ABCNet: Attentive bilateral contextual network for efficient semantic segmentation of Fine-Resolution remotely sensed imagery

Semantic segmentation of remotely sensed imagery plays a critical role in many real-world applications, such as environmental change monitoring, precision agriculture, environmental protection, and economic assessment. Following rapid developments in sensor technologies, vast numbers of fine-resolut...

Full description

Saved in:
Bibliographic Details
Published inISPRS journal of photogrammetry and remote sensing Vol. 181; pp. 84 - 98
Main Authors Li, Rui, Zheng, Shunyi, Zhang, Ce, Duan, Chenxi, Wang, Libo, Atkinson, Peter M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2021
Subjects
Online AccessGet full text
ISSN0924-2716
1872-8235
DOI10.1016/j.isprsjprs.2021.09.005

Cover

Loading…
Abstract Semantic segmentation of remotely sensed imagery plays a critical role in many real-world applications, such as environmental change monitoring, precision agriculture, environmental protection, and economic assessment. Following rapid developments in sensor technologies, vast numbers of fine-resolution satellite and airborne remote sensing images are now available, for which semantic segmentation is potentially a valuable method. However, because of the rich complexity and heterogeneity of information provided with an ever-increasing spatial resolution, state-of-the-art deep learning algorithms commonly adopt complex network structures for segmentation, which often result in significant computational demand. Particularly, the frequently-used fully convolutional network (FCN) relies heavily on fine-grained spatial detail (fine spatial resolution) and contextual information (large receptive fields), both imposing high computational costs. This impedes the practical utility of FCN for real-world applications, especially those requiring real-time data processing. In this paper, we propose a novel Attentive Bilateral Contextual Network (ABCNet), a lightweight convolutional neural network (CNN) with a spatial path and a contextual path. Extensive experiments, including a comprehensive ablation study, demonstrate that ABCNet has strong discrimination capability with competitive accuracy compared with state-of-the-art benchmark methods while achieving significantly increased computational efficiency. Specifically, the proposed ABCNet achieves a 91.3% overall accuracy (OA) on the Potsdam test dataset and outperforms all lightweight benchmark methods significantly. The code is freely available at https://github.com/lironui/ABCNet.
AbstractList Semantic segmentation of remotely sensed imagery plays a critical role in many real-world applications, such as environmental change monitoring, precision agriculture, environmental protection, and economic assessment. Following rapid developments in sensor technologies, vast numbers of fine-resolution satellite and airborne remote sensing images are now available, for which semantic segmentation is potentially a valuable method. However, because of the rich complexity and heterogeneity of information provided with an ever-increasing spatial resolution, state-of-the-art deep learning algorithms commonly adopt complex network structures for segmentation, which often result in significant computational demand. Particularly, the frequently-used fully convolutional network (FCN) relies heavily on fine-grained spatial detail (fine spatial resolution) and contextual information (large receptive fields), both imposing high computational costs. This impedes the practical utility of FCN for real-world applications, especially those requiring real-time data processing. In this paper, we propose a novel Attentive Bilateral Contextual Network (ABCNet), a lightweight convolutional neural network (CNN) with a spatial path and a contextual path. Extensive experiments, including a comprehensive ablation study, demonstrate that ABCNet has strong discrimination capability with competitive accuracy compared with state-of-the-art benchmark methods while achieving significantly increased computational efficiency. Specifically, the proposed ABCNet achieves a 91.3% overall accuracy (OA) on the Potsdam test dataset and outperforms all lightweight benchmark methods significantly. The code is freely available at https://github.com/lironui/ABCNet.
Author Zhang, Ce
Zheng, Shunyi
Wang, Libo
Duan, Chenxi
Atkinson, Peter M.
Li, Rui
Author_xml – sequence: 1
  givenname: Rui
  surname: Li
  fullname: Li, Rui
  organization: School of Remote Sensing and Information Engineering, Wuhan University, 129 Luoyu Road, Wuhan, Hubei 430079, China
– sequence: 2
  givenname: Shunyi
  surname: Zheng
  fullname: Zheng, Shunyi
  organization: School of Remote Sensing and Information Engineering, Wuhan University, 129 Luoyu Road, Wuhan, Hubei 430079, China
– sequence: 3
  givenname: Ce
  surname: Zhang
  fullname: Zhang, Ce
  organization: Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
– sequence: 4
  givenname: Chenxi
  surname: Duan
  fullname: Duan, Chenxi
  email: c.duan@utwente.nl
  organization: Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, the Netherlands
– sequence: 5
  givenname: Libo
  surname: Wang
  fullname: Wang, Libo
  organization: School of Remote Sensing and Information Engineering, Wuhan University, 129 Luoyu Road, Wuhan, Hubei 430079, China
– sequence: 6
  givenname: Peter M.
  surname: Atkinson
  fullname: Atkinson, Peter M.
  organization: Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
BookMark eNqNkMFuEzEQhi1UJNLCM-Ajl13Gdta7RuIQIkorVUWqytlyvOPKYdcOtlPIoe-OQxAHLnCwPPr1f6PRd07OQgxIyGsGLQMm325bn3cpb-trOXDWgmoBumdkwYaeNwMX3RlZgOLLhvdMviDnOW8BgHVyWJCn1Yf1LZZ3dFUKhuIfkW78ZAomM1EbQ8EfZV_HgOV7TF-pi4mic9762qYZZ1MhW4eHuQam-BhodPTSB2zuMMdp_ytKOMeC06EWQ8aR-tk8YDq8JM-dmTK--v1fkC-XH-_XV83N50_X69VNY4XqSyNwRKHGTkkumFLK2NFtwDjVOyacBD7UlPWdsBvLcJAdFxa4Wy6FwKUzTFyQN6e9uxS_7TEXPftscZpMwLjPmkshZTdIgFrtT1WbYs4Jnd6lem06aAb6KFxv9R_h-ihcg9JVeCXf_0VafzJSkvHTf_CrE4_VxKPHpPPRssXRJ7RFj9H_c8dPHZmoSQ
CitedBy_id crossref_primary_10_21122_2309_4923_2023_4_20_28
crossref_primary_10_1080_08839514_2022_2032924
crossref_primary_10_1109_TGRS_2024_3373033
crossref_primary_10_1080_01431161_2023_2295835
crossref_primary_10_3390_rs14184514
crossref_primary_10_4236_ojapps_2024_142020
crossref_primary_10_1007_s11263_024_02247_9
crossref_primary_10_1016_j_eswa_2024_123616
crossref_primary_10_1016_j_jag_2025_104457
crossref_primary_10_1088_2632_2153_ad8985
crossref_primary_10_3390_app14114709
crossref_primary_10_1016_j_isprsjprs_2025_01_017
crossref_primary_10_1109_JSTARS_2024_3459958
crossref_primary_10_1007_s40747_023_01054_y
crossref_primary_10_1109_TGRS_2024_3363742
crossref_primary_10_1109_LGRS_2022_3215200
crossref_primary_10_1109_TGRS_2023_3281420
crossref_primary_10_1109_TGRS_2025_3526247
crossref_primary_10_1016_j_jag_2022_102706
crossref_primary_10_1016_j_ecoinf_2024_102818
crossref_primary_10_1109_JSTARS_2024_3452250
crossref_primary_10_3390_rs15143619
crossref_primary_10_1016_j_jag_2022_102825
crossref_primary_10_1109_JSEN_2023_3321742
crossref_primary_10_1109_LGRS_2023_3302432
crossref_primary_10_1109_TGRS_2023_3276081
crossref_primary_10_3390_rs15194649
crossref_primary_10_1109_JSTARS_2024_3358851
crossref_primary_10_1109_TGRS_2023_3239042
crossref_primary_10_1109_TGRS_2024_3515157
crossref_primary_10_3390_electronics12173653
crossref_primary_10_1109_JSTARS_2024_3487003
crossref_primary_10_1109_LGRS_2024_3506718
crossref_primary_10_1080_01431161_2022_2121190
crossref_primary_10_3390_rs16091478
crossref_primary_10_1016_j_engappai_2024_108416
crossref_primary_10_1016_j_jag_2024_104104
crossref_primary_10_1080_01431161_2023_2285742
crossref_primary_10_1080_10095020_2021_2017237
crossref_primary_10_1109_JSTARS_2024_3349625
crossref_primary_10_1109_TGRS_2023_3234549
crossref_primary_10_1109_TGRS_2024_3502401
crossref_primary_10_1117_1_JRS_18_044515
crossref_primary_10_3390_rs14010215
crossref_primary_10_1109_TGRS_2023_3339291
crossref_primary_10_3389_fevo_2023_1201125
crossref_primary_10_1109_JSTARS_2024_3418632
crossref_primary_10_1109_TGRS_2023_3272614
crossref_primary_10_1109_TGRS_2024_3398038
crossref_primary_10_1109_JSTARS_2023_3316307
crossref_primary_10_1117_1_JRS_18_034518
crossref_primary_10_1109_LGRS_2022_3143368
crossref_primary_10_1080_01431161_2023_2274318
crossref_primary_10_1109_TGRS_2022_3186634
crossref_primary_10_11834_jig_230605
crossref_primary_10_1109_TGRS_2023_3329152
crossref_primary_10_1109_ACCESS_2024_3425154
crossref_primary_10_1109_JSTARS_2023_3285632
crossref_primary_10_3390_app14051986
crossref_primary_10_1109_JSTARS_2023_3310160
crossref_primary_10_3390_rs16244627
crossref_primary_10_1016_j_jag_2024_103661
crossref_primary_10_1016_j_jvcir_2023_103847
crossref_primary_10_1109_TGRS_2022_3232143
crossref_primary_10_1109_TGRS_2023_3318788
crossref_primary_10_1109_JSTARS_2024_3397488
crossref_primary_10_1109_LGRS_2024_3357062
crossref_primary_10_1109_TGRS_2024_3504733
crossref_primary_10_3788_LOP232052
crossref_primary_10_1109_TGRS_2024_3385318
crossref_primary_10_3390_rs16152776
crossref_primary_10_1109_TGRS_2022_3223416
crossref_primary_10_3390_rs15133366
crossref_primary_10_1109_TGRS_2024_3490559
crossref_primary_10_3390_e24111619
crossref_primary_10_3390_rs16193622
crossref_primary_10_1109_JSTARS_2024_3471638
crossref_primary_10_1016_j_enconman_2022_116185
crossref_primary_10_1109_ACCESS_2024_3451153
crossref_primary_10_1109_TGRS_2023_3268362
crossref_primary_10_3390_rs14215399
crossref_primary_10_1007_s10489_025_06433_1
crossref_primary_10_1109_MGRS_2023_3321258
crossref_primary_10_1109_LGRS_2023_3318348
crossref_primary_10_1080_01431161_2023_2242590
crossref_primary_10_1109_JSTARS_2024_3511517
crossref_primary_10_1109_LGRS_2022_3189675
crossref_primary_10_1145_3558770
crossref_primary_10_3390_rs16234392
crossref_primary_10_1109_TGRS_2024_3351437
crossref_primary_10_1109_JSTARS_2024_3472296
crossref_primary_10_1109_TGRS_2024_3465496
crossref_primary_10_3390_rs13163065
crossref_primary_10_1109_JSTARS_2022_3197937
crossref_primary_10_1109_TGRS_2024_3509735
crossref_primary_10_3390_rs16173184
crossref_primary_10_1109_TGRS_2024_3379398
crossref_primary_10_1109_JSTARS_2024_3486724
crossref_primary_10_1109_TGRS_2022_3183144
crossref_primary_10_1080_01431161_2023_2292014
crossref_primary_10_1016_j_asr_2025_02_033
crossref_primary_10_1109_TGRS_2024_3355925
crossref_primary_10_1109_LGRS_2023_3333017
crossref_primary_10_1080_01431161_2024_2338232
crossref_primary_10_1109_TGRS_2024_3393489
crossref_primary_10_1038_s41598_025_85125_9
crossref_primary_10_1109_TGRS_2025_3544549
crossref_primary_10_1016_j_asr_2024_06_056
crossref_primary_10_3390_buildings14030808
crossref_primary_10_1109_LGRS_2024_3507033
crossref_primary_10_1016_j_eswa_2023_121999
crossref_primary_10_1109_TGRS_2024_3493121
crossref_primary_10_1109_JSTARS_2023_3328559
crossref_primary_10_1109_TGRS_2023_3314641
crossref_primary_10_1007_s10489_022_03932_3
crossref_primary_10_3390_rs14030533
crossref_primary_10_1007_s41870_023_01711_y
crossref_primary_10_3390_a17120594
crossref_primary_10_1049_cit2_12278
crossref_primary_10_3390_s24227266
crossref_primary_10_3390_rs14215415
crossref_primary_10_1016_j_dsp_2024_104876
crossref_primary_10_1109_TGRS_2024_3430081
crossref_primary_10_3390_math10244735
crossref_primary_10_1016_j_isprsjprs_2024_06_021
crossref_primary_10_1080_01431161_2022_2030071
crossref_primary_10_1016_j_jag_2023_103553
crossref_primary_10_1109_JSTARS_2023_3335891
crossref_primary_10_1109_TGRS_2024_3463204
crossref_primary_10_1109_TGRS_2024_3477290
crossref_primary_10_3390_rs13245015
crossref_primary_10_1109_JSTARS_2023_3243247
crossref_primary_10_1109_TGRS_2024_3443420
crossref_primary_10_1109_JSTARS_2024_3437737
crossref_primary_10_1109_TGRS_2023_3249230
crossref_primary_10_1109_TCSVT_2022_3227172
crossref_primary_10_3390_rs16142526
crossref_primary_10_1109_JSTARS_2023_3342453
crossref_primary_10_3390_rs14071638
crossref_primary_10_1109_TGRS_2025_3533019
crossref_primary_10_1049_ipr2_12898
crossref_primary_10_1016_j_engappai_2023_107638
crossref_primary_10_1109_JSTARS_2024_3490584
crossref_primary_10_1109_JSTARS_2025_3545365
crossref_primary_10_1016_j_iswa_2025_200505
crossref_primary_10_1109_TGRS_2024_3441944
crossref_primary_10_1109_TGRS_2023_3336689
crossref_primary_10_3390_rs15215213
crossref_primary_10_1109_JSTARS_2025_3542255
crossref_primary_10_1109_TCSVT_2022_3216313
crossref_primary_10_3390_rs16203805
crossref_primary_10_1109_TGRS_2024_3364381
crossref_primary_10_1109_LGRS_2024_3350593
crossref_primary_10_3390_rs16071162
crossref_primary_10_3390_diagnostics12081913
crossref_primary_10_3390_rs16152851
crossref_primary_10_3390_rs16173278
crossref_primary_10_3390_ijgi11090494
crossref_primary_10_3390_buildings14113353
crossref_primary_10_1109_JSTARS_2024_3417211
crossref_primary_10_1109_JSTARS_2024_3444773
crossref_primary_10_1109_TGRS_2024_3516501
crossref_primary_10_1016_j_cageo_2023_105340
crossref_primary_10_1109_TGRS_2024_3427370
crossref_primary_10_1080_01431161_2023_2225710
crossref_primary_10_1109_JSTARS_2024_3443283
crossref_primary_10_3390_rs15051328
crossref_primary_10_1109_JSTARS_2024_3378301
crossref_primary_10_1109_TGRS_2024_3446549
crossref_primary_10_1007_s11042_023_15660_y
crossref_primary_10_1016_j_isprsjprs_2022_06_008
crossref_primary_10_3390_rs16162930
crossref_primary_10_1109_LGRS_2024_3403088
crossref_primary_10_1177_14759217231183656
crossref_primary_10_1109_TGRS_2024_3373493
crossref_primary_10_1109_TGRS_2025_3531930
crossref_primary_10_1109_TGRS_2023_3268159
crossref_primary_10_1109_JSTARS_2023_3344210
crossref_primary_10_1109_TGRS_2024_3477548
Cites_doi 10.3390/rs12030582
10.1016/j.rse.2019.111593
10.1109/TPAMI.2016.2644615
10.1109/TITS.2017.2750080
10.1109/TGRS.2019.2906689
10.1016/j.isprsjprs.2017.06.001
10.1016/j.neucom.2018.11.051
10.1016/j.rse.2018.02.026
10.1109/TGRS.2016.2612821
10.1016/j.patcog.2020.107611
10.1016/j.isprsjprs.2018.08.007
10.1016/j.isprsjprs.2020.01.013
10.1109/CVPR.2018.00745
10.1016/j.rse.2017.08.030
10.1016/j.isprsjprs.2018.04.014
10.1109/TGRS.2014.2306692
10.1016/j.isprsjprs.2017.11.009
10.1016/j.rse.2019.111322
10.1109/MGRS.2017.2762307
10.1109/LRA.2020.3039744
10.1016/0034-4257(92)90011-8
10.1007/s11263-021-01515-2
10.3390/rs13163065
10.1016/j.isprsjprs.2017.12.007
10.1007/s11356-020-08984-x
10.3390/rs13183707
10.1109/TGRS.2020.2976658
10.1016/j.isprsjprs.2017.11.011
10.1016/j.isprsjprs.2020.09.019
10.1016/j.rse.2018.10.031
10.1109/TPAMI.2015.2389824
10.1109/TGRS.2017.2778300
10.1016/0034-4257(79)90013-0
10.1016/j.isprsjprs.2021.06.006
10.1016/j.rse.2018.11.014
ContentType Journal Article
Copyright 2021 The Authors
Copyright_xml – notice: 2021 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.isprsjprs.2021.09.005
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1872-8235
EndPage 98
ExternalDocumentID 10_1016_j_isprsjprs_2021_09_005
S0924271621002379
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
T9H
WUQ
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c397t-3ede39d596231999acdfb0af97f13f60281991753cbc1e86523c02f4433e4fa13
IEDL.DBID .~1
ISSN 0924-2716
IngestDate Thu Jul 10 17:17:49 EDT 2025
Thu Apr 24 23:13:14 EDT 2025
Tue Jul 01 03:46:46 EDT 2025
Fri Feb 23 02:43:03 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Semantic Segmentation
Convolutional Neural Network
Bilateral Architecture
Deep Learning
Attention Mechanism
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-3ede39d596231999acdfb0af97f13f60281991753cbc1e86523c02f4433e4fa13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0924271621002379
PQID 2636658600
PQPubID 24069
PageCount 15
ParticipantIDs proquest_miscellaneous_2636658600
crossref_primary_10_1016_j_isprsjprs_2021_09_005
crossref_citationtrail_10_1016_j_isprsjprs_2021_09_005
elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2021_09_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationTitle ISPRS journal of photogrammetry and remote sensing
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Tucker (b0270) 1979; 8
Gong, Marceau, Howarth (b0085) 1992; 40
Wang, Jiang, Qian, Yang, Li, Zhang, Wang, Tang (b0280) 2017
He, Zhang, Ren, Sun (b0095) 2015; 37
Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L., 2014. Semantic image segmentation with deep convolutional nets and fully connected crfs. arXiv preprint arXiv:1412.7062.
Yu, F., Koltun, V., 2015. Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122.
Bello, Zoph, Vaswani, Shlens, Le (b0015) 2019
Oršić, Šegvić (b0225) 2021; 110
Ghassemi, Fiandrotti, Francini, Magli (b0075) 2019; 57
Samie, Abbas, Azeem, Hamid, Iqbal, Hasan, Deng (b0250) 2020; 27
Liu, Fan, Wang, Bai, Xiang, Pan (b0190) 2018; 145
Poudel, R.P., Liwicki, S., Cipolla, R., 2019. Fast-scnn: Fast semantic segmentation network. arXiv preprint arXiv:1902.04502.
Zhang, Harrison, Pan, Li, Sargent, Atkinson (b0350) 2020; 237
Romera, Alvarez, Bergasa, Arroyo (b9010) 2017; 19
Chen, L.-C., Papandreou, G., Schroff, F., Adam, H., 2017a. Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587.
He, Zhang, Ren, Sun (b0100) 2016
Zhong, Zhao, Zhang (b0380) 2014; 52
Li, Zheng, Duan, Yang, Wang (b0165) 2020; 12
Zhuang, Yang, Gu, Dvornek (b0390) 2019
Griffiths, Nendel, Hostert (b0090) 2019; 220
Li, Zhong, Wu, Yang, Lin, Liu (b0180) 2019
Long, Shelhamer, Darrell (b0195) 2015
Tong, Xia, Lu, Shen, Li, You, Zhang (b0265) 2020; 237
Li, Duan, Zheng, Zhang, Atkinson (b0155) 2021
Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7132-7141.
Cao, Xu, Lin, Wei, Hu (b0020) 2019
Ronneberger, Fischer, Brox (b0245) 2015
Lu, Wang, Ma, Shen, Shao, Porikli (b0200) 2019
Huang, L., Yuan, Y., Guo, J., Zhang, C., Chen, X., Wang, J., 2019a. Interlaced sparse self-attention for semantic segmentation. arXiv preprint arXiv:1907.12273.
Chen, Zhu, Papandreou, Schroff, Adam (b0035) 2018
Liu, Kampffmeyer, Jenssen, Salberg (b0185) 2020; 58
Xia, Bai, Ding, Zhu, Belongie, Luo, Datcu, Pelillo, Zhang (b0310) 2018
Sherrah, J., 2016. Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery. arXiv preprint arXiv:1606.02585.
Ioffe, Szegedy (b0130) 2015
Ma, Li, Ma, Cheng, Du, Liu (b0210) 2017; 130
Zhao, Shi, Qi, Wang, Jia (b0370) 2017
Audebert, Le Saux, Lefèvre (b0005) 2018; 140
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b0275) 2017
Badrinarayanan, Kendall, Cipolla (b0010) 2017; 39
Picoli, Camara, Sanches, Simões, Carvalho, Maciel, Coutinho, Esquerdo, Antunes, Begotti, Arvor, Almeida (b0230) 2018; 145
Wang, Li, Wang, Duan, Wang, Meng (b0285) 2021; 13
Glorot, Bordes, Bengio (b0080) 2011
Li, Cheng, Bu, You (b9015) 2017; 56
Zhang, Chen, Li, Hong, Liu, Ma, Han, Ding (b0360) 2019
Zheng, Huan, Xia, Gong (b0375) 2020; 170
Yang, Kumaar, Lyu, Nex (b0315) 2021; 178
Hu, Perazzi, Heilbron, Wang, Lin, Saenko, Sclaroff (b9005) 2020; 6
Zhang, Goodfellow, Metaxas, Odena (b0365) 2019
Li, Wang, Hu, Yang (b0175) 2019
Sun, Tian, Xu (b0260) 2019; 330
Wang, Girshick, Gupta, He (b0300) 2018
Yu, C., Gao, C., Wang, J., Yu, G., Shen, C., Sang, N., 2020. Bisenet v2: Bilateral network with guided aggregation for real-time semantic segmentation. arXiv preprint arXiv:2004.02147.
Yu, Wang, Peng, Gao, Yu, Sang (b0330) 2018
Zhu, Tuia, Mou, Xia, Zhang, Xu, Fraundorfer (b0385) 2017; 5
Wang, Chen, Yuan, Liu, Huang, Hou, Cottrell (b0290) 2018
Woo, Park, Lee, So Kweon (b0305) 2018
Lyons, Keith, Phinn, Mason, Elith (b0205) 2018; 208
Diakogiannis, Waldner, Caccetta, Wu (b0060) 2020; 162
Duan, C., Li, R., 2020. Multi-Head Linear Attention Generative Adversarial Network for Thin Cloud Removal. arXiv preprint arXiv:2012.10898.
Zhang, Sargent, Pan, Li, Gardiner, Hare, Atkinson (b0355) 2019; 221
Marmanis, Schindler, Wegner, Galliani, Datcu, Stilla (b0220) 2018; 135
Chen, Kalantidis, Li, Yan, Feng (b0045) 2018
Katharopoulos, Vyas, Pappas, Fleuret (b0135) 2020
Li, Zheng, Duan, Su, Zhang (b0160) 2021
Diakogiannis, F.I., Waldner, F., Caccetta, P., 2020a. Looking for change? Roll the Dice and demand Attention. arXiv preprint arXiv:2009.02062.
Chollet (b0050) 2017
Yin, Pflugmacher, Li, Li, Hostert (b0320) 2018; 204
Li, G., Yun, I., Kim, J., Kim, J., 2019a. Dabnet: Depth-wise asymmetric bottleneck for real-time semantic segmentation. arXiv preprint arXiv:1907.11357.
Yuan, Y., Wang, J., 2018. Ocnet: Object context network for scene parsing. arXiv preprint arXiv:1809.00916.
Li, Zheng, Zhang, Duan, Su, Wang, Atkinson (b0170) 2021
Wang, Wu, Zhu, Li, Zuo, Hu (b0295) 2020
Huang, Wang, Huang, Huang, Wei, Liu (b0120) 2019
Maggiori, Tarabalka, Charpiat, Alliez (b9000) 2016; 55
Fu, Liu, Tian, Li, Bao, Fang, Lu (b0070) 2019
Yuan, Y., Chen, X., Wang, J., 2019. Object-contextual representations for semantic segmentation. arXiv preprint arXiv:1909.11065.
Chen, Zhang, Xiao, Nie, Shao, Liu, Chua (b0040) 2017
Kemker, Salvaggio, Kanan (b0140) 2018; 145
Zhong (10.1016/j.isprsjprs.2021.09.005_b0380) 2014; 52
Tong (10.1016/j.isprsjprs.2021.09.005_b0265) 2020; 237
Hu (10.1016/j.isprsjprs.2021.09.005_b9005) 2020; 6
Lu (10.1016/j.isprsjprs.2021.09.005_b0200) 2019
Maggiori (10.1016/j.isprsjprs.2021.09.005_b9000) 2016; 55
Katharopoulos (10.1016/j.isprsjprs.2021.09.005_b0135) 2020
Gong (10.1016/j.isprsjprs.2021.09.005_b0085) 1992; 40
10.1016/j.isprsjprs.2021.09.005_b0325
Li (10.1016/j.isprsjprs.2021.09.005_b0175) 2019
Zhang (10.1016/j.isprsjprs.2021.09.005_b0350) 2020; 237
Zhang (10.1016/j.isprsjprs.2021.09.005_b0355) 2019; 221
Tucker (10.1016/j.isprsjprs.2021.09.005_b0270) 1979; 8
Xia (10.1016/j.isprsjprs.2021.09.005_b0310) 2018
Chollet (10.1016/j.isprsjprs.2021.09.005_b0050) 2017
Yin (10.1016/j.isprsjprs.2021.09.005_b0320) 2018; 204
Badrinarayanan (10.1016/j.isprsjprs.2021.09.005_b0010) 2017; 39
Zhang (10.1016/j.isprsjprs.2021.09.005_b0365) 2019
Ghassemi (10.1016/j.isprsjprs.2021.09.005_b0075) 2019; 57
Liu (10.1016/j.isprsjprs.2021.09.005_b0185) 2020; 58
Woo (10.1016/j.isprsjprs.2021.09.005_b0305) 2018
Li (10.1016/j.isprsjprs.2021.09.005_b0160) 2021
Wang (10.1016/j.isprsjprs.2021.09.005_b0290) 2018
He (10.1016/j.isprsjprs.2021.09.005_b0100) 2016
Audebert (10.1016/j.isprsjprs.2021.09.005_b0005) 2018; 140
Li (10.1016/j.isprsjprs.2021.09.005_b9015) 2017; 56
Ronneberger (10.1016/j.isprsjprs.2021.09.005_b0245) 2015
Lyons (10.1016/j.isprsjprs.2021.09.005_b0205) 2018; 208
10.1016/j.isprsjprs.2021.09.005_b0255
Chen (10.1016/j.isprsjprs.2021.09.005_b0040) 2017
10.1016/j.isprsjprs.2021.09.005_b0055
Li (10.1016/j.isprsjprs.2021.09.005_b0155) 2021
Samie (10.1016/j.isprsjprs.2021.09.005_b0250) 2020; 27
Chen (10.1016/j.isprsjprs.2021.09.005_b0035) 2018
Glorot (10.1016/j.isprsjprs.2021.09.005_b0080) 2011
Yang (10.1016/j.isprsjprs.2021.09.005_b0315) 2021; 178
Fu (10.1016/j.isprsjprs.2021.09.005_b0070) 2019
Bello (10.1016/j.isprsjprs.2021.09.005_b0015) 2019
10.1016/j.isprsjprs.2021.09.005_b0335
Wang (10.1016/j.isprsjprs.2021.09.005_b0285) 2021; 13
He (10.1016/j.isprsjprs.2021.09.005_b0095) 2015; 37
Wang (10.1016/j.isprsjprs.2021.09.005_b0300) 2018
Zhao (10.1016/j.isprsjprs.2021.09.005_b0370) 2017
Yu (10.1016/j.isprsjprs.2021.09.005_b0330) 2018
Ioffe (10.1016/j.isprsjprs.2021.09.005_b0130) 2015
Huang (10.1016/j.isprsjprs.2021.09.005_b0120) 2019
Liu (10.1016/j.isprsjprs.2021.09.005_b0190) 2018; 145
Wang (10.1016/j.isprsjprs.2021.09.005_b0295) 2020
Zhu (10.1016/j.isprsjprs.2021.09.005_b0385) 2017; 5
10.1016/j.isprsjprs.2021.09.005_b0025
Cao (10.1016/j.isprsjprs.2021.09.005_b0020) 2019
Kemker (10.1016/j.isprsjprs.2021.09.005_b0140) 2018; 145
10.1016/j.isprsjprs.2021.09.005_b0145
Li (10.1016/j.isprsjprs.2021.09.005_b0180) 2019
Zheng (10.1016/j.isprsjprs.2021.09.005_b0375) 2020; 170
10.1016/j.isprsjprs.2021.09.005_b0065
Li (10.1016/j.isprsjprs.2021.09.005_b0165) 2020; 12
Marmanis (10.1016/j.isprsjprs.2021.09.005_b0220) 2018; 135
10.1016/j.isprsjprs.2021.09.005_b0340
Ma (10.1016/j.isprsjprs.2021.09.005_b0210) 2017; 130
Romera (10.1016/j.isprsjprs.2021.09.005_b9010) 2017; 19
Vaswani (10.1016/j.isprsjprs.2021.09.005_b0275) 2017
10.1016/j.isprsjprs.2021.09.005_b0105
Picoli (10.1016/j.isprsjprs.2021.09.005_b0230) 2018; 145
10.1016/j.isprsjprs.2021.09.005_b0345
Zhang (10.1016/j.isprsjprs.2021.09.005_b0360) 2019
Oršić (10.1016/j.isprsjprs.2021.09.005_b0225) 2021; 110
Li (10.1016/j.isprsjprs.2021.09.005_b0170) 2021
Wang (10.1016/j.isprsjprs.2021.09.005_b0280) 2017
10.1016/j.isprsjprs.2021.09.005_b0030
Zhuang (10.1016/j.isprsjprs.2021.09.005_b0390) 2019
Chen (10.1016/j.isprsjprs.2021.09.005_b0045) 2018
Diakogiannis (10.1016/j.isprsjprs.2021.09.005_b0060) 2020; 162
10.1016/j.isprsjprs.2021.09.005_b0115
Long (10.1016/j.isprsjprs.2021.09.005_b0195) 2015
Sun (10.1016/j.isprsjprs.2021.09.005_b0260) 2019; 330
Griffiths (10.1016/j.isprsjprs.2021.09.005_b0090) 2019; 220
10.1016/j.isprsjprs.2021.09.005_b0235
References_xml – volume: 178
  start-page: 124
  year: 2021
  end-page: 134
  ident: b0315
  article-title: Real-time Semantic Segmentation with Context Aggregation Network
  publication-title: ISPRS J. Photogramm. Remote Sens.
– reference: Poudel, R.P., Liwicki, S., Cipolla, R., 2019. Fast-scnn: Fast semantic segmentation network. arXiv preprint arXiv:1902.04502.
– reference: Yu, C., Gao, C., Wang, J., Yu, G., Shen, C., Sang, N., 2020. Bisenet v2: Bilateral network with guided aggregation for real-time semantic segmentation. arXiv preprint arXiv:2004.02147.
– start-page: 3286
  year: 2019
  end-page: 3295
  ident: b0015
  article-title: Attention augmented convolutional networks
  publication-title: Proceedings of the IEEE/CVF international conference on computer vision
– volume: 145
  start-page: 328
  year: 2018
  end-page: 339
  ident: b0230
  article-title: Big earth observation time series analysis for monitoring Brazilian agriculture
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 5
  start-page: 8
  year: 2017
  end-page: 36
  ident: b0385
  article-title: Deep learning in remote sensing: A comprehensive review and list of resources
  publication-title: IEEE Geosci. Remote Sens. Mag.
– start-page: 2881
  year: 2017
  end-page: 2890
  ident: b0370
  article-title: Pyramid scene parsing network
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– start-page: 234
  year: 2015
  end-page: 241
  ident: b0245
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical image computing and computer-assisted intervention. Springer
– reference: Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7132-7141.
– start-page: 315
  year: 2011
  end-page: 323
  ident: b0080
  article-title: Deep sparse rectifier neural networks
  publication-title: Proceedings of the fourteenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings
– year: 2021
  ident: b0170
  article-title: Multiattention network for semantic segmentation of fine-resolution remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 3431
  year: 2015
  end-page: 3440
  ident: b0195
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– reference: Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L., 2014. Semantic image segmentation with deep convolutional nets and fully connected crfs. arXiv preprint arXiv:1412.7062.
– volume: 221
  start-page: 173
  year: 2019
  end-page: 187
  ident: b0355
  article-title: Joint Deep Learning for land cover and land use classification
  publication-title: Remote Sens. Environ.
– volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  ident: b0010
  article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 3623
  year: 2019
  end-page: 3632
  ident: b0200
  article-title: See more, know more: Unsupervised video object segmentation with co-attention siamese networks
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– reference: Yuan, Y., Chen, X., Wang, J., 2019. Object-contextual representations for semantic segmentation. arXiv preprint arXiv:1909.11065.
– start-page: 801
  year: 2018
  end-page: 818
  ident: b0035
  article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation
  publication-title: Proceedings of the European conference on computer vision (ECCV)
– volume: 12
  start-page: 582
  year: 2020
  ident: b0165
  article-title: Classification of Hyperspectral Image Based on Double-Branch Dual-Attention Mechanism Network
  publication-title: Remote Sens.
– start-page: 603
  year: 2019
  end-page: 612
  ident: b0120
  article-title: Ccnet: Criss-cross attention for semantic segmentation
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 27
  start-page: 25415
  year: 2020
  end-page: 25433
  ident: b0250
  article-title: Examining the impacts of future land use/land cover changes on climate in Punjab province, Pakistan: implications for environmental sustainability and economic growth
  publication-title: Environ. Sci. Pollut. Res.
– volume: 130
  start-page: 277
  year: 2017
  end-page: 293
  ident: b0210
  article-title: A review of supervised object-based land-cover image classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
– start-page: 3974
  year: 2018
  end-page: 3983
  ident: b0310
  article-title: DOTA: A large-scale dataset for object detection in aerial images
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– reference: Duan, C., Li, R., 2020. Multi-Head Linear Attention Generative Adversarial Network for Thin Cloud Removal. arXiv preprint arXiv:2012.10898.
– start-page: 5998
  year: 2017
  end-page: 6008
  ident: b0275
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 7794
  year: 2018
  end-page: 7803
  ident: b0300
  article-title: Non-local neural networks
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– start-page: 6798
  year: 2019
  end-page: 6807
  ident: b0360
  article-title: Acfnet: Attentional class feature network for semantic segmentation
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 8
  start-page: 127
  year: 1979
  end-page: 150
  ident: b0270
  article-title: Red and photographic infrared linear combinations for monitoring vegetation
  publication-title: Remote Sens. Environ.
– start-page: 7354
  year: 2019
  end-page: 7363
  ident: b0365
  article-title: Self-attention generative adversarial networks
  publication-title: Int. Conf. Machine Learn. PMLR
– reference: Huang, L., Yuan, Y., Guo, J., Zhang, C., Chen, X., Wang, J., 2019a. Interlaced sparse self-attention for semantic segmentation. arXiv preprint arXiv:1907.12273.
– year: 2021
  ident: b0155
  article-title: MACU-Net for semantic segmentation of fine-resolution remotely sensed images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 55
  start-page: 645
  year: 2016
  end-page: 657
  ident: b9000
  article-title: Convolutional neural networks for large-scale remote-sensing image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2019
  ident: b0390
  article-title: Shelfnet for fast semantic segmentation
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops
– reference: Sherrah, J., 2016. Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery. arXiv preprint arXiv:1606.02585.
– reference: Li, G., Yun, I., Kim, J., Kim, J., 2019a. Dabnet: Depth-wise asymmetric bottleneck for real-time semantic segmentation. arXiv preprint arXiv:1907.11357.
– start-page: 9167
  year: 2019
  end-page: 9176
  ident: b0180
  article-title: Expectation-maximization attention networks for semantic segmentation
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 162
  start-page: 94
  year: 2020
  end-page: 114
  ident: b0060
  article-title: Resunet-a: a deep learning framework for semantic segmentation of remotely sensed data
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 40
  start-page: 137
  year: 1992
  end-page: 151
  ident: b0085
  article-title: A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data
  publication-title: Remote Sens. Environ.
– volume: 37
  start-page: 1904
  year: 2015
  end-page: 1916
  ident: b0095
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 19
  start-page: 263
  year: 2017
  end-page: 272
  ident: b9010
  article-title: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 204
  start-page: 918
  year: 2018
  end-page: 930
  ident: b0320
  article-title: Land use and land cover change in Inner Mongolia-understanding the effects of China's re-vegetation programs
  publication-title: Remote Sens. Environ.
– year: 2019
  ident: b0020
  article-title: Gcnet: Non-local networks meet squeeze-excitation networks and beyond
  publication-title: Proceedings of the IEEE International Conference on Computer Vision Workshops
– start-page: 3
  year: 2018
  end-page: 19
  ident: b0305
  article-title: Cbam: Convolutional block attention module
  publication-title: Proceedings of the European conference on computer vision (ECCV)
– start-page: 352
  year: 2018
  end-page: 361
  ident: b0045
  article-title: A^ 2-nets: Double attention networks
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 1251
  year: 2017
  end-page: 1258
  ident: b0050
  article-title: Xception: Deep learning with depthwise separable convolutions
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 145
  start-page: 78
  year: 2018
  end-page: 95
  ident: b0190
  article-title: Semantic labeling in very high resolution images via a self-cascaded convolutional neural network
  publication-title: ISPRS J. Photogramm. Remote Sens.
– reference: Chen, L.-C., Papandreou, G., Schroff, F., Adam, H., 2017a. Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587.
– start-page: 3146
  year: 2019
  end-page: 3154
  ident: b0070
  article-title: Dual attention network for scene segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 110
  year: 2021
  ident: b0225
  article-title: Efficient semantic segmentation with pyramidal fusion
  publication-title: Pattern Recognition
– volume: 208
  start-page: 145
  year: 2018
  end-page: 153
  ident: b0205
  article-title: A comparison of resampling methods for remote sensing classification and accuracy assessment
  publication-title: Remote Sens. Environ.
– volume: 58
  start-page: 6309
  year: 2020
  end-page: 6320
  ident: b0185
  article-title: Dense dilated convolutions’ merging network for land cover classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 13
  start-page: 3065
  year: 2021
  ident: b0285
  article-title: Transformer Meets Convolution: A Bilateral Awareness Network for Semantic Segmentation of Very Fine Resolution Urban Scene Images
  publication-title: Remote Sens.
– volume: 330
  start-page: 297
  year: 2019
  end-page: 304
  ident: b0260
  article-title: Problems of encoder-decoder frameworks for high-resolution remote sensing image segmentation: Structural stereotype and insufficient learning
  publication-title: Neurocomputing
– volume: 220
  start-page: 135
  year: 2019
  end-page: 151
  ident: b0090
  article-title: Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping
  publication-title: Remote Sens. Environ.
– start-page: 11534
  year: 2020
  end-page: 11542
  ident: b0295
  article-title: ECA-net: Efficient channel attention for deep convolutional neural networks
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 6
  start-page: 263
  year: 2020
  end-page: 270
  ident: b9005
  article-title: Real-time semantic segmentation with fast attention
  publication-title: IEEE Robot. Autom. Lett.
– year: 2021
  ident: b0160
  article-title: Multistage Attention ResU-Net for Semantic Segmentation of Fine-Resolution Remote Sensing Images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 140
  start-page: 20
  year: 2018
  end-page: 32
  ident: b0005
  article-title: Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks
  publication-title: ISPRS J. Photogramm. Remote Sens.
– start-page: 3156
  year: 2017
  end-page: 3164
  ident: b0280
  article-title: Residual attention network for image classification
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– reference: Diakogiannis, F.I., Waldner, F., Caccetta, P., 2020a. Looking for change? Roll the Dice and demand Attention. arXiv preprint arXiv:2009.02062.
– start-page: 5659
  year: 2017
  end-page: 5667
  ident: b0040
  article-title: Sca-cnn: Spatial and channel-wise attention in convolutional networks for image captioning
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 170
  start-page: 15
  year: 2020
  end-page: 28
  ident: b0375
  article-title: Parsing very high resolution urban scene images by learning deep ConvNets with edge-aware loss
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 135
  start-page: 158
  year: 2018
  end-page: 172
  ident: b0220
  article-title: Classification with an edge: Improving semantic image segmentation with boundary detection
  publication-title: ISPRS J. Photogramm. Remote Sens.
– reference: Yu, F., Koltun, V., 2015. Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122.
– start-page: 510
  year: 2019
  end-page: 519
  ident: b0175
  article-title: Selective kernel networks
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– start-page: 770
  year: 2016
  end-page: 778
  ident: b0100
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– start-page: 5156
  year: 2020
  end-page: 5165
  ident: b0135
  article-title: Transformers are rnns: Fast autoregressive transformers with linear attention
  publication-title: Int. Conf. Machine Learn. PMLR
– volume: 52
  start-page: 7023
  year: 2014
  end-page: 7037
  ident: b0380
  article-title: A hybrid object-oriented conditional random field classification framework for high spatial resolution remote sensing imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 57
  start-page: 6517
  year: 2019
  end-page: 6529
  ident: b0075
  article-title: Learning and adapting robust features for satellite image segmentation on heterogeneous data sets
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 237
  year: 2020
  ident: b0350
  article-title: Scale Sequence Joint Deep Learning (SS-JDL) for land use and land cover classification
  publication-title: Remote Sens. Environ.
– volume: 56
  start-page: 2337
  year: 2017
  end-page: 2348
  ident: b9015
  article-title: Rotation-insensitive and context-augmented object detection in remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 325
  year: 2018
  end-page: 341
  ident: b0330
  article-title: Bisenet: Bilateral segmentation network for real-time semantic segmentation
  publication-title: Proceedings of the European conference on computer vision (ECCV)
– start-page: 448
  year: 2015
  end-page: 456
  ident: b0130
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: International conference on machine learning. PMLR
– start-page: 1451
  year: 2018
  end-page: 1460
  ident: b0290
  article-title: Understanding convolution for semantic segmentation, 2018 IEEE winter conference on applications of computer vision (WACV)
  publication-title: IEEE
– volume: 237
  year: 2020
  ident: b0265
  article-title: Land-cover classification with high-resolution remote sensing images using transferable deep models
  publication-title: Remote Sens. Environ.
– reference: Yuan, Y., Wang, J., 2018. Ocnet: Object context network for scene parsing. arXiv preprint arXiv:1809.00916.
– volume: 145
  start-page: 60
  year: 2018
  end-page: 77
  ident: b0140
  article-title: Algorithms for semantic segmentation of multispectral remote sensing imagery using deep learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 12
  start-page: 582
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.09.005_b0165
  article-title: Classification of Hyperspectral Image Based on Double-Branch Dual-Attention Mechanism Network
  publication-title: Remote Sens.
  doi: 10.3390/rs12030582
– volume: 237
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.09.005_b0350
  article-title: Scale Sequence Joint Deep Learning (SS-JDL) for land use and land cover classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111593
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.09.005_b0010
  article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– volume: 19
  start-page: 263
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.09.005_b9010
  article-title: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2017.2750080
– volume: 57
  start-page: 6517
  issue: 9
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.09.005_b0075
  article-title: Learning and adapting robust features for satellite image segmentation on heterogeneous data sets
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2906689
– volume: 130
  start-page: 277
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.09.005_b0210
  article-title: A review of supervised object-based land-cover image classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.06.001
– volume: 330
  start-page: 297
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.09.005_b0260
  article-title: Problems of encoder-decoder frameworks for high-resolution remote sensing image segmentation: Structural stereotype and insufficient learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.11.051
– start-page: 2881
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.09.005_b0370
  article-title: Pyramid scene parsing network
– ident: 10.1016/j.isprsjprs.2021.09.005_b0025
– year: 2019
  ident: 10.1016/j.isprsjprs.2021.09.005_b0020
  article-title: Gcnet: Non-local networks meet squeeze-excitation networks and beyond
– start-page: 770
  year: 2016
  ident: 10.1016/j.isprsjprs.2021.09.005_b0100
  article-title: Deep residual learning for image recognition
– volume: 208
  start-page: 145
  year: 2018
  ident: 10.1016/j.isprsjprs.2021.09.005_b0205
  article-title: A comparison of resampling methods for remote sensing classification and accuracy assessment
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.02.026
– volume: 55
  start-page: 645
  year: 2016
  ident: 10.1016/j.isprsjprs.2021.09.005_b9000
  article-title: Convolutional neural networks for large-scale remote-sensing image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2612821
– ident: 10.1016/j.isprsjprs.2021.09.005_b0030
– start-page: 801
  year: 2018
  ident: 10.1016/j.isprsjprs.2021.09.005_b0035
  article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation
– volume: 110
  year: 2021
  ident: 10.1016/j.isprsjprs.2021.09.005_b0225
  article-title: Efficient semantic segmentation with pyramidal fusion
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2020.107611
– ident: 10.1016/j.isprsjprs.2021.09.005_b0335
– volume: 145
  start-page: 328
  year: 2018
  ident: 10.1016/j.isprsjprs.2021.09.005_b0230
  article-title: Big earth observation time series analysis for monitoring Brazilian agriculture
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.08.007
– start-page: 5998
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.09.005_b0275
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 3286
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.09.005_b0015
  article-title: Attention augmented convolutional networks
– start-page: 1251
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.09.005_b0050
  article-title: Xception: Deep learning with depthwise separable convolutions
– start-page: 9167
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.09.005_b0180
  article-title: Expectation-maximization attention networks for semantic segmentation
– start-page: 3
  year: 2018
  ident: 10.1016/j.isprsjprs.2021.09.005_b0305
  article-title: Cbam: Convolutional block attention module
– volume: 162
  start-page: 94
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.09.005_b0060
  article-title: Resunet-a: a deep learning framework for semantic segmentation of remotely sensed data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.01.013
– ident: 10.1016/j.isprsjprs.2021.09.005_b0105
  doi: 10.1109/CVPR.2018.00745
– ident: 10.1016/j.isprsjprs.2021.09.005_b0345
– volume: 204
  start-page: 918
  year: 2018
  ident: 10.1016/j.isprsjprs.2021.09.005_b0320
  article-title: Land use and land cover change in Inner Mongolia-understanding the effects of China's re-vegetation programs
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.08.030
– start-page: 1451
  year: 2018
  ident: 10.1016/j.isprsjprs.2021.09.005_b0290
  article-title: Understanding convolution for semantic segmentation, 2018 IEEE winter conference on applications of computer vision (WACV)
  publication-title: IEEE
– start-page: 315
  year: 2011
  ident: 10.1016/j.isprsjprs.2021.09.005_b0080
  article-title: Deep sparse rectifier neural networks
– volume: 145
  start-page: 60
  year: 2018
  ident: 10.1016/j.isprsjprs.2021.09.005_b0140
  article-title: Algorithms for semantic segmentation of multispectral remote sensing imagery using deep learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.04.014
– ident: 10.1016/j.isprsjprs.2021.09.005_b0145
– start-page: 3431
  year: 2015
  ident: 10.1016/j.isprsjprs.2021.09.005_b0195
  article-title: Fully convolutional networks for semantic segmentation
– volume: 52
  start-page: 7023
  year: 2014
  ident: 10.1016/j.isprsjprs.2021.09.005_b0380
  article-title: A hybrid object-oriented conditional random field classification framework for high spatial resolution remote sensing imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2306692
– volume: 135
  start-page: 158
  year: 2018
  ident: 10.1016/j.isprsjprs.2021.09.005_b0220
  article-title: Classification with an edge: Improving semantic image segmentation with boundary detection
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.11.009
– volume: 237
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.09.005_b0265
  article-title: Land-cover classification with high-resolution remote sensing images using transferable deep models
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111322
– ident: 10.1016/j.isprsjprs.2021.09.005_b0065
– ident: 10.1016/j.isprsjprs.2021.09.005_b0340
– volume: 5
  start-page: 8
  issue: 4
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.09.005_b0385
  article-title: Deep learning in remote sensing: A comprehensive review and list of resources
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2017.2762307
– volume: 6
  start-page: 263
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.09.005_b9005
  article-title: Real-time semantic segmentation with fast attention
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2020.3039744
– volume: 40
  start-page: 137
  issue: 2
  year: 1992
  ident: 10.1016/j.isprsjprs.2021.09.005_b0085
  article-title: A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(92)90011-8
– start-page: 5156
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.09.005_b0135
  article-title: Transformers are rnns: Fast autoregressive transformers with linear attention
  publication-title: Int. Conf. Machine Learn. PMLR
– start-page: 603
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.09.005_b0120
  article-title: Ccnet: Criss-cross attention for semantic segmentation
– year: 2021
  ident: 10.1016/j.isprsjprs.2021.09.005_b0170
  article-title: Multiattention network for semantic segmentation of fine-resolution remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 7354
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.09.005_b0365
  article-title: Self-attention generative adversarial networks
  publication-title: Int. Conf. Machine Learn. PMLR
– ident: 10.1016/j.isprsjprs.2021.09.005_b0325
  doi: 10.1007/s11263-021-01515-2
– start-page: 448
  year: 2015
  ident: 10.1016/j.isprsjprs.2021.09.005_b0130
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: International conference on machine learning. PMLR
– year: 2019
  ident: 10.1016/j.isprsjprs.2021.09.005_b0390
  article-title: Shelfnet for fast semantic segmentation
– ident: 10.1016/j.isprsjprs.2021.09.005_b0235
– volume: 13
  start-page: 3065
  year: 2021
  ident: 10.1016/j.isprsjprs.2021.09.005_b0285
  article-title: Transformer Meets Convolution: A Bilateral Awareness Network for Semantic Segmentation of Very Fine Resolution Urban Scene Images
  publication-title: Remote Sens.
  doi: 10.3390/rs13163065
– start-page: 510
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.09.005_b0175
  article-title: Selective kernel networks
– start-page: 6798
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.09.005_b0360
  article-title: Acfnet: Attentional class feature network for semantic segmentation
– volume: 145
  start-page: 78
  year: 2018
  ident: 10.1016/j.isprsjprs.2021.09.005_b0190
  article-title: Semantic labeling in very high resolution images via a self-cascaded convolutional neural network
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.12.007
– volume: 27
  start-page: 25415
  issue: 20
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.09.005_b0250
  article-title: Examining the impacts of future land use/land cover changes on climate in Punjab province, Pakistan: implications for environmental sustainability and economic growth
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-020-08984-x
– ident: 10.1016/j.isprsjprs.2021.09.005_b0055
  doi: 10.3390/rs13183707
– start-page: 234
  year: 2015
  ident: 10.1016/j.isprsjprs.2021.09.005_b0245
  article-title: U-net: Convolutional networks for biomedical image segmentation
– volume: 58
  start-page: 6309
  issue: 9
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.09.005_b0185
  article-title: Dense dilated convolutions’ merging network for land cover classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2976658
– start-page: 3974
  year: 2018
  ident: 10.1016/j.isprsjprs.2021.09.005_b0310
  article-title: DOTA: A large-scale dataset for object detection in aerial images
– start-page: 3623
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.09.005_b0200
  article-title: See more, know more: Unsupervised video object segmentation with co-attention siamese networks
– volume: 140
  start-page: 20
  year: 2018
  ident: 10.1016/j.isprsjprs.2021.09.005_b0005
  article-title: Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.11.011
– volume: 170
  start-page: 15
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.09.005_b0375
  article-title: Parsing very high resolution urban scene images by learning deep ConvNets with edge-aware loss
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.09.019
– ident: 10.1016/j.isprsjprs.2021.09.005_b0115
– volume: 220
  start-page: 135
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.09.005_b0090
  article-title: Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.10.031
– start-page: 7794
  year: 2018
  ident: 10.1016/j.isprsjprs.2021.09.005_b0300
  article-title: Non-local neural networks
– year: 2021
  ident: 10.1016/j.isprsjprs.2021.09.005_b0155
  article-title: MACU-Net for semantic segmentation of fine-resolution remotely sensed images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– start-page: 3156
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.09.005_b0280
  article-title: Residual attention network for image classification
– volume: 37
  start-page: 1904
  issue: 9
  year: 2015
  ident: 10.1016/j.isprsjprs.2021.09.005_b0095
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
– start-page: 5659
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.09.005_b0040
  article-title: Sca-cnn: Spatial and channel-wise attention in convolutional networks for image captioning
– start-page: 352
  year: 2018
  ident: 10.1016/j.isprsjprs.2021.09.005_b0045
  article-title: A^ 2-nets: Double attention networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 56
  start-page: 2337
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.09.005_b9015
  article-title: Rotation-insensitive and context-augmented object detection in remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2778300
– volume: 8
  start-page: 127
  issue: 2
  year: 1979
  ident: 10.1016/j.isprsjprs.2021.09.005_b0270
  article-title: Red and photographic infrared linear combinations for monitoring vegetation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(79)90013-0
– start-page: 3146
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.09.005_b0070
  article-title: Dual attention network for scene segmentation
– start-page: 325
  year: 2018
  ident: 10.1016/j.isprsjprs.2021.09.005_b0330
  article-title: Bisenet: Bilateral segmentation network for real-time semantic segmentation
– volume: 178
  start-page: 124
  year: 2021
  ident: 10.1016/j.isprsjprs.2021.09.005_b0315
  article-title: Real-time Semantic Segmentation with Context Aggregation Network
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.06.006
– start-page: 11534
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.09.005_b0295
  article-title: ECA-net: Efficient channel attention for deep convolutional neural networks
– volume: 221
  start-page: 173
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.09.005_b0355
  article-title: Joint Deep Learning for land cover and land use classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.11.014
– year: 2021
  ident: 10.1016/j.isprsjprs.2021.09.005_b0160
  article-title: Multistage Attention ResU-Net for Semantic Segmentation of Fine-Resolution Remote Sensing Images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– ident: 10.1016/j.isprsjprs.2021.09.005_b0255
SSID ssj0001568
Score 2.6870964
Snippet Semantic segmentation of remotely sensed imagery plays a critical role in many real-world applications, such as environmental change monitoring, precision...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 84
SubjectTerms Attention Mechanism
Bilateral Architecture
Convolutional Neural Network
data collection
Deep Learning
economic analysis
environmental protection
neural networks
photogrammetry
precision agriculture
remote sensing
satellites
Semantic Segmentation
Title ABCNet: Attentive bilateral contextual network for efficient semantic segmentation of Fine-Resolution remotely sensed imagery
URI https://dx.doi.org/10.1016/j.isprsjprs.2021.09.005
https://www.proquest.com/docview/2636658600
Volume 181
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QHIAD4ineChLXsnbJMsJtTEwDxC6AxC1qUheKtm7aOqQd4Ldj98FLSBw4VEorJ6li13Ya-zNjx2ikrAKlPKsD60nrsBWpiKqm-o3Y-qDzWoc3PdW9l1cPjYc51q5yYSisstT9hU7PtXX5pFauZm2UJLVbH4epEwASoYiKJiXxSdkkKT95-wzzCIp0OCL2iPpbjFcyGY0nz3jhRrEe5ICnVMfudwv1Q1fnBqizylZKz5G3ipdbY3OQrrPlL3iC62yxLGn-NNtgr63zdg-yM97KMooIegFuk35ICcd9TgHqqJWn2EyLOHCOziuHHE8CqfkEBrjkicPG46BMT0r5MOYdnM2jf_6FxPIxIK-hP0PCdAIRTwYEijHbZPedi7t21ytrLXgOPZLMExCB0BHV4hGETBC6CDkVxroZByJWPp23aUL1dNYFcKpw_-r8eiylECDjMBBbbD4dprDNuPZtI0QegwYthdXaBjiMlOD0qVXC7TBVra9xJRA51cPomyri7Nl8MMYQY4yvDTJmh_kfHUcFFsffXc4qBppvYmXQYvzd-ahiucGPjk5SwhSGUyRSQqHrhs7i7n8m2GNLdFekNu6z-Ww8hQP0cTJ7mAvxIVtoXV53e-8tFACA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-x8sB4mPiaYB9gpL1GTerUYN66alUZ0JeBxJsVO5cR1KZVm07qw_733SVOBQiJhz1EspI7O_I5d-f47ncA38hIWYVKBVZHNoito1aqUq6aGnYzG6Kuah3ejNTwLv55373fgH6TC8NhlV731zq90tb-TtvPZnuW5-1fIXXTYQAkRhGVZ_odbDI6VbcFm73Lq-ForZCjOiOO6QNmeBbmlS9m88UjXbRX7EQV5imXsnvdSL1Q15UNGuzAB-88il79fruwgcUebD-BFNyDLV_V_GG1D3973_sjLC9Eryw5KOgPCpuPE845HguOUSfFvKRmUYeCC_JfBVaQEkQtFjihWc8dNX5PfIZSIaaZGNBoAf_2rxetmCOJG8crIiwWmIp8wrgYqwO4G_y47Q8DX24hcOSUlIHEFKVOuRyPZHCCxKUkrCTTZ1kkMxXykZtmYE9nXYTnirawLuxkcSwlxlkSyY_QKqYFHoLQoe0mJGbUqGNptbYRdRPH6PS5VdIdgWrm1ziPRc4lMcamCTp7NGvBGBaMCbUhwRxBuGac1XAcb7NcNAI0z1aWIaPxNvNpI3JD3x0fpiQFTpdEpKQi7438xU__M8AJbA1vb67N9eXo6jO85yd1puMXaJXzJX4ll6e0x35J_wPmMgMx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ABCNet%3A+Attentive+bilateral+contextual+network+for+efficient+semantic+segmentation+of+Fine-Resolution+remotely+sensed+imagery&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Li%2C+Rui&rft.au=Zheng%2C+Shunyi&rft.au=Zhang%2C+Ce&rft.au=Duan%2C+Chenxi&rft.date=2021-11-01&rft.issn=0924-2716&rft.volume=181+p.84-98&rft.spage=84&rft.epage=98&rft_id=info:doi/10.1016%2Fj.isprsjprs.2021.09.005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon