Effect of partial and global shielding on surface-driven phenomena in keyhole mode laser beam welding

Partial shielding by means of local gas supply has proven to be very effective in reducing spatter. Besides the effect of gas-induced dynamic pressure, the shielding of oxygen is also highly relevant for melt pool dynamics and spatter formation due to the growth of oxides and the influence on surfac...

Full description

Saved in:
Bibliographic Details
Published inWelding in the world Vol. 68; no. 6; pp. 1353 - 1374
Main Authors Schmidt, Leander, Schricker, Klaus, Diegel, Christian, Sachs, Florian, Bergmann, Jean Pierre, Knauer, Andrea, Romanus, Henry, Requardt, Herwig, Chen, Yunhui, Rack, Alexander
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2024
Springer Nature B.V
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Partial shielding by means of local gas supply has proven to be very effective in reducing spatter. Besides the effect of gas-induced dynamic pressure, the shielding of oxygen is also highly relevant for melt pool dynamics and spatter formation due to the growth of oxides and the influence on surface tension. Therefore, this paper addresses the effect of local supplied argon on oxide growth and seam topography during keyhole mode laser beam welding of high-alloy steel AISI 304. To determine the shielding quality, the results are compared to laser beam welding in a global argon atmosphere. The topography of the upper weld seams was analyzed by scanning electron microscopy (SEM). An X-ray microanalysis (EDX) in line scan modus was performed to determine and to locate the elements which are covering the specimen surface. The chemical state of the found elements was quantified by X-ray photoelectron spectroscopy (XPS). In a last step, high-speed synchrotron X-ray imaging was performed to separate the effect of the gas-induced pressure and the gas-induced shielding on keyhole geometry. The results show that a local supply of argon contributes to a significant difference in oxide growth, affecting melt pool convection and weld seam geometry. It was further shown that the effect of gas flows at low flow rates is primarily because of oxygen shielding, as no significant difference in keyhole geometry was found by high-speed synchrotron X-ray imaging.
AbstractList Partial shielding by means of local gas supply has proven to be very effective in reducing spatter. Besides the effect of gas-induced dynamic pressure, the shielding of oxygen is also highly relevant for melt pool dynamics and spatter formation due to the growth of oxides and the influence on surface tension. Therefore, this paper addresses the effect of local supplied argon on oxide growth and seam topography during keyhole mode laser beam welding of high-alloy steel AISI 304. To determine the shielding quality, the results are compared to laser beam welding in a global argon atmosphere. The topography of the upper weld seams was analyzed by scanning electron microscopy (SEM). An X-ray microanalysis (EDX) in line scan modus was performed to determine and to locate the elements which are covering the specimen surface. The chemical state of the found elements was quantified by X-ray photoelectron spectroscopy (XPS). In a last step, high-speed synchrotron X-ray imaging was performed to separate the effect of the gas-induced pressure and the gas-induced shielding on keyhole geometry. The results show that a local supply of argon contributes to a significant difference in oxide growth, affecting melt pool convection and weld seam geometry. It was further shown that the effect of gas flows at low flow rates is primarily because of oxygen shielding, as no significant difference in keyhole geometry was found by high-speed synchrotron X-ray imaging.
Abstract Partial shielding by means of local gas supply has proven to be very effective in reducing spatter. Besides the effect of gas-induced dynamic pressure, the shielding of oxygen is also highly relevant for melt pool dynamics and spatter formation due to the growth of oxides and the influence on surface tension. Therefore, this paper addresses the effect of local supplied argon on oxide growth and seam topography during keyhole mode laser beam welding of high-alloy steel AISI 304. To determine the shielding quality, the results are compared to laser beam welding in a global argon atmosphere. The topography of the upper weld seams was analyzed by scanning electron microscopy (SEM). An X-ray microanalysis (EDX) in line scan modus was performed to determine and to locate the elements which are covering the specimen surface. The chemical state of the found elements was quantified by X-ray photoelectron spectroscopy (XPS). In a last step, high-speed synchrotron X-ray imaging was performed to separate the effect of the gas-induced pressure and the gas-induced shielding on keyhole geometry. The results show that a local supply of argon contributes to a significant difference in oxide growth, affecting melt pool convection and weld seam geometry. It was further shown that the effect of gas flows at low flow rates is primarily because of oxygen shielding, as no significant difference in keyhole geometry was found by high-speed synchrotron X-ray imaging.
Author Requardt, Herwig
Rack, Alexander
Diegel, Christian
Schricker, Klaus
Sachs, Florian
Bergmann, Jean Pierre
Chen, Yunhui
Schmidt, Leander
Romanus, Henry
Knauer, Andrea
Author_xml – sequence: 1
  givenname: Leander
  orcidid: 0000-0003-0658-5196
  surname: Schmidt
  fullname: Schmidt, Leander
  email: leander.schmidt@tu-ilmenau.de
  organization: Production Technology Group, Technische Universität Ilmenau
– sequence: 2
  givenname: Klaus
  orcidid: 0000-0001-6291-7162
  surname: Schricker
  fullname: Schricker, Klaus
  organization: Production Technology Group, Technische Universität Ilmenau
– sequence: 3
  givenname: Christian
  surname: Diegel
  fullname: Diegel, Christian
  organization: Production Technology Group, Technische Universität Ilmenau
– sequence: 4
  givenname: Florian
  surname: Sachs
  fullname: Sachs, Florian
  organization: Production Technology Group, Technische Universität Ilmenau
– sequence: 5
  givenname: Jean Pierre
  surname: Bergmann
  fullname: Bergmann, Jean Pierre
  organization: Production Technology Group, Technische Universität Ilmenau
– sequence: 6
  givenname: Andrea
  surname: Knauer
  fullname: Knauer, Andrea
  organization: Center of Micro- and Nanotechnologies (ZMN)
– sequence: 7
  givenname: Henry
  surname: Romanus
  fullname: Romanus, Henry
  organization: Center of Micro- and Nanotechnologies (ZMN)
– sequence: 8
  givenname: Herwig
  surname: Requardt
  fullname: Requardt, Herwig
  organization: ESRF – The European Synchrotron, Structure of Materials Group - ID19
– sequence: 9
  givenname: Yunhui
  surname: Chen
  fullname: Chen, Yunhui
  organization: ESRF – The European Synchrotron, Structure of Materials Group - ID19, School of Engineering, RMIT University
– sequence: 10
  givenname: Alexander
  surname: Rack
  fullname: Rack, Alexander
  organization: ESRF – The European Synchrotron, Structure of Materials Group - ID19
BackLink https://hal.science/hal-05118229$$DView record in HAL
BookMark eNp9kUFLwzAUx4MoOKdfwFPAk4foS9Ok7VFEnTDwoueQpq9bZpfMpFP27e2sInjwEF54_H6PP_xPyKEPHgk553DFAYrrlAOvcgaZYMBVVrDdAZnwsiiZUqo6JBOAXLAsK8tjcpLSCgCq4U0I3rUt2p6Glm5M7J3pqPENXXShHr5p6bBrnF_Q4GnaxtZYZE107-jpZok-rNEb6jx9xd0ydEjXoUHamYSR1mjW9GPUT8lRa7qEZ99zSl7u755vZ2z-9PB4ezNnVlRFz6SwjbFCFQii5lblVmGpQFjeQCmkkVVdKJVxBMxlwS3mpmhyCW2NNdi6EVNyOd5dmk5volubuNPBOD27mev9DiTnZZZV73xgL0Z2E8PbFlOvV2Eb_RBPC5BSAs_FnipHysaQUsRWW9eb3gXfR-M6zUHvC9BjAXooQH8VoHeDmv1RfxL9K4lRSgPsFxh_U_1jfQIm2Zr6
CitedBy_id crossref_primary_10_1063_5_0239502
crossref_primary_10_1080_08940886_2024_2414730
crossref_primary_10_1016_j_procir_2024_08_173
crossref_primary_10_1016_j_jmapro_2025_03_049
Cites_doi 10.1016/j.jmapro.2021.04.052
10.1007/s100190050008
10.1117/12.2507024
10.2351/1.1404412
10.1533/9780857098771
10.2355/isijinternational.39.409
10.3233/XST-2010-0273
10.25819/ubsi/726
10.1533/wint.2003.3049
10.2351/1.5059030
10.1016/j.procir.2020.09.101
10.1016/j.procir.2022.08.173
10.1007/s10853-009-4107-2
10.1088/0022-3727/43/44/445501
10.1007/978-3-540-85918-5
10.1016/j.msea.2004.05.057
10.2351/1.1642636
10.1088/0022-3727/39/2/023
10.1016/0921-5093(93)90472-Q
10.1007/978-3-658-37252-1
10.1117/12.486500
10.2351/1.2164484
10.2351/1.1493766
10.1088/0022-3727/40/1/R01
10.2351/1.1471563
10.1016/S0020-1693(00)91689-X
10.2320/matertrans.43.2926
10.3390/app10051867
10.1179/imr.1993.38.4.157
10.1002/9781118162897
10.1038/nmeth.2019
10.1007/978-3-8348-9907-1_6
10.1533/wint.2003.3138
10.1002/srin.202100624
10.1007/BF02654098
ContentType Journal Article
Copyright The Author(s) 2023. corrected publication 2023
The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2023. corrected publication 2023
– notice: The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID C6C
AAYXX
CITATION
1XC
VOOES
DOI 10.1007/s40194-023-01627-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1878-6669
EndPage 1374
ExternalDocumentID oai_HAL_hal_05118229v1
10_1007_s40194_023_01627_y
GrantInformation_xml – fundername: Technische Universität Ilmenau (3141)
GroupedDBID --K
-EM
06D
0R~
1B1
203
2LR
30V
4.4
406
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
BGNMA
C6C
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
HMJXF
HRMNR
HZ~
IHE
IKXTQ
ITM
IWAJR
J-C
JBSCW
JZLTJ
KOV
LLZTM
M41
M4Y
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9J
P2P
PT4
RIG
ROL
RPZ
RSV
SHX
SISQX
SJN
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
XPP
Z5O
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z81
Z85
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
1XC
VOOES
ID FETCH-LOGICAL-c397t-53cdac367e03b1c64c6e8603c1d0835a59b76621e0e4571ce4a7d450fbeb0cbd3
IEDL.DBID AGYKE
ISSN 0043-2288
IngestDate Thu Jun 26 06:31:12 EDT 2025
Wed Aug 20 10:40:35 EDT 2025
Tue Jul 01 04:25:39 EDT 2025
Thu Apr 24 23:11:47 EDT 2025
Fri Feb 21 02:40:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Laser beam welding
Oxide formation
Spatter formation
Gas atmosphere
Melt pool dynamics
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-53cdac367e03b1c64c6e8603c1d0835a59b76621e0e4571ce4a7d450fbeb0cbd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0658-5196
0000-0001-6291-7162
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s40194-023-01627-y
PQID 3055501431
PQPubID 2043671
PageCount 22
ParticipantIDs hal_primary_oai_HAL_hal_05118229v1
proquest_journals_3055501431
crossref_citationtrail_10_1007_s40194_023_01627_y
crossref_primary_10_1007_s40194_023_01627_y
springer_journals_10_1007_s40194_023_01627_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240600
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 6
  year: 2024
  text: 20240600
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle The International Journal of Materials Joining
PublicationTitle Welding in the world
PublicationTitleAbbrev Weld World
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer
References KamimukiKInoueTYasudaKMuroMNakabayashiTMatsunawaAPrevention of welding defect by side gas flow and its monitoring method in continuous wave Nd:YAG laser weldingJ Laser Appl2002141361451:CAS:528:DC%2BD38XlsVals7o%3D10.2351/1.1493766
JunZShiFMukaiKTsukamotoHNumerical analysis of nitrogen absorption rate accompanied with Marangoni convection in the molten iron under non-inductive stirring conditionISIJ International1999394094181:CAS:528:DyaK1MXkslOrtL8%3D10.2355/isijinternational.39.409
OnoKAdachiKKatadaKMishiroMMiyamotoIInoueTLaser welding phenomena of mild steel with oxide film. Influence of oxide film on high power CO2 laser welding of mild steel (Report 1)2003Welding International51110.1533/wint.2003.3049
OnoKAdachiKMiyamotoIInoueTInfluence of oxide film on weld characteristics of mild steel in CO2 laser weldingJ Laser Appl20021473771:CAS:528:DC%2BD38Xjt1Wntb0%3D10.2351/1.1471563
JovicGBormannAPröllJBöhmSLaser welding with side-gas application and its impact on spatter formation and weld seam shapeProcedia CIRP20209464965410.1016/j.procir.2020.09.101
TanakaMLowkeJJPredictions of weld pool profiles using plasma physicsJ Phys D Appl Phys200740R11:CAS:528:DC%2BD2sXhtVagsb0%3D10.1088/0022-3727/40/1/R01
Schmidt L, Schricker K, Bergmann JP, Hickethier S (2019) Effect of gas flow on spatter formation in deep penetration welding at high welding speeds. In: Proceedings of Lasers in Manufacturing Conference, Munich, pp 1–7
Kaplan A (1994) Modellrechnung und numerische simulation von absorption, Wärmeleitung und Strömung des Laser-Tiefschweißens. PhD Thesis, TU Wien, Wien
RobertsonSMKaplanAFHFrostevargJMaterial ejection attempts during laser keyhole weldingJ Manuf Process2021679110010.1016/j.jmapro.2021.04.052
AllenGCTuckerPMMultiplet splitting of X-ray photoelectron lines of chromium complexes. The effect of covalency on the 2p core level spin-orbit separationInorg Chim Acta19761641451:CAS:528:DyaE28XpslGmsA%3D%3D10.1016/S0020-1693(00)91689-X
RackAGarcia-MorenoFSchmittCBetzOCeciliaAErshovARackTBanhartJZablerSOn the possibilities of hard X-ray imaging with high spatio-temporal resolution using polychromatic synchrotron radiationJ Xray Sci Technol2010184294411:STN:280:DC%2BC3cbkt12htA%3D%3D10.3233/XST-2010-027321045279
Simon D (2019) Hochtemperaturoxidationsstudien zum Wasserdampfeinfluss auf thermisch wachsende Chromoxidschichten. PhD Thesis, Universität Siegen, Siegen. https://doi.org/10.25819/ubsi/726
DelacroixJPilusoPChikhiNAsserinOBorelDBrosseACadiouSMeasurements of liquid AISI 304L steel density and surface tension, and influence of surface-active elements at high temperaturesSteel Res Int20229321006241:CAS:528:DC%2BB38Xht1Oru7Y%3D10.1002/srin.202100624
SchmidtLSchrickerKDiegelCBergmannJPEffect of local pressure distribution on spatter formation for welding high alloy steel at high welding speedsProcedia CIRP202211139139610.1016/j.procir.2022.08.173
Ishide T (1992) High Power YAG laser welded sleeving technology for steam generator tubes in nuclear power plants. In: Proceedings of international conference on laser advanced materials processing--science and applications. Nagaoka, pp 957–962
Katayama S, Tsukamotot S, Fabbro R (2013) Handbook of laser welding technologies. Woodhead Publishing
NaitoYMizutaniMKatayamaSEffect of oxygen in ambient atmosphere on penetration characteristics in single yttrium–aluminum–garnet laser and hybrid weldingJ Laser Appl20061821271:CAS:528:DC%2BD28Xit1yhurc%3D10.2351/1.2164484
HügelHGrafTMaterialbearbeitung mit Laser; Volume 42022Springer Vieweg Wiesbaden10.1007/978-3-658-37252-1
Jovic G, Bormann A, Proell J, Boehm S (2019) Laser welding of thin stainless steel parts using modified side-gas application for control of spatter and weld shape. In: Proceedings of International Congress on Laser Advanced Materials Processing (LAMP), Hiroshima, pp 1–7
BeckMModellierung des Lasertiefschweißens1996Teubner
Teneva-Kosseva G, Köhne H (2006) Oxidschichtbildung und Materialprobleme metallischer Werkstoffe bei Verbrennungsprozessen mit Heizöl EL. Fakultät für Georessourcen und Materialtechnik
RicciEPasseroneAReview: Surface tension and its relations with adsorption, vapourization and surface reactivity of liquid metalsMater Sci Eng A1993161314010.1016/0921-5093(93)90472-Q
Van der Heide P (2011) X-ray photoelectron spectroscopy: an introduction to principles and practices. John Wiley & Sons. https://doi.org/10.1002/9781118162897
LuSFujiiHNogiKMarangoni convection and weld shape variations in Ar–O2 and Ar–CO2 shielded GTA weldingMater Sci Eng A20043802902971:CAS:528:DC%2BD2cXlslyisbg%3D10.1016/j.msea.2004.05.057
MatsunawaAMizutaniMKatayamaSSetoNPorosity formation mechanism and its prevention in laser weldingWeld Int20031743143710.1533/wint.2003.3138
Dowden J, Kapadia P (1996) A mathematical model of the chevron-like wave pattern on a weld piece. In: Proceedings of the international congress on applications of lasers & electro-optics, pp B96–B105. https://doi.org/10.2351/1.5059030
Fukuyama H, Waseda Y (2008) High-temperature measurements of materials, vol 11. Springer Science & Business Media
Schmidt L, Schricker K, Bergmann J (2021) Experimental and numerical analysis of local gas supplies for spatter reduced high speed laser beam welding. In: Proceedings of Lasers in Manufacturing Conference, Munich, pp 1–10
XuCGaoWPilling-Bedworth ratio for oxidation of alloysMater Res Innov200032312351:CAS:528:DC%2BD3cXitFOkt78%3D10.1007/s100190050008
SchmidtLHickethierSSchrickerKBergmannJPLow-spatter high speed welding by use of local shielding gas flowsProceedings of SPIE LASE Conference201910.1117/12.2507024
FuhrichTBergerPHügelHMarangoni effect in laser deep penetration welding of steelJ Laser Appl2001131781861:CAS:528:DC%2BD3MXotFyhs78%3D10.2351/1.1404412
HibiyaTMorohoshiKOzawaSOxygen partial pressure dependence of surface tension and its temperature coefficient for metallic melts: a discussion from the viewpoint of solubility and adsorption of oxygenJ Mater Sci201045198619921:CAS:528:DC%2BD1MXhsFyjt7fJ10.1007/s10853-009-4107-2
Jose G, Claire YB, Paul AH, William MS (2003) Effects of different gas environments on CO2 and Nd:YAG laser welding process efficiencies. In: Proceedings of the Proc. SPIE, Osaka, pp 257–262. https://doi.org/10.1117/12.486500
Bürgel R, Maier HJ, Niendorf T (2011) Handbuch Hochtemperatur-Werkstofftechnik: Grundlagen, Werkstoffbeanspruchungen, Hochtemperaturlegierungen und-beschichtungen. Mit 66 Tabellen; Vieweg+ Teubner
LuSFujiiHSugiyamaHTanakaMNogiKWeld penetration and Marangoni convection with oxide fluxes in GTA weldingMater Trans200243292629311:CAS:528:DC%2BD3sXjtFOj10.2320/matertrans.43.2926
FabbroRMelt pool and keyhole behaviour analysis for deep penetration laser weldingJ Phys D Appl Phys2010434455011:CAS:528:DC%2BC3cXhsVGqt7fP10.1088/0022-3727/43/44/445501
HirashimaNChooRTCToguriJMMukaiKThe effect of surface movements on nitrogen mass transfer in liquid ironMetall Mater Trans B19952697198010.1007/BF02654098
KeeneBJReview of data for the surface tension of pure metalsInt Mater Rev1993381571921:CAS:528:DyaK2cXhtFehtbc%3D10.1179/imr.1993.38.4.157
SchindelinJArganda-CarrerasIFriseEKaynigVLongairMPietzschTPreibischSRuedenCSaalfeldSSchmidBFiji: an open-source platform for biological-image analysisNat Methods201296766821:CAS:528:DC%2BC38XhtVKnurbJ10.1038/nmeth.201922743772
GresesJHiltonPABarlowCYSteenWMPlume attenuation under high power Nd:yttritium–aluminum–garnet laser weldingJ Laser Appl2004169151:CAS:528:DC%2BD2cXhsFWjtrY%3D10.2351/1.1642636
FabbroRSlimaniSDoudetICosteFBriandFExperimental study of the dynamical coupling between the induced vapour plume and the melt pool for Nd–Yag CW laser weldingJ Phys D Appl Phys2006393944001:CAS:528:DC%2BD28Xht1Omtrs%3D10.1088/0022-3727/39/2/023
Lancaster JF (1986) The physics of welding, 2nd edn. Pergamon Press, pp 1–340
Schmidt L, Schricker K, Bergmann JP, Junger C (2020) Effect of local gas flow in full penetration laser beam welding with high welding speeds. Applied Sciences:10, 1867. https://doi.org/10.3390/app10051867
Herty CH, Fitterer GR (1931) New manganese-silicon alloys for the deoxidation of steel, vol 3081. United States Bureau of Mines
Hüfner S (2013) Photoelectron spectroscopy: principles and applications. Springer Science & Business Media
1627_CR11
L Schmidt (1627_CR12) 2022; 111
Y Naito (1627_CR16) 2006; 18
SM Robertson (1627_CR37) 2021; 67
1627_CR13
1627_CR30
1627_CR10
R Fabbro (1627_CR5) 2006; 39
K Ono (1627_CR14) 2002; 14
S Lu (1627_CR17) 2002; 43
1627_CR19
Z Jun (1627_CR26) 1999; 39
R Fabbro (1627_CR36) 2010; 43
H Hügel (1627_CR1) 2022
J Delacroix (1627_CR29) 2022; 93
1627_CR38
K Ono (1627_CR18) 2003
A Rack (1627_CR33) 2010; 18
1627_CR39
N Hirashima (1627_CR32) 1995; 26
K Kamimuki (1627_CR2) 2002; 14
BJ Keene (1627_CR27) 1993; 38
A Matsunawa (1627_CR35) 2003; 17
S Lu (1627_CR25) 2004; 380
J Greses (1627_CR43) 2004; 16
1627_CR3
1627_CR22
1627_CR44
G Jovic (1627_CR4) 2020; 94
1627_CR24
C Xu (1627_CR42) 2000; 3
1627_CR41
T Fuhrich (1627_CR15) 2001; 13
1627_CR40
1627_CR21
E Ricci (1627_CR23) 1993; 161
M Tanaka (1627_CR31) 2007; 40
1627_CR28
L Schmidt (1627_CR6) 2019
T Hibiya (1627_CR20) 2010; 45
M Beck (1627_CR9) 1996
GC Allen (1627_CR45) 1976; 16
J Schindelin (1627_CR34) 2012; 9
1627_CR8
1627_CR7
References_xml – reference: SchmidtLSchrickerKDiegelCBergmannJPEffect of local pressure distribution on spatter formation for welding high alloy steel at high welding speedsProcedia CIRP202211139139610.1016/j.procir.2022.08.173
– reference: TanakaMLowkeJJPredictions of weld pool profiles using plasma physicsJ Phys D Appl Phys200740R11:CAS:528:DC%2BD2sXhtVagsb0%3D10.1088/0022-3727/40/1/R01
– reference: LuSFujiiHNogiKMarangoni convection and weld shape variations in Ar–O2 and Ar–CO2 shielded GTA weldingMater Sci Eng A20043802902971:CAS:528:DC%2BD2cXlslyisbg%3D10.1016/j.msea.2004.05.057
– reference: Dowden J, Kapadia P (1996) A mathematical model of the chevron-like wave pattern on a weld piece. In: Proceedings of the international congress on applications of lasers & electro-optics, pp B96–B105. https://doi.org/10.2351/1.5059030
– reference: Jose G, Claire YB, Paul AH, William MS (2003) Effects of different gas environments on CO2 and Nd:YAG laser welding process efficiencies. In: Proceedings of the Proc. SPIE, Osaka, pp 257–262. https://doi.org/10.1117/12.486500
– reference: RackAGarcia-MorenoFSchmittCBetzOCeciliaAErshovARackTBanhartJZablerSOn the possibilities of hard X-ray imaging with high spatio-temporal resolution using polychromatic synchrotron radiationJ Xray Sci Technol2010184294411:STN:280:DC%2BC3cbkt12htA%3D%3D10.3233/XST-2010-027321045279
– reference: HibiyaTMorohoshiKOzawaSOxygen partial pressure dependence of surface tension and its temperature coefficient for metallic melts: a discussion from the viewpoint of solubility and adsorption of oxygenJ Mater Sci201045198619921:CAS:528:DC%2BD1MXhsFyjt7fJ10.1007/s10853-009-4107-2
– reference: FabbroRSlimaniSDoudetICosteFBriandFExperimental study of the dynamical coupling between the induced vapour plume and the melt pool for Nd–Yag CW laser weldingJ Phys D Appl Phys2006393944001:CAS:528:DC%2BD28Xht1Omtrs%3D10.1088/0022-3727/39/2/023
– reference: LuSFujiiHSugiyamaHTanakaMNogiKWeld penetration and Marangoni convection with oxide fluxes in GTA weldingMater Trans200243292629311:CAS:528:DC%2BD3sXjtFOj10.2320/matertrans.43.2926
– reference: GresesJHiltonPABarlowCYSteenWMPlume attenuation under high power Nd:yttritium–aluminum–garnet laser weldingJ Laser Appl2004169151:CAS:528:DC%2BD2cXhsFWjtrY%3D10.2351/1.1642636
– reference: Bürgel R, Maier HJ, Niendorf T (2011) Handbuch Hochtemperatur-Werkstofftechnik: Grundlagen, Werkstoffbeanspruchungen, Hochtemperaturlegierungen und-beschichtungen. Mit 66 Tabellen; Vieweg+ Teubner
– reference: Jovic G, Bormann A, Proell J, Boehm S (2019) Laser welding of thin stainless steel parts using modified side-gas application for control of spatter and weld shape. In: Proceedings of International Congress on Laser Advanced Materials Processing (LAMP), Hiroshima, pp 1–7
– reference: RobertsonSMKaplanAFHFrostevargJMaterial ejection attempts during laser keyhole weldingJ Manuf Process2021679110010.1016/j.jmapro.2021.04.052
– reference: Schmidt L, Schricker K, Bergmann JP, Junger C (2020) Effect of local gas flow in full penetration laser beam welding with high welding speeds. Applied Sciences:10, 1867. https://doi.org/10.3390/app10051867
– reference: Van der Heide P (2011) X-ray photoelectron spectroscopy: an introduction to principles and practices. John Wiley & Sons. https://doi.org/10.1002/9781118162897
– reference: Teneva-Kosseva G, Köhne H (2006) Oxidschichtbildung und Materialprobleme metallischer Werkstoffe bei Verbrennungsprozessen mit Heizöl EL. Fakultät für Georessourcen und Materialtechnik
– reference: SchindelinJArganda-CarrerasIFriseEKaynigVLongairMPietzschTPreibischSRuedenCSaalfeldSSchmidBFiji: an open-source platform for biological-image analysisNat Methods201296766821:CAS:528:DC%2BC38XhtVKnurbJ10.1038/nmeth.201922743772
– reference: JovicGBormannAPröllJBöhmSLaser welding with side-gas application and its impact on spatter formation and weld seam shapeProcedia CIRP20209464965410.1016/j.procir.2020.09.101
– reference: MatsunawaAMizutaniMKatayamaSSetoNPorosity formation mechanism and its prevention in laser weldingWeld Int20031743143710.1533/wint.2003.3138
– reference: Hüfner S (2013) Photoelectron spectroscopy: principles and applications. Springer Science & Business Media
– reference: AllenGCTuckerPMMultiplet splitting of X-ray photoelectron lines of chromium complexes. The effect of covalency on the 2p core level spin-orbit separationInorg Chim Acta19761641451:CAS:528:DyaE28XpslGmsA%3D%3D10.1016/S0020-1693(00)91689-X
– reference: KamimukiKInoueTYasudaKMuroMNakabayashiTMatsunawaAPrevention of welding defect by side gas flow and its monitoring method in continuous wave Nd:YAG laser weldingJ Laser Appl2002141361451:CAS:528:DC%2BD38XlsVals7o%3D10.2351/1.1493766
– reference: JunZShiFMukaiKTsukamotoHNumerical analysis of nitrogen absorption rate accompanied with Marangoni convection in the molten iron under non-inductive stirring conditionISIJ International1999394094181:CAS:528:DyaK1MXkslOrtL8%3D10.2355/isijinternational.39.409
– reference: NaitoYMizutaniMKatayamaSEffect of oxygen in ambient atmosphere on penetration characteristics in single yttrium–aluminum–garnet laser and hybrid weldingJ Laser Appl20061821271:CAS:528:DC%2BD28Xit1yhurc%3D10.2351/1.2164484
– reference: OnoKAdachiKKatadaKMishiroMMiyamotoIInoueTLaser welding phenomena of mild steel with oxide film. Influence of oxide film on high power CO2 laser welding of mild steel (Report 1)2003Welding International51110.1533/wint.2003.3049
– reference: FuhrichTBergerPHügelHMarangoni effect in laser deep penetration welding of steelJ Laser Appl2001131781861:CAS:528:DC%2BD3MXotFyhs78%3D10.2351/1.1404412
– reference: HirashimaNChooRTCToguriJMMukaiKThe effect of surface movements on nitrogen mass transfer in liquid ironMetall Mater Trans B19952697198010.1007/BF02654098
– reference: XuCGaoWPilling-Bedworth ratio for oxidation of alloysMater Res Innov200032312351:CAS:528:DC%2BD3cXitFOkt78%3D10.1007/s100190050008
– reference: Schmidt L, Schricker K, Bergmann J (2021) Experimental and numerical analysis of local gas supplies for spatter reduced high speed laser beam welding. In: Proceedings of Lasers in Manufacturing Conference, Munich, pp 1–10
– reference: OnoKAdachiKMiyamotoIInoueTInfluence of oxide film on weld characteristics of mild steel in CO2 laser weldingJ Laser Appl20021473771:CAS:528:DC%2BD38Xjt1Wntb0%3D10.2351/1.1471563
– reference: SchmidtLHickethierSSchrickerKBergmannJPLow-spatter high speed welding by use of local shielding gas flowsProceedings of SPIE LASE Conference201910.1117/12.2507024
– reference: DelacroixJPilusoPChikhiNAsserinOBorelDBrosseACadiouSMeasurements of liquid AISI 304L steel density and surface tension, and influence of surface-active elements at high temperaturesSteel Res Int20229321006241:CAS:528:DC%2BB38Xht1Oru7Y%3D10.1002/srin.202100624
– reference: RicciEPasseroneAReview: Surface tension and its relations with adsorption, vapourization and surface reactivity of liquid metalsMater Sci Eng A1993161314010.1016/0921-5093(93)90472-Q
– reference: Herty CH, Fitterer GR (1931) New manganese-silicon alloys for the deoxidation of steel, vol 3081. United States Bureau of Mines
– reference: Simon D (2019) Hochtemperaturoxidationsstudien zum Wasserdampfeinfluss auf thermisch wachsende Chromoxidschichten. PhD Thesis, Universität Siegen, Siegen. https://doi.org/10.25819/ubsi/726
– reference: FabbroRMelt pool and keyhole behaviour analysis for deep penetration laser weldingJ Phys D Appl Phys2010434455011:CAS:528:DC%2BC3cXhsVGqt7fP10.1088/0022-3727/43/44/445501
– reference: Lancaster JF (1986) The physics of welding, 2nd edn. Pergamon Press, pp 1–340
– reference: BeckMModellierung des Lasertiefschweißens1996Teubner
– reference: Schmidt L, Schricker K, Bergmann JP, Hickethier S (2019) Effect of gas flow on spatter formation in deep penetration welding at high welding speeds. In: Proceedings of Lasers in Manufacturing Conference, Munich, pp 1–7
– reference: KeeneBJReview of data for the surface tension of pure metalsInt Mater Rev1993381571921:CAS:528:DyaK2cXhtFehtbc%3D10.1179/imr.1993.38.4.157
– reference: Katayama S, Tsukamotot S, Fabbro R (2013) Handbook of laser welding technologies. Woodhead Publishing
– reference: Ishide T (1992) High Power YAG laser welded sleeving technology for steam generator tubes in nuclear power plants. In: Proceedings of international conference on laser advanced materials processing--science and applications. Nagaoka, pp 957–962
– reference: HügelHGrafTMaterialbearbeitung mit Laser; Volume 42022Springer Vieweg Wiesbaden10.1007/978-3-658-37252-1
– reference: Fukuyama H, Waseda Y (2008) High-temperature measurements of materials, vol 11. Springer Science & Business Media
– reference: Kaplan A (1994) Modellrechnung und numerische simulation von absorption, Wärmeleitung und Strömung des Laser-Tiefschweißens. PhD Thesis, TU Wien, Wien
– volume: 67
  start-page: 91
  year: 2021
  ident: 1627_CR37
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2021.04.052
– volume: 3
  start-page: 231
  year: 2000
  ident: 1627_CR42
  publication-title: Mater Res Innov
  doi: 10.1007/s100190050008
– volume-title: Modellierung des Lasertiefschweißens
  year: 1996
  ident: 1627_CR9
– volume-title: Proceedings of SPIE LASE Conference
  year: 2019
  ident: 1627_CR6
  doi: 10.1117/12.2507024
– volume: 13
  start-page: 178
  year: 2001
  ident: 1627_CR15
  publication-title: J Laser Appl
  doi: 10.2351/1.1404412
– ident: 1627_CR10
  doi: 10.1533/9780857098771
– volume: 39
  start-page: 409
  year: 1999
  ident: 1627_CR26
  publication-title: ISIJ International
  doi: 10.2355/isijinternational.39.409
– volume: 18
  start-page: 429
  year: 2010
  ident: 1627_CR33
  publication-title: J Xray Sci Technol
  doi: 10.3233/XST-2010-0273
– ident: 1627_CR22
  doi: 10.25819/ubsi/726
– start-page: 5
  volume-title: Laser welding phenomena of mild steel with oxide film. Influence of oxide film on high power CO2 laser welding of mild steel (Report 1)
  year: 2003
  ident: 1627_CR18
  doi: 10.1533/wint.2003.3049
– ident: 1627_CR41
  doi: 10.2351/1.5059030
– volume: 94
  start-page: 649
  year: 2020
  ident: 1627_CR4
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2020.09.101
– volume: 111
  start-page: 391
  year: 2022
  ident: 1627_CR12
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2022.08.173
– volume: 45
  start-page: 1986
  year: 2010
  ident: 1627_CR20
  publication-title: J Mater Sci
  doi: 10.1007/s10853-009-4107-2
– volume: 43
  start-page: 445501
  year: 2010
  ident: 1627_CR36
  publication-title: J Phys D Appl Phys
  doi: 10.1088/0022-3727/43/44/445501
– ident: 1627_CR21
  doi: 10.1007/978-3-540-85918-5
– ident: 1627_CR3
– ident: 1627_CR7
– ident: 1627_CR40
– volume: 380
  start-page: 290
  year: 2004
  ident: 1627_CR25
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2004.05.057
– volume: 16
  start-page: 9
  year: 2004
  ident: 1627_CR43
  publication-title: J Laser Appl
  doi: 10.2351/1.1642636
– volume: 39
  start-page: 394
  year: 2006
  ident: 1627_CR5
  publication-title: J Phys D Appl Phys
  doi: 10.1088/0022-3727/39/2/023
– ident: 1627_CR39
– volume: 161
  start-page: 31
  year: 1993
  ident: 1627_CR23
  publication-title: Mater Sci Eng A
  doi: 10.1016/0921-5093(93)90472-Q
– volume-title: Materialbearbeitung mit Laser; Volume 4
  year: 2022
  ident: 1627_CR1
  doi: 10.1007/978-3-658-37252-1
– ident: 1627_CR44
  doi: 10.1117/12.486500
– volume: 18
  start-page: 21
  year: 2006
  ident: 1627_CR16
  publication-title: J Laser Appl
  doi: 10.2351/1.2164484
– ident: 1627_CR28
– volume: 14
  start-page: 136
  year: 2002
  ident: 1627_CR2
  publication-title: J Laser Appl
  doi: 10.2351/1.1493766
– volume: 40
  start-page: R1
  year: 2007
  ident: 1627_CR31
  publication-title: J Phys D Appl Phys
  doi: 10.1088/0022-3727/40/1/R01
– ident: 1627_CR11
– volume: 14
  start-page: 73
  year: 2002
  ident: 1627_CR14
  publication-title: J Laser Appl
  doi: 10.2351/1.1471563
– ident: 1627_CR30
– volume: 16
  start-page: 41
  year: 1976
  ident: 1627_CR45
  publication-title: Inorg Chim Acta
  doi: 10.1016/S0020-1693(00)91689-X
– volume: 43
  start-page: 2926
  year: 2002
  ident: 1627_CR17
  publication-title: Mater Trans
  doi: 10.2320/matertrans.43.2926
– ident: 1627_CR24
– ident: 1627_CR8
  doi: 10.3390/app10051867
– volume: 38
  start-page: 157
  year: 1993
  ident: 1627_CR27
  publication-title: Int Mater Rev
  doi: 10.1179/imr.1993.38.4.157
– ident: 1627_CR38
  doi: 10.1002/9781118162897
– volume: 9
  start-page: 676
  year: 2012
  ident: 1627_CR34
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2019
– ident: 1627_CR19
  doi: 10.1007/978-3-8348-9907-1_6
– volume: 17
  start-page: 431
  year: 2003
  ident: 1627_CR35
  publication-title: Weld Int
  doi: 10.1533/wint.2003.3138
– ident: 1627_CR13
– volume: 93
  start-page: 2100624
  year: 2022
  ident: 1627_CR29
  publication-title: Steel Res Int
  doi: 10.1002/srin.202100624
– volume: 26
  start-page: 971
  year: 1995
  ident: 1627_CR32
  publication-title: Metall Mater Trans B
  doi: 10.1007/BF02654098
SSID ssj0009000
Score 2.3518674
Snippet Partial shielding by means of local gas supply has proven to be very effective in reducing spatter. Besides the effect of gas-induced dynamic pressure, the...
Abstract Partial shielding by means of local gas supply has proven to be very effective in reducing spatter. Besides the effect of gas-induced dynamic...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1353
SubjectTerms Argon
Chemistry and Materials Science
Dynamic pressure
Gas flow
Geometry
High alloy steels
High speed
Keyholes
Laser beam welding
Lasers
Low flow
Materials Science
Melt pools
Metallic Materials
Oxygen
Photoelectrons
Physics
Pressure effects
Research Paper
Seam welds
Shielding
Solid Mechanics
Surface tension
Synchrotron radiation
Theoretical and Applied Mechanics
Topography
X ray imagery
X ray photoelectron spectroscopy
Title Effect of partial and global shielding on surface-driven phenomena in keyhole mode laser beam welding
URI https://link.springer.com/article/10.1007/s40194-023-01627-y
https://www.proquest.com/docview/3055501431
https://hal.science/hal-05118229
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB51txc48CggtpSVhbiVVLbj2Mlxu-qyotBTV2pPkT1xVARkq30UlV_POI9tqWilXnKIx3nYY_uz_M03AB-TrDQpIo1vixipjC5poXiknPGiRCylCoHC3070dKa-nCVnbVDYsmO7d0eS9Uy9CXajnUCQsZWB_6Olia57sE34g6s-bI8-nx8f3Yjt8i70JI6kTNM2WOb_T_lnQepdBDrkLax553i0XnUmz2HWfW9DNvlxsF65A_xzR8rxsT_0Ap61MJSNGr95CVu-2oGnt8QJX4FvhI3ZvGSXwb_I3FYFaxRE2PIiUN_IkM0rtlwvSos-KhZh7mSBNhaEHSz7XjGaJEIKXhZS7jCC6n7BnLe_2O-m-muYTY5Ox9OoTcoQIUGXVZTEWFiMtfE8dgK1Qu1TzWMURUBzNsmc0VoKz71KjECvrClUwkvnHUdXxG-gX80r_xZYrFRhTZymAo2ytHVCgo-ZsKnyXDpeDkB0PZNjq1geEmf8zDday3UT5tSEed2E-fUA9jd1Lhu9jgetP1CHbwyD1PZ09DUP93i99ZLZlRjAXucPeTvAl3ktlBa0Ean4U9e9N8X3v3L3cebv4IkkGNWQ0_agv1qs_XuCQSs3JK-fHB6eDFvvH0JvrMd_AQwj_0Q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-DupBfOL6DOJNi0maJu1RFmXV1ZOCt5BMUxS0u-yuiv_eTNtdH6jgpYdm0sJMp_lCvvmGkIMkK3QKEPLbAkQyC5c0lyySTnteABRCYqHw1bXq3MqLu-SukcnBWphv5_fHw4D_UbxWIOtHCR29TZNZGXbKSN9rq_aHwC4bl5vEkRBp2hTI_PyML4vQ9D1SID_hy29HotVKc7ZEFhuISE_qmC6TKV-ukIVPwoGrxNeiw7RX0D7GPpjbMqe1ugcd3iMtLRjSXkmHz4PCgo_yAf7XKFK6UHTB0oeShgTG9rgU2-HQAKP9gDpvn-hrPX2N3J6d3rQ7UdMwIYIAK0ZREkNuIVbas9hxUBKUTxWLgeeItGySOa2U4J55mWgOXlqdy4QVzjsGLo_XyUzZK_0GobGUudVxmnLQ0oZtDQRol3GbSs-EY0WL8LEHDTRq4tjU4tFMdJArr5vgdVN53by1yOFkTr_W0vjTej8EZmKIMtidk67Be6zaFonshbfI9jhupkm-oalEzFC3MAwfjWP5Mfz7Kzf_Z75H5jo3V13TPb--3CLzIsCdmkS2TWZGg2e_E-DKyO1W3-k7YmPegQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELYKlRAcqpaHCNDWQr3BCq_Xa2-OKG2Ulod6IFJulj32KkiwifIA5d_j2UcIiCL1sgd7vCvN2OtvNDPfEPIjbecqAwjn2wBEoh0emRMsElb5OAfIucBC4atr2euLP4N0sFLFX2a7NyHJqqYBWZqK2dnY5WfLwrfgFSClLcdcIMlVtFgjH4OnUgZqO7LzTLvLmiKUJOI8y-qymbff8eJqWhtiYuQK6nwVKC3vn-5n8qkGjvS8svQX8sEX22RrhU5wh_iKipiOcjrGHRHETeFoxflBp0NMVguCdFTQ6XySG_CRm-DfjmKiF1IxGHpb0HCssWkuxSY5NIBrP6HWm3v6WC3fJf3ur5tOL6rbKEQQwMYsShNwBhKpPEtsDFKA9JlkCcQO8ZdJ21ZJyWPPvEhVDF4Y5UTKcustA-uSPbJejAq_T2gihDMqybIYlDDB2YEUtW4y4Rm3LG-RuNGghppjHFtd3OklO3KpdR20rkut60WLnCzXjCuGjXelj4NhloJIjt07v9Q4xkpnibcf4hY5auym6yM51SW1GbIZhunTxpbP0__-5MH_iX8nG39_dvXl7-uLQ7LJAwaqMsuOyPpsMvdfA4aZ2W_lNn0C0izmyA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+partial+and+global+shielding+on+surface-driven+phenomena+in+keyhole+mode+laser+beam+welding&rft.jtitle=Welding+in+the+world&rft.au=Schmidt%2C+Leander&rft.au=Schricker%2C+Klaus&rft.au=Diegel%2C+Christian&rft.au=Sachs%2C+Florian&rft.date=2024-06-01&rft.issn=0043-2288&rft.eissn=1878-6669&rft.volume=68&rft.issue=6&rft.spage=1353&rft.epage=1374&rft_id=info:doi/10.1007%2Fs40194-023-01627-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40194_023_01627_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-2288&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-2288&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-2288&client=summon