Effect of partial and global shielding on surface-driven phenomena in keyhole mode laser beam welding
Partial shielding by means of local gas supply has proven to be very effective in reducing spatter. Besides the effect of gas-induced dynamic pressure, the shielding of oxygen is also highly relevant for melt pool dynamics and spatter formation due to the growth of oxides and the influence on surfac...
Saved in:
Published in | Welding in the world Vol. 68; no. 6; pp. 1353 - 1374 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2024
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Partial shielding by means of local gas supply has proven to be very effective in reducing spatter. Besides the effect of gas-induced dynamic pressure, the shielding of oxygen is also highly relevant for melt pool dynamics and spatter formation due to the growth of oxides and the influence on surface tension. Therefore, this paper addresses the effect of local supplied argon on oxide growth and seam topography during keyhole mode laser beam welding of high-alloy steel AISI 304. To determine the shielding quality, the results are compared to laser beam welding in a global argon atmosphere. The topography of the upper weld seams was analyzed by scanning electron microscopy (SEM). An X-ray microanalysis (EDX) in line scan modus was performed to determine and to locate the elements which are covering the specimen surface. The chemical state of the found elements was quantified by X-ray photoelectron spectroscopy (XPS). In a last step, high-speed synchrotron X-ray imaging was performed to separate the effect of the gas-induced pressure and the gas-induced shielding on keyhole geometry. The results show that a local supply of argon contributes to a significant difference in oxide growth, affecting melt pool convection and weld seam geometry. It was further shown that the effect of gas flows at low flow rates is primarily because of oxygen shielding, as no significant difference in keyhole geometry was found by high-speed synchrotron X-ray imaging. |
---|---|
AbstractList | Partial shielding by means of local gas supply has proven to be very effective in reducing spatter. Besides the effect of gas-induced dynamic pressure, the shielding of oxygen is also highly relevant for melt pool dynamics and spatter formation due to the growth of oxides and the influence on surface tension. Therefore, this paper addresses the effect of local supplied argon on oxide growth and seam topography during keyhole mode laser beam welding of high-alloy steel AISI 304. To determine the shielding quality, the results are compared to laser beam welding in a global argon atmosphere. The topography of the upper weld seams was analyzed by scanning electron microscopy (SEM). An X-ray microanalysis (EDX) in line scan modus was performed to determine and to locate the elements which are covering the specimen surface. The chemical state of the found elements was quantified by X-ray photoelectron spectroscopy (XPS). In a last step, high-speed synchrotron X-ray imaging was performed to separate the effect of the gas-induced pressure and the gas-induced shielding on keyhole geometry. The results show that a local supply of argon contributes to a significant difference in oxide growth, affecting melt pool convection and weld seam geometry. It was further shown that the effect of gas flows at low flow rates is primarily because of oxygen shielding, as no significant difference in keyhole geometry was found by high-speed synchrotron X-ray imaging. Abstract Partial shielding by means of local gas supply has proven to be very effective in reducing spatter. Besides the effect of gas-induced dynamic pressure, the shielding of oxygen is also highly relevant for melt pool dynamics and spatter formation due to the growth of oxides and the influence on surface tension. Therefore, this paper addresses the effect of local supplied argon on oxide growth and seam topography during keyhole mode laser beam welding of high-alloy steel AISI 304. To determine the shielding quality, the results are compared to laser beam welding in a global argon atmosphere. The topography of the upper weld seams was analyzed by scanning electron microscopy (SEM). An X-ray microanalysis (EDX) in line scan modus was performed to determine and to locate the elements which are covering the specimen surface. The chemical state of the found elements was quantified by X-ray photoelectron spectroscopy (XPS). In a last step, high-speed synchrotron X-ray imaging was performed to separate the effect of the gas-induced pressure and the gas-induced shielding on keyhole geometry. The results show that a local supply of argon contributes to a significant difference in oxide growth, affecting melt pool convection and weld seam geometry. It was further shown that the effect of gas flows at low flow rates is primarily because of oxygen shielding, as no significant difference in keyhole geometry was found by high-speed synchrotron X-ray imaging. |
Author | Requardt, Herwig Rack, Alexander Diegel, Christian Schricker, Klaus Sachs, Florian Bergmann, Jean Pierre Chen, Yunhui Schmidt, Leander Romanus, Henry Knauer, Andrea |
Author_xml | – sequence: 1 givenname: Leander orcidid: 0000-0003-0658-5196 surname: Schmidt fullname: Schmidt, Leander email: leander.schmidt@tu-ilmenau.de organization: Production Technology Group, Technische Universität Ilmenau – sequence: 2 givenname: Klaus orcidid: 0000-0001-6291-7162 surname: Schricker fullname: Schricker, Klaus organization: Production Technology Group, Technische Universität Ilmenau – sequence: 3 givenname: Christian surname: Diegel fullname: Diegel, Christian organization: Production Technology Group, Technische Universität Ilmenau – sequence: 4 givenname: Florian surname: Sachs fullname: Sachs, Florian organization: Production Technology Group, Technische Universität Ilmenau – sequence: 5 givenname: Jean Pierre surname: Bergmann fullname: Bergmann, Jean Pierre organization: Production Technology Group, Technische Universität Ilmenau – sequence: 6 givenname: Andrea surname: Knauer fullname: Knauer, Andrea organization: Center of Micro- and Nanotechnologies (ZMN) – sequence: 7 givenname: Henry surname: Romanus fullname: Romanus, Henry organization: Center of Micro- and Nanotechnologies (ZMN) – sequence: 8 givenname: Herwig surname: Requardt fullname: Requardt, Herwig organization: ESRF – The European Synchrotron, Structure of Materials Group - ID19 – sequence: 9 givenname: Yunhui surname: Chen fullname: Chen, Yunhui organization: ESRF – The European Synchrotron, Structure of Materials Group - ID19, School of Engineering, RMIT University – sequence: 10 givenname: Alexander surname: Rack fullname: Rack, Alexander organization: ESRF – The European Synchrotron, Structure of Materials Group - ID19 |
BackLink | https://hal.science/hal-05118229$$DView record in HAL |
BookMark | eNp9kUFLwzAUx4MoOKdfwFPAk4foS9Ok7VFEnTDwoueQpq9bZpfMpFP27e2sInjwEF54_H6PP_xPyKEPHgk553DFAYrrlAOvcgaZYMBVVrDdAZnwsiiZUqo6JBOAXLAsK8tjcpLSCgCq4U0I3rUt2p6Glm5M7J3pqPENXXShHr5p6bBrnF_Q4GnaxtZYZE107-jpZok-rNEb6jx9xd0ydEjXoUHamYSR1mjW9GPUT8lRa7qEZ99zSl7u755vZ2z-9PB4ezNnVlRFz6SwjbFCFQii5lblVmGpQFjeQCmkkVVdKJVxBMxlwS3mpmhyCW2NNdi6EVNyOd5dmk5volubuNPBOD27mev9DiTnZZZV73xgL0Z2E8PbFlOvV2Eb_RBPC5BSAs_FnipHysaQUsRWW9eb3gXfR-M6zUHvC9BjAXooQH8VoHeDmv1RfxL9K4lRSgPsFxh_U_1jfQIm2Zr6 |
CitedBy_id | crossref_primary_10_1063_5_0239502 crossref_primary_10_1080_08940886_2024_2414730 crossref_primary_10_1016_j_procir_2024_08_173 crossref_primary_10_1016_j_jmapro_2025_03_049 |
Cites_doi | 10.1016/j.jmapro.2021.04.052 10.1007/s100190050008 10.1117/12.2507024 10.2351/1.1404412 10.1533/9780857098771 10.2355/isijinternational.39.409 10.3233/XST-2010-0273 10.25819/ubsi/726 10.1533/wint.2003.3049 10.2351/1.5059030 10.1016/j.procir.2020.09.101 10.1016/j.procir.2022.08.173 10.1007/s10853-009-4107-2 10.1088/0022-3727/43/44/445501 10.1007/978-3-540-85918-5 10.1016/j.msea.2004.05.057 10.2351/1.1642636 10.1088/0022-3727/39/2/023 10.1016/0921-5093(93)90472-Q 10.1007/978-3-658-37252-1 10.1117/12.486500 10.2351/1.2164484 10.2351/1.1493766 10.1088/0022-3727/40/1/R01 10.2351/1.1471563 10.1016/S0020-1693(00)91689-X 10.2320/matertrans.43.2926 10.3390/app10051867 10.1179/imr.1993.38.4.157 10.1002/9781118162897 10.1038/nmeth.2019 10.1007/978-3-8348-9907-1_6 10.1533/wint.2003.3138 10.1002/srin.202100624 10.1007/BF02654098 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. corrected publication 2023 The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s) 2023. corrected publication 2023 – notice: The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | C6C AAYXX CITATION 1XC VOOES |
DOI | 10.1007/s40194-023-01627-y |
DatabaseName | Springer Nature OA Free Journals CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1878-6669 |
EndPage | 1374 |
ExternalDocumentID | oai_HAL_hal_05118229v1 10_1007_s40194_023_01627_y |
GrantInformation_xml | – fundername: Technische Universität Ilmenau (3141) |
GroupedDBID | --K -EM 06D 0R~ 1B1 203 2LR 30V 4.4 406 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAZMS ABAKF ABDZT ABECU ABFTV ABHLI ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTHY ABTKH ABTMW ABULA ABXPI ACAOD ACBXY ACCUX ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGWZB AGYKE AHAVH AHBYD AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG AUKKA AVWKF AXYYD AYJHY BGNMA C6C CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ7 HMJXF HRMNR HZ~ IHE IKXTQ ITM IWAJR J-C JBSCW JZLTJ KOV LLZTM M41 M4Y NPVJJ NQ- NQJWS NU0 O9- O93 O9J P2P PT4 RIG ROL RPZ RSV SHX SISQX SJN SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 XPP Z5O Z7R Z7V Z7X Z7Y Z7Z Z81 Z85 ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ 1XC VOOES |
ID | FETCH-LOGICAL-c397t-53cdac367e03b1c64c6e8603c1d0835a59b76621e0e4571ce4a7d450fbeb0cbd3 |
IEDL.DBID | AGYKE |
ISSN | 0043-2288 |
IngestDate | Thu Jun 26 06:31:12 EDT 2025 Wed Aug 20 10:40:35 EDT 2025 Tue Jul 01 04:25:39 EDT 2025 Thu Apr 24 23:11:47 EDT 2025 Fri Feb 21 02:40:29 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Laser beam welding Oxide formation Spatter formation Gas atmosphere Melt pool dynamics |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c397t-53cdac367e03b1c64c6e8603c1d0835a59b76621e0e4571ce4a7d450fbeb0cbd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0658-5196 0000-0001-6291-7162 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s40194-023-01627-y |
PQID | 3055501431 |
PQPubID | 2043671 |
PageCount | 22 |
ParticipantIDs | hal_primary_oai_HAL_hal_05118229v1 proquest_journals_3055501431 crossref_citationtrail_10_1007_s40194_023_01627_y crossref_primary_10_1007_s40194_023_01627_y springer_journals_10_1007_s40194_023_01627_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240600 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 6 year: 2024 text: 20240600 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | The International Journal of Materials Joining |
PublicationTitle | Welding in the world |
PublicationTitleAbbrev | Weld World |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer |
References | KamimukiKInoueTYasudaKMuroMNakabayashiTMatsunawaAPrevention of welding defect by side gas flow and its monitoring method in continuous wave Nd:YAG laser weldingJ Laser Appl2002141361451:CAS:528:DC%2BD38XlsVals7o%3D10.2351/1.1493766 JunZShiFMukaiKTsukamotoHNumerical analysis of nitrogen absorption rate accompanied with Marangoni convection in the molten iron under non-inductive stirring conditionISIJ International1999394094181:CAS:528:DyaK1MXkslOrtL8%3D10.2355/isijinternational.39.409 OnoKAdachiKKatadaKMishiroMMiyamotoIInoueTLaser welding phenomena of mild steel with oxide film. Influence of oxide film on high power CO2 laser welding of mild steel (Report 1)2003Welding International51110.1533/wint.2003.3049 OnoKAdachiKMiyamotoIInoueTInfluence of oxide film on weld characteristics of mild steel in CO2 laser weldingJ Laser Appl20021473771:CAS:528:DC%2BD38Xjt1Wntb0%3D10.2351/1.1471563 JovicGBormannAPröllJBöhmSLaser welding with side-gas application and its impact on spatter formation and weld seam shapeProcedia CIRP20209464965410.1016/j.procir.2020.09.101 TanakaMLowkeJJPredictions of weld pool profiles using plasma physicsJ Phys D Appl Phys200740R11:CAS:528:DC%2BD2sXhtVagsb0%3D10.1088/0022-3727/40/1/R01 Schmidt L, Schricker K, Bergmann JP, Hickethier S (2019) Effect of gas flow on spatter formation in deep penetration welding at high welding speeds. In: Proceedings of Lasers in Manufacturing Conference, Munich, pp 1–7 Kaplan A (1994) Modellrechnung und numerische simulation von absorption, Wärmeleitung und Strömung des Laser-Tiefschweißens. PhD Thesis, TU Wien, Wien RobertsonSMKaplanAFHFrostevargJMaterial ejection attempts during laser keyhole weldingJ Manuf Process2021679110010.1016/j.jmapro.2021.04.052 AllenGCTuckerPMMultiplet splitting of X-ray photoelectron lines of chromium complexes. The effect of covalency on the 2p core level spin-orbit separationInorg Chim Acta19761641451:CAS:528:DyaE28XpslGmsA%3D%3D10.1016/S0020-1693(00)91689-X RackAGarcia-MorenoFSchmittCBetzOCeciliaAErshovARackTBanhartJZablerSOn the possibilities of hard X-ray imaging with high spatio-temporal resolution using polychromatic synchrotron radiationJ Xray Sci Technol2010184294411:STN:280:DC%2BC3cbkt12htA%3D%3D10.3233/XST-2010-027321045279 Simon D (2019) Hochtemperaturoxidationsstudien zum Wasserdampfeinfluss auf thermisch wachsende Chromoxidschichten. PhD Thesis, Universität Siegen, Siegen. https://doi.org/10.25819/ubsi/726 DelacroixJPilusoPChikhiNAsserinOBorelDBrosseACadiouSMeasurements of liquid AISI 304L steel density and surface tension, and influence of surface-active elements at high temperaturesSteel Res Int20229321006241:CAS:528:DC%2BB38Xht1Oru7Y%3D10.1002/srin.202100624 SchmidtLSchrickerKDiegelCBergmannJPEffect of local pressure distribution on spatter formation for welding high alloy steel at high welding speedsProcedia CIRP202211139139610.1016/j.procir.2022.08.173 Ishide T (1992) High Power YAG laser welded sleeving technology for steam generator tubes in nuclear power plants. In: Proceedings of international conference on laser advanced materials processing--science and applications. Nagaoka, pp 957–962 Katayama S, Tsukamotot S, Fabbro R (2013) Handbook of laser welding technologies. Woodhead Publishing NaitoYMizutaniMKatayamaSEffect of oxygen in ambient atmosphere on penetration characteristics in single yttrium–aluminum–garnet laser and hybrid weldingJ Laser Appl20061821271:CAS:528:DC%2BD28Xit1yhurc%3D10.2351/1.2164484 HügelHGrafTMaterialbearbeitung mit Laser; Volume 42022Springer Vieweg Wiesbaden10.1007/978-3-658-37252-1 Jovic G, Bormann A, Proell J, Boehm S (2019) Laser welding of thin stainless steel parts using modified side-gas application for control of spatter and weld shape. In: Proceedings of International Congress on Laser Advanced Materials Processing (LAMP), Hiroshima, pp 1–7 BeckMModellierung des Lasertiefschweißens1996Teubner Teneva-Kosseva G, Köhne H (2006) Oxidschichtbildung und Materialprobleme metallischer Werkstoffe bei Verbrennungsprozessen mit Heizöl EL. Fakultät für Georessourcen und Materialtechnik RicciEPasseroneAReview: Surface tension and its relations with adsorption, vapourization and surface reactivity of liquid metalsMater Sci Eng A1993161314010.1016/0921-5093(93)90472-Q Van der Heide P (2011) X-ray photoelectron spectroscopy: an introduction to principles and practices. John Wiley & Sons. https://doi.org/10.1002/9781118162897 LuSFujiiHNogiKMarangoni convection and weld shape variations in Ar–O2 and Ar–CO2 shielded GTA weldingMater Sci Eng A20043802902971:CAS:528:DC%2BD2cXlslyisbg%3D10.1016/j.msea.2004.05.057 MatsunawaAMizutaniMKatayamaSSetoNPorosity formation mechanism and its prevention in laser weldingWeld Int20031743143710.1533/wint.2003.3138 Dowden J, Kapadia P (1996) A mathematical model of the chevron-like wave pattern on a weld piece. In: Proceedings of the international congress on applications of lasers & electro-optics, pp B96–B105. https://doi.org/10.2351/1.5059030 Fukuyama H, Waseda Y (2008) High-temperature measurements of materials, vol 11. Springer Science & Business Media Schmidt L, Schricker K, Bergmann J (2021) Experimental and numerical analysis of local gas supplies for spatter reduced high speed laser beam welding. In: Proceedings of Lasers in Manufacturing Conference, Munich, pp 1–10 XuCGaoWPilling-Bedworth ratio for oxidation of alloysMater Res Innov200032312351:CAS:528:DC%2BD3cXitFOkt78%3D10.1007/s100190050008 SchmidtLHickethierSSchrickerKBergmannJPLow-spatter high speed welding by use of local shielding gas flowsProceedings of SPIE LASE Conference201910.1117/12.2507024 FuhrichTBergerPHügelHMarangoni effect in laser deep penetration welding of steelJ Laser Appl2001131781861:CAS:528:DC%2BD3MXotFyhs78%3D10.2351/1.1404412 HibiyaTMorohoshiKOzawaSOxygen partial pressure dependence of surface tension and its temperature coefficient for metallic melts: a discussion from the viewpoint of solubility and adsorption of oxygenJ Mater Sci201045198619921:CAS:528:DC%2BD1MXhsFyjt7fJ10.1007/s10853-009-4107-2 Jose G, Claire YB, Paul AH, William MS (2003) Effects of different gas environments on CO2 and Nd:YAG laser welding process efficiencies. In: Proceedings of the Proc. SPIE, Osaka, pp 257–262. https://doi.org/10.1117/12.486500 Bürgel R, Maier HJ, Niendorf T (2011) Handbuch Hochtemperatur-Werkstofftechnik: Grundlagen, Werkstoffbeanspruchungen, Hochtemperaturlegierungen und-beschichtungen. Mit 66 Tabellen; Vieweg+ Teubner LuSFujiiHSugiyamaHTanakaMNogiKWeld penetration and Marangoni convection with oxide fluxes in GTA weldingMater Trans200243292629311:CAS:528:DC%2BD3sXjtFOj10.2320/matertrans.43.2926 FabbroRMelt pool and keyhole behaviour analysis for deep penetration laser weldingJ Phys D Appl Phys2010434455011:CAS:528:DC%2BC3cXhsVGqt7fP10.1088/0022-3727/43/44/445501 HirashimaNChooRTCToguriJMMukaiKThe effect of surface movements on nitrogen mass transfer in liquid ironMetall Mater Trans B19952697198010.1007/BF02654098 KeeneBJReview of data for the surface tension of pure metalsInt Mater Rev1993381571921:CAS:528:DyaK2cXhtFehtbc%3D10.1179/imr.1993.38.4.157 SchindelinJArganda-CarrerasIFriseEKaynigVLongairMPietzschTPreibischSRuedenCSaalfeldSSchmidBFiji: an open-source platform for biological-image analysisNat Methods201296766821:CAS:528:DC%2BC38XhtVKnurbJ10.1038/nmeth.201922743772 GresesJHiltonPABarlowCYSteenWMPlume attenuation under high power Nd:yttritium–aluminum–garnet laser weldingJ Laser Appl2004169151:CAS:528:DC%2BD2cXhsFWjtrY%3D10.2351/1.1642636 FabbroRSlimaniSDoudetICosteFBriandFExperimental study of the dynamical coupling between the induced vapour plume and the melt pool for Nd–Yag CW laser weldingJ Phys D Appl Phys2006393944001:CAS:528:DC%2BD28Xht1Omtrs%3D10.1088/0022-3727/39/2/023 Lancaster JF (1986) The physics of welding, 2nd edn. Pergamon Press, pp 1–340 Schmidt L, Schricker K, Bergmann JP, Junger C (2020) Effect of local gas flow in full penetration laser beam welding with high welding speeds. Applied Sciences:10, 1867. https://doi.org/10.3390/app10051867 Herty CH, Fitterer GR (1931) New manganese-silicon alloys for the deoxidation of steel, vol 3081. United States Bureau of Mines Hüfner S (2013) Photoelectron spectroscopy: principles and applications. Springer Science & Business Media 1627_CR11 L Schmidt (1627_CR12) 2022; 111 Y Naito (1627_CR16) 2006; 18 SM Robertson (1627_CR37) 2021; 67 1627_CR13 1627_CR30 1627_CR10 R Fabbro (1627_CR5) 2006; 39 K Ono (1627_CR14) 2002; 14 S Lu (1627_CR17) 2002; 43 1627_CR19 Z Jun (1627_CR26) 1999; 39 R Fabbro (1627_CR36) 2010; 43 H Hügel (1627_CR1) 2022 J Delacroix (1627_CR29) 2022; 93 1627_CR38 K Ono (1627_CR18) 2003 A Rack (1627_CR33) 2010; 18 1627_CR39 N Hirashima (1627_CR32) 1995; 26 K Kamimuki (1627_CR2) 2002; 14 BJ Keene (1627_CR27) 1993; 38 A Matsunawa (1627_CR35) 2003; 17 S Lu (1627_CR25) 2004; 380 J Greses (1627_CR43) 2004; 16 1627_CR3 1627_CR22 1627_CR44 G Jovic (1627_CR4) 2020; 94 1627_CR24 C Xu (1627_CR42) 2000; 3 1627_CR41 T Fuhrich (1627_CR15) 2001; 13 1627_CR40 1627_CR21 E Ricci (1627_CR23) 1993; 161 M Tanaka (1627_CR31) 2007; 40 1627_CR28 L Schmidt (1627_CR6) 2019 T Hibiya (1627_CR20) 2010; 45 M Beck (1627_CR9) 1996 GC Allen (1627_CR45) 1976; 16 J Schindelin (1627_CR34) 2012; 9 1627_CR8 1627_CR7 |
References_xml | – reference: SchmidtLSchrickerKDiegelCBergmannJPEffect of local pressure distribution on spatter formation for welding high alloy steel at high welding speedsProcedia CIRP202211139139610.1016/j.procir.2022.08.173 – reference: TanakaMLowkeJJPredictions of weld pool profiles using plasma physicsJ Phys D Appl Phys200740R11:CAS:528:DC%2BD2sXhtVagsb0%3D10.1088/0022-3727/40/1/R01 – reference: LuSFujiiHNogiKMarangoni convection and weld shape variations in Ar–O2 and Ar–CO2 shielded GTA weldingMater Sci Eng A20043802902971:CAS:528:DC%2BD2cXlslyisbg%3D10.1016/j.msea.2004.05.057 – reference: Dowden J, Kapadia P (1996) A mathematical model of the chevron-like wave pattern on a weld piece. In: Proceedings of the international congress on applications of lasers & electro-optics, pp B96–B105. https://doi.org/10.2351/1.5059030 – reference: Jose G, Claire YB, Paul AH, William MS (2003) Effects of different gas environments on CO2 and Nd:YAG laser welding process efficiencies. In: Proceedings of the Proc. SPIE, Osaka, pp 257–262. https://doi.org/10.1117/12.486500 – reference: RackAGarcia-MorenoFSchmittCBetzOCeciliaAErshovARackTBanhartJZablerSOn the possibilities of hard X-ray imaging with high spatio-temporal resolution using polychromatic synchrotron radiationJ Xray Sci Technol2010184294411:STN:280:DC%2BC3cbkt12htA%3D%3D10.3233/XST-2010-027321045279 – reference: HibiyaTMorohoshiKOzawaSOxygen partial pressure dependence of surface tension and its temperature coefficient for metallic melts: a discussion from the viewpoint of solubility and adsorption of oxygenJ Mater Sci201045198619921:CAS:528:DC%2BD1MXhsFyjt7fJ10.1007/s10853-009-4107-2 – reference: FabbroRSlimaniSDoudetICosteFBriandFExperimental study of the dynamical coupling between the induced vapour plume and the melt pool for Nd–Yag CW laser weldingJ Phys D Appl Phys2006393944001:CAS:528:DC%2BD28Xht1Omtrs%3D10.1088/0022-3727/39/2/023 – reference: LuSFujiiHSugiyamaHTanakaMNogiKWeld penetration and Marangoni convection with oxide fluxes in GTA weldingMater Trans200243292629311:CAS:528:DC%2BD3sXjtFOj10.2320/matertrans.43.2926 – reference: GresesJHiltonPABarlowCYSteenWMPlume attenuation under high power Nd:yttritium–aluminum–garnet laser weldingJ Laser Appl2004169151:CAS:528:DC%2BD2cXhsFWjtrY%3D10.2351/1.1642636 – reference: Bürgel R, Maier HJ, Niendorf T (2011) Handbuch Hochtemperatur-Werkstofftechnik: Grundlagen, Werkstoffbeanspruchungen, Hochtemperaturlegierungen und-beschichtungen. Mit 66 Tabellen; Vieweg+ Teubner – reference: Jovic G, Bormann A, Proell J, Boehm S (2019) Laser welding of thin stainless steel parts using modified side-gas application for control of spatter and weld shape. In: Proceedings of International Congress on Laser Advanced Materials Processing (LAMP), Hiroshima, pp 1–7 – reference: RobertsonSMKaplanAFHFrostevargJMaterial ejection attempts during laser keyhole weldingJ Manuf Process2021679110010.1016/j.jmapro.2021.04.052 – reference: Schmidt L, Schricker K, Bergmann JP, Junger C (2020) Effect of local gas flow in full penetration laser beam welding with high welding speeds. Applied Sciences:10, 1867. https://doi.org/10.3390/app10051867 – reference: Van der Heide P (2011) X-ray photoelectron spectroscopy: an introduction to principles and practices. John Wiley & Sons. https://doi.org/10.1002/9781118162897 – reference: Teneva-Kosseva G, Köhne H (2006) Oxidschichtbildung und Materialprobleme metallischer Werkstoffe bei Verbrennungsprozessen mit Heizöl EL. Fakultät für Georessourcen und Materialtechnik – reference: SchindelinJArganda-CarrerasIFriseEKaynigVLongairMPietzschTPreibischSRuedenCSaalfeldSSchmidBFiji: an open-source platform for biological-image analysisNat Methods201296766821:CAS:528:DC%2BC38XhtVKnurbJ10.1038/nmeth.201922743772 – reference: JovicGBormannAPröllJBöhmSLaser welding with side-gas application and its impact on spatter formation and weld seam shapeProcedia CIRP20209464965410.1016/j.procir.2020.09.101 – reference: MatsunawaAMizutaniMKatayamaSSetoNPorosity formation mechanism and its prevention in laser weldingWeld Int20031743143710.1533/wint.2003.3138 – reference: Hüfner S (2013) Photoelectron spectroscopy: principles and applications. Springer Science & Business Media – reference: AllenGCTuckerPMMultiplet splitting of X-ray photoelectron lines of chromium complexes. The effect of covalency on the 2p core level spin-orbit separationInorg Chim Acta19761641451:CAS:528:DyaE28XpslGmsA%3D%3D10.1016/S0020-1693(00)91689-X – reference: KamimukiKInoueTYasudaKMuroMNakabayashiTMatsunawaAPrevention of welding defect by side gas flow and its monitoring method in continuous wave Nd:YAG laser weldingJ Laser Appl2002141361451:CAS:528:DC%2BD38XlsVals7o%3D10.2351/1.1493766 – reference: JunZShiFMukaiKTsukamotoHNumerical analysis of nitrogen absorption rate accompanied with Marangoni convection in the molten iron under non-inductive stirring conditionISIJ International1999394094181:CAS:528:DyaK1MXkslOrtL8%3D10.2355/isijinternational.39.409 – reference: NaitoYMizutaniMKatayamaSEffect of oxygen in ambient atmosphere on penetration characteristics in single yttrium–aluminum–garnet laser and hybrid weldingJ Laser Appl20061821271:CAS:528:DC%2BD28Xit1yhurc%3D10.2351/1.2164484 – reference: OnoKAdachiKKatadaKMishiroMMiyamotoIInoueTLaser welding phenomena of mild steel with oxide film. Influence of oxide film on high power CO2 laser welding of mild steel (Report 1)2003Welding International51110.1533/wint.2003.3049 – reference: FuhrichTBergerPHügelHMarangoni effect in laser deep penetration welding of steelJ Laser Appl2001131781861:CAS:528:DC%2BD3MXotFyhs78%3D10.2351/1.1404412 – reference: HirashimaNChooRTCToguriJMMukaiKThe effect of surface movements on nitrogen mass transfer in liquid ironMetall Mater Trans B19952697198010.1007/BF02654098 – reference: XuCGaoWPilling-Bedworth ratio for oxidation of alloysMater Res Innov200032312351:CAS:528:DC%2BD3cXitFOkt78%3D10.1007/s100190050008 – reference: Schmidt L, Schricker K, Bergmann J (2021) Experimental and numerical analysis of local gas supplies for spatter reduced high speed laser beam welding. In: Proceedings of Lasers in Manufacturing Conference, Munich, pp 1–10 – reference: OnoKAdachiKMiyamotoIInoueTInfluence of oxide film on weld characteristics of mild steel in CO2 laser weldingJ Laser Appl20021473771:CAS:528:DC%2BD38Xjt1Wntb0%3D10.2351/1.1471563 – reference: SchmidtLHickethierSSchrickerKBergmannJPLow-spatter high speed welding by use of local shielding gas flowsProceedings of SPIE LASE Conference201910.1117/12.2507024 – reference: DelacroixJPilusoPChikhiNAsserinOBorelDBrosseACadiouSMeasurements of liquid AISI 304L steel density and surface tension, and influence of surface-active elements at high temperaturesSteel Res Int20229321006241:CAS:528:DC%2BB38Xht1Oru7Y%3D10.1002/srin.202100624 – reference: RicciEPasseroneAReview: Surface tension and its relations with adsorption, vapourization and surface reactivity of liquid metalsMater Sci Eng A1993161314010.1016/0921-5093(93)90472-Q – reference: Herty CH, Fitterer GR (1931) New manganese-silicon alloys for the deoxidation of steel, vol 3081. United States Bureau of Mines – reference: Simon D (2019) Hochtemperaturoxidationsstudien zum Wasserdampfeinfluss auf thermisch wachsende Chromoxidschichten. PhD Thesis, Universität Siegen, Siegen. https://doi.org/10.25819/ubsi/726 – reference: FabbroRMelt pool and keyhole behaviour analysis for deep penetration laser weldingJ Phys D Appl Phys2010434455011:CAS:528:DC%2BC3cXhsVGqt7fP10.1088/0022-3727/43/44/445501 – reference: Lancaster JF (1986) The physics of welding, 2nd edn. Pergamon Press, pp 1–340 – reference: BeckMModellierung des Lasertiefschweißens1996Teubner – reference: Schmidt L, Schricker K, Bergmann JP, Hickethier S (2019) Effect of gas flow on spatter formation in deep penetration welding at high welding speeds. In: Proceedings of Lasers in Manufacturing Conference, Munich, pp 1–7 – reference: KeeneBJReview of data for the surface tension of pure metalsInt Mater Rev1993381571921:CAS:528:DyaK2cXhtFehtbc%3D10.1179/imr.1993.38.4.157 – reference: Katayama S, Tsukamotot S, Fabbro R (2013) Handbook of laser welding technologies. Woodhead Publishing – reference: Ishide T (1992) High Power YAG laser welded sleeving technology for steam generator tubes in nuclear power plants. In: Proceedings of international conference on laser advanced materials processing--science and applications. Nagaoka, pp 957–962 – reference: HügelHGrafTMaterialbearbeitung mit Laser; Volume 42022Springer Vieweg Wiesbaden10.1007/978-3-658-37252-1 – reference: Fukuyama H, Waseda Y (2008) High-temperature measurements of materials, vol 11. Springer Science & Business Media – reference: Kaplan A (1994) Modellrechnung und numerische simulation von absorption, Wärmeleitung und Strömung des Laser-Tiefschweißens. PhD Thesis, TU Wien, Wien – volume: 67 start-page: 91 year: 2021 ident: 1627_CR37 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2021.04.052 – volume: 3 start-page: 231 year: 2000 ident: 1627_CR42 publication-title: Mater Res Innov doi: 10.1007/s100190050008 – volume-title: Modellierung des Lasertiefschweißens year: 1996 ident: 1627_CR9 – volume-title: Proceedings of SPIE LASE Conference year: 2019 ident: 1627_CR6 doi: 10.1117/12.2507024 – volume: 13 start-page: 178 year: 2001 ident: 1627_CR15 publication-title: J Laser Appl doi: 10.2351/1.1404412 – ident: 1627_CR10 doi: 10.1533/9780857098771 – volume: 39 start-page: 409 year: 1999 ident: 1627_CR26 publication-title: ISIJ International doi: 10.2355/isijinternational.39.409 – volume: 18 start-page: 429 year: 2010 ident: 1627_CR33 publication-title: J Xray Sci Technol doi: 10.3233/XST-2010-0273 – ident: 1627_CR22 doi: 10.25819/ubsi/726 – start-page: 5 volume-title: Laser welding phenomena of mild steel with oxide film. Influence of oxide film on high power CO2 laser welding of mild steel (Report 1) year: 2003 ident: 1627_CR18 doi: 10.1533/wint.2003.3049 – ident: 1627_CR41 doi: 10.2351/1.5059030 – volume: 94 start-page: 649 year: 2020 ident: 1627_CR4 publication-title: Procedia CIRP doi: 10.1016/j.procir.2020.09.101 – volume: 111 start-page: 391 year: 2022 ident: 1627_CR12 publication-title: Procedia CIRP doi: 10.1016/j.procir.2022.08.173 – volume: 45 start-page: 1986 year: 2010 ident: 1627_CR20 publication-title: J Mater Sci doi: 10.1007/s10853-009-4107-2 – volume: 43 start-page: 445501 year: 2010 ident: 1627_CR36 publication-title: J Phys D Appl Phys doi: 10.1088/0022-3727/43/44/445501 – ident: 1627_CR21 doi: 10.1007/978-3-540-85918-5 – ident: 1627_CR3 – ident: 1627_CR7 – ident: 1627_CR40 – volume: 380 start-page: 290 year: 2004 ident: 1627_CR25 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2004.05.057 – volume: 16 start-page: 9 year: 2004 ident: 1627_CR43 publication-title: J Laser Appl doi: 10.2351/1.1642636 – volume: 39 start-page: 394 year: 2006 ident: 1627_CR5 publication-title: J Phys D Appl Phys doi: 10.1088/0022-3727/39/2/023 – ident: 1627_CR39 – volume: 161 start-page: 31 year: 1993 ident: 1627_CR23 publication-title: Mater Sci Eng A doi: 10.1016/0921-5093(93)90472-Q – volume-title: Materialbearbeitung mit Laser; Volume 4 year: 2022 ident: 1627_CR1 doi: 10.1007/978-3-658-37252-1 – ident: 1627_CR44 doi: 10.1117/12.486500 – volume: 18 start-page: 21 year: 2006 ident: 1627_CR16 publication-title: J Laser Appl doi: 10.2351/1.2164484 – ident: 1627_CR28 – volume: 14 start-page: 136 year: 2002 ident: 1627_CR2 publication-title: J Laser Appl doi: 10.2351/1.1493766 – volume: 40 start-page: R1 year: 2007 ident: 1627_CR31 publication-title: J Phys D Appl Phys doi: 10.1088/0022-3727/40/1/R01 – ident: 1627_CR11 – volume: 14 start-page: 73 year: 2002 ident: 1627_CR14 publication-title: J Laser Appl doi: 10.2351/1.1471563 – ident: 1627_CR30 – volume: 16 start-page: 41 year: 1976 ident: 1627_CR45 publication-title: Inorg Chim Acta doi: 10.1016/S0020-1693(00)91689-X – volume: 43 start-page: 2926 year: 2002 ident: 1627_CR17 publication-title: Mater Trans doi: 10.2320/matertrans.43.2926 – ident: 1627_CR24 – ident: 1627_CR8 doi: 10.3390/app10051867 – volume: 38 start-page: 157 year: 1993 ident: 1627_CR27 publication-title: Int Mater Rev doi: 10.1179/imr.1993.38.4.157 – ident: 1627_CR38 doi: 10.1002/9781118162897 – volume: 9 start-page: 676 year: 2012 ident: 1627_CR34 publication-title: Nat Methods doi: 10.1038/nmeth.2019 – ident: 1627_CR19 doi: 10.1007/978-3-8348-9907-1_6 – volume: 17 start-page: 431 year: 2003 ident: 1627_CR35 publication-title: Weld Int doi: 10.1533/wint.2003.3138 – ident: 1627_CR13 – volume: 93 start-page: 2100624 year: 2022 ident: 1627_CR29 publication-title: Steel Res Int doi: 10.1002/srin.202100624 – volume: 26 start-page: 971 year: 1995 ident: 1627_CR32 publication-title: Metall Mater Trans B doi: 10.1007/BF02654098 |
SSID | ssj0009000 |
Score | 2.3518674 |
Snippet | Partial shielding by means of local gas supply has proven to be very effective in reducing spatter. Besides the effect of gas-induced dynamic pressure, the... Abstract Partial shielding by means of local gas supply has proven to be very effective in reducing spatter. Besides the effect of gas-induced dynamic... |
SourceID | hal proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1353 |
SubjectTerms | Argon Chemistry and Materials Science Dynamic pressure Gas flow Geometry High alloy steels High speed Keyholes Laser beam welding Lasers Low flow Materials Science Melt pools Metallic Materials Oxygen Photoelectrons Physics Pressure effects Research Paper Seam welds Shielding Solid Mechanics Surface tension Synchrotron radiation Theoretical and Applied Mechanics Topography X ray imagery X ray photoelectron spectroscopy |
Title | Effect of partial and global shielding on surface-driven phenomena in keyhole mode laser beam welding |
URI | https://link.springer.com/article/10.1007/s40194-023-01627-y https://www.proquest.com/docview/3055501431 https://hal.science/hal-05118229 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB51txc48CggtpSVhbiVVLbj2Mlxu-qyotBTV2pPkT1xVARkq30UlV_POI9tqWilXnKIx3nYY_uz_M03AB-TrDQpIo1vixipjC5poXiknPGiRCylCoHC3070dKa-nCVnbVDYsmO7d0eS9Uy9CXajnUCQsZWB_6Olia57sE34g6s-bI8-nx8f3Yjt8i70JI6kTNM2WOb_T_lnQepdBDrkLax553i0XnUmz2HWfW9DNvlxsF65A_xzR8rxsT_0Ap61MJSNGr95CVu-2oGnt8QJX4FvhI3ZvGSXwb_I3FYFaxRE2PIiUN_IkM0rtlwvSos-KhZh7mSBNhaEHSz7XjGaJEIKXhZS7jCC6n7BnLe_2O-m-muYTY5Ox9OoTcoQIUGXVZTEWFiMtfE8dgK1Qu1TzWMURUBzNsmc0VoKz71KjECvrClUwkvnHUdXxG-gX80r_xZYrFRhTZymAo2ytHVCgo-ZsKnyXDpeDkB0PZNjq1geEmf8zDday3UT5tSEed2E-fUA9jd1Lhu9jgetP1CHbwyD1PZ09DUP93i99ZLZlRjAXucPeTvAl3ktlBa0Ean4U9e9N8X3v3L3cebv4IkkGNWQ0_agv1qs_XuCQSs3JK-fHB6eDFvvH0JvrMd_AQwj_0Q |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-DupBfOL6DOJNi0maJu1RFmXV1ZOCt5BMUxS0u-yuiv_eTNtdH6jgpYdm0sJMp_lCvvmGkIMkK3QKEPLbAkQyC5c0lyySTnteABRCYqHw1bXq3MqLu-SukcnBWphv5_fHw4D_UbxWIOtHCR29TZNZGXbKSN9rq_aHwC4bl5vEkRBp2hTI_PyML4vQ9D1SID_hy29HotVKc7ZEFhuISE_qmC6TKV-ukIVPwoGrxNeiw7RX0D7GPpjbMqe1ugcd3iMtLRjSXkmHz4PCgo_yAf7XKFK6UHTB0oeShgTG9rgU2-HQAKP9gDpvn-hrPX2N3J6d3rQ7UdMwIYIAK0ZREkNuIVbas9hxUBKUTxWLgeeItGySOa2U4J55mWgOXlqdy4QVzjsGLo_XyUzZK_0GobGUudVxmnLQ0oZtDQRol3GbSs-EY0WL8LEHDTRq4tjU4tFMdJArr5vgdVN53by1yOFkTr_W0vjTej8EZmKIMtidk67Be6zaFonshbfI9jhupkm-oalEzFC3MAwfjWP5Mfz7Kzf_Z75H5jo3V13TPb--3CLzIsCdmkS2TWZGg2e_E-DKyO1W3-k7YmPegQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELYKlRAcqpaHCNDWQr3BCq_Xa2-OKG2Ulod6IFJulj32KkiwifIA5d_j2UcIiCL1sgd7vCvN2OtvNDPfEPIjbecqAwjn2wBEoh0emRMsElb5OAfIucBC4atr2euLP4N0sFLFX2a7NyHJqqYBWZqK2dnY5WfLwrfgFSClLcdcIMlVtFgjH4OnUgZqO7LzTLvLmiKUJOI8y-qymbff8eJqWhtiYuQK6nwVKC3vn-5n8qkGjvS8svQX8sEX22RrhU5wh_iKipiOcjrGHRHETeFoxflBp0NMVguCdFTQ6XySG_CRm-DfjmKiF1IxGHpb0HCssWkuxSY5NIBrP6HWm3v6WC3fJf3ur5tOL6rbKEQQwMYsShNwBhKpPEtsDFKA9JlkCcQO8ZdJ21ZJyWPPvEhVDF4Y5UTKcustA-uSPbJejAq_T2gihDMqybIYlDDB2YEUtW4y4Rm3LG-RuNGghppjHFtd3OklO3KpdR20rkut60WLnCzXjCuGjXelj4NhloJIjt07v9Q4xkpnibcf4hY5auym6yM51SW1GbIZhunTxpbP0__-5MH_iX8nG39_dvXl7-uLQ7LJAwaqMsuOyPpsMvdfA4aZ2W_lNn0C0izmyA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+partial+and+global+shielding+on+surface-driven+phenomena+in+keyhole+mode+laser+beam+welding&rft.jtitle=Welding+in+the+world&rft.au=Schmidt%2C+Leander&rft.au=Schricker%2C+Klaus&rft.au=Diegel%2C+Christian&rft.au=Sachs%2C+Florian&rft.date=2024-06-01&rft.issn=0043-2288&rft.eissn=1878-6669&rft.volume=68&rft.issue=6&rft.spage=1353&rft.epage=1374&rft_id=info:doi/10.1007%2Fs40194-023-01627-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40194_023_01627_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-2288&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-2288&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-2288&client=summon |