Analyzing and repairing concept drift adaptation in data stream classification

Data collected over time often exhibit changes in distribution, or concept drift , caused by changes in factors relevant to the classification task, e.g. weather conditions. Incorporating all relevant factors into the model may be able to capture these changes, however, this is usually not practical...

Full description

Saved in:
Bibliographic Details
Published inMachine learning Vol. 111; no. 10; pp. 3489 - 3523
Main Authors Halstead, Ben, Koh, Yun Sing, Riddle, Patricia, Pears, Russel, Pechenizkiy, Mykola, Bifet, Albert, Olivares, Gustavo, Coulson, Guy
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2022
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text
ISSN0885-6125
1573-0565
DOI10.1007/s10994-021-05993-w

Cover

Abstract Data collected over time often exhibit changes in distribution, or concept drift , caused by changes in factors relevant to the classification task, e.g. weather conditions. Incorporating all relevant factors into the model may be able to capture these changes, however, this is usually not practical. Data stream based methods, which instead explicitly detect concept drift, have been shown to retain performance under unknown changing conditions. These methods adapt to concept drift by training a model to classify each distinct data distribution. However, we hypothesize that existing methods do not robustly handle real-world tasks, leading to adaptation errors where context is misidentified. Adaptation errors may cause a system to use a model which does not fit the current data, reducing performance. We propose a novel repair algorithm to identify and correct errors in concept drift adaptation. Evaluation on synthetic data shows that our proposed AiRStream system has higher performance than baseline methods, while is also better at capturing the dynamics of the stream. Evaluation on an air quality inference task shows AiRStream provides increased real-world performance compared to eight baseline methods. A case study shows that AiRStream is able to build a robust model of environmental conditions over this task, allowing the adaptions made to concept drift to be analysed and related to changes in weather. We discovered a strong predictive link between the adaptions made by AiRStream and changes in meteorological conditions.
AbstractList Data collected over time often exhibit changes in distribution, or concept drift, caused by changes in factors relevant to the classification task, e.g. weather conditions. Incorporating all relevant factors into the model may be able to capture these changes, however, this is usually not practical. Data stream based methods, which instead explicitly detect concept drift, have been shown to retain performance under unknown changing conditions. These methods adapt to concept drift by training a model to classify each distinct data distribution. However, we hypothesize that existing methods do not robustly handle real-world tasks, leading to adaptation errors where context is misidentified. Adaptation errors may cause a system to use a model which does not fit the current data, reducing performance. We propose a novel repair algorithm to identify and correct errors in concept drift adaptation. Evaluation on synthetic data shows that our proposed AiRStream system has higher performance than baseline methods, while is also better at capturing the dynamics of the stream. Evaluation on an air quality inference task shows AiRStream provides increased real-world performance compared to eight baseline methods. A case study shows that AiRStream is able to build a robust model of environmental conditions over this task, allowing the adaptions made to concept drift to be analysed and related to changes in weather. We discovered a strong predictive link between the adaptions made by AiRStream and changes in meteorological conditions.
Data collected over time often exhibit changes in distribution, or concept drift , caused by changes in factors relevant to the classification task, e.g. weather conditions. Incorporating all relevant factors into the model may be able to capture these changes, however, this is usually not practical. Data stream based methods, which instead explicitly detect concept drift, have been shown to retain performance under unknown changing conditions. These methods adapt to concept drift by training a model to classify each distinct data distribution. However, we hypothesize that existing methods do not robustly handle real-world tasks, leading to adaptation errors where context is misidentified. Adaptation errors may cause a system to use a model which does not fit the current data, reducing performance. We propose a novel repair algorithm to identify and correct errors in concept drift adaptation. Evaluation on synthetic data shows that our proposed AiRStream system has higher performance than baseline methods, while is also better at capturing the dynamics of the stream. Evaluation on an air quality inference task shows AiRStream provides increased real-world performance compared to eight baseline methods. A case study shows that AiRStream is able to build a robust model of environmental conditions over this task, allowing the adaptions made to concept drift to be analysed and related to changes in weather. We discovered a strong predictive link between the adaptions made by AiRStream and changes in meteorological conditions.
Author Olivares, Gustavo
Riddle, Patricia
Koh, Yun Sing
Bifet, Albert
Pears, Russel
Coulson, Guy
Halstead, Ben
Pechenizkiy, Mykola
Author_xml – sequence: 1
  givenname: Ben
  surname: Halstead
  fullname: Halstead, Ben
  email: bhal636@aucklanduni.ac.nz
  organization: School of Computer Science, The University of Auckland
– sequence: 2
  givenname: Yun Sing
  surname: Koh
  fullname: Koh, Yun Sing
  organization: School of Computer Science, The University of Auckland
– sequence: 3
  givenname: Patricia
  surname: Riddle
  fullname: Riddle, Patricia
  organization: School of Computer Science, The University of Auckland
– sequence: 4
  givenname: Russel
  surname: Pears
  fullname: Pears, Russel
  organization: Auckland University of Technology
– sequence: 5
  givenname: Mykola
  surname: Pechenizkiy
  fullname: Pechenizkiy, Mykola
  organization: Eindhoven University of Technology
– sequence: 6
  givenname: Albert
  surname: Bifet
  fullname: Bifet, Albert
  organization: University of Waikato, LTCI, Télécom Paris, IP-Paris
– sequence: 7
  givenname: Gustavo
  surname: Olivares
  fullname: Olivares, Gustavo
  organization: National Institute of Water and Atmospheric Research
– sequence: 8
  givenname: Guy
  surname: Coulson
  fullname: Coulson, Guy
  organization: National Institute of Water and Atmospheric Research
BackLink https://hal.science/hal-04468393$$DView record in HAL
BookMark eNp9kLFOwzAQhi1UJNrCCzBFYmIInOPajseqAopUwQKzdXEccJUmwXZB8PSkDQiJoZN1vv873X0TMmraxhJyTuGKAsjrQEGpWQoZTYErxdKPIzKmXLK-FHxExpDnPBU04ydkEsIaADKRizF5mDdYf3655iXBpky87dD5XWXaxtguJqV3VUywxC5idG2TuCYpMWISore4SUyNIbjKmX33lBxXWAd79vNOyfPtzdNima4e7-4X81VqmJIx5SALFFQBn3HKuWKSGp5TVjLkkEtTFChVwSpkghVYUmmNZYUoaEkr4LZgU3I5zH3FWnfebdB_6hadXs5XevcHs5nImWLvtM9eDNnOt29bG6Jet1vfnx10JrNMQM4E71P5kDK-DcHbShs3XBw9ulpT0DvTejCte9N6b1p_9Gj2D_3d6CDEBih0O9_W_211gPoG-jaTGQ
CitedBy_id crossref_primary_10_1080_12460125_2022_2071404
crossref_primary_10_1007_s10586_023_04149_w
crossref_primary_10_1016_j_knosys_2024_111636
crossref_primary_10_1016_j_jfca_2025_107356
crossref_primary_10_1016_j_knosys_2024_111535
crossref_primary_10_1109_TNNLS_2024_3369315
crossref_primary_10_1007_s42484_024_00196_7
crossref_primary_10_1145_3638777
Cites_doi 10.1016/j.inffus.2017.09.010
10.1109/TNNLS.2013.2239309
10.1098/rspa.2017.0457
10.1145/1968.1972
10.1016/j.neucom.2014.09.076
10.1109/TKDE.2014.2345382
10.1145/2523813
10.1186/s40537-016-0043-6
10.1016/j.patcog.2007.10.015
10.1007/BF00116900
10.1007/s10994-014-5441-4
10.1016/j.patrec.2013.02.005
10.1038/sj.jea.7500338
10.1007/s10994-017-5642-8
10.1007/s10115-013-0654-6
10.1016/j.neunet.2019.01.012
10.1109/ICDM.2018.00044
10.1145/2487575.2488188
10.1007/978-3-540-28645-5_29
10.1145/3219819.3219822
10.1007/978-3-319-23528-8_26
10.1145/2783258.2788573
10.1109/JIOT.2019.2900751
10.1007/978-3-319-24465-5_7
10.1109/INFOCOM.2016.7524479
10.1007/978-981-13-6661-1_8
10.1145/2623330.2623653
10.1137/1.9781611972771.42
10.1145/502512.502529
10.1145/3097983.3098090
10.1145/2783258.2783344
10.1145/956750.956813
10.1109/IJCNN.2018.8489190
10.1145/2505821.2505834
10.1609/aaai.v32i1.11871
10.1007/978-3-642-13529-3_19
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
1XC
DOI 10.1007/s10994-021-05993-w
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0565
EndPage 3523
ExternalDocumentID oai_HAL_hal_04468393v1
10_1007_s10994_021_05993_w
GrantInformation_xml – fundername: Marsden Fund
  grantid: 18-UOA-005
  funderid: http://dx.doi.org/10.13039/501100009193
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M0N
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WIP
WK8
XJT
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z91
Z92
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
1XC
PUEGO
ID FETCH-LOGICAL-c397t-507ba61905451559371c5813d3a5087cbba79b3fa363bad17ece3b6b1d1f05eb3
IEDL.DBID AGYKE
ISSN 0885-6125
IngestDate Thu Sep 04 07:25:50 EDT 2025
Fri Jul 25 05:32:37 EDT 2025
Tue Jul 01 00:46:07 EDT 2025
Thu Apr 24 23:00:05 EDT 2025
Fri Feb 21 02:45:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Concept drift
Recurring concepts
Data stream classification
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-507ba61905451559371c5813d3a5087cbba79b3fa363bad17ece3b6b1d1f05eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8339-7773
OpenAccessLink https://research.tue.nl/en/publications/eaa22b20-c9be-4b23-9d67-6a0e0acefe58
PQID 2722608365
PQPubID 54194
PageCount 35
ParticipantIDs hal_primary_oai_HAL_hal_04468393v1
proquest_journals_2722608365
crossref_citationtrail_10_1007_s10994_021_05993_w
crossref_primary_10_1007_s10994_021_05993_w
springer_journals_10_1007_s10994_021_05993_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References Weiss, Khoshgoftaar, Wang (CR36) 2016; 3
Alippi, Boracchi, Roveri (CR1) 2013; 24
Gonçalves, De Barros (CR19) 2013; 34
Ko, Sabourin, Britto (CR27) 2008; 41
(CR33) 2012
Parisi, Kemker, Part, Kanan, Wermter (CR30) 2019; 113
CR18
CR39
Widmer, Kubat (CR37) 1996; 23
CR15
Frias-Blanco, del Campo-Ávila, Ramos-Jimenez, Morales-Bueno, Ortiz-Diaz, Caballero-Mota (CR12) 2014; 27
CR14
CR35
Zhang, Guo, Dong, He, Xu, Chen (CR40) 2017; 473
CR11
CR32
Žliobaité, Bifet, Read, Pfahringer, Holmes (CR43) 2015; 98
Demšar (CR10) 2006; 7
Baena-Garcıa, del Campo-Ávila, Fidalgo, Bifet, Gavalda, Morales-Bueno (CR2) 2006; 6
Gomes, Bifet, Read, Barddal, Enembreck, Pfharinger (CR17) 2017; 106
Shaker, Hüllermeier (CR31) 2015; 150
CR4
CR3
Gama, Kosina (CR13) 2014; 40
CR6
CR5
CR7
CR29
CR28
CR9
CR26
CR25
CR24
CR23
CR22
CR21
Cruz, Sabourin, Cavalcanti (CR8) 2018; 41
CR20
Wong, Yuan, Perlin (CR38) 2004; 14
CR42
CR41
Valiant (CR34) 1984; 27
Gama, Žliobaité, Bifet, Pechenizkiy, Bouchachia (CR16) 2014; 46
C Alippi (5993_CR1) 2013; 24
5993_CR35
5993_CR14
5993_CR11
5993_CR3
5993_CR4
5993_CR39
5993_CR5
5993_CR18
5993_CR6
5993_CR15
LG Valiant (5993_CR34) 1984; 27
5993_CR7
J Gama (5993_CR13) 2014; 40
GI Parisi (5993_CR30) 2019; 113
5993_CR9
I Žliobaité (5993_CR43) 2015; 98
J Demšar (5993_CR10) 2006; 7
S Zhang (5993_CR40) 2017; 473
RM Cruz (5993_CR8) 2018; 41
PM Gonçalves Jr (5993_CR19) 2013; 34
5993_CR32
5993_CR24
DW Wong (5993_CR38) 2004; 14
5993_CR25
5993_CR22
5993_CR23
5993_CR28
5993_CR29
I Frias-Blanco (5993_CR12) 2014; 27
5993_CR26
M Baena-Garcıa (5993_CR2) 2006; 6
G Widmer (5993_CR37) 1996; 23
J Gama (5993_CR16) 2014; 46
United States Environmental Protection Agency (5993_CR33) 2012
AH Ko (5993_CR27) 2008; 41
K Weiss (5993_CR36) 2016; 3
HM Gomes (5993_CR17) 2017; 106
5993_CR20
A Shaker (5993_CR31) 2015; 150
5993_CR42
5993_CR21
5993_CR41
References_xml – volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: CR10
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: Journal of Machine Learning Research
– ident: CR22
– ident: CR18
– volume: 41
  start-page: 195
  year: 2018
  end-page: 216
  ident: CR8
  article-title: Dynamic classifier selection: Recent advances and perspectives
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2017.09.010
– volume: 24
  start-page: 620
  issue: 4
  year: 2013
  end-page: 634
  ident: CR1
  article-title: Just-in-time classifiers for recurrent concepts
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2013.2239309
– ident: CR4
– ident: CR14
– ident: CR39
– volume: 473
  start-page: 20170457
  issue: 2205
  year: 2017
  ident: CR40
  article-title: Cautionary tales on air-quality improvement in Beijing
  publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
  doi: 10.1098/rspa.2017.0457
– volume: 27
  start-page: 1134
  issue: 11
  year: 1984
  end-page: 1142
  ident: CR34
  article-title: A theory of the learnable
  publication-title: Communications of the ACM
  doi: 10.1145/1968.1972
– volume: 150
  start-page: 250
  year: 2015
  end-page: 264
  ident: CR31
  article-title: Recovery analysis for adaptive learning from non-stationary data streams: Experimental design and case study
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.09.076
– volume: 27
  start-page: 810
  issue: 3
  year: 2014
  end-page: 823
  ident: CR12
  article-title: Online and non-parametric drift detection methods based on Hoeffding’s bounds
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2014.2345382
– volume: 46
  start-page: 1
  issue: 4
  year: 2014
  end-page: 37
  ident: CR16
  article-title: A survey on concept drift adaptation
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/2523813
– ident: CR35
– ident: CR6
– ident: CR29
– volume: 3
  start-page: 1
  issue: 1
  year: 2016
  end-page: 40
  ident: CR36
  article-title: A survey of transfer learning
  publication-title: Journal of Big data
  doi: 10.1186/s40537-016-0043-6
– ident: CR25
– year: 2012
  ident: CR33
  publication-title: Revised air quality standards for particle pollution and updates to the air quality index (AQI)
– ident: CR42
– ident: CR23
– volume: 41
  start-page: 1718
  issue: 5
  year: 2008
  end-page: 1731
  ident: CR27
  article-title: From dynamic classifier selection to dynamic ensemble selection
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2007.10.015
– volume: 23
  start-page: 69
  issue: 1
  year: 1996
  end-page: 101
  ident: CR37
  article-title: Learning in the presence of concept drift and hidden contexts
  publication-title: Machine Learning
  doi: 10.1007/BF00116900
– volume: 98
  start-page: 455
  issue: 3
  year: 2015
  end-page: 482
  ident: CR43
  article-title: Evaluation methods and decision theory for classification of streaming data with temporal dependence
  publication-title: Machine Learning
  doi: 10.1007/s10994-014-5441-4
– ident: CR21
– volume: 34
  start-page: 1018
  issue: 9
  year: 2013
  end-page: 1025
  ident: CR19
  article-title: RCD: A recurring concept drift framework
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2013.02.005
– ident: CR3
– ident: CR15
– volume: 6
  start-page: 77
  year: 2006
  end-page: 86
  ident: CR2
  article-title: Early drift detection method
  publication-title: Fourth International Workshop on Knowledge Discovery from Data Streams
– ident: CR11
– volume: 14
  start-page: 404
  issue: 5
  year: 2004
  end-page: 415
  ident: CR38
  article-title: Comparison of spatial interpolation methods for the estimation of air quality data
  publication-title: Journal of Exposure Science & Environmental Epidemiology
  doi: 10.1038/sj.jea.7500338
– ident: CR9
– volume: 106
  start-page: 1469
  issue: 9–10
  year: 2017
  end-page: 1495
  ident: CR17
  article-title: Adaptive random forests for evolving data stream classification
  publication-title: Machine Learning
  doi: 10.1007/s10994-017-5642-8
– ident: CR32
– ident: CR5
– ident: CR7
– volume: 40
  start-page: 489
  issue: 3
  year: 2014
  end-page: 507
  ident: CR13
  article-title: Recurrent concepts in data streams classification
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-013-0654-6
– ident: CR28
– ident: CR41
– ident: CR26
– volume: 113
  start-page: 54
  year: 2019
  end-page: 71
  ident: CR30
  article-title: Continual lifelong learning with neural networks: A review
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2019.01.012
– ident: CR24
– ident: CR20
– volume: 14
  start-page: 404
  issue: 5
  year: 2004
  ident: 5993_CR38
  publication-title: Journal of Exposure Science & Environmental Epidemiology
  doi: 10.1038/sj.jea.7500338
– ident: 5993_CR29
  doi: 10.1109/ICDM.2018.00044
– volume: 46
  start-page: 1
  issue: 4
  year: 2014
  ident: 5993_CR16
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/2523813
– ident: 5993_CR41
  doi: 10.1145/2487575.2488188
– volume: 23
  start-page: 69
  issue: 1
  year: 1996
  ident: 5993_CR37
  publication-title: Machine Learning
  doi: 10.1007/BF00116900
– volume: 7
  start-page: 1
  year: 2006
  ident: 5993_CR10
  publication-title: Journal of Machine Learning Research
– ident: 5993_CR15
  doi: 10.1007/978-3-540-28645-5_29
– ident: 5993_CR39
  doi: 10.1145/3219819.3219822
– ident: 5993_CR23
  doi: 10.1007/978-3-319-23528-8_26
– volume: 24
  start-page: 620
  issue: 4
  year: 2013
  ident: 5993_CR1
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2013.2239309
– ident: 5993_CR35
– ident: 5993_CR9
– volume: 113
  start-page: 54
  year: 2019
  ident: 5993_CR30
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2019.01.012
– ident: 5993_CR42
  doi: 10.1145/2783258.2788573
– ident: 5993_CR22
  doi: 10.1109/JIOT.2019.2900751
– ident: 5993_CR5
  doi: 10.1007/978-3-319-24465-5_7
– volume: 34
  start-page: 1018
  issue: 9
  year: 2013
  ident: 5993_CR19
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2013.02.005
– volume: 40
  start-page: 489
  issue: 3
  year: 2014
  ident: 5993_CR13
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-013-0654-6
– volume: 98
  start-page: 455
  issue: 3
  year: 2015
  ident: 5993_CR43
  publication-title: Machine Learning
  doi: 10.1007/s10994-014-5441-4
– volume: 473
  start-page: 20170457
  issue: 2205
  year: 2017
  ident: 5993_CR40
  publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
  doi: 10.1098/rspa.2017.0457
– volume: 106
  start-page: 1469
  issue: 9–10
  year: 2017
  ident: 5993_CR17
  publication-title: Machine Learning
  doi: 10.1007/s10994-017-5642-8
– ident: 5993_CR21
  doi: 10.1109/INFOCOM.2016.7524479
– volume-title: Revised air quality standards for particle pollution and updates to the air quality index (AQI)
  year: 2012
  ident: 5993_CR33
– volume: 41
  start-page: 195
  year: 2018
  ident: 5993_CR8
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2017.09.010
– ident: 5993_CR26
– volume: 27
  start-page: 810
  issue: 3
  year: 2014
  ident: 5993_CR12
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2014.2345382
– ident: 5993_CR24
  doi: 10.1007/978-981-13-6661-1_8
– volume: 41
  start-page: 1718
  issue: 5
  year: 2008
  ident: 5993_CR27
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2007.10.015
– ident: 5993_CR32
  doi: 10.1145/2623330.2623653
– ident: 5993_CR3
  doi: 10.1137/1.9781611972771.42
– ident: 5993_CR25
  doi: 10.1145/502512.502529
– ident: 5993_CR28
  doi: 10.1145/3097983.3098090
– volume: 3
  start-page: 1
  issue: 1
  year: 2016
  ident: 5993_CR36
  publication-title: Journal of Big data
  doi: 10.1186/s40537-016-0043-6
– ident: 5993_CR20
  doi: 10.1145/2783258.2783344
– ident: 5993_CR14
  doi: 10.1145/956750.956813
– ident: 5993_CR7
  doi: 10.1109/IJCNN.2018.8489190
– ident: 5993_CR11
  doi: 10.1145/2505821.2505834
– volume: 150
  start-page: 250
  year: 2015
  ident: 5993_CR31
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.09.076
– ident: 5993_CR6
  doi: 10.1609/aaai.v32i1.11871
– volume: 27
  start-page: 1134
  issue: 11
  year: 1984
  ident: 5993_CR34
  publication-title: Communications of the ACM
  doi: 10.1145/1968.1972
– volume: 6
  start-page: 77
  year: 2006
  ident: 5993_CR2
  publication-title: Fourth International Workshop on Knowledge Discovery from Data Streams
– ident: 5993_CR18
  doi: 10.1007/978-3-642-13529-3_19
– ident: 5993_CR4
SSID ssj0002686
Score 2.4773579
Snippet Data collected over time often exhibit changes in distribution, or concept drift , caused by changes in factors relevant to the classification task, e.g....
Data collected over time often exhibit changes in distribution, or concept drift, caused by changes in factors relevant to the classification task, e.g....
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3489
SubjectTerms Adaptation
Air quality
Algorithms
Artificial Intelligence
Classification
Computer Science
Control
Data transmission
Drift
Errors
Machine Learning
Mechatronics
Natural Language Processing (NLP)
Robotics
Simulation and Modeling
Special Issue: Foundations of Data Science
Weather
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA5aL158i9UqQbzpYnezz5MUsRbRniz0FvJaLOi2tqsFf70z2Wyrgr1uklnIJJkvmZlvCLnIQgZ2xwgPoG3shQrLvATS90zWhv7M5NqgR_epH_cG4cMwGroHt5kLq6zPRHtQ67HCN_LrIAGggFTK0c3k3cOqUehddSU01smGD5YG13navV-cxEFsKz3CRoo8tOQuacalzllS3AAu0xHGsM1_Gab1FwyL_IE5_7hJrfXp7pAtBxtpp9LzLlkzxR7ZrksyULdD90nfkox8gQwqCk2nYGxGKJGqKj2R6ukoL6nQYlL54OmooBglSjFpRLxRhWgaw4ds6wEZdO-eb3ueK5ngKQAWpQfoTgq4EwEQw9otSHanotRnmglAYomSUiSZZLlgMZNC-4lRhslY-trP2xFcrA9JoxgX5ojQTOm2DmB8niODj0hTkcVwOwkFiIxD0yR-PV9cOT5xLGvxypdMyDjHHOaY2znm8ya5XIyZVGwaK3ufgxoWHZEIu9d55PgN3dAA7din3yStWkvcbb8ZXy6WJrmqNbds_v-Xx6ulnZDNANMfbDBfizTK6Yc5BVBSyjO78r4BYd7cAw
  priority: 102
  providerName: ProQuest
Title Analyzing and repairing concept drift adaptation in data stream classification
URI https://link.springer.com/article/10.1007/s10994-021-05993-w
https://www.proquest.com/docview/2722608365
https://hal.science/hal-04468393
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NQEB5svXhxF-tSHuJNU5q8JE2OrXTBpYhYqKfwtmBRo9So4K93JkutooKnQN6WvG2-YWa-ATgMXY5yxwgLoa1vuYrSvDjStkzYxPrcxNqQRfdi6A9G7unYGxdBYc-lt3tpksxu6rlgt4zG1kH11yOvs7cKLHp2EAZVWGz3b866sxvY8bMMj3iAPIskeBEs83MvXwRS5ZbcIeew5jfzaCZ1eiswKr83dza5a7yksqHev1E5_veHVmG5gKGsne-bNVgwyTqslCkeWHHiN2CYkZa8Y7dMJJpNUXhNaBCm8nBHpqeTOGVCi6fcps8mCSOvU0ZBKOKBKULn5I6UlW7CqNe9PhlYRQoGSyFQSS1Ei1KgjoXAjnLBEHme8gKbay4Q2bWUlKIVSh4L7nMptN0yynDpS1vbcdNDRX0LqsljYraBhUo3tYPt45gYgUQQiNBHbccV2KXvmhrY5TpEquAnpzQZ99EnszJNWIQTFmUTFr3V4GjW5iln5_iz9gEu76wiEWsP2ucRvSOzNkJF_mrXYK9c_ag4zs-R00KUSjzeXg2Oy8X8LP59yJ3_Vd-FJYfCKzJnwT2optMXs4-gJ5V1qAS9fh13eq_TGdaLHY_PTnd4eYWlI6f9AV3i-8g
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsNADLWgHODCjijrCMEJIppMkjYHhFhVoFQIgcRtmC2iEoRSChV8FN-InaUFJLhxTSaO5HHGz7H9DLAe-Rz9jpUOQtvQ8TWNefGU69ioguu5jY2ljO55M6xf-6c3wc0QfBS9MFRWWZyJ6UFtHjX9I9_2qggUiEo52G0_OTQ1irKrxQiNzCzO7FsPQ7bnnZND3N8Nzzs-ujqoO_lUAUej7-06CICUxLABsQqNNyE-OB3UXG64RLBS1UrJaqR4LHnIlTRu1WrLVahc48aVAGNPlDsMIz51tJZgZP-oeXHZP_u9MJ0tiZ9u4BB2yNt08ma9lIbXw_A9oKq53jdXOHxHhZhfUO6PxGzq744nYTwHqmwvs6wpGLLJNEwUQyBYfibMQDOlNXlHGUwmhnXQvbVIItNZQyQznVbcZdLIdpb1Z62EUV0qozYV-cA04XcqWErvzsL1v6hzDkrJY2LngUXaVIyHz8cxcQbJWk1GIcZDvkSRoW_L4Bb6EjpnMKdBGvdiwL1MOhaoY5HqWPTKsNl_pp3xd_y5eg23ob-QqLfrew1B1yjxjWCSv7plWCp2SeQf_LMYmGcZtoqdG9z-_ZULf0tbhdH61XlDNE6aZ4sw5lHzRVpKuASlbufFLiMk6qqV3A4Z3P636X8CI58aCQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-NADLZ4SKu98NwV5TlawQkimkwezQEhBHTLq-IAErfZeUVUglBKoYKfxq_DniQtiwQ3rsnEkTzO-HNsfwZYT0OOfsdKD6Ft7IWaxrwEyvdsWsf13GbGUkb3rB23LsPjq-hqDF6rXhgqq6zORHdQmztN_8i3gwSBAlEpR9tZWRZxftDc7d57NEGKMq3VOI3CRE7s8wDDt4edowPc640gaB5e7Le8csKAp9EP9z0EQ0piCIG4hUadEDecjho-N1wicEm0UjJJFc8kj7mSxk-stlzFyjd-Vo8wDkW54zCZ8CSlwK_R_Dv0AkHspkziRxx5hCLKhp2ybc8R8gYYyEdUPzf4zymOX1NJ5ju8-yFF6zxfcwamSsjK9gobm4Uxm8_BdDUOgpWnwzy0HcHJC8pgMjesh46uQxKZLlojmel1sj6TRnaL_D_r5IwqVBk1rMhbpgnJU-mSu_sLLr9Fmb9hIr_L7QKwVJu6CfD5LCP2INloyDTGyCiUKDIObQ38Sl9Cl1zmNFLjRoxYmEnHAnUsnI7FoAabw2e6BZPHl6v_4DYMFxIJd2vvVNA1SoEjrORPfg2Wq10S5af_IEaGWoOtaudGtz9_5eLX0tbgBxq8OD1qnyzBz4C6MFxN4TJM9HuPdgWxUV-tOiNk8O-7rf4Ncfgc2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analyzing+and+repairing+concept+drift+adaptation+in+data+stream+classification&rft.jtitle=Machine+learning&rft.au=Halstead%2C+Ben&rft.au=Koh%2C+Yun+Sing&rft.au=Riddle%2C+Patricia&rft.au=Pears%2C+Russel&rft.date=2022-10-01&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=111&rft.issue=10&rft.spage=3489&rft.epage=3523&rft_id=info:doi/10.1007%2Fs10994-021-05993-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10994_021_05993_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon