Left ventricular mechanical limitations to stroke volume in healthy humans during incremental exercise

During incremental exercise, stroke volume (SV) plateaus at 40–50% of maximal exercise capacity. In healthy individuals, left ventricular (LV) twist and untwisting (“LV twist mechanics”) contribute to the generation of SV at rest, but whether the plateau in SV during incremental exercise is related...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology. Heart and circulatory physiology Vol. 301; no. 2; pp. H478 - H487
Main Authors Stöhr, Eric J., González-Alonso, José, Shave, Rob
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.08.2011
Subjects
Online AccessGet full text
ISSN0363-6135
1522-1539
1522-1539
DOI10.1152/ajpheart.00314.2011

Cover

Loading…
Abstract During incremental exercise, stroke volume (SV) plateaus at 40–50% of maximal exercise capacity. In healthy individuals, left ventricular (LV) twist and untwisting (“LV twist mechanics”) contribute to the generation of SV at rest, but whether the plateau in SV during incremental exercise is related to a blunting in LV twist mechanics remains unknown. To test this hypothesis, nine healthy young males performed continuous and discontinuous incremental supine cycling exercise up to 90% peak power in a randomized order. During both exercise protocols, end-diastolic volume (EDV), end-systolic volume (ESV), and SV reached a plateau at submaximal exercise intensities while heart rate increased continuously. Similar to LV volumes, two-dimensional speckle tracking-derived LV twist and untwisting velocity increased gradually from rest (all P < 0.001) and then leveled off at submaximal intensities. During continuous exercise, LV twist mechanics were linearly related to ESV, SV, heart rate, and cardiac output (all P < 0.01) while the relationship with EDV was exponential. In diastole, the increase in apical untwisting was significantly larger than that of basal untwisting ( P < 0.01), emphasizing the importance of dynamic apical function. In conclusion, during incremental exercise, the plateau in LV twist mechanics and their close relationship with SV and cardiac output indicate a mechanical limitation in maximizing LV output during high exercise intensities. However, LV twist mechanics do not appear to be the sole factor limiting LV output, since EDV reaches its maximum before the plateau in LV twist mechanics, suggesting additional limitations in diastolic filling to the heart.
AbstractList During incremental exercise, stroke volume (SV) plateaus at 40-50% of maximal exercise capacity. In healthy individuals, left ventricular (LV) twist and untwisting ("LV twist mechanics") contribute to the generation of SV at rest, but whether the plateau in SV during incremental exercise is related to a blunting in LV twist mechanics remains unknown. To test this hypothesis, nine healthy young males performed continuous and discontinuous incremental supine cycling exercise up to 90% peak power in a randomized order. During both exercise protocols, end-diastolic volume (EDV), end-systolic volume (ESV), and SV reached a plateau at submaximal exercise intensities while heart rate increased continuously. Similar to LV volumes, two-dimensional speckle tracking-derived LV twist and untwisting velocity increased gradually from rest (all P < 0.001) and then leveled off at submaximal intensities. During continuous exercise, LV twist mechanics were linearly related to ESV, SV, heart rate, and cardiac output (all P < 0.01) while the relationship with EDV was exponential. In diastole, the increase in apical untwisting was significantly larger than that of basal untwisting (P < 0.01), emphasizing the importance of dynamic apical function. In conclusion, during incremental exercise, the plateau in LV twist mechanics and their close relationship with SV and cardiac output indicate a mechanical limitation in maximizing LV output during high exercise intensities. However, LV twist mechanics do not appear to be the sole factor limiting LV output, since EDV reaches its maximum before the plateau in LV twist mechanics, suggesting additional limitations in diastolic filling to the heart.
During incremental exercise, stroke volume (SV) plateaus at 40-50% of maximal exercise capacity. In healthy individuals, left ventricular (LV) twist and untwisting ("LV twist mechanics") contribute to the generation of SV at rest, but whether the plateau in SV during incremental exercise is related to a blunting in LV twist mechanics remains unknown. To test this hypothesis, nine healthy young males performed continuous and discontinuous incremental supine cycling exercise up to 90% peak power in a randomized order. During both exercise protocols, end-diastolic volume (EDV), end-systolic volume (ESV), and SV reached a plateau at submaximal exercise intensities while heart rate increased continuously. Similar to LV volumes, two-dimensional speckle tracking-derived LV twist and untwisting velocity increased gradually from rest (all P < 0.001) and then leveled off at submaximal intensities. During continuous exercise, LV twist mechanics were linearly related to ESV, SV, heart rate, and cardiac output (all P < 0.01) while the relationship with EDV was exponential. In diastole, the increase in apical untwisting was significantly larger than that of basal untwisting (P < 0.01), emphasizing the importance of dynamic apical function. In conclusion, during incremental exercise, the plateau in LV twist mechanics and their close relationship with SV and cardiac output indicate a mechanical limitation in maximizing LV output during high exercise intensities. However, LV twist mechanics do not appear to be the sole factor limiting LV output, since EDV reaches its maximum before the plateau in LV twist mechanics, suggesting additional limitations in diastolic filling to the heart. [PUBLICATION ABSTRACT]
During incremental exercise, stroke volume (SV) plateaus at 40-50% of maximal exercise capacity. In healthy individuals, left ventricular (LV) twist and untwisting ("LV twist mechanics") contribute to the generation of SV at rest, but whether the plateau in SV during incremental exercise is related to a blunting in LV twist mechanics remains unknown. To test this hypothesis, nine healthy young males performed continuous and discontinuous incremental supine cycling exercise up to 90% peak power in a randomized order. During both exercise protocols, end-diastolic volume (EDV), end-systolic volume (ESV), and SV reached a plateau at submaximal exercise intensities while heart rate increased continuously. Similar to LV volumes, two-dimensional speckle tracking-derived LV twist and untwisting velocity increased gradually from rest (all P < 0.001) and then leveled off at submaximal intensities. During continuous exercise, LV twist mechanics were linearly related to ESV, SV, heart rate, and cardiac output (all P < 0.01) while the relationship with EDV was exponential. In diastole, the increase in apical untwisting was significantly larger than that of basal untwisting (P < 0.01), emphasizing the importance of dynamic apical function. In conclusion, during incremental exercise, the plateau in LV twist mechanics and their close relationship with SV and cardiac output indicate a mechanical limitation in maximizing LV output during high exercise intensities. However, LV twist mechanics do not appear to be the sole factor limiting LV output, since EDV reaches its maximum before the plateau in LV twist mechanics, suggesting additional limitations in diastolic filling to the heart.During incremental exercise, stroke volume (SV) plateaus at 40-50% of maximal exercise capacity. In healthy individuals, left ventricular (LV) twist and untwisting ("LV twist mechanics") contribute to the generation of SV at rest, but whether the plateau in SV during incremental exercise is related to a blunting in LV twist mechanics remains unknown. To test this hypothesis, nine healthy young males performed continuous and discontinuous incremental supine cycling exercise up to 90% peak power in a randomized order. During both exercise protocols, end-diastolic volume (EDV), end-systolic volume (ESV), and SV reached a plateau at submaximal exercise intensities while heart rate increased continuously. Similar to LV volumes, two-dimensional speckle tracking-derived LV twist and untwisting velocity increased gradually from rest (all P < 0.001) and then leveled off at submaximal intensities. During continuous exercise, LV twist mechanics were linearly related to ESV, SV, heart rate, and cardiac output (all P < 0.01) while the relationship with EDV was exponential. In diastole, the increase in apical untwisting was significantly larger than that of basal untwisting (P < 0.01), emphasizing the importance of dynamic apical function. In conclusion, during incremental exercise, the plateau in LV twist mechanics and their close relationship with SV and cardiac output indicate a mechanical limitation in maximizing LV output during high exercise intensities. However, LV twist mechanics do not appear to be the sole factor limiting LV output, since EDV reaches its maximum before the plateau in LV twist mechanics, suggesting additional limitations in diastolic filling to the heart.
Author Shave, Rob
Stöhr, Eric J.
González-Alonso, José
Author_xml – sequence: 1
  givenname: Eric J.
  surname: Stöhr
  fullname: Stöhr, Eric J.
  organization: Centre for Sports Medicine and Human Performance, Brunel University, Uxbridge; and
– sequence: 2
  givenname: José
  surname: González-Alonso
  fullname: González-Alonso, José
  organization: Centre for Sports Medicine and Human Performance, Brunel University, Uxbridge; and
– sequence: 3
  givenname: Rob
  surname: Shave
  fullname: Shave, Rob
  organization: Centre for Sports Medicine and Human Performance, Brunel University, Uxbridge; and, Cardiff School of Sport, University of Wales Institute Cardiff, Cardiff, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21572016$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtPHDEQhK2IKCwkvyASsrjkNBs_xvb4iBB5SCvlkpxHjqed9eKxF9uD4N_HGxYOHHLqQ39V3ao6QycxRUDoIyVrSgX7bHb7LZhc14Rw2q8ZofQNWrUN66jg-gStCJe8k5SLU3RWyo4QIpTk79Apo0I1Xq6Q24Cr-B5izd4uwWQ8g92a6K0JOPjZV1N9igXXhEvN6RbwfQrLDNhH3M6Hun3E22U2DZmW7OOftrAZ5ubYHOABsvUF3qO3zoQCH47zHP36cvPz-lu3-fH1-_XVprNcq9oJM5BBSSt7O0xKK0mcc1pbyrmenGIASmsthDO9VtYwOQgy9UwKRSn0E-fn6NOT7z6nuwVKHWdfLIRgIqSljMNAtFaMHsjLV-QuLTm25xrEmJa90A26OELL7xmmcZ_9bPLj-JxfA_gTYHMqJYN7QSgZDy2Nzy2N_1oaDy01lX6lssecazY-_Ff7F9GkmrQ
CODEN AJPPDI
CitedBy_id crossref_primary_10_3390_app13063813
crossref_primary_10_1152_ajpheart_00733_2017
crossref_primary_10_1152_ajpheart_00938_2012
crossref_primary_10_3390_cells11030383
crossref_primary_10_1139_apnm_2017_0608
crossref_primary_10_3390_jcdd9120438
crossref_primary_10_1113_EP085423
crossref_primary_10_1113_expphysiol_2012_067488
crossref_primary_10_14814_phy2_12872
crossref_primary_10_1113_EP085623
crossref_primary_10_1038_s41587_023_01800_0
crossref_primary_10_1152_ajpheart_00256_2020
crossref_primary_10_1016_j_jsams_2021_01_007
crossref_primary_10_1113_EP087165
crossref_primary_10_1152_ajpheart_00057_2016
crossref_primary_10_23736_S0022_4707_23_14971_1
crossref_primary_10_1142_S0219519418500148
crossref_primary_10_1152_japplphysiol_00233_2014
crossref_primary_10_1177_0954411915624451
crossref_primary_10_1016_j_healun_2019_01_1305
crossref_primary_10_1111_echo_13020
crossref_primary_10_1038_s41598_019_52679_4
crossref_primary_10_1111_j_1748_1716_2012_02430_x
crossref_primary_10_1249_MSS_0000000000002372
crossref_primary_10_1016_j_exger_2017_05_010
crossref_primary_10_1113_JP285760
crossref_primary_10_1016_j_echo_2013_07_007
crossref_primary_10_1152_ajpheart_00997_2011
crossref_primary_10_3389_fphys_2016_00110
crossref_primary_10_1113_jphysiol_2013_262246
crossref_primary_10_1113_jphysiol_2012_227850
crossref_primary_10_1249_MSS_0000000000001326
crossref_primary_10_1111_j_1748_1716_2011_02341_x
crossref_primary_10_1152_japplphysiol_00724_2024
crossref_primary_10_1113_EP085081
crossref_primary_10_1253_circj_CJ_16_0965
crossref_primary_10_1113_expphysiol_2014_082503
crossref_primary_10_1152_ajpheart_00667_2017
crossref_primary_10_1371_journal_pone_0154065
crossref_primary_10_1111_eci_12720
crossref_primary_10_1186_1471_2261_12_46
crossref_primary_10_1249_MSS_0000000000002005
crossref_primary_10_14814_phy2_13108
crossref_primary_10_14814_phy2_14433
crossref_primary_10_1007_s00392_017_1143_9
crossref_primary_10_1111_echo_12737
crossref_primary_10_1007_s00421_016_3506_8
crossref_primary_10_1152_japplphysiol_00907_2020
crossref_primary_10_1253_circj_CJ_18_0986
crossref_primary_10_1152_ajpheart_00104_2016
crossref_primary_10_1152_ajpheart_00834_2011
crossref_primary_10_1038_s42003_024_06280_9
crossref_primary_10_1002_jmri_23849
crossref_primary_10_3390_e26010027
crossref_primary_10_3389_fphys_2021_679232
crossref_primary_10_1113_jphysiol_2012_235002
crossref_primary_10_1113_EP086621
crossref_primary_10_1007_s40279_016_0644_4
crossref_primary_10_1249_MSS_0000000000002554
crossref_primary_10_1089_neu_2016_4510
crossref_primary_10_1139_apnm_2018_0544
crossref_primary_10_3390_info13030148
crossref_primary_10_1007_s12350_019_01730_y
crossref_primary_10_1113_JP273368
crossref_primary_10_1371_journal_pone_0208749
crossref_primary_10_1016_j_jash_2013_07_004
crossref_primary_10_1152_ajpheart_00720_2020
crossref_primary_10_1152_japplphysiol_00995_2014
Cites_doi 10.1016/j.jacc.2006.08.030
10.1113/jphysiol.2007.149401
10.3109/07853890108998751
10.1152/jappl.1975.38.1.70
10.1161/CIRCIMAGING.110.943522
10.1085/jgp.20028652
10.1113/jphysiol.2008.156323
10.2165/00007256-200939080-00005
10.1007/s10741-009-9151-0
10.1093/eurheartj/ehn006
10.1161/01.CIR.84.3.1016
10.1161/01.RES.58.2.281
10.1161/CIRCULATIONAHA.107.754424
10.1152/ajpheart.1999.277.3.H1053
10.1113/jphysiol.2005.086025
10.1113/eph8702372
10.1161/01.CIR.60.6.1308
10.1053/je.1999.v12.a99246
10.1161/01.RES.0000117769.88862.F8
10.1152/jappl.1964.19.2.268
10.1139/h06-086
10.1016/j.jacc.2005.08.073
10.1161/CIRCIMAGING.109.932921
10.1016/j.echo.2010.02.015
10.1161/CIRCULATIONAHA.104.531558
10.1016/j.hfc.2008.03.001
10.1016/0002-9149(76)90491-4
10.1016/S0006-3495(69)86429-5
10.1016/j.ijcard.2008.05.061
10.1016/j.echo.2008.02.001
10.1016/j.echo.2010.01.015
10.1016/j.jcmg.2009.03.001
10.1016/j.echo.2009.04.028
10.1249/00005768-199409000-00008
10.1113/expphysiol.2010.055137
10.1016/j.jcmg.2009.01.015
10.1161/CIRCULATIONAHA.105.596502
10.1161/01.CIR.62.3.528
10.1253/circj.71.661
ContentType Journal Article
Copyright Copyright American Physiological Society Aug 2011
Copyright_xml – notice: Copyright American Physiological Society Aug 2011
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TS
7U7
8FD
C1K
FR3
P64
7X8
DOI 10.1152/ajpheart.00314.2011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Physical Education Index
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE
Technology Research Database
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1539
EndPage H487
ExternalDocumentID 2421689281
21572016
10_1152_ajpheart_00314_2011
Genre Video-Audio Media
Randomized Controlled Trial
Journal Article
Feature
GroupedDBID ---
23M
2WC
39C
3O-
4.4
53G
5GY
5VS
6J9
8M5
AAFWJ
AAYXX
ABJNI
ACBEA
ACIWK
ACPRK
ADBBV
AENEX
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BKOMP
BTFSW
C1A
CITATION
E3Z
EBS
EJD
EMOBN
F5P
GX1
H13
ITBOX
KQ8
OK1
P2P
PQQKQ
RAP
RHI
RPL
RPRKH
TR2
UKR
W8F
WH7
WOQ
XSW
YSK
YYP
~02
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TS
7U7
8FD
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-c397t-5a80876c64c8d79760fff99c1339df72ee799955fa497ca26850d4265711e4d33
ISSN 0363-6135
1522-1539
IngestDate Fri Jul 11 09:57:53 EDT 2025
Mon Jun 30 17:08:28 EDT 2025
Thu Apr 03 06:53:39 EDT 2025
Thu Apr 24 23:04:25 EDT 2025
Tue Jul 01 01:16:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c397t-5a80876c64c8d79760fff99c1339df72ee799955fa497ca26850d4265711e4d33
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
PMID 21572016
PQID 882296459
PQPubID 48261
ParticipantIDs proquest_miscellaneous_880997213
proquest_journals_882296459
pubmed_primary_21572016
crossref_primary_10_1152_ajpheart_00314_2011
crossref_citationtrail_10_1152_ajpheart_00314_2011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-08-00
2011-Aug
20110801
PublicationDateYYYYMMDD 2011-08-01
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-08-00
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda
PublicationTitle American journal of physiology. Heart and circulatory physiology
PublicationTitleAlternate Am J Physiol Heart Circ Physiol
PublicationYear 2011
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31
B10
B32
B11
B33
B12
B34
B13
B35
B14
B36
B15
B37
B16
B38
B17
B39
B18
B19
B1
B2
B3
B4
B5
B6
B7
B8
B9
22201176 - Am J Physiol Heart Circ Physiol. 2012 Jan 1;302(1):H375; author reply H376-7
References_xml – ident: B31
  doi: 10.1016/j.jacc.2006.08.030
– ident: B21
  doi: 10.1113/jphysiol.2007.149401
– ident: B5
  doi: 10.3109/07853890108998751
– ident: B12
  doi: 10.1152/jappl.1975.38.1.70
– ident: B9
  doi: 10.1161/CIRCIMAGING.110.943522
– ident: B17
  doi: 10.1085/jgp.20028652
– ident: B24
  doi: 10.1113/jphysiol.2008.156323
– ident: B26
  doi: 10.2165/00007256-200939080-00005
– ident: B1
  doi: 10.1007/s10741-009-9151-0
– ident: B35
  doi: 10.1093/eurheartj/ehn006
– ident: B20
  doi: 10.1161/01.CIR.84.3.1016
– ident: B18
  doi: 10.1161/01.RES.58.2.281
– ident: B6
  doi: 10.1161/CIRCULATIONAHA.107.754424
– ident: B8
  doi: 10.1152/ajpheart.1999.277.3.H1053
– ident: B22
  doi: 10.1113/jphysiol.2005.086025
– ident: B38
  doi: 10.1113/eph8702372
– ident: B19
  doi: 10.1161/01.CIR.60.6.1308
– ident: B3
  doi: 10.1053/je.1999.v12.a99246
– ident: B15
  doi: 10.1161/01.RES.0000117769.88862.F8
– ident: B4
  doi: 10.1152/jappl.1964.19.2.268
– ident: B10
  doi: 10.1139/h06-086
– ident: B29
  doi: 10.1016/j.jacc.2005.08.073
– ident: B39
  doi: 10.1161/CIRCIMAGING.109.932921
– ident: B13
  doi: 10.1016/j.echo.2010.02.015
– ident: B16
  doi: 10.1161/CIRCULATIONAHA.104.531558
– ident: B30
  doi: 10.1016/j.hfc.2008.03.001
– ident: B36
  doi: 10.1016/0002-9149(76)90491-4
– ident: B28
  doi: 10.1016/S0006-3495(69)86429-5
– ident: B32
  doi: 10.1016/j.ijcard.2008.05.061
– ident: B37
  doi: 10.1016/j.echo.2008.02.001
– ident: B11
  doi: 10.1016/j.echo.2010.01.015
– ident: B27
  doi: 10.1016/j.jcmg.2009.03.001
– ident: B33
  doi: 10.1016/j.echo.2009.04.028
– ident: B14
  doi: 10.1249/00005768-199409000-00008
– ident: B34
  doi: 10.1113/expphysiol.2010.055137
– ident: B7
  doi: 10.1016/j.jcmg.2009.01.015
– ident: B23
  doi: 10.1161/CIRCULATIONAHA.105.596502
– ident: B25
  doi: 10.1161/01.CIR.62.3.528
– ident: B2
  doi: 10.1253/circj.71.661
– reference: 22201176 - Am J Physiol Heart Circ Physiol. 2012 Jan 1;302(1):H375; author reply H376-7
SSID ssj0005763
Score 2.3179624
Snippet During incremental exercise, stroke volume (SV) plateaus at 40–50% of maximal exercise capacity. In healthy individuals, left ventricular (LV) twist and...
During incremental exercise, stroke volume (SV) plateaus at 40-50% of maximal exercise capacity. In healthy individuals, left ventricular (LV) twist and...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage H478
SubjectTerms Adaptation, Physiological
Adult
Analysis of Variance
Bicycling
Biomechanical Phenomena
Blood Pressure
Cardiovascular system
Exercise
Exercise Test
Heart Rate
Heart Ventricles - diagnostic imaging
Humans
Male
Muscle Contraction
Muscle, Skeletal - physiology
Myocardial Contraction
Physiology
Stroke
Stroke Volume
Time Factors
Torsion, Mechanical
Ultrasonography
United Kingdom
Ventricular Function, Left
Young Adult
Title Left ventricular mechanical limitations to stroke volume in healthy humans during incremental exercise
URI https://www.ncbi.nlm.nih.gov/pubmed/21572016
https://www.proquest.com/docview/882296459
https://www.proquest.com/docview/880997213
Volume 301
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5FRUJcELQ8QgHtAXEJDom968cxoJYI0gJSIuVm2eu1GkjtynGQkj_JX2JmH7YrSgVcrMh21uudz7PzHkJewY4q05GbOH4eZQ4TeeKkPPUdCdIIT1mY5j5mI5-d-9MF-7jky17vZydqaVunQ7G_Ma_kf6gK54CumCX7D5RtBoUT8BvoC0egMBz_isYzmdcDDFhUVrykGlxKTORV677GzCUT5wby5aauyu9yoJkRGjl0AuRON-nb2HTFVSG0wRBGsN2YuvJr4-DpVJxQxhFlnR9iVlOlY9bFqsI5KR9-e0dj0KnRQ__Ov6gsM279Ux_KYq_89-O13DuTNbxBaZwV2q3fDHKR_JAmPLxrvdDm2G4kiJ31FzsRtUQmYrXDC9HdDJKHdoBLw6tBjwaGHXWZuWcGX3WUas2ap0z3Cvp9z-BYgzb5doUtxOshsjmmaru2W6QNCzj_HJ8uZrN4frKcX7-qJAJ0r_th5GIpgDsu6C3YS-TT17Z8PSh3nnWe49uYMlgwg7c3PP-6qPQH_UfJQfMH5L5RYOhEo_Eh6cnikBxNCqD05Y6-ps0S7w7J3TMTuXFEcsQq7WCVtlilHazSuqQaq1SvNV0V1GCVaqxSjVXawSq1WH1EFqcn8_dTx_T4cARIwrXDkxCLIgqfiTALQDYe5XkeRWLseVGWB66UAagwnOcJiwKRuH7IRxlIlTwYjyXLPO8xOSjKQj4lNA1Y6MlRKiPBmAjCxBegu2Q-FyFoLXnWJ65dzliYt8I-LOtYKcLcjS0NVMFcFiMN-uRN86crXf_l9tuPLZ1i8yFu4hCbKmDRpj6hzVXg4uiaSwpZbvEWlcE-9vrkiaZu8zSQyQFIY__ZrUMfk3vt5_WcHNTVVr4AcblOXyoI_gJSI8Ze
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Left+ventricular+mechanical+limitations+to+stroke+volume+in+healthy+humans+during+incremental+exercise&rft.jtitle=American+journal+of+physiology.+Heart+and+circulatory+physiology&rft.au=St%C3%B6hr%2C+Eric+J&rft.au=Gonz%C3%A1lez-Alonso%2C+Jos%C3%A9&rft.au=Shave%2C+Rob&rft.date=2011-08-01&rft.pub=American+Physiological+Society&rft.issn=0363-6135&rft.eissn=1522-1539&rft.volume=301&rft.issue=2&rft.spage=H478&rft_id=info:doi/10.1152%2Fajpheart.00314.2011&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2421689281
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-6135&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-6135&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-6135&client=summon