDFhUVrykGlxKTORV677GzCUT5wby5aauyu9yoJkRGjl0AuRON-nb2HTFVSG0wRBGsN2YuvJr4-DpVJxQxhFlnR9iVlOlY9bFqsI5KR9-e0dj0KnRQ__Ov6gsM279Ux_KYq_89-O13DuTNbxBaZwV2q3fDHKR_JAmPLxrvdDm2G4kiJ31FzsRtUQmYrXDC9HdDJKHdoBLw6tBjwaGHXWZuWcGX3WUas2ap0z3Cvp9z-BYgzb5doUtxOshsjmmaru2W6QNCzj_HJ8uZrN4frKcX7-qJAJ0r_th5GIpgDsu6C3YS-TT17Z8PSh3nnWe49uYMlgwg7c3PP-6qPQH_UfJQfMH5L5RYOhEo_Eh6cnikBxNCqD05Y6-ps0S7w7J3TMTuXFEcsQq7WCVtlilHazSuqQaq1SvNV0V1GCVaqxSjVXawSq1WH1EFqcn8_dTx_T4cARIwrXDkxCLIgqfiTALQDYe5XkeRWLseVGWB66UAagwnOcJiwKRuH7IRxlIlTwYjyXLPO8xOSjKQj4lNA1Y6MlRKiPBmAjCxBegu2Q-FyFoLXnWJ65dzliYt8I-LOtYKcLcjS0NVMFcFiMN-uRN86crXf_l9tuPLZ1i8yFu4hCbKmDRpj6hzVXg4uiaSwpZbvEWlcE-9vrkiaZu8zSQyQFIY__ZrUMfk3vt5_WcHNTVVr4AcblOXyoI_gJSI8Ze |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Left+ventricular+mechanical+limitations+to+stroke+volume+in+healthy+humans+during+incremental+exercise&rft.jtitle=American+journal+of+physiology.+Heart+and+circulatory+physiology&rft.au=St%C3%B6hr%2C+Eric+J&rft.au=Gonz%C3%A1lez-Alonso%2C+Jos%C3%A9&rft.au=Shave%2C+Rob&rft.date=2011-08-01&rft.pub=American+Physiological+Society&rft.issn=0363-6135&rft.eissn=1522-1539&rft.volume=301&rft.issue=2&rft.spage=H478&rft_id=info:doi/10.1152%2Fajpheart.00314.2011&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2421689281 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-6135&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-6135&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-6135&client=summon |