ABCNet: Attentive bilateral contextual network for efficient semantic segmentation of Fine-Resolution remotely sensed imagery
Semantic segmentation of remotely sensed imagery plays a critical role in many real-world applications, such as environmental change monitoring, precision agriculture, environmental protection, and economic assessment. Following rapid developments in sensor technologies, vast numbers of fine-resolut...
Saved in:
Published in | ISPRS journal of photogrammetry and remote sensing Vol. 181; pp. 84 - 98 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0924-2716 1872-8235 |
DOI | 10.1016/j.isprsjprs.2021.09.005 |
Cover
Loading…
Abstract | Semantic segmentation of remotely sensed imagery plays a critical role in many real-world applications, such as environmental change monitoring, precision agriculture, environmental protection, and economic assessment. Following rapid developments in sensor technologies, vast numbers of fine-resolution satellite and airborne remote sensing images are now available, for which semantic segmentation is potentially a valuable method. However, because of the rich complexity and heterogeneity of information provided with an ever-increasing spatial resolution, state-of-the-art deep learning algorithms commonly adopt complex network structures for segmentation, which often result in significant computational demand. Particularly, the frequently-used fully convolutional network (FCN) relies heavily on fine-grained spatial detail (fine spatial resolution) and contextual information (large receptive fields), both imposing high computational costs. This impedes the practical utility of FCN for real-world applications, especially those requiring real-time data processing. In this paper, we propose a novel Attentive Bilateral Contextual Network (ABCNet), a lightweight convolutional neural network (CNN) with a spatial path and a contextual path. Extensive experiments, including a comprehensive ablation study, demonstrate that ABCNet has strong discrimination capability with competitive accuracy compared with state-of-the-art benchmark methods while achieving significantly increased computational efficiency. Specifically, the proposed ABCNet achieves a 91.3% overall accuracy (OA) on the Potsdam test dataset and outperforms all lightweight benchmark methods significantly. The code is freely available at https://github.com/lironui/ABCNet. |
---|---|
AbstractList | Semantic segmentation of remotely sensed imagery plays a critical role in many real-world applications, such as environmental change monitoring, precision agriculture, environmental protection, and economic assessment. Following rapid developments in sensor technologies, vast numbers of fine-resolution satellite and airborne remote sensing images are now available, for which semantic segmentation is potentially a valuable method. However, because of the rich complexity and heterogeneity of information provided with an ever-increasing spatial resolution, state-of-the-art deep learning algorithms commonly adopt complex network structures for segmentation, which often result in significant computational demand. Particularly, the frequently-used fully convolutional network (FCN) relies heavily on fine-grained spatial detail (fine spatial resolution) and contextual information (large receptive fields), both imposing high computational costs. This impedes the practical utility of FCN for real-world applications, especially those requiring real-time data processing. In this paper, we propose a novel Attentive Bilateral Contextual Network (ABCNet), a lightweight convolutional neural network (CNN) with a spatial path and a contextual path. Extensive experiments, including a comprehensive ablation study, demonstrate that ABCNet has strong discrimination capability with competitive accuracy compared with state-of-the-art benchmark methods while achieving significantly increased computational efficiency. Specifically, the proposed ABCNet achieves a 91.3% overall accuracy (OA) on the Potsdam test dataset and outperforms all lightweight benchmark methods significantly. The code is freely available at https://github.com/lironui/ABCNet. |
Author | Zhang, Ce Zheng, Shunyi Wang, Libo Duan, Chenxi Atkinson, Peter M. Li, Rui |
Author_xml | – sequence: 1 givenname: Rui surname: Li fullname: Li, Rui organization: School of Remote Sensing and Information Engineering, Wuhan University, 129 Luoyu Road, Wuhan, Hubei 430079, China – sequence: 2 givenname: Shunyi surname: Zheng fullname: Zheng, Shunyi organization: School of Remote Sensing and Information Engineering, Wuhan University, 129 Luoyu Road, Wuhan, Hubei 430079, China – sequence: 3 givenname: Ce surname: Zhang fullname: Zhang, Ce organization: Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK – sequence: 4 givenname: Chenxi surname: Duan fullname: Duan, Chenxi email: c.duan@utwente.nl organization: Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, the Netherlands – sequence: 5 givenname: Libo surname: Wang fullname: Wang, Libo organization: School of Remote Sensing and Information Engineering, Wuhan University, 129 Luoyu Road, Wuhan, Hubei 430079, China – sequence: 6 givenname: Peter M. surname: Atkinson fullname: Atkinson, Peter M. organization: Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK |
BookMark | eNqNkMFuEzEQhi1UJNLCM-Ajl13Gdta7RuIQIkorVUWqytlyvOPKYdcOtlPIoe-OQxAHLnCwPPr1f6PRd07OQgxIyGsGLQMm325bn3cpb-trOXDWgmoBumdkwYaeNwMX3RlZgOLLhvdMviDnOW8BgHVyWJCn1Yf1LZZ3dFUKhuIfkW78ZAomM1EbQ8EfZV_HgOV7TF-pi4mic9762qYZZ1MhW4eHuQam-BhodPTSB2zuMMdp_ytKOMeC06EWQ8aR-tk8YDq8JM-dmTK--v1fkC-XH-_XV83N50_X69VNY4XqSyNwRKHGTkkumFLK2NFtwDjVOyacBD7UlPWdsBvLcJAdFxa4Wy6FwKUzTFyQN6e9uxS_7TEXPftscZpMwLjPmkshZTdIgFrtT1WbYs4Jnd6lem06aAb6KFxv9R_h-ihcg9JVeCXf_0VafzJSkvHTf_CrE4_VxKPHpPPRssXRJ7RFj9H_c8dPHZmoSQ |
CitedBy_id | crossref_primary_10_21122_2309_4923_2023_4_20_28 crossref_primary_10_1080_08839514_2022_2032924 crossref_primary_10_1109_TGRS_2024_3373033 crossref_primary_10_1080_01431161_2023_2295835 crossref_primary_10_3390_rs14184514 crossref_primary_10_4236_ojapps_2024_142020 crossref_primary_10_1007_s11263_024_02247_9 crossref_primary_10_1016_j_eswa_2024_123616 crossref_primary_10_1016_j_jag_2025_104457 crossref_primary_10_1088_2632_2153_ad8985 crossref_primary_10_3390_app14114709 crossref_primary_10_1016_j_isprsjprs_2025_01_017 crossref_primary_10_1109_JSTARS_2024_3459958 crossref_primary_10_1007_s40747_023_01054_y crossref_primary_10_1109_TGRS_2024_3363742 crossref_primary_10_1109_LGRS_2022_3215200 crossref_primary_10_1109_TGRS_2023_3281420 crossref_primary_10_1109_TGRS_2025_3526247 crossref_primary_10_1016_j_jag_2022_102706 crossref_primary_10_1016_j_ecoinf_2024_102818 crossref_primary_10_1109_JSTARS_2024_3452250 crossref_primary_10_3390_rs15143619 crossref_primary_10_1016_j_jag_2022_102825 crossref_primary_10_1109_JSEN_2023_3321742 crossref_primary_10_1109_LGRS_2023_3302432 crossref_primary_10_1109_TGRS_2023_3276081 crossref_primary_10_3390_rs15194649 crossref_primary_10_1109_JSTARS_2024_3358851 crossref_primary_10_1109_TGRS_2023_3239042 crossref_primary_10_1109_TGRS_2024_3515157 crossref_primary_10_3390_electronics12173653 crossref_primary_10_1109_JSTARS_2024_3487003 crossref_primary_10_1109_LGRS_2024_3506718 crossref_primary_10_1080_01431161_2022_2121190 crossref_primary_10_3390_rs16091478 crossref_primary_10_1016_j_engappai_2024_108416 crossref_primary_10_1016_j_jag_2024_104104 crossref_primary_10_1080_01431161_2023_2285742 crossref_primary_10_1080_10095020_2021_2017237 crossref_primary_10_1109_JSTARS_2024_3349625 crossref_primary_10_1109_TGRS_2023_3234549 crossref_primary_10_1109_TGRS_2024_3502401 crossref_primary_10_1117_1_JRS_18_044515 crossref_primary_10_3390_rs14010215 crossref_primary_10_1109_TGRS_2023_3339291 crossref_primary_10_3389_fevo_2023_1201125 crossref_primary_10_1109_JSTARS_2024_3418632 crossref_primary_10_1109_TGRS_2023_3272614 crossref_primary_10_1109_TGRS_2024_3398038 crossref_primary_10_1109_JSTARS_2023_3316307 crossref_primary_10_1117_1_JRS_18_034518 crossref_primary_10_1109_LGRS_2022_3143368 crossref_primary_10_1080_01431161_2023_2274318 crossref_primary_10_1109_TGRS_2022_3186634 crossref_primary_10_11834_jig_230605 crossref_primary_10_1109_TGRS_2023_3329152 crossref_primary_10_1109_ACCESS_2024_3425154 crossref_primary_10_1109_JSTARS_2023_3285632 crossref_primary_10_3390_app14051986 crossref_primary_10_1109_JSTARS_2023_3310160 crossref_primary_10_3390_rs16244627 crossref_primary_10_1016_j_jag_2024_103661 crossref_primary_10_1016_j_jvcir_2023_103847 crossref_primary_10_1109_TGRS_2022_3232143 crossref_primary_10_1109_TGRS_2023_3318788 crossref_primary_10_1109_JSTARS_2024_3397488 crossref_primary_10_1109_LGRS_2024_3357062 crossref_primary_10_1109_TGRS_2024_3504733 crossref_primary_10_3788_LOP232052 crossref_primary_10_1109_TGRS_2024_3385318 crossref_primary_10_3390_rs16152776 crossref_primary_10_1109_TGRS_2022_3223416 crossref_primary_10_3390_rs15133366 crossref_primary_10_1109_TGRS_2024_3490559 crossref_primary_10_3390_e24111619 crossref_primary_10_3390_rs16193622 crossref_primary_10_1109_JSTARS_2024_3471638 crossref_primary_10_1016_j_enconman_2022_116185 crossref_primary_10_1109_ACCESS_2024_3451153 crossref_primary_10_1109_TGRS_2023_3268362 crossref_primary_10_3390_rs14215399 crossref_primary_10_1007_s10489_025_06433_1 crossref_primary_10_1109_MGRS_2023_3321258 crossref_primary_10_1109_LGRS_2023_3318348 crossref_primary_10_1080_01431161_2023_2242590 crossref_primary_10_1109_JSTARS_2024_3511517 crossref_primary_10_1109_LGRS_2022_3189675 crossref_primary_10_1145_3558770 crossref_primary_10_3390_rs16234392 crossref_primary_10_1109_TGRS_2024_3351437 crossref_primary_10_1109_JSTARS_2024_3472296 crossref_primary_10_1109_TGRS_2024_3465496 crossref_primary_10_3390_rs13163065 crossref_primary_10_1109_JSTARS_2022_3197937 crossref_primary_10_1109_TGRS_2024_3509735 crossref_primary_10_3390_rs16173184 crossref_primary_10_1109_TGRS_2024_3379398 crossref_primary_10_1109_JSTARS_2024_3486724 crossref_primary_10_1109_TGRS_2022_3183144 crossref_primary_10_1080_01431161_2023_2292014 crossref_primary_10_1016_j_asr_2025_02_033 crossref_primary_10_1109_TGRS_2024_3355925 crossref_primary_10_1109_LGRS_2023_3333017 crossref_primary_10_1080_01431161_2024_2338232 crossref_primary_10_1109_TGRS_2024_3393489 crossref_primary_10_1038_s41598_025_85125_9 crossref_primary_10_1109_TGRS_2025_3544549 crossref_primary_10_1016_j_asr_2024_06_056 crossref_primary_10_3390_buildings14030808 crossref_primary_10_1109_LGRS_2024_3507033 crossref_primary_10_1016_j_eswa_2023_121999 crossref_primary_10_1109_TGRS_2024_3493121 crossref_primary_10_1109_JSTARS_2023_3328559 crossref_primary_10_1109_TGRS_2023_3314641 crossref_primary_10_1007_s10489_022_03932_3 crossref_primary_10_3390_rs14030533 crossref_primary_10_1007_s41870_023_01711_y crossref_primary_10_3390_a17120594 crossref_primary_10_1049_cit2_12278 crossref_primary_10_3390_s24227266 crossref_primary_10_3390_rs14215415 crossref_primary_10_1016_j_dsp_2024_104876 crossref_primary_10_1109_TGRS_2024_3430081 crossref_primary_10_3390_math10244735 crossref_primary_10_1016_j_isprsjprs_2024_06_021 crossref_primary_10_1080_01431161_2022_2030071 crossref_primary_10_1016_j_jag_2023_103553 crossref_primary_10_1109_JSTARS_2023_3335891 crossref_primary_10_1109_TGRS_2024_3463204 crossref_primary_10_1109_TGRS_2024_3477290 crossref_primary_10_3390_rs13245015 crossref_primary_10_1109_JSTARS_2023_3243247 crossref_primary_10_1109_TGRS_2024_3443420 crossref_primary_10_1109_JSTARS_2024_3437737 crossref_primary_10_1109_TGRS_2023_3249230 crossref_primary_10_1109_TCSVT_2022_3227172 crossref_primary_10_3390_rs16142526 crossref_primary_10_1109_JSTARS_2023_3342453 crossref_primary_10_3390_rs14071638 crossref_primary_10_1109_TGRS_2025_3533019 crossref_primary_10_1049_ipr2_12898 crossref_primary_10_1016_j_engappai_2023_107638 crossref_primary_10_1109_JSTARS_2024_3490584 crossref_primary_10_1109_JSTARS_2025_3545365 crossref_primary_10_1016_j_iswa_2025_200505 crossref_primary_10_1109_TGRS_2024_3441944 crossref_primary_10_1109_TGRS_2023_3336689 crossref_primary_10_3390_rs15215213 crossref_primary_10_1109_JSTARS_2025_3542255 crossref_primary_10_1109_TCSVT_2022_3216313 crossref_primary_10_3390_rs16203805 crossref_primary_10_1109_TGRS_2024_3364381 crossref_primary_10_1109_LGRS_2024_3350593 crossref_primary_10_3390_rs16071162 crossref_primary_10_3390_diagnostics12081913 crossref_primary_10_3390_rs16152851 crossref_primary_10_3390_rs16173278 crossref_primary_10_3390_ijgi11090494 crossref_primary_10_3390_buildings14113353 crossref_primary_10_1109_JSTARS_2024_3417211 crossref_primary_10_1109_JSTARS_2024_3444773 crossref_primary_10_1109_TGRS_2024_3516501 crossref_primary_10_1016_j_cageo_2023_105340 crossref_primary_10_1109_TGRS_2024_3427370 crossref_primary_10_1080_01431161_2023_2225710 crossref_primary_10_1109_JSTARS_2024_3443283 crossref_primary_10_3390_rs15051328 crossref_primary_10_1109_JSTARS_2024_3378301 crossref_primary_10_1109_TGRS_2024_3446549 crossref_primary_10_1007_s11042_023_15660_y crossref_primary_10_1016_j_isprsjprs_2022_06_008 crossref_primary_10_3390_rs16162930 crossref_primary_10_1109_LGRS_2024_3403088 crossref_primary_10_1177_14759217231183656 crossref_primary_10_1109_TGRS_2024_3373493 crossref_primary_10_1109_TGRS_2025_3531930 crossref_primary_10_1109_TGRS_2023_3268159 crossref_primary_10_1109_JSTARS_2023_3344210 crossref_primary_10_1109_TGRS_2024_3477548 |
Cites_doi | 10.3390/rs12030582 10.1016/j.rse.2019.111593 10.1109/TPAMI.2016.2644615 10.1109/TITS.2017.2750080 10.1109/TGRS.2019.2906689 10.1016/j.isprsjprs.2017.06.001 10.1016/j.neucom.2018.11.051 10.1016/j.rse.2018.02.026 10.1109/TGRS.2016.2612821 10.1016/j.patcog.2020.107611 10.1016/j.isprsjprs.2018.08.007 10.1016/j.isprsjprs.2020.01.013 10.1109/CVPR.2018.00745 10.1016/j.rse.2017.08.030 10.1016/j.isprsjprs.2018.04.014 10.1109/TGRS.2014.2306692 10.1016/j.isprsjprs.2017.11.009 10.1016/j.rse.2019.111322 10.1109/MGRS.2017.2762307 10.1109/LRA.2020.3039744 10.1016/0034-4257(92)90011-8 10.1007/s11263-021-01515-2 10.3390/rs13163065 10.1016/j.isprsjprs.2017.12.007 10.1007/s11356-020-08984-x 10.3390/rs13183707 10.1109/TGRS.2020.2976658 10.1016/j.isprsjprs.2017.11.011 10.1016/j.isprsjprs.2020.09.019 10.1016/j.rse.2018.10.031 10.1109/TPAMI.2015.2389824 10.1109/TGRS.2017.2778300 10.1016/0034-4257(79)90013-0 10.1016/j.isprsjprs.2021.06.006 10.1016/j.rse.2018.11.014 |
ContentType | Journal Article |
Copyright | 2021 The Authors |
Copyright_xml | – notice: 2021 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.isprsjprs.2021.09.005 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1872-8235 |
EndPage | 98 |
ExternalDocumentID | 10_1016_j_isprsjprs_2021_09_005 S0924271621002379 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSV SSZ T5K T9H WUQ ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c397t-3ede39d596231999acdfb0af97f13f60281991753cbc1e86523c02f4433e4fa13 |
IEDL.DBID | .~1 |
ISSN | 0924-2716 |
IngestDate | Thu Jul 10 17:17:49 EDT 2025 Thu Apr 24 23:13:14 EDT 2025 Tue Jul 01 03:46:46 EDT 2025 Fri Feb 23 02:43:03 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Semantic Segmentation Convolutional Neural Network Bilateral Architecture Deep Learning Attention Mechanism |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c397t-3ede39d596231999acdfb0af97f13f60281991753cbc1e86523c02f4433e4fa13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0924271621002379 |
PQID | 2636658600 |
PQPubID | 24069 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2636658600 crossref_primary_10_1016_j_isprsjprs_2021_09_005 crossref_citationtrail_10_1016_j_isprsjprs_2021_09_005 elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2021_09_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2021 2021-11-00 20211101 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
PublicationDecade | 2020 |
PublicationTitle | ISPRS journal of photogrammetry and remote sensing |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Tucker (b0270) 1979; 8 Gong, Marceau, Howarth (b0085) 1992; 40 Wang, Jiang, Qian, Yang, Li, Zhang, Wang, Tang (b0280) 2017 He, Zhang, Ren, Sun (b0095) 2015; 37 Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L., 2014. Semantic image segmentation with deep convolutional nets and fully connected crfs. arXiv preprint arXiv:1412.7062. Yu, F., Koltun, V., 2015. Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122. Bello, Zoph, Vaswani, Shlens, Le (b0015) 2019 Oršić, Šegvić (b0225) 2021; 110 Ghassemi, Fiandrotti, Francini, Magli (b0075) 2019; 57 Samie, Abbas, Azeem, Hamid, Iqbal, Hasan, Deng (b0250) 2020; 27 Liu, Fan, Wang, Bai, Xiang, Pan (b0190) 2018; 145 Poudel, R.P., Liwicki, S., Cipolla, R., 2019. Fast-scnn: Fast semantic segmentation network. arXiv preprint arXiv:1902.04502. Zhang, Harrison, Pan, Li, Sargent, Atkinson (b0350) 2020; 237 Romera, Alvarez, Bergasa, Arroyo (b9010) 2017; 19 Chen, L.-C., Papandreou, G., Schroff, F., Adam, H., 2017a. Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587. He, Zhang, Ren, Sun (b0100) 2016 Zhong, Zhao, Zhang (b0380) 2014; 52 Li, Zheng, Duan, Yang, Wang (b0165) 2020; 12 Zhuang, Yang, Gu, Dvornek (b0390) 2019 Griffiths, Nendel, Hostert (b0090) 2019; 220 Li, Zhong, Wu, Yang, Lin, Liu (b0180) 2019 Long, Shelhamer, Darrell (b0195) 2015 Tong, Xia, Lu, Shen, Li, You, Zhang (b0265) 2020; 237 Li, Duan, Zheng, Zhang, Atkinson (b0155) 2021 Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7132-7141. Cao, Xu, Lin, Wei, Hu (b0020) 2019 Ronneberger, Fischer, Brox (b0245) 2015 Lu, Wang, Ma, Shen, Shao, Porikli (b0200) 2019 Huang, L., Yuan, Y., Guo, J., Zhang, C., Chen, X., Wang, J., 2019a. Interlaced sparse self-attention for semantic segmentation. arXiv preprint arXiv:1907.12273. Chen, Zhu, Papandreou, Schroff, Adam (b0035) 2018 Liu, Kampffmeyer, Jenssen, Salberg (b0185) 2020; 58 Xia, Bai, Ding, Zhu, Belongie, Luo, Datcu, Pelillo, Zhang (b0310) 2018 Sherrah, J., 2016. Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery. arXiv preprint arXiv:1606.02585. Ioffe, Szegedy (b0130) 2015 Ma, Li, Ma, Cheng, Du, Liu (b0210) 2017; 130 Zhao, Shi, Qi, Wang, Jia (b0370) 2017 Audebert, Le Saux, Lefèvre (b0005) 2018; 140 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b0275) 2017 Badrinarayanan, Kendall, Cipolla (b0010) 2017; 39 Picoli, Camara, Sanches, Simões, Carvalho, Maciel, Coutinho, Esquerdo, Antunes, Begotti, Arvor, Almeida (b0230) 2018; 145 Wang, Li, Wang, Duan, Wang, Meng (b0285) 2021; 13 Glorot, Bordes, Bengio (b0080) 2011 Li, Cheng, Bu, You (b9015) 2017; 56 Zhang, Chen, Li, Hong, Liu, Ma, Han, Ding (b0360) 2019 Zheng, Huan, Xia, Gong (b0375) 2020; 170 Yang, Kumaar, Lyu, Nex (b0315) 2021; 178 Hu, Perazzi, Heilbron, Wang, Lin, Saenko, Sclaroff (b9005) 2020; 6 Zhang, Goodfellow, Metaxas, Odena (b0365) 2019 Li, Wang, Hu, Yang (b0175) 2019 Sun, Tian, Xu (b0260) 2019; 330 Wang, Girshick, Gupta, He (b0300) 2018 Yu, C., Gao, C., Wang, J., Yu, G., Shen, C., Sang, N., 2020. Bisenet v2: Bilateral network with guided aggregation for real-time semantic segmentation. arXiv preprint arXiv:2004.02147. Yu, Wang, Peng, Gao, Yu, Sang (b0330) 2018 Zhu, Tuia, Mou, Xia, Zhang, Xu, Fraundorfer (b0385) 2017; 5 Wang, Chen, Yuan, Liu, Huang, Hou, Cottrell (b0290) 2018 Woo, Park, Lee, So Kweon (b0305) 2018 Lyons, Keith, Phinn, Mason, Elith (b0205) 2018; 208 Diakogiannis, Waldner, Caccetta, Wu (b0060) 2020; 162 Duan, C., Li, R., 2020. Multi-Head Linear Attention Generative Adversarial Network for Thin Cloud Removal. arXiv preprint arXiv:2012.10898. Zhang, Sargent, Pan, Li, Gardiner, Hare, Atkinson (b0355) 2019; 221 Marmanis, Schindler, Wegner, Galliani, Datcu, Stilla (b0220) 2018; 135 Chen, Kalantidis, Li, Yan, Feng (b0045) 2018 Katharopoulos, Vyas, Pappas, Fleuret (b0135) 2020 Li, Zheng, Duan, Su, Zhang (b0160) 2021 Diakogiannis, F.I., Waldner, F., Caccetta, P., 2020a. Looking for change? Roll the Dice and demand Attention. arXiv preprint arXiv:2009.02062. Chollet (b0050) 2017 Yin, Pflugmacher, Li, Li, Hostert (b0320) 2018; 204 Li, G., Yun, I., Kim, J., Kim, J., 2019a. Dabnet: Depth-wise asymmetric bottleneck for real-time semantic segmentation. arXiv preprint arXiv:1907.11357. Yuan, Y., Wang, J., 2018. Ocnet: Object context network for scene parsing. arXiv preprint arXiv:1809.00916. Li, Zheng, Zhang, Duan, Su, Wang, Atkinson (b0170) 2021 Wang, Wu, Zhu, Li, Zuo, Hu (b0295) 2020 Huang, Wang, Huang, Huang, Wei, Liu (b0120) 2019 Maggiori, Tarabalka, Charpiat, Alliez (b9000) 2016; 55 Fu, Liu, Tian, Li, Bao, Fang, Lu (b0070) 2019 Yuan, Y., Chen, X., Wang, J., 2019. Object-contextual representations for semantic segmentation. arXiv preprint arXiv:1909.11065. Chen, Zhang, Xiao, Nie, Shao, Liu, Chua (b0040) 2017 Kemker, Salvaggio, Kanan (b0140) 2018; 145 Zhong (10.1016/j.isprsjprs.2021.09.005_b0380) 2014; 52 Tong (10.1016/j.isprsjprs.2021.09.005_b0265) 2020; 237 Hu (10.1016/j.isprsjprs.2021.09.005_b9005) 2020; 6 Lu (10.1016/j.isprsjprs.2021.09.005_b0200) 2019 Maggiori (10.1016/j.isprsjprs.2021.09.005_b9000) 2016; 55 Katharopoulos (10.1016/j.isprsjprs.2021.09.005_b0135) 2020 Gong (10.1016/j.isprsjprs.2021.09.005_b0085) 1992; 40 10.1016/j.isprsjprs.2021.09.005_b0325 Li (10.1016/j.isprsjprs.2021.09.005_b0175) 2019 Zhang (10.1016/j.isprsjprs.2021.09.005_b0350) 2020; 237 Zhang (10.1016/j.isprsjprs.2021.09.005_b0355) 2019; 221 Tucker (10.1016/j.isprsjprs.2021.09.005_b0270) 1979; 8 Xia (10.1016/j.isprsjprs.2021.09.005_b0310) 2018 Chollet (10.1016/j.isprsjprs.2021.09.005_b0050) 2017 Yin (10.1016/j.isprsjprs.2021.09.005_b0320) 2018; 204 Badrinarayanan (10.1016/j.isprsjprs.2021.09.005_b0010) 2017; 39 Zhang (10.1016/j.isprsjprs.2021.09.005_b0365) 2019 Ghassemi (10.1016/j.isprsjprs.2021.09.005_b0075) 2019; 57 Liu (10.1016/j.isprsjprs.2021.09.005_b0185) 2020; 58 Woo (10.1016/j.isprsjprs.2021.09.005_b0305) 2018 Li (10.1016/j.isprsjprs.2021.09.005_b0160) 2021 Wang (10.1016/j.isprsjprs.2021.09.005_b0290) 2018 He (10.1016/j.isprsjprs.2021.09.005_b0100) 2016 Audebert (10.1016/j.isprsjprs.2021.09.005_b0005) 2018; 140 Li (10.1016/j.isprsjprs.2021.09.005_b9015) 2017; 56 Ronneberger (10.1016/j.isprsjprs.2021.09.005_b0245) 2015 Lyons (10.1016/j.isprsjprs.2021.09.005_b0205) 2018; 208 10.1016/j.isprsjprs.2021.09.005_b0255 Chen (10.1016/j.isprsjprs.2021.09.005_b0040) 2017 10.1016/j.isprsjprs.2021.09.005_b0055 Li (10.1016/j.isprsjprs.2021.09.005_b0155) 2021 Samie (10.1016/j.isprsjprs.2021.09.005_b0250) 2020; 27 Chen (10.1016/j.isprsjprs.2021.09.005_b0035) 2018 Glorot (10.1016/j.isprsjprs.2021.09.005_b0080) 2011 Yang (10.1016/j.isprsjprs.2021.09.005_b0315) 2021; 178 Fu (10.1016/j.isprsjprs.2021.09.005_b0070) 2019 Bello (10.1016/j.isprsjprs.2021.09.005_b0015) 2019 10.1016/j.isprsjprs.2021.09.005_b0335 Wang (10.1016/j.isprsjprs.2021.09.005_b0285) 2021; 13 He (10.1016/j.isprsjprs.2021.09.005_b0095) 2015; 37 Wang (10.1016/j.isprsjprs.2021.09.005_b0300) 2018 Zhao (10.1016/j.isprsjprs.2021.09.005_b0370) 2017 Yu (10.1016/j.isprsjprs.2021.09.005_b0330) 2018 Ioffe (10.1016/j.isprsjprs.2021.09.005_b0130) 2015 Huang (10.1016/j.isprsjprs.2021.09.005_b0120) 2019 Liu (10.1016/j.isprsjprs.2021.09.005_b0190) 2018; 145 Wang (10.1016/j.isprsjprs.2021.09.005_b0295) 2020 Zhu (10.1016/j.isprsjprs.2021.09.005_b0385) 2017; 5 10.1016/j.isprsjprs.2021.09.005_b0025 Cao (10.1016/j.isprsjprs.2021.09.005_b0020) 2019 Kemker (10.1016/j.isprsjprs.2021.09.005_b0140) 2018; 145 10.1016/j.isprsjprs.2021.09.005_b0145 Li (10.1016/j.isprsjprs.2021.09.005_b0180) 2019 Zheng (10.1016/j.isprsjprs.2021.09.005_b0375) 2020; 170 10.1016/j.isprsjprs.2021.09.005_b0065 Li (10.1016/j.isprsjprs.2021.09.005_b0165) 2020; 12 Marmanis (10.1016/j.isprsjprs.2021.09.005_b0220) 2018; 135 10.1016/j.isprsjprs.2021.09.005_b0340 Ma (10.1016/j.isprsjprs.2021.09.005_b0210) 2017; 130 Romera (10.1016/j.isprsjprs.2021.09.005_b9010) 2017; 19 Vaswani (10.1016/j.isprsjprs.2021.09.005_b0275) 2017 10.1016/j.isprsjprs.2021.09.005_b0105 Picoli (10.1016/j.isprsjprs.2021.09.005_b0230) 2018; 145 10.1016/j.isprsjprs.2021.09.005_b0345 Zhang (10.1016/j.isprsjprs.2021.09.005_b0360) 2019 Oršić (10.1016/j.isprsjprs.2021.09.005_b0225) 2021; 110 Li (10.1016/j.isprsjprs.2021.09.005_b0170) 2021 Wang (10.1016/j.isprsjprs.2021.09.005_b0280) 2017 10.1016/j.isprsjprs.2021.09.005_b0030 Zhuang (10.1016/j.isprsjprs.2021.09.005_b0390) 2019 Chen (10.1016/j.isprsjprs.2021.09.005_b0045) 2018 Diakogiannis (10.1016/j.isprsjprs.2021.09.005_b0060) 2020; 162 10.1016/j.isprsjprs.2021.09.005_b0115 Long (10.1016/j.isprsjprs.2021.09.005_b0195) 2015 Sun (10.1016/j.isprsjprs.2021.09.005_b0260) 2019; 330 Griffiths (10.1016/j.isprsjprs.2021.09.005_b0090) 2019; 220 10.1016/j.isprsjprs.2021.09.005_b0235 |
References_xml | – volume: 178 start-page: 124 year: 2021 end-page: 134 ident: b0315 article-title: Real-time Semantic Segmentation with Context Aggregation Network publication-title: ISPRS J. Photogramm. Remote Sens. – reference: Poudel, R.P., Liwicki, S., Cipolla, R., 2019. Fast-scnn: Fast semantic segmentation network. arXiv preprint arXiv:1902.04502. – reference: Yu, C., Gao, C., Wang, J., Yu, G., Shen, C., Sang, N., 2020. Bisenet v2: Bilateral network with guided aggregation for real-time semantic segmentation. arXiv preprint arXiv:2004.02147. – start-page: 3286 year: 2019 end-page: 3295 ident: b0015 article-title: Attention augmented convolutional networks publication-title: Proceedings of the IEEE/CVF international conference on computer vision – volume: 145 start-page: 328 year: 2018 end-page: 339 ident: b0230 article-title: Big earth observation time series analysis for monitoring Brazilian agriculture publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 5 start-page: 8 year: 2017 end-page: 36 ident: b0385 article-title: Deep learning in remote sensing: A comprehensive review and list of resources publication-title: IEEE Geosci. Remote Sens. Mag. – start-page: 2881 year: 2017 end-page: 2890 ident: b0370 article-title: Pyramid scene parsing network publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – start-page: 234 year: 2015 end-page: 241 ident: b0245 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: International Conference on Medical image computing and computer-assisted intervention. Springer – reference: Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7132-7141. – start-page: 315 year: 2011 end-page: 323 ident: b0080 article-title: Deep sparse rectifier neural networks publication-title: Proceedings of the fourteenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings – year: 2021 ident: b0170 article-title: Multiattention network for semantic segmentation of fine-resolution remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 3431 year: 2015 end-page: 3440 ident: b0195 article-title: Fully convolutional networks for semantic segmentation publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – reference: Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L., 2014. Semantic image segmentation with deep convolutional nets and fully connected crfs. arXiv preprint arXiv:1412.7062. – volume: 221 start-page: 173 year: 2019 end-page: 187 ident: b0355 article-title: Joint Deep Learning for land cover and land use classification publication-title: Remote Sens. Environ. – volume: 39 start-page: 2481 year: 2017 end-page: 2495 ident: b0010 article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 3623 year: 2019 end-page: 3632 ident: b0200 article-title: See more, know more: Unsupervised video object segmentation with co-attention siamese networks publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – reference: Yuan, Y., Chen, X., Wang, J., 2019. Object-contextual representations for semantic segmentation. arXiv preprint arXiv:1909.11065. – start-page: 801 year: 2018 end-page: 818 ident: b0035 article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation publication-title: Proceedings of the European conference on computer vision (ECCV) – volume: 12 start-page: 582 year: 2020 ident: b0165 article-title: Classification of Hyperspectral Image Based on Double-Branch Dual-Attention Mechanism Network publication-title: Remote Sens. – start-page: 603 year: 2019 end-page: 612 ident: b0120 article-title: Ccnet: Criss-cross attention for semantic segmentation publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 27 start-page: 25415 year: 2020 end-page: 25433 ident: b0250 article-title: Examining the impacts of future land use/land cover changes on climate in Punjab province, Pakistan: implications for environmental sustainability and economic growth publication-title: Environ. Sci. Pollut. Res. – volume: 130 start-page: 277 year: 2017 end-page: 293 ident: b0210 article-title: A review of supervised object-based land-cover image classification publication-title: ISPRS J. Photogramm. Remote Sens. – start-page: 3974 year: 2018 end-page: 3983 ident: b0310 article-title: DOTA: A large-scale dataset for object detection in aerial images publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – reference: Duan, C., Li, R., 2020. Multi-Head Linear Attention Generative Adversarial Network for Thin Cloud Removal. arXiv preprint arXiv:2012.10898. – start-page: 5998 year: 2017 end-page: 6008 ident: b0275 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – start-page: 7794 year: 2018 end-page: 7803 ident: b0300 article-title: Non-local neural networks publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – start-page: 6798 year: 2019 end-page: 6807 ident: b0360 article-title: Acfnet: Attentional class feature network for semantic segmentation publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 8 start-page: 127 year: 1979 end-page: 150 ident: b0270 article-title: Red and photographic infrared linear combinations for monitoring vegetation publication-title: Remote Sens. Environ. – start-page: 7354 year: 2019 end-page: 7363 ident: b0365 article-title: Self-attention generative adversarial networks publication-title: Int. Conf. Machine Learn. PMLR – reference: Huang, L., Yuan, Y., Guo, J., Zhang, C., Chen, X., Wang, J., 2019a. Interlaced sparse self-attention for semantic segmentation. arXiv preprint arXiv:1907.12273. – year: 2021 ident: b0155 article-title: MACU-Net for semantic segmentation of fine-resolution remotely sensed images publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 55 start-page: 645 year: 2016 end-page: 657 ident: b9000 article-title: Convolutional neural networks for large-scale remote-sensing image classification publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2019 ident: b0390 article-title: Shelfnet for fast semantic segmentation publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops – reference: Sherrah, J., 2016. Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery. arXiv preprint arXiv:1606.02585. – reference: Li, G., Yun, I., Kim, J., Kim, J., 2019a. Dabnet: Depth-wise asymmetric bottleneck for real-time semantic segmentation. arXiv preprint arXiv:1907.11357. – start-page: 9167 year: 2019 end-page: 9176 ident: b0180 article-title: Expectation-maximization attention networks for semantic segmentation publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 162 start-page: 94 year: 2020 end-page: 114 ident: b0060 article-title: Resunet-a: a deep learning framework for semantic segmentation of remotely sensed data publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 40 start-page: 137 year: 1992 end-page: 151 ident: b0085 article-title: A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data publication-title: Remote Sens. Environ. – volume: 37 start-page: 1904 year: 2015 end-page: 1916 ident: b0095 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 19 start-page: 263 year: 2017 end-page: 272 ident: b9010 article-title: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 204 start-page: 918 year: 2018 end-page: 930 ident: b0320 article-title: Land use and land cover change in Inner Mongolia-understanding the effects of China's re-vegetation programs publication-title: Remote Sens. Environ. – year: 2019 ident: b0020 article-title: Gcnet: Non-local networks meet squeeze-excitation networks and beyond publication-title: Proceedings of the IEEE International Conference on Computer Vision Workshops – start-page: 3 year: 2018 end-page: 19 ident: b0305 article-title: Cbam: Convolutional block attention module publication-title: Proceedings of the European conference on computer vision (ECCV) – start-page: 352 year: 2018 end-page: 361 ident: b0045 article-title: A^ 2-nets: Double attention networks publication-title: Adv. Neural Inf. Process. Syst. – start-page: 1251 year: 2017 end-page: 1258 ident: b0050 article-title: Xception: Deep learning with depthwise separable convolutions publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 145 start-page: 78 year: 2018 end-page: 95 ident: b0190 article-title: Semantic labeling in very high resolution images via a self-cascaded convolutional neural network publication-title: ISPRS J. Photogramm. Remote Sens. – reference: Chen, L.-C., Papandreou, G., Schroff, F., Adam, H., 2017a. Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587. – start-page: 3146 year: 2019 end-page: 3154 ident: b0070 article-title: Dual attention network for scene segmentation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 110 year: 2021 ident: b0225 article-title: Efficient semantic segmentation with pyramidal fusion publication-title: Pattern Recognition – volume: 208 start-page: 145 year: 2018 end-page: 153 ident: b0205 article-title: A comparison of resampling methods for remote sensing classification and accuracy assessment publication-title: Remote Sens. Environ. – volume: 58 start-page: 6309 year: 2020 end-page: 6320 ident: b0185 article-title: Dense dilated convolutions’ merging network for land cover classification publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 13 start-page: 3065 year: 2021 ident: b0285 article-title: Transformer Meets Convolution: A Bilateral Awareness Network for Semantic Segmentation of Very Fine Resolution Urban Scene Images publication-title: Remote Sens. – volume: 330 start-page: 297 year: 2019 end-page: 304 ident: b0260 article-title: Problems of encoder-decoder frameworks for high-resolution remote sensing image segmentation: Structural stereotype and insufficient learning publication-title: Neurocomputing – volume: 220 start-page: 135 year: 2019 end-page: 151 ident: b0090 article-title: Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping publication-title: Remote Sens. Environ. – start-page: 11534 year: 2020 end-page: 11542 ident: b0295 article-title: ECA-net: Efficient channel attention for deep convolutional neural networks publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 6 start-page: 263 year: 2020 end-page: 270 ident: b9005 article-title: Real-time semantic segmentation with fast attention publication-title: IEEE Robot. Autom. Lett. – year: 2021 ident: b0160 article-title: Multistage Attention ResU-Net for Semantic Segmentation of Fine-Resolution Remote Sensing Images publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 140 start-page: 20 year: 2018 end-page: 32 ident: b0005 article-title: Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks publication-title: ISPRS J. Photogramm. Remote Sens. – start-page: 3156 year: 2017 end-page: 3164 ident: b0280 article-title: Residual attention network for image classification publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – reference: Diakogiannis, F.I., Waldner, F., Caccetta, P., 2020a. Looking for change? Roll the Dice and demand Attention. arXiv preprint arXiv:2009.02062. – start-page: 5659 year: 2017 end-page: 5667 ident: b0040 article-title: Sca-cnn: Spatial and channel-wise attention in convolutional networks for image captioning publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 170 start-page: 15 year: 2020 end-page: 28 ident: b0375 article-title: Parsing very high resolution urban scene images by learning deep ConvNets with edge-aware loss publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 135 start-page: 158 year: 2018 end-page: 172 ident: b0220 article-title: Classification with an edge: Improving semantic image segmentation with boundary detection publication-title: ISPRS J. Photogramm. Remote Sens. – reference: Yu, F., Koltun, V., 2015. Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122. – start-page: 510 year: 2019 end-page: 519 ident: b0175 article-title: Selective kernel networks publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – start-page: 770 year: 2016 end-page: 778 ident: b0100 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – start-page: 5156 year: 2020 end-page: 5165 ident: b0135 article-title: Transformers are rnns: Fast autoregressive transformers with linear attention publication-title: Int. Conf. Machine Learn. PMLR – volume: 52 start-page: 7023 year: 2014 end-page: 7037 ident: b0380 article-title: A hybrid object-oriented conditional random field classification framework for high spatial resolution remote sensing imagery publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 57 start-page: 6517 year: 2019 end-page: 6529 ident: b0075 article-title: Learning and adapting robust features for satellite image segmentation on heterogeneous data sets publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 237 year: 2020 ident: b0350 article-title: Scale Sequence Joint Deep Learning (SS-JDL) for land use and land cover classification publication-title: Remote Sens. Environ. – volume: 56 start-page: 2337 year: 2017 end-page: 2348 ident: b9015 article-title: Rotation-insensitive and context-augmented object detection in remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 325 year: 2018 end-page: 341 ident: b0330 article-title: Bisenet: Bilateral segmentation network for real-time semantic segmentation publication-title: Proceedings of the European conference on computer vision (ECCV) – start-page: 448 year: 2015 end-page: 456 ident: b0130 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: International conference on machine learning. PMLR – start-page: 1451 year: 2018 end-page: 1460 ident: b0290 article-title: Understanding convolution for semantic segmentation, 2018 IEEE winter conference on applications of computer vision (WACV) publication-title: IEEE – volume: 237 year: 2020 ident: b0265 article-title: Land-cover classification with high-resolution remote sensing images using transferable deep models publication-title: Remote Sens. Environ. – reference: Yuan, Y., Wang, J., 2018. Ocnet: Object context network for scene parsing. arXiv preprint arXiv:1809.00916. – volume: 145 start-page: 60 year: 2018 end-page: 77 ident: b0140 article-title: Algorithms for semantic segmentation of multispectral remote sensing imagery using deep learning publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 12 start-page: 582 year: 2020 ident: 10.1016/j.isprsjprs.2021.09.005_b0165 article-title: Classification of Hyperspectral Image Based on Double-Branch Dual-Attention Mechanism Network publication-title: Remote Sens. doi: 10.3390/rs12030582 – volume: 237 year: 2020 ident: 10.1016/j.isprsjprs.2021.09.005_b0350 article-title: Scale Sequence Joint Deep Learning (SS-JDL) for land use and land cover classification publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111593 – volume: 39 start-page: 2481 issue: 12 year: 2017 ident: 10.1016/j.isprsjprs.2021.09.005_b0010 article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – volume: 19 start-page: 263 year: 2017 ident: 10.1016/j.isprsjprs.2021.09.005_b9010 article-title: Erfnet: Efficient residual factorized convnet for real-time semantic segmentation publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2017.2750080 – volume: 57 start-page: 6517 issue: 9 year: 2019 ident: 10.1016/j.isprsjprs.2021.09.005_b0075 article-title: Learning and adapting robust features for satellite image segmentation on heterogeneous data sets publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2906689 – volume: 130 start-page: 277 year: 2017 ident: 10.1016/j.isprsjprs.2021.09.005_b0210 article-title: A review of supervised object-based land-cover image classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.06.001 – volume: 330 start-page: 297 year: 2019 ident: 10.1016/j.isprsjprs.2021.09.005_b0260 article-title: Problems of encoder-decoder frameworks for high-resolution remote sensing image segmentation: Structural stereotype and insufficient learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.11.051 – start-page: 2881 year: 2017 ident: 10.1016/j.isprsjprs.2021.09.005_b0370 article-title: Pyramid scene parsing network – ident: 10.1016/j.isprsjprs.2021.09.005_b0025 – year: 2019 ident: 10.1016/j.isprsjprs.2021.09.005_b0020 article-title: Gcnet: Non-local networks meet squeeze-excitation networks and beyond – start-page: 770 year: 2016 ident: 10.1016/j.isprsjprs.2021.09.005_b0100 article-title: Deep residual learning for image recognition – volume: 208 start-page: 145 year: 2018 ident: 10.1016/j.isprsjprs.2021.09.005_b0205 article-title: A comparison of resampling methods for remote sensing classification and accuracy assessment publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.02.026 – volume: 55 start-page: 645 year: 2016 ident: 10.1016/j.isprsjprs.2021.09.005_b9000 article-title: Convolutional neural networks for large-scale remote-sensing image classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2612821 – ident: 10.1016/j.isprsjprs.2021.09.005_b0030 – start-page: 801 year: 2018 ident: 10.1016/j.isprsjprs.2021.09.005_b0035 article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation – volume: 110 year: 2021 ident: 10.1016/j.isprsjprs.2021.09.005_b0225 article-title: Efficient semantic segmentation with pyramidal fusion publication-title: Pattern Recognition doi: 10.1016/j.patcog.2020.107611 – ident: 10.1016/j.isprsjprs.2021.09.005_b0335 – volume: 145 start-page: 328 year: 2018 ident: 10.1016/j.isprsjprs.2021.09.005_b0230 article-title: Big earth observation time series analysis for monitoring Brazilian agriculture publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.08.007 – start-page: 5998 year: 2017 ident: 10.1016/j.isprsjprs.2021.09.005_b0275 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – start-page: 3286 year: 2019 ident: 10.1016/j.isprsjprs.2021.09.005_b0015 article-title: Attention augmented convolutional networks – start-page: 1251 year: 2017 ident: 10.1016/j.isprsjprs.2021.09.005_b0050 article-title: Xception: Deep learning with depthwise separable convolutions – start-page: 9167 year: 2019 ident: 10.1016/j.isprsjprs.2021.09.005_b0180 article-title: Expectation-maximization attention networks for semantic segmentation – start-page: 3 year: 2018 ident: 10.1016/j.isprsjprs.2021.09.005_b0305 article-title: Cbam: Convolutional block attention module – volume: 162 start-page: 94 year: 2020 ident: 10.1016/j.isprsjprs.2021.09.005_b0060 article-title: Resunet-a: a deep learning framework for semantic segmentation of remotely sensed data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.01.013 – ident: 10.1016/j.isprsjprs.2021.09.005_b0105 doi: 10.1109/CVPR.2018.00745 – ident: 10.1016/j.isprsjprs.2021.09.005_b0345 – volume: 204 start-page: 918 year: 2018 ident: 10.1016/j.isprsjprs.2021.09.005_b0320 article-title: Land use and land cover change in Inner Mongolia-understanding the effects of China's re-vegetation programs publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.08.030 – start-page: 1451 year: 2018 ident: 10.1016/j.isprsjprs.2021.09.005_b0290 article-title: Understanding convolution for semantic segmentation, 2018 IEEE winter conference on applications of computer vision (WACV) publication-title: IEEE – start-page: 315 year: 2011 ident: 10.1016/j.isprsjprs.2021.09.005_b0080 article-title: Deep sparse rectifier neural networks – volume: 145 start-page: 60 year: 2018 ident: 10.1016/j.isprsjprs.2021.09.005_b0140 article-title: Algorithms for semantic segmentation of multispectral remote sensing imagery using deep learning publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.04.014 – ident: 10.1016/j.isprsjprs.2021.09.005_b0145 – start-page: 3431 year: 2015 ident: 10.1016/j.isprsjprs.2021.09.005_b0195 article-title: Fully convolutional networks for semantic segmentation – volume: 52 start-page: 7023 year: 2014 ident: 10.1016/j.isprsjprs.2021.09.005_b0380 article-title: A hybrid object-oriented conditional random field classification framework for high spatial resolution remote sensing imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2306692 – volume: 135 start-page: 158 year: 2018 ident: 10.1016/j.isprsjprs.2021.09.005_b0220 article-title: Classification with an edge: Improving semantic image segmentation with boundary detection publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.11.009 – volume: 237 year: 2020 ident: 10.1016/j.isprsjprs.2021.09.005_b0265 article-title: Land-cover classification with high-resolution remote sensing images using transferable deep models publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111322 – ident: 10.1016/j.isprsjprs.2021.09.005_b0065 – ident: 10.1016/j.isprsjprs.2021.09.005_b0340 – volume: 5 start-page: 8 issue: 4 year: 2017 ident: 10.1016/j.isprsjprs.2021.09.005_b0385 article-title: Deep learning in remote sensing: A comprehensive review and list of resources publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2017.2762307 – volume: 6 start-page: 263 year: 2020 ident: 10.1016/j.isprsjprs.2021.09.005_b9005 article-title: Real-time semantic segmentation with fast attention publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2020.3039744 – volume: 40 start-page: 137 issue: 2 year: 1992 ident: 10.1016/j.isprsjprs.2021.09.005_b0085 article-title: A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(92)90011-8 – start-page: 5156 year: 2020 ident: 10.1016/j.isprsjprs.2021.09.005_b0135 article-title: Transformers are rnns: Fast autoregressive transformers with linear attention publication-title: Int. Conf. Machine Learn. PMLR – start-page: 603 year: 2019 ident: 10.1016/j.isprsjprs.2021.09.005_b0120 article-title: Ccnet: Criss-cross attention for semantic segmentation – year: 2021 ident: 10.1016/j.isprsjprs.2021.09.005_b0170 article-title: Multiattention network for semantic segmentation of fine-resolution remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 7354 year: 2019 ident: 10.1016/j.isprsjprs.2021.09.005_b0365 article-title: Self-attention generative adversarial networks publication-title: Int. Conf. Machine Learn. PMLR – ident: 10.1016/j.isprsjprs.2021.09.005_b0325 doi: 10.1007/s11263-021-01515-2 – start-page: 448 year: 2015 ident: 10.1016/j.isprsjprs.2021.09.005_b0130 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: International conference on machine learning. PMLR – year: 2019 ident: 10.1016/j.isprsjprs.2021.09.005_b0390 article-title: Shelfnet for fast semantic segmentation – ident: 10.1016/j.isprsjprs.2021.09.005_b0235 – volume: 13 start-page: 3065 year: 2021 ident: 10.1016/j.isprsjprs.2021.09.005_b0285 article-title: Transformer Meets Convolution: A Bilateral Awareness Network for Semantic Segmentation of Very Fine Resolution Urban Scene Images publication-title: Remote Sens. doi: 10.3390/rs13163065 – start-page: 510 year: 2019 ident: 10.1016/j.isprsjprs.2021.09.005_b0175 article-title: Selective kernel networks – start-page: 6798 year: 2019 ident: 10.1016/j.isprsjprs.2021.09.005_b0360 article-title: Acfnet: Attentional class feature network for semantic segmentation – volume: 145 start-page: 78 year: 2018 ident: 10.1016/j.isprsjprs.2021.09.005_b0190 article-title: Semantic labeling in very high resolution images via a self-cascaded convolutional neural network publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.12.007 – volume: 27 start-page: 25415 issue: 20 year: 2020 ident: 10.1016/j.isprsjprs.2021.09.005_b0250 article-title: Examining the impacts of future land use/land cover changes on climate in Punjab province, Pakistan: implications for environmental sustainability and economic growth publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-020-08984-x – ident: 10.1016/j.isprsjprs.2021.09.005_b0055 doi: 10.3390/rs13183707 – start-page: 234 year: 2015 ident: 10.1016/j.isprsjprs.2021.09.005_b0245 article-title: U-net: Convolutional networks for biomedical image segmentation – volume: 58 start-page: 6309 issue: 9 year: 2020 ident: 10.1016/j.isprsjprs.2021.09.005_b0185 article-title: Dense dilated convolutions’ merging network for land cover classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.2976658 – start-page: 3974 year: 2018 ident: 10.1016/j.isprsjprs.2021.09.005_b0310 article-title: DOTA: A large-scale dataset for object detection in aerial images – start-page: 3623 year: 2019 ident: 10.1016/j.isprsjprs.2021.09.005_b0200 article-title: See more, know more: Unsupervised video object segmentation with co-attention siamese networks – volume: 140 start-page: 20 year: 2018 ident: 10.1016/j.isprsjprs.2021.09.005_b0005 article-title: Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.11.011 – volume: 170 start-page: 15 year: 2020 ident: 10.1016/j.isprsjprs.2021.09.005_b0375 article-title: Parsing very high resolution urban scene images by learning deep ConvNets with edge-aware loss publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.09.019 – ident: 10.1016/j.isprsjprs.2021.09.005_b0115 – volume: 220 start-page: 135 year: 2019 ident: 10.1016/j.isprsjprs.2021.09.005_b0090 article-title: Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.10.031 – start-page: 7794 year: 2018 ident: 10.1016/j.isprsjprs.2021.09.005_b0300 article-title: Non-local neural networks – year: 2021 ident: 10.1016/j.isprsjprs.2021.09.005_b0155 article-title: MACU-Net for semantic segmentation of fine-resolution remotely sensed images publication-title: IEEE Geosci. Remote Sens. Lett. – start-page: 3156 year: 2017 ident: 10.1016/j.isprsjprs.2021.09.005_b0280 article-title: Residual attention network for image classification – volume: 37 start-page: 1904 issue: 9 year: 2015 ident: 10.1016/j.isprsjprs.2021.09.005_b0095 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2389824 – start-page: 5659 year: 2017 ident: 10.1016/j.isprsjprs.2021.09.005_b0040 article-title: Sca-cnn: Spatial and channel-wise attention in convolutional networks for image captioning – start-page: 352 year: 2018 ident: 10.1016/j.isprsjprs.2021.09.005_b0045 article-title: A^ 2-nets: Double attention networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 56 start-page: 2337 year: 2017 ident: 10.1016/j.isprsjprs.2021.09.005_b9015 article-title: Rotation-insensitive and context-augmented object detection in remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2778300 – volume: 8 start-page: 127 issue: 2 year: 1979 ident: 10.1016/j.isprsjprs.2021.09.005_b0270 article-title: Red and photographic infrared linear combinations for monitoring vegetation publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(79)90013-0 – start-page: 3146 year: 2019 ident: 10.1016/j.isprsjprs.2021.09.005_b0070 article-title: Dual attention network for scene segmentation – start-page: 325 year: 2018 ident: 10.1016/j.isprsjprs.2021.09.005_b0330 article-title: Bisenet: Bilateral segmentation network for real-time semantic segmentation – volume: 178 start-page: 124 year: 2021 ident: 10.1016/j.isprsjprs.2021.09.005_b0315 article-title: Real-time Semantic Segmentation with Context Aggregation Network publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.06.006 – start-page: 11534 year: 2020 ident: 10.1016/j.isprsjprs.2021.09.005_b0295 article-title: ECA-net: Efficient channel attention for deep convolutional neural networks – volume: 221 start-page: 173 year: 2019 ident: 10.1016/j.isprsjprs.2021.09.005_b0355 article-title: Joint Deep Learning for land cover and land use classification publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.11.014 – year: 2021 ident: 10.1016/j.isprsjprs.2021.09.005_b0160 article-title: Multistage Attention ResU-Net for Semantic Segmentation of Fine-Resolution Remote Sensing Images publication-title: IEEE Geosci. Remote Sens. Lett. – ident: 10.1016/j.isprsjprs.2021.09.005_b0255 |
SSID | ssj0001568 |
Score | 2.6870964 |
Snippet | Semantic segmentation of remotely sensed imagery plays a critical role in many real-world applications, such as environmental change monitoring, precision... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 84 |
SubjectTerms | Attention Mechanism Bilateral Architecture Convolutional Neural Network data collection Deep Learning economic analysis environmental protection neural networks photogrammetry precision agriculture remote sensing satellites Semantic Segmentation |
Title | ABCNet: Attentive bilateral contextual network for efficient semantic segmentation of Fine-Resolution remotely sensed imagery |
URI | https://dx.doi.org/10.1016/j.isprsjprs.2021.09.005 https://www.proquest.com/docview/2636658600 |
Volume | 181 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QHIAD4ineChLXsnbJMsJtTEwDxC6AxC1qUheKtm7aOqQd4Ldj98FLSBw4VEorJ6li13Ya-zNjx2ikrAKlPKsD60nrsBWpiKqm-o3Y-qDzWoc3PdW9l1cPjYc51q5yYSisstT9hU7PtXX5pFauZm2UJLVbH4epEwASoYiKJiXxSdkkKT95-wzzCIp0OCL2iPpbjFcyGY0nz3jhRrEe5ICnVMfudwv1Q1fnBqizylZKz5G3ipdbY3OQrrPlL3iC62yxLGn-NNtgr63zdg-yM97KMooIegFuk35ICcd9TgHqqJWn2EyLOHCOziuHHE8CqfkEBrjkicPG46BMT0r5MOYdnM2jf_6FxPIxIK-hP0PCdAIRTwYEijHbZPedi7t21ytrLXgOPZLMExCB0BHV4hGETBC6CDkVxroZByJWPp23aUL1dNYFcKpw_-r8eiylECDjMBBbbD4dprDNuPZtI0QegwYthdXaBjiMlOD0qVXC7TBVra9xJRA51cPomyri7Nl8MMYQY4yvDTJmh_kfHUcFFsffXc4qBppvYmXQYvzd-ahiucGPjk5SwhSGUyRSQqHrhs7i7n8m2GNLdFekNu6z-Ww8hQP0cTJ7mAvxIVtoXV53e-8tFACA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-x8sB4mPiaYB9gpL1GTerUYN66alUZ0JeBxJsVO5cR1KZVm07qw_733SVOBQiJhz1EspI7O_I5d-f47ncA38hIWYVKBVZHNoito1aqUq6aGnYzG6Kuah3ejNTwLv55373fgH6TC8NhlV731zq90tb-TtvPZnuW5-1fIXXTYQAkRhGVZ_odbDI6VbcFm73Lq-ForZCjOiOO6QNmeBbmlS9m88UjXbRX7EQV5imXsnvdSL1Q15UNGuzAB-88il79fruwgcUebD-BFNyDLV_V_GG1D3973_sjLC9Eryw5KOgPCpuPE845HguOUSfFvKRmUYeCC_JfBVaQEkQtFjihWc8dNX5PfIZSIaaZGNBoAf_2rxetmCOJG8crIiwWmIp8wrgYqwO4G_y47Q8DX24hcOSUlIHEFKVOuRyPZHCCxKUkrCTTZ1kkMxXykZtmYE9nXYTnirawLuxkcSwlxlkSyY_QKqYFHoLQoe0mJGbUqGNptbYRdRPH6PS5VdIdgWrm1ziPRc4lMcamCTp7NGvBGBaMCbUhwRxBuGac1XAcb7NcNAI0z1aWIaPxNvNpI3JD3x0fpiQFTpdEpKQi7438xU__M8AJbA1vb67N9eXo6jO85yd1puMXaJXzJX4ll6e0x35J_wPmMgMx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ABCNet%3A+Attentive+bilateral+contextual+network+for+efficient+semantic+segmentation+of+Fine-Resolution+remotely+sensed+imagery&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Li%2C+Rui&rft.au=Zheng%2C+Shunyi&rft.au=Zhang%2C+Ce&rft.au=Duan%2C+Chenxi&rft.date=2021-11-01&rft.issn=0924-2716&rft.volume=181+p.84-98&rft.spage=84&rft.epage=98&rft_id=info:doi/10.1016%2Fj.isprsjprs.2021.09.005&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon |