Adversarial Training Methods for Deep Learning: A Systematic Review
Deep neural networks are exposed to the risk of adversarial attacks via the fast gradient sign method (FGSM), projected gradient descent (PGD) attacks, and other attack algorithms. Adversarial training is one of the methods used to defend against the threat of adversarial attacks. It is a training s...
Saved in:
Published in | Algorithms Vol. 15; no. 8; p. 283 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deep neural networks are exposed to the risk of adversarial attacks via the fast gradient sign method (FGSM), projected gradient descent (PGD) attacks, and other attack algorithms. Adversarial training is one of the methods used to defend against the threat of adversarial attacks. It is a training schema that utilizes an alternative objective function to provide model generalization for both adversarial data and clean data. In this systematic review, we focus particularly on adversarial training as a method of improving the defensive capacities and robustness of machine learning models. Specifically, we focus on adversarial sample accessibility through adversarial sample generation methods. The purpose of this systematic review is to survey state-of-the-art adversarial training and robust optimization methods to identify the research gaps within this field of applications. The literature search was conducted using Engineering Village (Engineering Village is an engineering literature search tool, which provides access to 14 engineering literature and patent databases), where we collected 238 related papers. The papers were filtered according to defined inclusion and exclusion criteria, and information was extracted from these papers according to a defined strategy. A total of 78 papers published between 2016 and 2021 were selected. Data were extracted and categorized using a defined strategy, and bar plots and comparison tables were used to show the data distribution. The findings of this review indicate that there are limitations to adversarial training methods and robust optimization. The most common problems are related to data generalization and overfitting. |
---|---|
AbstractList | Deep neural networks are exposed to the risk of adversarial attacks via the fast gradient sign method (FGSM), projected gradient descent (PGD) attacks, and other attack algorithms. Adversarial training is one of the methods used to defend against the threat of adversarial attacks. It is a training schema that utilizes an alternative objective function to provide model generalization for both adversarial data and clean data. In this systematic review, we focus particularly on adversarial training as a method of improving the defensive capacities and robustness of machine learning models. Specifically, we focus on adversarial sample accessibility through adversarial sample generation methods. The purpose of this systematic review is to survey state-of-the-art adversarial training and robust optimization methods to identify the research gaps within this field of applications. The literature search was conducted using Engineering Village (Engineering Village is an engineering literature search tool, which provides access to 14 engineering literature and patent databases), where we collected 238 related papers. The papers were filtered according to defined inclusion and exclusion criteria, and information was extracted from these papers according to a defined strategy. A total of 78 papers published between 2016 and 2021 were selected. Data were extracted and categorized using a defined strategy, and bar plots and comparison tables were used to show the data distribution. The findings of this review indicate that there are limitations to adversarial training methods and robust optimization. The most common problems are related to data generalization and overfitting. |
Audience | Academic |
Author | Alwidian, Sanaa Zhao, Weimin Mahmoud, Qusay H. |
Author_xml | – sequence: 1 givenname: Weimin orcidid: 0000-0002-6664-5632 surname: Zhao fullname: Zhao, Weimin – sequence: 2 givenname: Sanaa surname: Alwidian fullname: Alwidian, Sanaa – sequence: 3 givenname: Qusay H. orcidid: 0000-0003-0472-5757 surname: Mahmoud fullname: Mahmoud, Qusay H. |
BookMark | eNptUU1vEzEQtVCRaAsH_sFKnDiktXdsr80tCl-VgpCgnK1ZexwcJetgb4v673EIqhBCPth6fu_Nm5kLdjbliRh7KfgVgOXXKBQ3vDfwhJ0La-1CGgtnf72fsYtat5xrZbU4Z6tluKdSsSTcdbcF05SmTfeJ5u851C7m0r0lOnRrwnL8edMtu68PdaY9zsl3X-g-0c_n7GnEXaUXf-5L9u39u9vVx8X684eb1XK98GCHeQGc2wBSSj6CGnszil4p7SWIkSKOEILSQDAY6G3vrTDBcikURhUQJRdwyW5OviHj1h1K2mN5cBmT-w3ksnFYWqwdOS2NENHGMYKXmqwJ0nDfD3ocNBgem9erk9eh5B93VGe3zXdlavFdP3DNzQDGNNbVibXBZpqmmOeCvp1A--Tb5GNq-HKQSshje03w-iTwJddaKD7GFNwdF-QeF9S41_9wfZrbWPPUiqTdfxS_AML8kEA |
CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3326410 crossref_primary_10_3390_ijms25052869 crossref_primary_10_1038_s41598_024_56259_z crossref_primary_10_3390_app131910972 crossref_primary_10_3390_biomedinformatics4020050 crossref_primary_10_3390_app14052116 crossref_primary_10_1109_TSC_2023_3331020 crossref_primary_10_3390_s25020531 crossref_primary_10_1016_j_compeleceng_2024_109236 crossref_primary_10_3390_app122412947 crossref_primary_10_3390_fi15110371 crossref_primary_10_3390_math12223451 crossref_primary_10_3390_fi15080267 crossref_primary_10_1109_JIOT_2023_3324568 crossref_primary_10_3390_info16010008 crossref_primary_10_1109_TCSII_2024_3371154 crossref_primary_10_3390_app131810258 crossref_primary_10_3390_jimaging11010026 crossref_primary_10_1109_TII_2024_3393491 crossref_primary_10_3390_su16114759 crossref_primary_10_1007_s10462_024_10797_0 crossref_primary_10_3390_a16030165 crossref_primary_10_1016_j_procs_2025_01_065 crossref_primary_10_1002_adem_202401353 crossref_primary_10_1007_s00500_025_10516_z crossref_primary_10_1016_j_aap_2023_107360 crossref_primary_10_3390_s23052697 crossref_primary_10_3390_app14209287 crossref_primary_10_1016_j_media_2024_103291 crossref_primary_10_1109_TPAMI_2024_3400988 |
Cites_doi | 10.1109/CVPR42600.2020.00103 10.1109/SSCI44817.2019.9002854 10.1016/j.knosys.2021.107141 10.1016/j.media.2021.101977 10.1109/ACCESS.2020.2969288 10.1109/ICCV.2019.00665 10.1016/j.cmpb.2023.107687 10.1007/978-3-030-22312-0_2 10.1109/CVPR42600.2020.00034 10.1109/CVPR.2016.282 10.1145/3493700.3493705 10.1007/978-3-030-58586-0_46 10.1109/ICASSP40776.2020.9054087 10.1109/ISVLSI.2018.00092 10.1109/TMM.2015.2478068 10.1007/s10489-021-02523-y 10.1109/TEVC.2019.2890858 10.1109/IJCNN52387.2021.9533363 10.1109/SNPD.2017.8022700 10.1109/SPW.2019.00016 10.1109/TrustCom/BigDataSE.2019.00044 10.1007/978-3-030-68238-5_14 10.1145/3394171.3413703 10.1109/IJCNN48605.2020.9206760 10.1109/ICDM.2019.00093 10.1109/ICDM.2019.00125 10.1145/3422337.3447841 10.1109/IJCNN52387.2021.9533725 10.1201/9781351251389-8 10.1109/SP.2017.49 10.32604/jbd.2020.012294 10.1007/978-3-030-87358-5_10 10.1109/DSN-W.2018.00066 10.1109/EuroSP.2016.36 10.1109/ICCV.2019.00673 10.1109/TIP.2021.3082317 10.1016/j.cosrev.2020.100270 10.24963/ijcai.2018/520 10.1109/CVPR.2019.00714 10.1155/2021/4907754 10.1109/MILCOM.2016.7795300 10.1109/ICPR48806.2021.9413327 10.1109/CVPR42600.2020.00035 10.1145/3309182.3309190 10.1007/978-3-030-68238-5_32 10.1109/TIP.2020.3042083 10.24963/ijcai.2021/591 10.1016/j.cose.2019.04.014 10.24963/ijcai.2018/543 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/a15080283 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1999-4893 |
ExternalDocumentID | oai_doaj_org_article_64811f9fbf3c46e98d480c276b76380f A745143009 10_3390_a15080283 |
GroupedDBID | 23M 2WC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC J9A K6V K7- KQ8 L6V M7S MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS TR2 TUS PQGLB 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c397t-3009d34440b35b28b12556c431befab3dd563e3783292c918d90415af5daa4013 |
IEDL.DBID | DOA |
ISSN | 1999-4893 |
IngestDate | Wed Aug 27 01:13:05 EDT 2025 Fri Jul 25 12:12:41 EDT 2025 Tue Jul 15 03:26:26 EDT 2025 Tue Jul 01 03:23:12 EDT 2025 Thu Apr 24 23:03:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c397t-3009d34440b35b28b12556c431befab3dd563e3783292c918d90415af5daa4013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6664-5632 0000-0003-0472-5757 |
OpenAccessLink | https://doaj.org/article/64811f9fbf3c46e98d480c276b76380f |
PQID | 2706087388 |
PQPubID | 2032439 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_64811f9fbf3c46e98d480c276b76380f proquest_journals_2706087388 gale_infotracacademiconefile_A745143009 crossref_primary_10_3390_a15080283 crossref_citationtrail_10_3390_a15080283 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Algorithms |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_94 ref_92 ref_91 ref_90 Zhang (ref_96) 2019; 31 ref_14 ref_13 ref_12 ref_99 ref_98 ref_97 ref_95 ref_19 ref_18 ref_17 ref_15 ref_25 ref_23 ref_22 Yuan (ref_29) 2020; 8 ref_21 Andriushchenko (ref_24) 2020; 33 ref_20 ref_28 ref_27 ref_26 ref_71 ref_70 Liu (ref_84) 2021; 30 ref_79 ref_78 ref_76 Gedeon (ref_72) 2019; Volume 1142 ref_75 ref_74 ref_73 ref_83 ref_82 Bartoli (ref_62) 2020; Volume 12538 ref_80 Ho (ref_88) 2022; 52 Kim (ref_81) 2020; 33 ref_89 Su (ref_16) 2019; 23 ref_87 ref_85 Zhang (ref_65) 2021; 30 ref_50 Yang (ref_77) 2020; 33 ref_57 Kereliuk (ref_106) 2015; 17 ref_56 ref_55 ref_54 ref_53 ref_52 ref_51 Pang (ref_93) 2020; 33 Ishikawa (ref_38) 2021; Volume 12624 ref_61 Dong (ref_58) 2020; 33 Dhillon (ref_59) 2019; Volume 562 Chen (ref_8) 2020; 2 Huang (ref_11) 2020; 37 ref_68 ref_67 ref_66 ref_64 ref_63 Vedaldi (ref_30) 2020; Volume 12369 Bartoli (ref_60) 2020; Volume 12539 Xu (ref_69) 2021; 69 Peng (ref_46) 2021; Volume 12889 Kong (ref_10) 2021; 2021 Wang (ref_86) 2021; 226 ref_36 ref_35 ref_34 ref_33 ref_31 ref_39 ref_37 ref_104 ref_105 ref_108 ref_107 ref_47 ref_45 ref_44 Chen (ref_103) 2019; 85 ref_43 ref_100 ref_42 ref_41 ref_102 ref_40 ref_101 ref_1 ref_3 ref_2 ref_49 ref_48 ref_9 ref_5 ref_4 ref_7 Bartoli (ref_32) 2020; Volume 12539 ref_6 |
References_xml | – ident: ref_20 doi: 10.1109/CVPR42600.2020.00103 – ident: ref_9 – ident: ref_34 doi: 10.1109/SSCI44817.2019.9002854 – ident: ref_68 – volume: 226 start-page: 107141 year: 2021 ident: ref_86 article-title: Improving Adversarial Robustness of Deep Neural Networks by Using Semantic Information publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.107141 – volume: Volume 12538 start-page: 236 year: 2020 ident: ref_62 article-title: Disrupting Deepfakes: Adversarial Attacks Against Conditional Image Translation Networks and Facial Manipulation Systems publication-title: Computer Vision—ECCV 2020 Workshops – volume: 69 start-page: 101977 year: 2021 ident: ref_69 article-title: Towards Evaluating the Robustness of Deep Diagnostic Models by Adversarial Attack publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.101977 – volume: 8 start-page: 22617 year: 2020 ident: ref_29 article-title: Adversarial Dual Network Learning With Randomized Image Transform for Restoring Attacked Images publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2969288 – ident: ref_51 doi: 10.1109/ICCV.2019.00665 – ident: ref_42 – ident: ref_64 doi: 10.1016/j.cmpb.2023.107687 – ident: ref_1 – volume: Volume 562 start-page: 19 year: 2019 ident: ref_59 article-title: GanDef: A GAN Based Adversarial Training Defense for Neural Network Classifier publication-title: ICT Systems Security and Privacy Protection doi: 10.1007/978-3-030-22312-0_2 – ident: ref_94 – volume: Volume 1142 start-page: 3 year: 2019 ident: ref_72 article-title: Adversarial Deep Learning with Stackelberg Games publication-title: Neural Information Processing – ident: ref_87 doi: 10.1109/CVPR42600.2020.00034 – ident: ref_14 doi: 10.1109/CVPR.2016.282 – ident: ref_104 doi: 10.1145/3493700.3493705 – volume: Volume 12369 start-page: 785 year: 2020 ident: ref_30 article-title: Adversarial Training with Bi-Directional Likelihood Regularization for Visual Classification publication-title: Computer Vision—ECCV 2020 doi: 10.1007/978-3-030-58586-0_46 – ident: ref_4 – ident: ref_56 – ident: ref_27 – ident: ref_35 doi: 10.1109/ICASSP40776.2020.9054087 – ident: ref_48 – ident: ref_83 – ident: ref_13 – ident: ref_36 doi: 10.1109/ISVLSI.2018.00092 – ident: ref_45 – ident: ref_28 – ident: ref_53 – volume: 17 start-page: 2059 year: 2015 ident: ref_106 article-title: Deep Learning and Music Adversaries publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2015.2478068 – ident: ref_3 – volume: 31 start-page: 2578 year: 2019 ident: ref_96 article-title: Adversarial Examples: Opportunities and Challenges publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 52 start-page: 4364 year: 2022 ident: ref_88 article-title: Attack-Less Adversarial Training for a Robust Adversarial Defense publication-title: Appl. Intell. doi: 10.1007/s10489-021-02523-y – ident: ref_47 – volume: 23 start-page: 828 year: 2019 ident: ref_16 article-title: One Pixel Attack for Fooling Deep Neural Networks publication-title: IEEE Trans. Evol. Computat. doi: 10.1109/TEVC.2019.2890858 – ident: ref_63 doi: 10.1109/IJCNN52387.2021.9533363 – ident: ref_67 – ident: ref_73 doi: 10.1109/SNPD.2017.8022700 – ident: ref_92 – ident: ref_108 doi: 10.1109/SPW.2019.00016 – ident: ref_44 – ident: ref_80 doi: 10.1109/TrustCom/BigDataSE.2019.00044 – volume: Volume 12539 start-page: 178 year: 2020 ident: ref_32 article-title: Addressing Neural Network Robustness with Mixup and Targeted Labeling Adversarial Training publication-title: Computer Vision—ECCV 2020 Workshops doi: 10.1007/978-3-030-68238-5_14 – ident: ref_6 – ident: ref_102 doi: 10.1145/3394171.3413703 – ident: ref_75 – ident: ref_25 – ident: ref_50 – ident: ref_33 – ident: ref_85 doi: 10.1109/IJCNN48605.2020.9206760 – ident: ref_82 doi: 10.1109/ICDM.2019.00093 – ident: ref_89 doi: 10.1109/ICDM.2019.00125 – ident: ref_101 – ident: ref_19 – ident: ref_22 doi: 10.1145/3422337.3447841 – ident: ref_79 doi: 10.1109/IJCNN52387.2021.9533725 – ident: ref_95 doi: 10.1201/9781351251389-8 – volume: 33 start-page: 5505 year: 2020 ident: ref_77 article-title: DVERGE: Diversifying Vulnerabilities for Enhanced Robust Generation of Ensembles publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_78 – ident: ref_15 doi: 10.1109/SP.2017.49 – volume: 33 start-page: 16048 year: 2020 ident: ref_24 article-title: Understanding and Improving Fast Adversarial Training publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_49 – ident: ref_55 – ident: ref_26 – volume: 2 start-page: 71 year: 2020 ident: ref_8 article-title: A Survey on Adversarial Examples in Deep Learning publication-title: J. Big Data doi: 10.32604/jbd.2020.012294 – volume: Volume 12889 start-page: 120 year: 2021 ident: ref_46 article-title: Free Adversarial Training with Layerwise Heuristic Learning publication-title: Image and Graphics doi: 10.1007/978-3-030-87358-5_10 – ident: ref_90 – ident: ref_74 doi: 10.1109/DSN-W.2018.00066 – ident: ref_61 – ident: ref_97 doi: 10.1109/EuroSP.2016.36 – ident: ref_23 – ident: ref_98 – ident: ref_70 doi: 10.1109/ICCV.2019.00673 – volume: 30 start-page: 5769 year: 2021 ident: ref_84 article-title: Training Robust Deep Neural Networks via Adversarial Noise Propagation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2021.3082317 – volume: 37 start-page: 100270 year: 2020 ident: ref_11 article-title: A Survey of Safety and Trustworthiness of Deep Neural Networks: Verification, Testing, Adversarial Attack and Defence, and Interpretability publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2020.100270 – ident: ref_52 – ident: ref_39 doi: 10.24963/ijcai.2018/520 – ident: ref_71 doi: 10.1109/CVPR.2019.00714 – volume: 33 start-page: 7779 year: 2020 ident: ref_93 article-title: Boosting Adversarial Training with Hypersphere Embedding publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_41 – volume: 2021 start-page: 4907754 year: 2021 ident: ref_10 article-title: A Survey on Adversarial Attack in the Age of Artificial Intelligence publication-title: Wirel. Commun. Mob. Comput. doi: 10.1155/2021/4907754 – ident: ref_107 – ident: ref_17 – volume: Volume 12624 start-page: 576 year: 2021 ident: ref_38 article-title: Towards Fast and Robust Adversarial Training for Image Classification publication-title: Computer Vision—ACCV 2020 – ident: ref_7 – ident: ref_76 – ident: ref_105 doi: 10.1109/MILCOM.2016.7795300 – ident: ref_66 doi: 10.1109/ICPR48806.2021.9413327 – ident: ref_91 doi: 10.1109/CVPR42600.2020.00035 – ident: ref_40 – volume: 33 start-page: 2983 year: 2020 ident: ref_81 article-title: Adversarial Self-Supervised Contrastive Learning publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_37 – ident: ref_18 – ident: ref_21 – ident: ref_31 doi: 10.1145/3309182.3309190 – ident: ref_54 – ident: ref_2 – ident: ref_12 – volume: Volume 12539 start-page: 429 year: 2020 ident: ref_60 article-title: Adversarial Training Against Location-Optimized Adversarial Patches publication-title: Computer Vision—ECCV 2020 Workshops doi: 10.1007/978-3-030-68238-5_32 – volume: 30 start-page: 1291 year: 2021 ident: ref_65 article-title: Interpreting and Improving Adversarial Robustness of Deep Neural Networks With Neuron Sensitivity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.3042083 – volume: 33 start-page: 8270 year: 2020 ident: ref_58 article-title: Adversarial Distributional Training for Robust Deep Learning publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_5 doi: 10.24963/ijcai.2021/591 – volume: 85 start-page: 89 year: 2019 ident: ref_103 article-title: POBA-GA: Perturbation Optimized Black-Box Adversarial Attacks via Genetic Algorithm publication-title: Comput. Secur. doi: 10.1016/j.cose.2019.04.014 – ident: ref_43 – ident: ref_57 – ident: ref_100 doi: 10.24963/ijcai.2018/543 – ident: ref_99 |
SSID | ssj0065961 |
Score | 2.536076 |
SecondaryResourceType | review_article |
Snippet | Deep neural networks are exposed to the risk of adversarial attacks via the fast gradient sign method (FGSM), projected gradient descent (PGD) attacks, and... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 283 |
SubjectTerms | adversarial attack generation adversarial attacks adversarial machine learning adversarial samples adversarial training Algorithms Analysis Artificial neural networks Computational linguistics Deep learning deep neural network Efficiency Identification methods Language processing Literature reviews Machine learning Natural language interfaces Neural networks Optimization Research methodology Robustness State-of-the-art reviews Strategy Systematic review Training |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA4-Ll58i-uLIIJeitskTRMvsr4QQREf4C0kk8SL7K7u-v_NdNMVQb2mObQzmck3aeb7CDkAzQBxRKGBs0I4CYW2HopaWrC1C7IS2Jx8eyevn8XNS_WSD9xG-VplmxObRO0HgGfkxwxpXlTNlTodvheoGoV_V7OExiyZTylYpeJr_uzy7v6hzcWy0rKc8AnxVNwfW2Q_xx31xy7UkPX_lZKbfeZqmSxmgEh7E4-ukJnQXyVLrfgCzbG4Rs4bKeWRxQVEn7LQA71tBKFHNEFRehHCkGb-1NcT2qOPU9ZmOvklsE6ery6fzq-LrIhQQMIN44InROS5EKLreOWYciUyiEECAS5E67j3leSB1ylMkw90qbzGFnwbK28tVlIbZK4_6IdNQnUa0BA1KwWIWpY2gK5jEMyXkYGwHXLUWshApgtH1Yo3k8oGNKaZGrND9qdThxOOjN8mnaGZpxOQ1roZGHy8mhwlRgpVllFHFzkIGbTyQnWB1dKlNKi6sUMO0UkGgy-9DNjcQ5A-CWmsTK8WCACTlTpkp_WjyVE5Mt9raOv_x9tkgWGbQ3PRb4fMjT8-w24CH2O3l1fYF3C11_Q priority: 102 providerName: ProQuest |
Title | Adversarial Training Methods for Deep Learning: A Systematic Review |
URI | https://www.proquest.com/docview/2706087388 https://doaj.org/article/64811f9fbf3c46e98d480c276b76380f |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JSwMxFH64XLy4i3UpQQS9DHaSTCbxVpdahIpoC95Ckkm8SBVb_795M2lRULx4DTlkvpe3MXnfB3DsFHVYR2TKMZpxK1ymTOWyUhhnSutFwXE4eXAn-iN--1Q8fZH6wjdhDT1wA9yZ4DLPgwo2MMeFV7LisuNoKWz0DNkJGH1jzps1U00MFoUSecMjxGJTf2aQ9Rwz6bfsU5P0_xaK6_zSW4fVVBiSbnOgDVjw401Ym4kukOSDW3BZSyhPDF4cMkwCD2RQC0FPSCxByZX3byTxpj6fky55nLM1k-ZXwDaMetfDy36WlBAyF-uFacZiJVQxznnHssJSaXNkDnMx-VsfjGVVVQjmWRndM2KvclkpHL03oaiMwQ5qB5bGr2O_C0TFBeWCojl3vBS58U6VwXNa5YE6blpwOkNIu0QTjmoVLzq2CwimnoPZgqP51reGG-OnTRcI83wD0lnXC9HIOhlZ_2XkFpygkTQ6XTyMM2l2IH4S0lfpbsmx8IsoteBgZkedvHGiKVIEyZJJufcfp9mHFYpDEPUzwANYmr5_-MNYmkxtGxZl76YNyxfXd_cP7fpOfgJWoOEH |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9gAXoDxESqEWKoLLqlnb67WREAotIX2kF1KpN-NnLyhJmyDEn-I34tn1BiG1vfVqW9Z6PC-vPd8HsOsUdZhHFMoxWnArXKGMd0UtjDO1DaLiWJw8PhWjM350Xp2vwZ-uFgafVXY-sXHUfubwH_keRZgXWTMpP80vC2SNwtvVjkKjVYvj8PtXOrItPh4epP19S-nwy2R_VGRWgcKl2LssWMoqPOOc9y2rLJW2RBQulwKpDdFY5n0lWGB1UvW0DlVKr7CM3cTKG4OnkTTvPdjgjCm0KDn82nl-USlRtuhFqbO_ZxBrHeP3fzGvoQa4KQA0UW34GB7mdJQMWv3ZhLUwfQKPOqoHki3_Kew3xM0Lg-pKJplWgowb-ukFSYkvOQhhTjJa68UHMiDfVhjRpL2AeAZndyKp57A-nU3DCyAqNSgXFS2547UoTXCqjoFTX0bquOnB-05C2mVwcuTI-KHTIQWFqVfC7MGb1dB5i8hx3aDPKObVAATRbhpmVxc626QWXJZlVNFG5rgISnou-47WwianK_uxB-9wkzSaevoYZ3LFQloSgmbpQc0x3UxS6sF2t486-4CF_qexW7d378D90WR8ok8OT49fwgOKBRbNE8NtWF9e_QyvUtqztK8bXSPw_a6V-y_oVBGd |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrYS48I3YUsBCILhETWzHiZEQ2na7aildVdBKvRnbsXtBu9vuIsRf49cxkziLkIBbr44VxeOX-Ug87wG89Jp7yiMy7QXPpFM-07bxWaWst5ULqpTUnHw8VQdn8sN5eb4BP_teGDpW2fvE1lE3c0_fyHc40bzUlcCCLaZjESfjyfvFZUYKUvSntZfT6CByFH58x_Jt-e5wjHv9ivPJ_uneQZYUBjKPcXiVCcwwGiGlzJ0oHa9dQYxcHoOqC9E60TSlEkFUCHtcky7qRlNLu41lYy1VJnjfG7BZYVWUD2Bzd3968qmPA6rUqui4jITQ-Y4l5nWK5n9EwFYo4F_hoI1xk7twOyWnbNSh6R5shNl9uNMLP7DkBx7AXivjvLQEXnaaRCbYcStGvWSYBrNxCAuWuFsv3rIR-7xmjGbd74iHcHYttnoEg9l8Fh4D0zigfdS8kF5WqrDB6yoGyZsici_tEN70FjI-UZWTYsZXgyULGdOsjTmEF-upi46f42-TdsnM6wlEqd0OzK8uTHpDjZJ1UUQdXRReqqDrRta555Vy6ILrPA7hNW2SoRcfH8bb1L-ASyIKLTOqJCWfaKUhbPf7aJJHWJrf-N36_-XncBOBbT4eTo-ewC1O3RbtecNtGKyuvoWnmAOt3LMENgZfrhvfvwBLxhcv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adversarial+Training+Methods+for+Deep+Learning%3A+A+Systematic+Review&rft.jtitle=Algorithms&rft.au=Weimin+Zhao&rft.au=Sanaa+Alwidian&rft.au=Qusay+H.+Mahmoud&rft.date=2022-08-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=15&rft.issue=8&rft.spage=283&rft_id=info:doi/10.3390%2Fa15080283&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_64811f9fbf3c46e98d480c276b76380f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon |