Influences of Process Parameters and Addition Elements on the Fabrication of TiC-Ti3SiC2 Composites by Spark Sintering
In TiC-Ti3SiC2 composites, the introduction of the TiC hard phase could improve the hardness of the Ti3SiC2 phase and prepare high hardness, high toughness and self-lubricating materials. In this study, elementary Ti, Si and graphite powders in the molar ratio of 3:1+x:2 were used as starting powder...
Saved in:
Published in | MATERIALS TRANSACTIONS Vol. 66; no. 5; pp. 608 - 615 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Sendai
The Japan Institute of Metals and Materials
01.05.2025
公益社団法人 日本金属学会 Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
ISSN | 1345-9678 1347-5320 |
DOI | 10.2320/matertrans.MT-MC2024008 |
Cover
Abstract | In TiC-Ti3SiC2 composites, the introduction of the TiC hard phase could improve the hardness of the Ti3SiC2 phase and prepare high hardness, high toughness and self-lubricating materials. In this study, elementary Ti, Si and graphite powders in the molar ratio of 3:1+x:2 were used as starting powders, a small amount of Al powder was added as a sintering aid, and spark sintering technology was used to sinter in the temperature range of 1373 to 1673 K at 50 MPa in vacuum. The reacted phases were identified by X-ray diffraction, and microstructure characteristics were observed. The formation mechanism of TiC-Ti3SiC2 composites was investigated based on the sintering behavior of the elemental powders during spark sintering. Pure TiC-Ti3SiC2 composites could be prepared from Ti, Si, graphite powders and Al at a molar ratio of 3:1.1:2:0.3 at 1573 K with a holding time of 0.9 ks. In conclusion, dual phase consist of TiC and Ti3SiC2 composite could be synthesized through in-situ reaction by adjusting process parameters such as sintering temperature, holding time and the content of Si and Al in element blending method. |
---|---|
AbstractList | In TiC-Ti3SiC2 composites, the introduction of the TiC hard phase could improve the hardness of the Ti3SiC2 phase and prepare high hardness, high toughness and self-lubricating materials. In this study, elementary Ti, Si and graphite powders in the molar ratio of 3:1+x:2 were used as starting powders, a small amount of Al powder was added as a sintering aid, and spark sintering technology was used to sinter in the temperature range of 1373 to 1673 K at 50 MPa in vacuum. The reacted phases were identified by X-ray diffraction, and microstructure characteristics were observed. The formation mechanism of TiC-Ti3SiC2 composites was investigated based on the sintering behavior of the elemental powders during spark sintering. Pure TiC-Ti3SiC2 composites could be prepared from Ti, Si, graphite powders and Al at a molar ratio of 3:1.1:2:0.3 at 1573 K with a holding time of 0.9 ks. In conclusion, dual phase consist of TiC and Ti3SiC2 composite could be synthesized through in-situ reaction by adjusting process parameters such as sintering temperature, holding time and the content of Si and Al in element blending method. In TiC-Ti3SiC2 composites, the introduction of the TiC hard phase could improve the hardness of the Ti3SiC2 phase and prepare high hardness, high toughness and self-lubricating materials. In this study, elementary Ti, Si and graphite powders in the molar ratio of 3:1+x:2 were used as starting powders, a small amount of Al powder was added as a sintering aid, and spark sintering technology was used to sinter in the temperature range of 1373 to 1673 K at 50 MPa in vacuum. The reacted phases were identified by X-ray diffraction, and microstructure characteristics were observed. The formation mechanism of TiC-Ti3SiC2 composites was investigated based on the sintering behavior of the elemental powders during spark sintering. Pure TiC-Ti3SiC2 composites could be prepared from Ti, Si, graphite powders and Al at a molar ratio of 3:1.1:2:0.3 at 1573 K with a holding time of 0.9 ks. In conclusion, dual phase consist of TiC and Ti3SiC2 composite could be synthesized through in-situ reaction by adjusting process parameters such as sintering temperature, holding time and the content of Si and Al in element blending method.Fig. 13 Phase content rate of prepared compacts (3Ti/1.1Si/2C/0.3Al) in the sintering conditions at 1573 K for 0.3–0.9 ks. 400–3200 HV is obtained from literature [2, 32–35]. |
ArticleNumber | MT-MC2024008 |
Author | Xu, Zhefeng Matsugi, Kazuhiro Choi, Yongbum Qu, Jing Yu, Jinku |
Author_xml | – sequence: 1 fullname: Qu, Jing organization: Department of Mechanical Materials Engineering, Hiroshima University – sequence: 1 fullname: Xu, Zhefeng organization: State Key Laboratory of Metastable Materials Science and Technology, Yanshan University – sequence: 1 fullname: Matsugi, Kazuhiro organization: Department of Mechanical Materials Engineering, Hiroshima University – sequence: 1 fullname: Yu, Jinku organization: State Key Laboratory of Metastable Materials Science and Technology, Yanshan University – sequence: 1 fullname: Choi, Yongbum organization: Department of Mechanical Materials Engineering, Hiroshima University |
BackLink | https://cir.nii.ac.jp/crid/1390866415331699328$$DView record in CiNii |
BookMark | eNpNkFtr3DAQRkVIIZf2N1SQvjrVxZasx2CSNpClgXWfxcg7TrRZy1tJG8i_rzZbtnmZGZgzZ-C7IKdhDkjIV86uhRTs-wQZY44Q0vWirxadYKJmrD0h51zWumoKc_o-N5VRuj0jFymtGZO6EeKcvN6HcbPDMGCi80gf41ymRB8hwoRFnCiEFb1ZrXz2c6C3G5ww5MIGmp-R3oGLfoD3XTnvfVf1Xi59J2g3T9s5-VzE7o0utxBf6NKH4vTh6TP5NMIm4Zd__ZL8vrvtu5_Vw68f993NQzVIo3MlQI8SFXDVaDkaFLUGNCCVdA7a2okacXANd7KBsm_54BwzxrARmapNKy_J1cG7jfOfHaZs1_MuhvLSSsFbXZIyulD6QA1xTiniaLfRTxDfLGd2H7L9H7Jd9PYYcrn8drgM3tvB7yuXhrVK1byRkitjpNhjiwO2Thme8KiHmP2wwY96pWyzLx_fHLnhGaLFIP8CSgScOA |
Cites_doi | 10.1007/s100190050076 10.1016/j.jmst.2015.06.005 10.30919/esmm5f467 10.1016/0921-5093(94)90197-X 10.2464/jilm.51.446 10.1016/j.msea.2010.04.006 10.2320/matertrans.M2016265 10.1016/S1359-6462(01)01184-8 10.1016/j.jallcom.2019.03.062 10.1007/s11661-998-0086-1 10.1016/j.diamond.2014.01.008 10.1016/j.sesci.2017.12.002 10.2320/jinstmet1952.66.6_621 10.1111/j.1151-2916.2000.tb01170.x 10.1016/j.ceramint.2012.11.058 10.1023/A:1006664416845 10.1016/j.ijrmhm.2008.10.015 10.1016/S0079-6786(00)00006-6 10.2320/matertrans.MT-M2019168 10.1111/j.1151-2916.1996.tb08018.x 10.2320/matertrans.MC201506 10.1016/j.matlet.2005.01.019 10.2497/jjspm.56.355 10.2320/matertrans.MT-M2019286 10.2320/matertrans1989.32.821 10.2320/jinstmet1952.67.10_528 10.1016/S0921-5093(03)00012-1 10.1016/0955-2219(89)90022-8 10.1016/j.jeurceramsoc.2023.07.068 10.2497/jjspm.63.484 10.1016/j.jallcom.2017.10.018 10.1016/S0925-8388(02)00985-4 10.1016/j.materresbull.2007.04.028 10.1016/j.ceramint.2020.09.098 10.1016/S0927-796X(00)00024-3 |
ContentType | Journal Article |
Copyright | 2025 The Japan Institute of Metals and Materials Copyright Japan Science and Technology Agency 2025 |
Copyright_xml | – notice: 2025 The Japan Institute of Metals and Materials – notice: Copyright Japan Science and Technology Agency 2025 |
DBID | RYH AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.2320/matertrans.MT-MC2024008 |
DatabaseName | CiNii Complete CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1347-5320 |
EndPage | 615 |
ExternalDocumentID | 10_2320_matertrans_MT_MC2024008 article_matertrans_66_5_66_MT_MC2024008_article_char_en |
GroupedDBID | -~X .L7 .LE 5GY 93D ABJNI ACGFS ACIWK ADMLS AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 JSI JSP RJT RZJ SJN RYH AAYXX CITATION 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c397t-2a7f3e6a16573f9e247ae9a363bba84b24eecb51b35a3f981cbb09990fe064983 |
ISSN | 1345-9678 |
IngestDate | Thu Jul 24 01:45:25 EDT 2025 Tue Aug 05 12:00:45 EDT 2025 Fri Jun 27 00:54:25 EDT 2025 Wed Sep 03 06:30:35 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c397t-2a7f3e6a16573f9e247ae9a363bba84b24eecb51b35a3f981cbb09990fe064983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3218740097 |
PQPubID | 1976393 |
PageCount | 8 |
ParticipantIDs | proquest_journals_3218740097 crossref_primary_10_2320_matertrans_MT_MC2024008 nii_cinii_1390866415331699328 jstage_primary_article_matertrans_66_5_66_MT_MC2024008_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Sendai |
PublicationPlace_xml | – name: Sendai |
PublicationTitle | MATERIALS TRANSACTIONS |
PublicationTitleAlternate | Mater. Trans. |
PublicationTitle_FL | MATERIALS TRANSACTIONS Mater. Trans |
PublicationYear | 2025 |
Publisher | The Japan Institute of Metals and Materials 公益社団法人 日本金属学会 Japan Science and Technology Agency |
Publisher_xml | – name: The Japan Institute of Metals and Materials – name: 公益社団法人 日本金属学会 – name: Japan Science and Technology Agency |
References | 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – ident: 10 doi: 10.1007/s100190050076 – ident: 33 doi: 10.1016/j.jmst.2015.06.005 – ident: 7 doi: 10.30919/esmm5f467 – ident: 35 doi: 10.1016/0921-5093(94)90197-X – ident: 28 doi: 10.2464/jilm.51.446 – ident: 12 doi: 10.1016/j.msea.2010.04.006 – ident: 13 doi: 10.2320/matertrans.M2016265 – ident: 18 doi: 10.1016/S1359-6462(01)01184-8 – ident: 20 doi: 10.1016/j.jallcom.2019.03.062 – ident: 34 doi: 10.1007/s11661-998-0086-1 – ident: 6 doi: 10.1016/j.diamond.2014.01.008 – ident: 22 doi: 10.1016/j.sesci.2017.12.002 – ident: 24 doi: 10.2320/jinstmet1952.66.6_621 – ident: 8 doi: 10.1111/j.1151-2916.2000.tb01170.x – ident: 4 doi: 10.1016/j.ceramint.2012.11.058 – ident: 31 doi: 10.1023/A:1006664416845 – ident: 11 doi: 10.1016/j.ijrmhm.2008.10.015 – ident: 1 doi: 10.1016/S0079-6786(00)00006-6 – ident: 16 doi: 10.2320/matertrans.MT-M2019168 – ident: 2 doi: 10.1111/j.1151-2916.1996.tb08018.x – ident: 14 doi: 10.2320/matertrans.MC201506 – ident: 17 doi: 10.1016/j.matlet.2005.01.019 – ident: 23 doi: 10.2497/jjspm.56.355 – ident: 15 doi: 10.2320/matertrans.MT-M2019286 – ident: 29 doi: 10.2320/matertrans1989.32.821 – ident: 25 doi: 10.2320/jinstmet1952.67.10_528 – ident: 30 – ident: 26 doi: 10.1016/S0921-5093(03)00012-1 – ident: 36 doi: 10.1016/0955-2219(89)90022-8 – ident: 3 doi: 10.1016/j.jeurceramsoc.2023.07.068 – ident: 27 doi: 10.2497/jjspm.63.484 – ident: 21 doi: 10.1016/j.jallcom.2017.10.018 – ident: 9 doi: 10.1016/S0925-8388(02)00985-4 – ident: 19 doi: 10.1016/j.materresbull.2007.04.028 – ident: 5 doi: 10.1016/j.ceramint.2020.09.098 – ident: 32 doi: 10.1016/S0927-796X(00)00024-3 |
SSID | ssj0037522 |
Score | 2.4358776 |
Snippet | In TiC-Ti3SiC2 composites, the introduction of the TiC hard phase could improve the hardness of the Ti3SiC2 phase and prepare high hardness, high toughness and... |
SourceID | proquest crossref nii jstage |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 608 |
SubjectTerms | Aluminum Chemical synthesis Compacts Composite materials Graphite Hardness in-situ reaction Process parameters Self lubricating materials Self lubrication Silicon Sintering Sintering (powder metallurgy) Sintering aids spark sintering sustainable development goals’ materials TiC-Ti3SiC2 composites Titanium carbide Titanium silicon carbide |
Title | Influences of Process Parameters and Addition Elements on the Fabrication of TiC-Ti3SiC2 Composites by Spark Sintering |
URI | https://www.jstage.jst.go.jp/article/matertrans/66/5/66_MT-MC2024008/_article/-char/en https://cir.nii.ac.jp/crid/1390866415331699328 https://www.proquest.com/docview/3218740097 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | MATERIALS TRANSACTIONS, 2025/05/01, Vol.66(5), pp.608-615 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELe6jQd4QHyKwob8wFuV0jqJkzxGZdWGlj2QTKp4iezUYWGinboUif2v_C_cxXHi8iHBxIsVubnUzf16vrN_viPkjQyXrltMBObT9hyPKe6IKS8czCZV4r7WUuKCfnLOTy689wt_MRh8t1hL21qOi9vfniu5i1ahD_SKp2T_QbPdQ6EDrkG_0IKGof0rHZ-aCiOayqY5_-AUIuEKs2Y2OwPxctnQskbHmilu9gdGcyE37YodimfVzMkqN61mrLESyOaCB4N7ml6LzdUoxcwSGzPTmSJQMbjDp_FZOso-xOeppqRYq6kNSIwM9Cyano-XqlR9ZyLqm-0nTSsQt9vLarPujJF5wtXWXp9gfs8GHHcn3GDeX-2yHxJVY3poTSaptUosM-x6vhNxXdxnrExf4GAZC9t264otLUZ9yxDzSWjN6VwfGf15ugBvEvmVX3AAdeMaJJmTzBjmfTPyO7m4W03nvUTOee5jk2R5J5mb-_DkHAB1jxywIEAWwUH8LjlLjavgBjqdffdzNQERh_X2D4PacZ_ufYYIAlND7K2q6hdnovGQskfkYRva0FiP6jEZqNUT8sBKePmUfO0RS9clbRFLe8RSUBU1iKUGsRSuAbHUQiyKW4ilPWKp_EYbxNIOsc_Ixfw4m504beUPpwD_uHaYCEpXcbAafuCWkWJeIFQkXO5KKUJPMk-pQvpT6foCPg-nhZQY6kxKBS52FLrPyf5qvVIvCPULD1z0EG7wmMdZIXjke-AZhmzJi4iXQzIxLzS_1glecgiMUQe2mm31Dslcv_hO4I64GJIjUFxeVNhCKDYJOfcwAJtyCBsYfNGhUWnemp2b3GVNGc1JFLz8X-N4Re73_9xDsl9vtuoIfO1avm4R-wNGf9qp |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influences+of+Process+Parameters+and+Addition+Elements+on+the+Fabrication+of+TiC-Ti3SiC2+Composites+by+Spark+Sintering&rft.jtitle=MATERIALS+TRANSACTIONS&rft.au=Qu%2C+Jing&rft.au=Xu%2C+Zhefeng&rft.au=Matsugi%2C+Kazuhiro&rft.au=Yu%2C+Jinku&rft.date=2025-05-01&rft.pub=The+Japan+Institute+of+Metals+and+Materials&rft.issn=1345-9678&rft.eissn=1347-5320&rft.volume=66&rft.issue=5&rft.spage=608&rft.epage=615&rft_id=info:doi/10.2320%2Fmatertrans.MT-MC2024008&rft.externalDocID=article_matertrans_66_5_66_MT_MC2024008_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1345-9678&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1345-9678&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1345-9678&client=summon |