Mixing convex-optimization bounds for maximum-entropy sampling

The maximum-entropy sampling problem is a fundamental and challenging combinatorial-optimization problem, with application in spatial statistics. It asks to find a maximum-determinant order- s principal submatrix of an order- n covariance matrix. Exact solution methods for this NP-hard problem are b...

Full description

Saved in:
Bibliographic Details
Published inMathematical programming Vol. 188; no. 2; pp. 539 - 568
Main Authors Chen, Zhongzhu, Fampa, Marcia, Lambert, Amélie, Lee, Jon
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2021
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The maximum-entropy sampling problem is a fundamental and challenging combinatorial-optimization problem, with application in spatial statistics. It asks to find a maximum-determinant order- s principal submatrix of an order- n covariance matrix. Exact solution methods for this NP-hard problem are based on a branch-and-bound framework. Many of the known upper bounds for the optimal value are based on convex optimization. We present a methodology for “mixing” these bounds to achieve better bounds.
AbstractList The maximum-entropy sampling problem is a fundamental and challenging combinatorial-optimization problem, with application in spatial statistics. It asks to find a maximum-determinant order- s principal submatrix of an order- n covariance matrix. Exact solution methods for this NP-hard problem are based on a branch-and-bound framework. Many of the known upper bounds for the optimal value are based on convex optimization. We present a methodology for “mixing” these bounds to achieve better bounds.
The maximum-entropy sampling problem is a fundamental and challenging combinatorial-optimization problem, with application in spatial statistics. It asks to find a maximum-determinant order-$s$ principal submatrix of an order-$n$ covariance matrix. Exact solution methods for this NP-hard problem are based on a branch-and-bound framework. Many of the known upper bounds for the optimal value are based on convex optimization. We present a methodology for "mixing" these bounds to achieve better bounds.
Author Lee, Jon
Fampa, Marcia
Chen, Zhongzhu
Lambert, Amélie
Author_xml – sequence: 1
  givenname: Zhongzhu
  surname: Chen
  fullname: Chen, Zhongzhu
  organization: University of Michigan
– sequence: 2
  givenname: Marcia
  surname: Fampa
  fullname: Fampa, Marcia
  organization: Universidade Federal do Rio de Janeiro
– sequence: 3
  givenname: Amélie
  surname: Lambert
  fullname: Lambert, Amélie
  organization: Conservatoire National des Arts et Métiers
– sequence: 4
  givenname: Jon
  orcidid: 0000-0002-8190-1091
  surname: Lee
  fullname: Lee, Jon
  email: jonxlee@umich.edu
  organization: University of Michigan
BackLink https://hal.science/hal-03016397$$DView record in HAL
BookMark eNp9kE1LAzEQhoNUsK3-AU8LnjxEJ8lmN70IpagVKl70HGJ2U1O6yZpsv_z1brui4KGngeF93hmeAeo570qELgncEID8NhIgkGOggIFwIfDmBPVJyjKcZmnWQ30AyjHPCJyhQYwLACBMiD66e7Zb6-aJ9m5dbrGvG1vZL9VY75J3v3JFTIwPSaW2tlpVuHRN8PUuiaqqly13jk6NWsby4mcO0dvD_etkimcvj0-T8QxrNsobzEwxMpSykeEGqEg15IaXoBUIpbSheSGoAhAjnqam4IpmXGvFDTUaiGGCDdF11_uhlrIOtlJhJ72ycjqeyf0OGJCsvbUmbfaqy9bBf67K2MiFXwXXvicp55QKkbO0TdEupYOPMZTmt5aA3DuVnVPZOpUHp3LTQuIfpG1zkNUEZZfHUdahsb3j5mX4--oI9Q06VI3D
CitedBy_id crossref_primary_10_1287_opre_2022_2324
crossref_primary_10_1007_s43069_020_0011_z
crossref_primary_10_1007_s10107_024_02101_3
crossref_primary_10_1287_ijoc_2022_1264
crossref_primary_10_1016_j_dam_2023_04_020
crossref_primary_10_1287_ijoc_2022_0235
crossref_primary_10_1016_j_dam_2024_01_002
Cites_doi 10.1007/978-1-4615-4381-7_17
10.1007/s10898-018-0662-x
10.1007/3-540-61310-2_18
10.1287/opre.46.5.655
10.1017/CBO9780511804441
10.1080/02664768700000020
10.1007/978-1-4614-0769-0_25
10.1016/S0166-218X(00)00217-1
10.23943/princeton/9780691128894.001.0001
10.1007/s10107-005-0661-9
10.1007/978-3-7908-2693-7_1
10.1007/s10107-012-0514-2
10.1287/opre.2019.1962
10.1007/s10107-006-0024-1
10.1287/opre.43.4.684
10.1007/978-3-642-57576-1_16
10.1007/s10107-002-0318-x
10.1017/CBO9780511810817
10.1080/10556789908805762
10.1137/1.9781611971316
10.1287/ijoc.2016.0731
10.1007/s101070050055
10.1007/BF02055196
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021
Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021
– notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
DOI 10.1007/s10107-020-01588-w
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 568
ExternalDocumentID oai_HAL_hal_03016397v1
10_1007_s10107_020_01588_w
GrantInformation_xml – fundername: Office of Naval Research (US)
  grantid: N00014-17-1-2296
– fundername: Air Force Office of Scientific Research
  grantid: FA9550-19-1-0175
  funderid: http://dx.doi.org/10.13039/100000181
– fundername: CNPq
  grantid: 303898/2016-0; 434683/2018-3
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
8FD
ABRTQ
JQ2
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c397t-3fd9f2239f5f0284c07f5e0ca08aacf27d82a0089544fd5a265cca5f2fc01f383
IEDL.DBID U2A
ISSN 0025-5610
IngestDate Thu Jul 10 08:57:08 EDT 2025
Fri Jul 25 19:39:08 EDT 2025
Thu Apr 24 23:12:17 EDT 2025
Tue Jul 01 02:15:13 EDT 2025
Fri Feb 21 02:48:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Mixing
90C51
Convex optimization
90C25
Maximum-entropy sampling
90C27
62H11
62K99
maximum-entropy sampling
convex optimization Mathematics Subject Classification 90C25
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-3fd9f2239f5f0284c07f5e0ca08aacf27d82a0089544fd5a265cca5f2fc01f383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8190-1091
0000-0001-8305-2145
OpenAccessLink https://hal.science/hal-03016397
PQID 2552288734
PQPubID 25307
PageCount 30
ParticipantIDs hal_primary_oai_HAL_hal_03016397v1
proquest_journals_2552288734
crossref_primary_10_1007_s10107_020_01588_w
crossref_citationtrail_10_1007_s10107_020_01588_w
springer_journals_10_1007_s10107_020_01588_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer Verlag
References BakonyiMWoerdemanHJMatrix Completions, Moments, and Sums of Hermitian Squares2011PrincetonPrinceton University Press10.23943/princeton/9780691128894.001.0001
Löfberg, J.: Yalmip: A toolbox for modeling and optimization in Matlab. In: Proceedings of the CACSD Conference (2004)
Fedorov, V., Lee, J.: Design of experiments in statistics. In: Handbook of Semidefinite Programming, volume 27 of Internat. Ser. Oper. Res. Management Sci., pp. 511–532. Kluwer Acad. Publ., Boston, MA (2000)
ZhangFThe Schur Complement and its Applications. Numerical Methods and Algorithms2005New YorkSpringer
AnstreicherKMFampaMLeeJWilliamsJUsing continuous nonlinear relaxations to solve constrained maximum-entropy sampling problemsMath. Program. Ser. A199985221240170015710.1007/s101070050055
Hoffman, A., Lee, J., Williams, J.: New upper bounds for maximum-entropy sampling. In: mODa 6—Advances in Model-oriented Design and Analysis (Puchberg/Schneeberg, 2001), Contrib. Statist., pp. 143–153. Physica, Heidelberg (2001)
LeeJWilliamsJA linear integer programming bound for maximum-entropy samplingMath. Program. Ser. B200394247256196911110.1007/s10107-002-0318-x
LeeJElShaarawiAHPiegorschWWMaximum entropy samplingEncyclopedia of Environmetrics20122New YorkWiley15701574
Fiacco, A.V.: Introduction to sensitivity and stability analysis in nonlinear programming. Mathematics in Science and Engineering, vol. 165. Academic Press Inc, Orlando, FL (1983)
FiaccoAVIshizukaYSensitivity and stability analysis for nonlinear programmingAnn. Oper. Res.1990271–4215235108899310.1007/BF02055196
TohK-CToddMJSDPT3: a Matlab software package for semidefinite programming, version 1.3Optim. Methods Softw.1999111–4545581177842910.1080/10556789908805762
KoC-WLeeJQueyranneMAn exact algorithm for maximum entropy samplingOper. Res.1995434684691135641610.1287/opre.43.4.684
Fiacco, A.V., McCormick, G.P.: Nonlinear Programming: Sequential Unconstrained Minimization Techniques. Wiley, New York (1968). Reprint: Volume 4 of SIAM Classics in Applied Mathematics, SIAM Publications, Philadelphia, PA 19104–2688, USA, 1990
Helmberg, C.: The ConicBundle Library for Convex Optimization. https://www-user.tu-chemnitz.de/~helmberg/ConicBundle/ (2005–2019)
Anstreicher, K.M., Lee, J.: A masked spectral bound for maximum-entropy sampling. In: mODa 7—Advances in Model-oriented Design and Analysis, Contrib. Statist., pp. 1–12. Physica, Heidelberg (2004)
TohK-CToddMJTütüncüRHAnjosMFLasserreJBOn the implementation and usage of sdpt3–a matlab software package for semidefinite-quadratic-linear programming, version 4.0Handbook on Semidefinite. Conic and Polynomial Optimization2012BostonSpringer71575410.1007/978-1-4614-0769-0_25
Anstreicher, K.M.: Efficient solution of maximum-entropy sampling problems. Oper. Res. (2020). DOI:https://doi.org/10.1287/opre.2019.1962(to appear)
FischerIGruberGRendlFSotirovRComputational experience with a bundle approach for semidefinite cutting plane relaxations of max-cut and equipartitionMath. Program.2006105451469219083010.1007/s10107-005-0661-9
ShewryMCWynnHPMaximum entropy samplingJ. Appl. Stat.19874616517010.1080/02664768700000020
HornRAMatrix Analysis19851CambridgeCambridge University Press10.1017/CBO9780511810817
BurerSLeeJSolving maximum-entropy sampling problems using factored masksMath. Program. Ser. B2007109263281229514410.1007/s10107-006-0024-1
LeeJLindJGeneralized maximum-entropy samplingINFOR Inf. Syst. Oper. Res.2020581681814113660
Li, Y., Xie, W.: Best principal submatrix selection for the maximum entropy sampling problem: scalable algorithms and performance guarantees. Technical report, arXiv:2001.08537 (2020)
AnstreicherKMMaximum-entropy sampling and the Boolean quadric polytopeJ. Global Optim.2018724603618387763210.1007/s10898-018-0662-x
LeeJConstrained maximum-entropy samplingOper. Res.19984665566410.1287/opre.46.5.655
BoydSVandenbergheLConvex Optimization2004CambridgeCambridge University Press10.1017/CBO9780511804441
AnstreicherKMFampaMLeeJWilliamsJMaximum-entropy remote samplingDiscrete Appl. Math.20011083211226180791710.1016/S0166-218X(00)00217-1
BillionnetAElloumiSLambertAWiegeleAUsing a Conic Bundle method to accelerate both phases of a Quadratic Convex ReformulationINFORMS J. Comput.201729318331365381510.1287/ijoc.2016.0731
Anstreicher, K.M., Fampa, M., Lee, J., Williams, J.: Continuous relaxations for constrained maximum-entropy sampling. Integer programming and combinatorial optimization (Vancouver. BC, 1996), volume 1084 of Lecture Notes in Computer Science, pp. 234–248. Springer, Berlin (1996)
Powell, M.J.D.: Some global convergence properties of a variable metric algorithm for minimization without exact line searches. In: Nonlinear Programming (Proc. Sympos., New York, 1975), pp. 53–72. SIAM–AMS Proc., Vol. IX (1976)
LewisASOvertonMLNonsmooth optimization via quasi-Newton methodsMath. Program.2013141135163309728210.1007/s10107-012-0514-2
A Billionnet (1588_CR7) 2017; 29
J Lee (1588_CR22) 2020; 58
(1588_CR31) 2005
MC Shewry (1588_CR28) 1987; 46
I Fischer (1588_CR11) 2006; 105
1588_CR26
1588_CR27
1588_CR24
1588_CR1
K-C Toh (1588_CR29) 1999; 11
1588_CR6
KM Anstreicher (1588_CR3) 2001; 108
1588_CR4
AV Fiacco (1588_CR12) 1990; 27
S Burer (1588_CR8) 2007; 109
S Boyd (1588_CR9) 2004
M Bakonyi (1588_CR10) 2011
1588_CR18
J Lee (1588_CR21) 2012
1588_CR15
KM Anstreicher (1588_CR2) 1999; 85
1588_CR16
1588_CR13
J Lee (1588_CR25) 2003; 94
1588_CR14
KM Anstreicher (1588_CR5) 2018; 72
AS Lewis (1588_CR23) 2013; 141
RA Horn (1588_CR17) 1985
J Lee (1588_CR20) 1998; 46
C-W Ko (1588_CR19) 1995; 43
K-C Toh (1588_CR30) 2012
References_xml – reference: LeeJLindJGeneralized maximum-entropy samplingINFOR Inf. Syst. Oper. Res.2020581681814113660
– reference: AnstreicherKMFampaMLeeJWilliamsJUsing continuous nonlinear relaxations to solve constrained maximum-entropy sampling problemsMath. Program. Ser. A199985221240170015710.1007/s101070050055
– reference: AnstreicherKMFampaMLeeJWilliamsJMaximum-entropy remote samplingDiscrete Appl. Math.20011083211226180791710.1016/S0166-218X(00)00217-1
– reference: HornRAMatrix Analysis19851CambridgeCambridge University Press10.1017/CBO9780511810817
– reference: Fiacco, A.V.: Introduction to sensitivity and stability analysis in nonlinear programming. Mathematics in Science and Engineering, vol. 165. Academic Press Inc, Orlando, FL (1983)
– reference: Fiacco, A.V., McCormick, G.P.: Nonlinear Programming: Sequential Unconstrained Minimization Techniques. Wiley, New York (1968). Reprint: Volume 4 of SIAM Classics in Applied Mathematics, SIAM Publications, Philadelphia, PA 19104–2688, USA, 1990
– reference: Li, Y., Xie, W.: Best principal submatrix selection for the maximum entropy sampling problem: scalable algorithms and performance guarantees. Technical report, arXiv:2001.08537 (2020)
– reference: Anstreicher, K.M., Fampa, M., Lee, J., Williams, J.: Continuous relaxations for constrained maximum-entropy sampling. Integer programming and combinatorial optimization (Vancouver. BC, 1996), volume 1084 of Lecture Notes in Computer Science, pp. 234–248. Springer, Berlin (1996)
– reference: Anstreicher, K.M.: Efficient solution of maximum-entropy sampling problems. Oper. Res. (2020). DOI:https://doi.org/10.1287/opre.2019.1962(to appear)
– reference: BoydSVandenbergheLConvex Optimization2004CambridgeCambridge University Press10.1017/CBO9780511804441
– reference: LeeJElShaarawiAHPiegorschWWMaximum entropy samplingEncyclopedia of Environmetrics20122New YorkWiley15701574
– reference: ZhangFThe Schur Complement and its Applications. Numerical Methods and Algorithms2005New YorkSpringer
– reference: BakonyiMWoerdemanHJMatrix Completions, Moments, and Sums of Hermitian Squares2011PrincetonPrinceton University Press10.23943/princeton/9780691128894.001.0001
– reference: TohK-CToddMJTütüncüRHAnjosMFLasserreJBOn the implementation and usage of sdpt3–a matlab software package for semidefinite-quadratic-linear programming, version 4.0Handbook on Semidefinite. Conic and Polynomial Optimization2012BostonSpringer71575410.1007/978-1-4614-0769-0_25
– reference: Hoffman, A., Lee, J., Williams, J.: New upper bounds for maximum-entropy sampling. In: mODa 6—Advances in Model-oriented Design and Analysis (Puchberg/Schneeberg, 2001), Contrib. Statist., pp. 143–153. Physica, Heidelberg (2001)
– reference: Helmberg, C.: The ConicBundle Library for Convex Optimization. https://www-user.tu-chemnitz.de/~helmberg/ConicBundle/ (2005–2019)
– reference: BillionnetAElloumiSLambertAWiegeleAUsing a Conic Bundle method to accelerate both phases of a Quadratic Convex ReformulationINFORMS J. Comput.201729318331365381510.1287/ijoc.2016.0731
– reference: LewisASOvertonMLNonsmooth optimization via quasi-Newton methodsMath. Program.2013141135163309728210.1007/s10107-012-0514-2
– reference: ShewryMCWynnHPMaximum entropy samplingJ. Appl. Stat.19874616517010.1080/02664768700000020
– reference: BurerSLeeJSolving maximum-entropy sampling problems using factored masksMath. Program. Ser. B2007109263281229514410.1007/s10107-006-0024-1
– reference: Powell, M.J.D.: Some global convergence properties of a variable metric algorithm for minimization without exact line searches. In: Nonlinear Programming (Proc. Sympos., New York, 1975), pp. 53–72. SIAM–AMS Proc., Vol. IX (1976)
– reference: TohK-CToddMJSDPT3: a Matlab software package for semidefinite programming, version 1.3Optim. Methods Softw.1999111–4545581177842910.1080/10556789908805762
– reference: KoC-WLeeJQueyranneMAn exact algorithm for maximum entropy samplingOper. Res.1995434684691135641610.1287/opre.43.4.684
– reference: FischerIGruberGRendlFSotirovRComputational experience with a bundle approach for semidefinite cutting plane relaxations of max-cut and equipartitionMath. Program.2006105451469219083010.1007/s10107-005-0661-9
– reference: AnstreicherKMMaximum-entropy sampling and the Boolean quadric polytopeJ. Global Optim.2018724603618387763210.1007/s10898-018-0662-x
– reference: Anstreicher, K.M., Lee, J.: A masked spectral bound for maximum-entropy sampling. In: mODa 7—Advances in Model-oriented Design and Analysis, Contrib. Statist., pp. 1–12. Physica, Heidelberg (2004)
– reference: FiaccoAVIshizukaYSensitivity and stability analysis for nonlinear programmingAnn. Oper. Res.1990271–4215235108899310.1007/BF02055196
– reference: Fedorov, V., Lee, J.: Design of experiments in statistics. In: Handbook of Semidefinite Programming, volume 27 of Internat. Ser. Oper. Res. Management Sci., pp. 511–532. Kluwer Acad. Publ., Boston, MA (2000)
– reference: Löfberg, J.: Yalmip: A toolbox for modeling and optimization in Matlab. In: Proceedings of the CACSD Conference (2004)
– reference: LeeJConstrained maximum-entropy samplingOper. Res.19984665566410.1287/opre.46.5.655
– reference: LeeJWilliamsJA linear integer programming bound for maximum-entropy samplingMath. Program. Ser. B200394247256196911110.1007/s10107-002-0318-x
– ident: 1588_CR14
  doi: 10.1007/978-1-4615-4381-7_17
– volume: 72
  start-page: 603
  issue: 4
  year: 2018
  ident: 1588_CR5
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-018-0662-x
– ident: 1588_CR1
  doi: 10.1007/3-540-61310-2_18
– volume: 46
  start-page: 655
  year: 1998
  ident: 1588_CR20
  publication-title: Oper. Res.
  doi: 10.1287/opre.46.5.655
– volume-title: Convex Optimization
  year: 2004
  ident: 1588_CR9
  doi: 10.1017/CBO9780511804441
– start-page: 1570
  volume-title: Encyclopedia of Environmetrics
  year: 2012
  ident: 1588_CR21
– volume: 46
  start-page: 165
  year: 1987
  ident: 1588_CR28
  publication-title: J. Appl. Stat.
  doi: 10.1080/02664768700000020
– start-page: 715
  volume-title: Handbook on Semidefinite. Conic and Polynomial Optimization
  year: 2012
  ident: 1588_CR30
  doi: 10.1007/978-1-4614-0769-0_25
– volume: 108
  start-page: 211
  issue: 3
  year: 2001
  ident: 1588_CR3
  publication-title: Discrete Appl. Math.
  doi: 10.1016/S0166-218X(00)00217-1
– volume-title: Matrix Completions, Moments, and Sums of Hermitian Squares
  year: 2011
  ident: 1588_CR10
  doi: 10.23943/princeton/9780691128894.001.0001
– volume: 105
  start-page: 451
  year: 2006
  ident: 1588_CR11
  publication-title: Math. Program.
  doi: 10.1007/s10107-005-0661-9
– ident: 1588_CR4
  doi: 10.1007/978-3-7908-2693-7_1
– volume: 141
  start-page: 135
  year: 2013
  ident: 1588_CR23
  publication-title: Math. Program.
  doi: 10.1007/s10107-012-0514-2
– ident: 1588_CR6
  doi: 10.1287/opre.2019.1962
– ident: 1588_CR13
– volume: 109
  start-page: 263
  year: 2007
  ident: 1588_CR8
  publication-title: Math. Program. Ser. B
  doi: 10.1007/s10107-006-0024-1
– volume: 58
  start-page: 168
  year: 2020
  ident: 1588_CR22
  publication-title: INFOR Inf. Syst. Oper. Res.
– volume-title: The Schur Complement and its Applications. Numerical Methods and Algorithms
  year: 2005
  ident: 1588_CR31
– volume: 43
  start-page: 684
  issue: 4
  year: 1995
  ident: 1588_CR19
  publication-title: Oper. Res.
  doi: 10.1287/opre.43.4.684
– ident: 1588_CR27
– ident: 1588_CR18
  doi: 10.1007/978-3-642-57576-1_16
– volume: 94
  start-page: 247
  year: 2003
  ident: 1588_CR25
  publication-title: Math. Program. Ser. B
  doi: 10.1007/s10107-002-0318-x
– volume-title: Matrix Analysis
  year: 1985
  ident: 1588_CR17
  doi: 10.1017/CBO9780511810817
– volume: 11
  start-page: 545
  issue: 1–4
  year: 1999
  ident: 1588_CR29
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556789908805762
– ident: 1588_CR15
  doi: 10.1137/1.9781611971316
– volume: 29
  start-page: 318
  year: 2017
  ident: 1588_CR7
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.2016.0731
– ident: 1588_CR24
– ident: 1588_CR16
– ident: 1588_CR26
– volume: 85
  start-page: 221
  year: 1999
  ident: 1588_CR2
  publication-title: Math. Program. Ser. A
  doi: 10.1007/s101070050055
– volume: 27
  start-page: 215
  issue: 1–4
  year: 1990
  ident: 1588_CR12
  publication-title: Ann. Oper. Res.
  doi: 10.1007/BF02055196
SSID ssj0001388
Score 2.427295
Snippet The maximum-entropy sampling problem is a fundamental and challenging combinatorial-optimization problem, with application in spatial statistics. It asks to...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 539
SubjectTerms Calculus of Variations and Optimal Control; Optimization
Combinatorial analysis
Combinatorics
Convexity
Covariance matrix
Entropy
Exact solutions
Full Length Paper
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Optimization
Optimization and Control
Sampling
Theoretical
Upper bounds
Title Mixing convex-optimization bounds for maximum-entropy sampling
URI https://link.springer.com/article/10.1007/s10107-020-01588-w
https://www.proquest.com/docview/2552288734
https://hal.science/hal-03016397
Volume 188
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oXPRgfEYUSWO86SbttlvKxaQoSFQ8SYKnZrvdVRIpxILgv3emtAWNmnhq2m4fmWln5tv9ZoaQM-HaylERo1boKgAooaSeJxSNdCilq5jL00pM3Qe303Nu-7yfJYUlOds9X5JMLfVKspuF02oMiVQc9DtbJ2UO2B2JXD3mF_bXsj0vb9SK0UGWKvPzPb64o_UXJEOuRJrfFkdTn9PeJltZsGj4C-3ukDUV75LNlRKCsNct6q4me-SyO5jDYSPlks_pCOzBMEu0NEJsoJQYEKQaQzEfDKdDijO7o_GHkQjklcfP-6TXbj1edWjWIYFKiCMm1NZRQ4ODb2iuQRCONOuaK1MK0xNCalaPPCbAyze44-iICxA9aIxrpqVpaQCnB6QUj2J1SAwsJCciJpSqA8ZiLuAgEVq2NAFyaNd1KsTKBRXIrHw4drF4DZaFj1G4AQg3SIUbzCrkvLhmvCie8efoU5B_MRDrXnf8-wCPIW7DFch3q0KquXqC7G9LAoBFjIG1tOEtL3KVLU___sij_w0_JhsMKS0p_69KSpO3qTqBmGQS1kjZb14327i9ebpr1dJP8hPEeNoZ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4AHtSD8RlR1MboSZu02wfloAlRCcjjBAm3dbvdVRJ5xILA__GHOltaQKMmHjh2u223M7sz8-3OA-CCuZawRUB003cFAhSf657HhB5In3NXENeJMjHVG265ZT-2nXYKPpJYmMjbPTmSjCT1UrCbqbbViHKkcpC_49iVsiqmYwRq4U3lHrl6SUjpoXlX1uNaAjpHjTvULRkUJKrCgnQkqlSbG3npCIMzw2OMS5IPPMJQHxYc25aBw3CQ-G-OJJIbpkQYh-9NwxoaH55aOy1SnMt70_K8pDCsskbi0Jyfx_xF_aVflPPlkmX77TA20nGlbdiKjVOtOJtNO5ASvV3YXEpZiFf1eZ7XcA9u650JNmuR7_pE76P86caBnZqvCjaFGhrFWpdNOt1RV1c7yf3BVAuZ8mPvPe9DayVUPIBMr98Th6CpxHUsIEyIPGI64iLuYr5pcQMhjnRdOwtmQijK43TlqmrGK10kWlbEpUhcGhGXjrNwNX9mMEvW8Wfvc6T_vKPKs10u1qhqUzhRnXi-m1nIJeyh8eoOKcIwQlA6WzjK64Rli9u_f_Lof93PYL3crNdordKoHsMGUe40ke9hDjLDt5E4QXto6J9G01GDp1XP_09OZRSt
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLYGSAgOiKcYzwrBCSra9LHuANLEmMZjiAOTuIU0TWAS6yY62PhX_ETsrh0DARIHjk3TNrWT2F9ifwHYFb6jXBUx0w59hQAllGYQCGVGOpTSV8z3UiamxpVfb7rnt95tAd7yXJg02j3fkhzmNBBLU9w77Eb6cCzxzaYlNkZBVR7qup-FVV6o1z6CtuTorIoa3mOsdnpzUjezcwVMida3Zzo6Kms0i2XtaTSvrrRK2lOWFFYghNSsFAVMoG0se66rI09gg_E_Pc20tGyNkA7fOwFTLmUf4whqsspo7redIMgPiSXPJEvT-b7Nn0zhxAMFYo55uV82ZlN7V5uHucxRNSrDnrUABRUvwuwYfSFeNUacr8kSHDdaAyw20jj2gdnBuaidJXkaIR3elBjoIBttMWi1n9smrSp3uq9GIiimPb5fhua_SHEFJuNOrFbBIBI7ETGhVAnxHfMRg4nQdqSFcEf7vlsEOxcUlxl1OZ2g8cg_SJdJuByFy1Ph8n4R9kfPdIfEHb_W3kH5jyoS53a9csmpjDAj7X6-2EXYyNXDs5GecIRkjOFM7WArD3KVfdz--ZNrf6u-DdPX1Rq_PLu6WIcZRpE1aRjiBkz2np7VJrpGvXAr7Y0G3P13938HjegY4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixing+convex-optimization+bounds+for+maximum-entropy+sampling&rft.jtitle=Mathematical+programming&rft.au=Chen%2C+Zhongzhu&rft.au=Fampa%2C+Marcia&rft.au=Lambert%2C+Am%C3%A9lie&rft.au=Lee%2C+Jon&rft.date=2021-08-01&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=188&rft.issue=2&rft.spage=539&rft.epage=568&rft_id=info:doi/10.1007%2Fs10107-020-01588-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10107_020_01588_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon