Analyzing and repairing concept drift adaptation in data stream classification
Data collected over time often exhibit changes in distribution, or concept drift , caused by changes in factors relevant to the classification task, e.g. weather conditions. Incorporating all relevant factors into the model may be able to capture these changes, however, this is usually not practical...
Saved in:
Published in | Machine learning Vol. 111; no. 10; pp. 3489 - 3523 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.10.2022
Springer Nature B.V Springer Verlag |
Subjects | |
Online Access | Get full text |
ISSN | 0885-6125 1573-0565 |
DOI | 10.1007/s10994-021-05993-w |
Cover
Abstract | Data collected over time often exhibit changes in distribution, or
concept drift
, caused by changes in factors relevant to the classification task, e.g. weather conditions. Incorporating all relevant factors into the model may be able to capture these changes, however, this is usually not practical. Data stream based methods, which instead explicitly detect concept drift, have been shown to retain performance under unknown changing conditions. These methods adapt to concept drift by training a model to classify each distinct data distribution. However, we hypothesize that existing methods do not robustly handle real-world tasks, leading to adaptation errors where context is misidentified. Adaptation errors may cause a system to use a model which does not fit the current data, reducing performance. We propose a novel repair algorithm to identify and correct errors in concept drift adaptation. Evaluation on synthetic data shows that our proposed AiRStream system has higher performance than baseline methods, while is also better at capturing the dynamics of the stream. Evaluation on an air quality inference task shows AiRStream provides increased real-world performance compared to eight baseline methods. A case study shows that AiRStream is able to build a robust model of environmental conditions over this task, allowing the adaptions made to concept drift to be analysed and related to changes in weather. We discovered a strong predictive link between the adaptions made by AiRStream and changes in meteorological conditions. |
---|---|
AbstractList | Data collected over time often exhibit changes in distribution, or concept drift, caused by changes in factors relevant to the classification task, e.g. weather conditions. Incorporating all relevant factors into the model may be able to capture these changes, however, this is usually not practical. Data stream based methods, which instead explicitly detect concept drift, have been shown to retain performance under unknown changing conditions. These methods adapt to concept drift by training a model to classify each distinct data distribution. However, we hypothesize that existing methods do not robustly handle real-world tasks, leading to adaptation errors where context is misidentified. Adaptation errors may cause a system to use a model which does not fit the current data, reducing performance. We propose a novel repair algorithm to identify and correct errors in concept drift adaptation. Evaluation on synthetic data shows that our proposed AiRStream system has higher performance than baseline methods, while is also better at capturing the dynamics of the stream. Evaluation on an air quality inference task shows AiRStream provides increased real-world performance compared to eight baseline methods. A case study shows that AiRStream is able to build a robust model of environmental conditions over this task, allowing the adaptions made to concept drift to be analysed and related to changes in weather. We discovered a strong predictive link between the adaptions made by AiRStream and changes in meteorological conditions. Data collected over time often exhibit changes in distribution, or concept drift , caused by changes in factors relevant to the classification task, e.g. weather conditions. Incorporating all relevant factors into the model may be able to capture these changes, however, this is usually not practical. Data stream based methods, which instead explicitly detect concept drift, have been shown to retain performance under unknown changing conditions. These methods adapt to concept drift by training a model to classify each distinct data distribution. However, we hypothesize that existing methods do not robustly handle real-world tasks, leading to adaptation errors where context is misidentified. Adaptation errors may cause a system to use a model which does not fit the current data, reducing performance. We propose a novel repair algorithm to identify and correct errors in concept drift adaptation. Evaluation on synthetic data shows that our proposed AiRStream system has higher performance than baseline methods, while is also better at capturing the dynamics of the stream. Evaluation on an air quality inference task shows AiRStream provides increased real-world performance compared to eight baseline methods. A case study shows that AiRStream is able to build a robust model of environmental conditions over this task, allowing the adaptions made to concept drift to be analysed and related to changes in weather. We discovered a strong predictive link between the adaptions made by AiRStream and changes in meteorological conditions. |
Author | Olivares, Gustavo Riddle, Patricia Koh, Yun Sing Bifet, Albert Pears, Russel Coulson, Guy Halstead, Ben Pechenizkiy, Mykola |
Author_xml | – sequence: 1 givenname: Ben surname: Halstead fullname: Halstead, Ben email: bhal636@aucklanduni.ac.nz organization: School of Computer Science, The University of Auckland – sequence: 2 givenname: Yun Sing surname: Koh fullname: Koh, Yun Sing organization: School of Computer Science, The University of Auckland – sequence: 3 givenname: Patricia surname: Riddle fullname: Riddle, Patricia organization: School of Computer Science, The University of Auckland – sequence: 4 givenname: Russel surname: Pears fullname: Pears, Russel organization: Auckland University of Technology – sequence: 5 givenname: Mykola surname: Pechenizkiy fullname: Pechenizkiy, Mykola organization: Eindhoven University of Technology – sequence: 6 givenname: Albert surname: Bifet fullname: Bifet, Albert organization: University of Waikato, LTCI, Télécom Paris, IP-Paris – sequence: 7 givenname: Gustavo surname: Olivares fullname: Olivares, Gustavo organization: National Institute of Water and Atmospheric Research – sequence: 8 givenname: Guy surname: Coulson fullname: Coulson, Guy organization: National Institute of Water and Atmospheric Research |
BackLink | https://hal.science/hal-04468393$$DView record in HAL |
BookMark | eNp9kLFOwzAQhi1UJNrCCzBFYmIInOPajseqAopUwQKzdXEccJUmwXZB8PSkDQiJoZN1vv873X0TMmraxhJyTuGKAsjrQEGpWQoZTYErxdKPIzKmXLK-FHxExpDnPBU04ydkEsIaADKRizF5mDdYf3655iXBpky87dD5XWXaxtguJqV3VUywxC5idG2TuCYpMWISore4SUyNIbjKmX33lBxXWAd79vNOyfPtzdNima4e7-4X81VqmJIx5SALFFQBn3HKuWKSGp5TVjLkkEtTFChVwSpkghVYUmmNZYUoaEkr4LZgU3I5zH3FWnfebdB_6hadXs5XevcHs5nImWLvtM9eDNnOt29bG6Jet1vfnx10JrNMQM4E71P5kDK-DcHbShs3XBw9ulpT0DvTejCte9N6b1p_9Gj2D_3d6CDEBih0O9_W_211gPoG-jaTGQ |
CitedBy_id | crossref_primary_10_1080_12460125_2022_2071404 crossref_primary_10_1007_s10586_023_04149_w crossref_primary_10_1016_j_knosys_2024_111636 crossref_primary_10_1016_j_jfca_2025_107356 crossref_primary_10_1016_j_knosys_2024_111535 crossref_primary_10_1109_TNNLS_2024_3369315 crossref_primary_10_1007_s42484_024_00196_7 crossref_primary_10_1145_3638777 |
Cites_doi | 10.1016/j.inffus.2017.09.010 10.1109/TNNLS.2013.2239309 10.1098/rspa.2017.0457 10.1145/1968.1972 10.1016/j.neucom.2014.09.076 10.1109/TKDE.2014.2345382 10.1145/2523813 10.1186/s40537-016-0043-6 10.1016/j.patcog.2007.10.015 10.1007/BF00116900 10.1007/s10994-014-5441-4 10.1016/j.patrec.2013.02.005 10.1038/sj.jea.7500338 10.1007/s10994-017-5642-8 10.1007/s10115-013-0654-6 10.1016/j.neunet.2019.01.012 10.1109/ICDM.2018.00044 10.1145/2487575.2488188 10.1007/978-3-540-28645-5_29 10.1145/3219819.3219822 10.1007/978-3-319-23528-8_26 10.1145/2783258.2788573 10.1109/JIOT.2019.2900751 10.1007/978-3-319-24465-5_7 10.1109/INFOCOM.2016.7524479 10.1007/978-981-13-6661-1_8 10.1145/2623330.2623653 10.1137/1.9781611972771.42 10.1145/502512.502529 10.1145/3097983.3098090 10.1145/2783258.2783344 10.1145/956750.956813 10.1109/IJCNN.2018.8489190 10.1145/2505821.2505834 10.1609/aaai.v32i1.11871 10.1007/978-3-642-13529-3_19 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 1XC |
DOI | 10.1007/s10994-021-05993-w |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-0565 |
EndPage | 3523 |
ExternalDocumentID | oai_HAL_hal_04468393v1 10_1007_s10994_021_05993_w |
GrantInformation_xml | – fundername: Marsden Fund grantid: 18-UOA-005 funderid: http://dx.doi.org/10.13039/501100009193 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 88I 8AO 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEWM AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW LAK LLZTM M0N M2P M4Y MA- MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF- PQQKQ PROAC PT4 Q2X QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WIP WK8 XJT YLTOR Z45 Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z8Z Z91 Z92 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U 1XC PUEGO |
ID | FETCH-LOGICAL-c397t-507ba61905451559371c5813d3a5087cbba79b3fa363bad17ece3b6b1d1f05eb3 |
IEDL.DBID | AGYKE |
ISSN | 0885-6125 |
IngestDate | Thu Sep 04 07:25:50 EDT 2025 Fri Jul 25 05:32:37 EDT 2025 Tue Jul 01 00:46:07 EDT 2025 Thu Apr 24 23:00:05 EDT 2025 Fri Feb 21 02:45:40 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Concept drift Recurring concepts Data stream classification |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c397t-507ba61905451559371c5813d3a5087cbba79b3fa363bad17ece3b6b1d1f05eb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8339-7773 |
OpenAccessLink | https://research.tue.nl/en/publications/eaa22b20-c9be-4b23-9d67-6a0e0acefe58 |
PQID | 2722608365 |
PQPubID | 54194 |
PageCount | 35 |
ParticipantIDs | hal_primary_oai_HAL_hal_04468393v1 proquest_journals_2722608365 crossref_citationtrail_10_1007_s10994_021_05993_w crossref_primary_10_1007_s10994_021_05993_w springer_journals_10_1007_s10994_021_05993_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationTitle | Machine learning |
PublicationTitleAbbrev | Mach Learn |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V Springer Verlag |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer Verlag |
References | Weiss, Khoshgoftaar, Wang (CR36) 2016; 3 Alippi, Boracchi, Roveri (CR1) 2013; 24 Gonçalves, De Barros (CR19) 2013; 34 Ko, Sabourin, Britto (CR27) 2008; 41 (CR33) 2012 Parisi, Kemker, Part, Kanan, Wermter (CR30) 2019; 113 CR18 CR39 Widmer, Kubat (CR37) 1996; 23 CR15 Frias-Blanco, del Campo-Ávila, Ramos-Jimenez, Morales-Bueno, Ortiz-Diaz, Caballero-Mota (CR12) 2014; 27 CR14 CR35 Zhang, Guo, Dong, He, Xu, Chen (CR40) 2017; 473 CR11 CR32 Žliobaité, Bifet, Read, Pfahringer, Holmes (CR43) 2015; 98 Demšar (CR10) 2006; 7 Baena-Garcıa, del Campo-Ávila, Fidalgo, Bifet, Gavalda, Morales-Bueno (CR2) 2006; 6 Gomes, Bifet, Read, Barddal, Enembreck, Pfharinger (CR17) 2017; 106 Shaker, Hüllermeier (CR31) 2015; 150 CR4 CR3 Gama, Kosina (CR13) 2014; 40 CR6 CR5 CR7 CR29 CR28 CR9 CR26 CR25 CR24 CR23 CR22 CR21 Cruz, Sabourin, Cavalcanti (CR8) 2018; 41 CR20 Wong, Yuan, Perlin (CR38) 2004; 14 CR42 CR41 Valiant (CR34) 1984; 27 Gama, Žliobaité, Bifet, Pechenizkiy, Bouchachia (CR16) 2014; 46 C Alippi (5993_CR1) 2013; 24 5993_CR35 5993_CR14 5993_CR11 5993_CR3 5993_CR4 5993_CR39 5993_CR5 5993_CR18 5993_CR6 5993_CR15 LG Valiant (5993_CR34) 1984; 27 5993_CR7 J Gama (5993_CR13) 2014; 40 GI Parisi (5993_CR30) 2019; 113 5993_CR9 I Žliobaité (5993_CR43) 2015; 98 J Demšar (5993_CR10) 2006; 7 S Zhang (5993_CR40) 2017; 473 RM Cruz (5993_CR8) 2018; 41 PM Gonçalves Jr (5993_CR19) 2013; 34 5993_CR32 5993_CR24 DW Wong (5993_CR38) 2004; 14 5993_CR25 5993_CR22 5993_CR23 5993_CR28 5993_CR29 I Frias-Blanco (5993_CR12) 2014; 27 5993_CR26 M Baena-Garcıa (5993_CR2) 2006; 6 G Widmer (5993_CR37) 1996; 23 J Gama (5993_CR16) 2014; 46 United States Environmental Protection Agency (5993_CR33) 2012 AH Ko (5993_CR27) 2008; 41 K Weiss (5993_CR36) 2016; 3 HM Gomes (5993_CR17) 2017; 106 5993_CR20 A Shaker (5993_CR31) 2015; 150 5993_CR42 5993_CR21 5993_CR41 |
References_xml | – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: CR10 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: Journal of Machine Learning Research – ident: CR22 – ident: CR18 – volume: 41 start-page: 195 year: 2018 end-page: 216 ident: CR8 article-title: Dynamic classifier selection: Recent advances and perspectives publication-title: Information Fusion doi: 10.1016/j.inffus.2017.09.010 – volume: 24 start-page: 620 issue: 4 year: 2013 end-page: 634 ident: CR1 article-title: Just-in-time classifiers for recurrent concepts publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2013.2239309 – ident: CR4 – ident: CR14 – ident: CR39 – volume: 473 start-page: 20170457 issue: 2205 year: 2017 ident: CR40 article-title: Cautionary tales on air-quality improvement in Beijing publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences doi: 10.1098/rspa.2017.0457 – volume: 27 start-page: 1134 issue: 11 year: 1984 end-page: 1142 ident: CR34 article-title: A theory of the learnable publication-title: Communications of the ACM doi: 10.1145/1968.1972 – volume: 150 start-page: 250 year: 2015 end-page: 264 ident: CR31 article-title: Recovery analysis for adaptive learning from non-stationary data streams: Experimental design and case study publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.09.076 – volume: 27 start-page: 810 issue: 3 year: 2014 end-page: 823 ident: CR12 article-title: Online and non-parametric drift detection methods based on Hoeffding’s bounds publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2014.2345382 – volume: 46 start-page: 1 issue: 4 year: 2014 end-page: 37 ident: CR16 article-title: A survey on concept drift adaptation publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/2523813 – ident: CR35 – ident: CR6 – ident: CR29 – volume: 3 start-page: 1 issue: 1 year: 2016 end-page: 40 ident: CR36 article-title: A survey of transfer learning publication-title: Journal of Big data doi: 10.1186/s40537-016-0043-6 – ident: CR25 – year: 2012 ident: CR33 publication-title: Revised air quality standards for particle pollution and updates to the air quality index (AQI) – ident: CR42 – ident: CR23 – volume: 41 start-page: 1718 issue: 5 year: 2008 end-page: 1731 ident: CR27 article-title: From dynamic classifier selection to dynamic ensemble selection publication-title: Pattern Recognition doi: 10.1016/j.patcog.2007.10.015 – volume: 23 start-page: 69 issue: 1 year: 1996 end-page: 101 ident: CR37 article-title: Learning in the presence of concept drift and hidden contexts publication-title: Machine Learning doi: 10.1007/BF00116900 – volume: 98 start-page: 455 issue: 3 year: 2015 end-page: 482 ident: CR43 article-title: Evaluation methods and decision theory for classification of streaming data with temporal dependence publication-title: Machine Learning doi: 10.1007/s10994-014-5441-4 – ident: CR21 – volume: 34 start-page: 1018 issue: 9 year: 2013 end-page: 1025 ident: CR19 article-title: RCD: A recurring concept drift framework publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2013.02.005 – ident: CR3 – ident: CR15 – volume: 6 start-page: 77 year: 2006 end-page: 86 ident: CR2 article-title: Early drift detection method publication-title: Fourth International Workshop on Knowledge Discovery from Data Streams – ident: CR11 – volume: 14 start-page: 404 issue: 5 year: 2004 end-page: 415 ident: CR38 article-title: Comparison of spatial interpolation methods for the estimation of air quality data publication-title: Journal of Exposure Science & Environmental Epidemiology doi: 10.1038/sj.jea.7500338 – ident: CR9 – volume: 106 start-page: 1469 issue: 9–10 year: 2017 end-page: 1495 ident: CR17 article-title: Adaptive random forests for evolving data stream classification publication-title: Machine Learning doi: 10.1007/s10994-017-5642-8 – ident: CR32 – ident: CR5 – ident: CR7 – volume: 40 start-page: 489 issue: 3 year: 2014 end-page: 507 ident: CR13 article-title: Recurrent concepts in data streams classification publication-title: Knowledge and Information Systems doi: 10.1007/s10115-013-0654-6 – ident: CR28 – ident: CR41 – ident: CR26 – volume: 113 start-page: 54 year: 2019 end-page: 71 ident: CR30 article-title: Continual lifelong learning with neural networks: A review publication-title: Neural Networks doi: 10.1016/j.neunet.2019.01.012 – ident: CR24 – ident: CR20 – volume: 14 start-page: 404 issue: 5 year: 2004 ident: 5993_CR38 publication-title: Journal of Exposure Science & Environmental Epidemiology doi: 10.1038/sj.jea.7500338 – ident: 5993_CR29 doi: 10.1109/ICDM.2018.00044 – volume: 46 start-page: 1 issue: 4 year: 2014 ident: 5993_CR16 publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/2523813 – ident: 5993_CR41 doi: 10.1145/2487575.2488188 – volume: 23 start-page: 69 issue: 1 year: 1996 ident: 5993_CR37 publication-title: Machine Learning doi: 10.1007/BF00116900 – volume: 7 start-page: 1 year: 2006 ident: 5993_CR10 publication-title: Journal of Machine Learning Research – ident: 5993_CR15 doi: 10.1007/978-3-540-28645-5_29 – ident: 5993_CR39 doi: 10.1145/3219819.3219822 – ident: 5993_CR23 doi: 10.1007/978-3-319-23528-8_26 – volume: 24 start-page: 620 issue: 4 year: 2013 ident: 5993_CR1 publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2013.2239309 – ident: 5993_CR35 – ident: 5993_CR9 – volume: 113 start-page: 54 year: 2019 ident: 5993_CR30 publication-title: Neural Networks doi: 10.1016/j.neunet.2019.01.012 – ident: 5993_CR42 doi: 10.1145/2783258.2788573 – ident: 5993_CR22 doi: 10.1109/JIOT.2019.2900751 – ident: 5993_CR5 doi: 10.1007/978-3-319-24465-5_7 – volume: 34 start-page: 1018 issue: 9 year: 2013 ident: 5993_CR19 publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2013.02.005 – volume: 40 start-page: 489 issue: 3 year: 2014 ident: 5993_CR13 publication-title: Knowledge and Information Systems doi: 10.1007/s10115-013-0654-6 – volume: 98 start-page: 455 issue: 3 year: 2015 ident: 5993_CR43 publication-title: Machine Learning doi: 10.1007/s10994-014-5441-4 – volume: 473 start-page: 20170457 issue: 2205 year: 2017 ident: 5993_CR40 publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences doi: 10.1098/rspa.2017.0457 – volume: 106 start-page: 1469 issue: 9–10 year: 2017 ident: 5993_CR17 publication-title: Machine Learning doi: 10.1007/s10994-017-5642-8 – ident: 5993_CR21 doi: 10.1109/INFOCOM.2016.7524479 – volume-title: Revised air quality standards for particle pollution and updates to the air quality index (AQI) year: 2012 ident: 5993_CR33 – volume: 41 start-page: 195 year: 2018 ident: 5993_CR8 publication-title: Information Fusion doi: 10.1016/j.inffus.2017.09.010 – ident: 5993_CR26 – volume: 27 start-page: 810 issue: 3 year: 2014 ident: 5993_CR12 publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2014.2345382 – ident: 5993_CR24 doi: 10.1007/978-981-13-6661-1_8 – volume: 41 start-page: 1718 issue: 5 year: 2008 ident: 5993_CR27 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2007.10.015 – ident: 5993_CR32 doi: 10.1145/2623330.2623653 – ident: 5993_CR3 doi: 10.1137/1.9781611972771.42 – ident: 5993_CR25 doi: 10.1145/502512.502529 – ident: 5993_CR28 doi: 10.1145/3097983.3098090 – volume: 3 start-page: 1 issue: 1 year: 2016 ident: 5993_CR36 publication-title: Journal of Big data doi: 10.1186/s40537-016-0043-6 – ident: 5993_CR20 doi: 10.1145/2783258.2783344 – ident: 5993_CR14 doi: 10.1145/956750.956813 – ident: 5993_CR7 doi: 10.1109/IJCNN.2018.8489190 – ident: 5993_CR11 doi: 10.1145/2505821.2505834 – volume: 150 start-page: 250 year: 2015 ident: 5993_CR31 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.09.076 – ident: 5993_CR6 doi: 10.1609/aaai.v32i1.11871 – volume: 27 start-page: 1134 issue: 11 year: 1984 ident: 5993_CR34 publication-title: Communications of the ACM doi: 10.1145/1968.1972 – volume: 6 start-page: 77 year: 2006 ident: 5993_CR2 publication-title: Fourth International Workshop on Knowledge Discovery from Data Streams – ident: 5993_CR18 doi: 10.1007/978-3-642-13529-3_19 – ident: 5993_CR4 |
SSID | ssj0002686 |
Score | 2.4773579 |
Snippet | Data collected over time often exhibit changes in distribution, or
concept drift
, caused by changes in factors relevant to the classification task, e.g.... Data collected over time often exhibit changes in distribution, or concept drift, caused by changes in factors relevant to the classification task, e.g.... |
SourceID | hal proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3489 |
SubjectTerms | Adaptation Air quality Algorithms Artificial Intelligence Classification Computer Science Control Data transmission Drift Errors Machine Learning Mechatronics Natural Language Processing (NLP) Robotics Simulation and Modeling Special Issue: Foundations of Data Science Weather |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA5aL158i9UqQbzpYnezz5MUsRbRniz0FvJaLOi2tqsFf70z2Wyrgr1uklnIJJkvmZlvCLnIQgZ2xwgPoG3shQrLvATS90zWhv7M5NqgR_epH_cG4cMwGroHt5kLq6zPRHtQ67HCN_LrIAGggFTK0c3k3cOqUehddSU01smGD5YG13navV-cxEFsKz3CRoo8tOQuacalzllS3AAu0xHGsM1_Gab1FwyL_IE5_7hJrfXp7pAtBxtpp9LzLlkzxR7ZrksyULdD90nfkox8gQwqCk2nYGxGKJGqKj2R6ukoL6nQYlL54OmooBglSjFpRLxRhWgaw4ds6wEZdO-eb3ueK5ngKQAWpQfoTgq4EwEQw9otSHanotRnmglAYomSUiSZZLlgMZNC-4lRhslY-trP2xFcrA9JoxgX5ojQTOm2DmB8niODj0hTkcVwOwkFiIxD0yR-PV9cOT5xLGvxypdMyDjHHOaY2znm8ya5XIyZVGwaK3ufgxoWHZEIu9d55PgN3dAA7din3yStWkvcbb8ZXy6WJrmqNbds_v-Xx6ulnZDNANMfbDBfizTK6Yc5BVBSyjO78r4BYd7cAw priority: 102 providerName: ProQuest |
Title | Analyzing and repairing concept drift adaptation in data stream classification |
URI | https://link.springer.com/article/10.1007/s10994-021-05993-w https://www.proquest.com/docview/2722608365 https://hal.science/hal-04468393 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NQEB5svXhxF-tSHuJNU5q8JE2OrXTBpYhYqKfwtmBRo9So4K93JkutooKnQN6WvG2-YWa-ATgMXY5yxwgLoa1vuYrSvDjStkzYxPrcxNqQRfdi6A9G7unYGxdBYc-lt3tpksxu6rlgt4zG1kH11yOvs7cKLHp2EAZVWGz3b866sxvY8bMMj3iAPIskeBEs83MvXwRS5ZbcIeew5jfzaCZ1eiswKr83dza5a7yksqHev1E5_veHVmG5gKGsne-bNVgwyTqslCkeWHHiN2CYkZa8Y7dMJJpNUXhNaBCm8nBHpqeTOGVCi6fcps8mCSOvU0ZBKOKBKULn5I6UlW7CqNe9PhlYRQoGSyFQSS1Ei1KgjoXAjnLBEHme8gKbay4Q2bWUlKIVSh4L7nMptN0yynDpS1vbcdNDRX0LqsljYraBhUo3tYPt45gYgUQQiNBHbccV2KXvmhrY5TpEquAnpzQZ99EnszJNWIQTFmUTFr3V4GjW5iln5_iz9gEu76wiEWsP2ucRvSOzNkJF_mrXYK9c_ag4zs-R00KUSjzeXg2Oy8X8LP59yJ3_Vd-FJYfCKzJnwT2optMXs4-gJ5V1qAS9fh13eq_TGdaLHY_PTnd4eYWlI6f9AV3i-8g |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsNADLWgHODCjijrCMEJIppMkjYHhFhVoFQIgcRtmC2iEoRSChV8FN-InaUFJLhxTSaO5HHGz7H9DLAe-Rz9jpUOQtvQ8TWNefGU69ioguu5jY2ljO55M6xf-6c3wc0QfBS9MFRWWZyJ6UFtHjX9I9_2qggUiEo52G0_OTQ1irKrxQiNzCzO7FsPQ7bnnZND3N8Nzzs-ujqoO_lUAUej7-06CICUxLABsQqNNyE-OB3UXG64RLBS1UrJaqR4LHnIlTRu1WrLVahc48aVAGNPlDsMIz51tJZgZP-oeXHZP_u9MJ0tiZ9u4BB2yNt08ma9lIbXw_A9oKq53jdXOHxHhZhfUO6PxGzq744nYTwHqmwvs6wpGLLJNEwUQyBYfibMQDOlNXlHGUwmhnXQvbVIItNZQyQznVbcZdLIdpb1Z62EUV0qozYV-cA04XcqWErvzsL1v6hzDkrJY2LngUXaVIyHz8cxcQbJWk1GIcZDvkSRoW_L4Bb6EjpnMKdBGvdiwL1MOhaoY5HqWPTKsNl_pp3xd_y5eg23ob-QqLfrew1B1yjxjWCSv7plWCp2SeQf_LMYmGcZtoqdG9z-_ZULf0tbhdH61XlDNE6aZ4sw5lHzRVpKuASlbufFLiMk6qqV3A4Z3P636X8CI58aCQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-NADLZ4SKu98NwV5TlawQkimkwezQEhBHTLq-IAErfZeUVUglBKoYKfxq_DniQtiwQ3rsnEkTzO-HNsfwZYT0OOfsdKD6Ft7IWaxrwEyvdsWsf13GbGUkb3rB23LsPjq-hqDF6rXhgqq6zORHdQmztN_8i3gwSBAlEpR9tZWRZxftDc7d57NEGKMq3VOI3CRE7s8wDDt4edowPc640gaB5e7Le8csKAp9EP9z0EQ0piCIG4hUadEDecjho-N1wicEm0UjJJFc8kj7mSxk-stlzFyjd-Vo8wDkW54zCZ8CSlwK_R_Dv0AkHspkziRxx5hCLKhp2ybc8R8gYYyEdUPzf4zymOX1NJ5ju8-yFF6zxfcwamSsjK9gobm4Uxm8_BdDUOgpWnwzy0HcHJC8pgMjesh46uQxKZLlojmel1sj6TRnaL_D_r5IwqVBk1rMhbpgnJU-mSu_sLLr9Fmb9hIr_L7QKwVJu6CfD5LCP2INloyDTGyCiUKDIObQ38Sl9Cl1zmNFLjRoxYmEnHAnUsnI7FoAabw2e6BZPHl6v_4DYMFxIJd2vvVNA1SoEjrORPfg2Wq10S5af_IEaGWoOtaudGtz9_5eLX0tbgBxq8OD1qnyzBz4C6MFxN4TJM9HuPdgWxUV-tOiNk8O-7rf4Ncfgc2Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analyzing+and+repairing+concept+drift+adaptation+in+data+stream+classification&rft.jtitle=Machine+learning&rft.au=Halstead%2C+Ben&rft.au=Koh%2C+Yun+Sing&rft.au=Riddle%2C+Patricia&rft.au=Pears%2C+Russel&rft.date=2022-10-01&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=111&rft.issue=10&rft.spage=3489&rft.epage=3523&rft_id=info:doi/10.1007%2Fs10994-021-05993-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10994_021_05993_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon |