Coupled heat and mass transfer during moisture exchange across a membrane

Coupled heat and moisture transfer through a membrane was modeled and analyzed. Two air fluids flow on each side of the membrane, with one fluid having a higher temperature and a higher humidity ratio than the other, causing a simultaneous heat and moisture transfer across the membrane. The model co...

Full description

Saved in:
Bibliographic Details
Published inJournal of membrane science Vol. 430; pp. 150 - 157
Main Authors Min, Jingchun, Wang, Lining
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.03.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Coupled heat and moisture transfer through a membrane was modeled and analyzed. Two air fluids flow on each side of the membrane, with one fluid having a higher temperature and a higher humidity ratio than the other, causing a simultaneous heat and moisture transfer across the membrane. The model considers the effects of the adsorption heat which is treated as adsorption capacity and temperature dependent. Analyses were carried out for two air states and for a variety of membrane parameters, which included the membrane moisture and thermal resistances. The membrane moisture resistance ranges 10–10,000kg−1m2s while the membrane thermal resistance ranges 0.2–2.0×10−3W−1m2K. The results show that with increasing membrane moisture resistance, the adsorption capacity at the membrane surface on the feed side increases while that on the permeating side decreases, correspondingly, the adsorption heat at the membrane surface on the feed side decreases while that on the permeating side increases. The membrane thermal resistance has only a small influence on the adsorption capacity and adsorption heat. The moisture flux decreases with increasing membrane moisture or thermal resistance, with the maximum moisture flux having an order of 10−3kgm−2s−1. The total heat flux, which is the sum of the adsorptive and convective heat fluxes, shows a variation similar to that of the moisture flux. ► Coupled heat and moisture transfer through a membrane is modeled and analyzed. ► The model considers the effect of variable heat of adsorption. ► Analyses are made for various membrane moisture and thermal resistances. ► Transmembrane heat and moisture transfer characteristics is presented and discussed.
AbstractList Coupled heat and moisture transfer through a membrane was modeled and analyzed. Two air fluids flow on each side of the membrane, with one fluid having a higher temperature and a higher humidity ratio than the other, causing a simultaneous heat and moisture transfer across the membrane. The model considers the effects of the adsorption heat which is treated as adsorption capacity and temperature dependent. Analyses were carried out for two air states and for a variety of membrane parameters, which included the membrane moisture and thermal resistances. The membrane moisture resistance ranges 10–10,000kg⁻¹m²s while the membrane thermal resistance ranges 0.2–2.0×10⁻³W⁻¹m²K. The results show that with increasing membrane moisture resistance, the adsorption capacity at the membrane surface on the feed side increases while that on the permeating side decreases, correspondingly, the adsorption heat at the membrane surface on the feed side decreases while that on the permeating side increases. The membrane thermal resistance has only a small influence on the adsorption capacity and adsorption heat. The moisture flux decreases with increasing membrane moisture or thermal resistance, with the maximum moisture flux having an order of 10⁻³kgm⁻²s⁻¹. The total heat flux, which is the sum of the adsorptive and convective heat fluxes, shows a variation similar to that of the moisture flux.
Coupled heat and moisture transfer through a membrane was modeled and analyzed. Two air fluids flow on each side of the membrane, with one fluid having a higher temperature and a higher humidity ratio than the other, causing a simultaneous heat and moisture transfer across the membrane. The model considers the effects of the adsorption heat which is treated as adsorption capacity and temperature dependent. Analyses were carried out for two air states and for a variety of membrane parameters, which included the membrane moisture and thermal resistances. The membrane moisture resistance ranges 10–10,000kg−1m2s while the membrane thermal resistance ranges 0.2–2.0×10−3W−1m2K. The results show that with increasing membrane moisture resistance, the adsorption capacity at the membrane surface on the feed side increases while that on the permeating side decreases, correspondingly, the adsorption heat at the membrane surface on the feed side decreases while that on the permeating side increases. The membrane thermal resistance has only a small influence on the adsorption capacity and adsorption heat. The moisture flux decreases with increasing membrane moisture or thermal resistance, with the maximum moisture flux having an order of 10−3kgm−2s−1. The total heat flux, which is the sum of the adsorptive and convective heat fluxes, shows a variation similar to that of the moisture flux. ► Coupled heat and moisture transfer through a membrane is modeled and analyzed. ► The model considers the effect of variable heat of adsorption. ► Analyses are made for various membrane moisture and thermal resistances. ► Transmembrane heat and moisture transfer characteristics is presented and discussed.
Author Min, Jingchun
Wang, Lining
Author_xml – sequence: 1
  givenname: Jingchun
  surname: Min
  fullname: Min, Jingchun
  email: minjc@tsinghua.edu.cn
  organization: School of Aerospace, Tsinghua University, Beijing 100084, China
– sequence: 2
  givenname: Lining
  surname: Wang
  fullname: Wang, Lining
  organization: Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26975176$$DView record in Pascal Francis
BookMark eNp9kM1Lw0AQxRdRsH78B4J78Zg6u5Nmk4sgxS8QPKjnZbqZbVOapOymov-9WyMehYG5_N7Me-9EHHZ9x0JcKJgqUMX1etpyG10z1aD0NA2o8kBMVGkwQ6XxUEwATZEZLMtjcRLjGkAZKKuJeJr3u-2Ga7liGiR1tWwpRjkE6qLnIOtdaLqlbPsmDrvAkj_dirolS3KhTyDJ9HqRaD4TR542kc9_96l4v797mz9mzy8PT_Pb58xhZYZMa4PJpqMcXAFVbUh7j-gJmTTWMyS_YKpAe1jkaBzkRJjygJoVyJzjqcjHuz8GAnu7DU1L4csqsPs67NqOddh9HTZNkifZ1SjbUnS08cmya-KfVheVmSlTJO5y5Dz1lpYhMe-v6VABAGVusErEzUhwSvnRcLDpF3eO6yawG2zdN_9b-QZbioLB
CODEN JMESDO
CitedBy_id crossref_primary_10_1016_j_enbuild_2016_09_045
crossref_primary_10_1016_j_enbuild_2014_10_036
crossref_primary_10_1007_s12053_020_09917_w
crossref_primary_10_1021_acsami_2c22701
crossref_primary_10_1016_j_memsci_2013_04_046
crossref_primary_10_1016_j_applthermaleng_2016_03_072
crossref_primary_10_1016_j_enbuild_2016_11_047
crossref_primary_10_1016_j_enconman_2013_05_038
crossref_primary_10_1016_j_enconman_2021_115144
crossref_primary_10_1016_j_ijheatmasstransfer_2017_05_027
crossref_primary_10_1016_j_applthermaleng_2015_09_001
crossref_primary_10_1016_j_ijheatmasstransfer_2016_04_098
crossref_primary_10_1016_j_applthermaleng_2017_11_019
crossref_primary_10_1007_s12206_013_0872_6
crossref_primary_10_1016_j_ijrefrig_2015_02_002
crossref_primary_10_1016_j_memsci_2013_11_013
crossref_primary_10_1016_j_enbuild_2022_112015
crossref_primary_10_1016_j_memsci_2022_120956
crossref_primary_10_2139_ssrn_4162748
crossref_primary_10_1016_j_rser_2014_07_022
crossref_primary_10_1016_j_memsci_2018_03_007
crossref_primary_10_1088_1742_6596_891_1_012126
crossref_primary_10_2139_ssrn_4127042
crossref_primary_10_1016_j_enconman_2018_05_105
crossref_primary_10_1016_j_seppur_2023_124435
crossref_primary_10_1016_j_applthermaleng_2015_03_067
crossref_primary_10_1039_C6RA09725A
crossref_primary_10_1088_1742_6596_655_1_012035
crossref_primary_10_1177_1420326X15585326
Cites_doi 10.1016/j.memsci.2011.06.023
10.1016/j.ijheatmasstransfer.2005.08.029
10.1016/j.memsci.2010.10.064
10.1016/j.memsci.2012.03.053
10.1016/j.applthermaleng.2011.08.006
10.1016/j.memsci.2009.11.032
10.1016/j.ijheatmasstransfer.2006.03.012
10.1002/app.1978.070220822
10.1016/S0376-7388(99)00150-7
10.1016/j.memsci.2010.04.019
10.1016/j.memsci.2007.06.050
10.1080/01457632.2012.659616
10.1002/aic.690470818
10.1061/(ASCE)0733-9372(2004)130:4(472)
10.1061/(ASCE)0733-9372(2000)126:3(267)
10.1016/S0376-7388(00)00680-3
10.1007/s11431-008-0308-1
ContentType Journal Article
Copyright 2012 Elsevier B.V.
2014 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier B.V.
– notice: 2014 INIST-CNRS
DBID FBQ
IQODW
AAYXX
CITATION
DOI 10.1016/j.memsci.2012.12.018
DatabaseName AGRIS
Pascal-Francis
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-3123
EndPage 157
ExternalDocumentID 10_1016_j_memsci_2012_12_018
26975176
US201600084739
S0376738812009283
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSM
SSZ
T5K
XPP
Y6R
ZMT
~G-
29L
AAQXK
ABPIF
ABPTK
ACNNM
ADMUD
AI.
ASPBG
AVWKF
AZFZN
BBWZM
EJD
FBQ
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
VH1
WUQ
8W4
AALMO
ADALY
IPNFZ
IQODW
AAHBH
AAXKI
AAYXX
AKRWK
CITATION
ID FETCH-LOGICAL-c397t-2273201ca40c609d7a2ff33fa3ea23d53afbea902f0b437c04aa301801563ee43
IEDL.DBID .~1
ISSN 0376-7388
IngestDate Thu Sep 12 16:41:49 EDT 2024
Fri Nov 25 01:09:42 EST 2022
Wed Dec 27 19:17:47 EST 2023
Fri Feb 23 02:22:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Adsorption heat
Membrane
Moisture
Mass transfer
Heat transfer
Fluid
Adsorption capacity
Membrane surface
Air
Air flow
Adsorption
Humidity
Heat mass transfer
Models
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-2273201ca40c609d7a2ff33fa3ea23d53afbea902f0b437c04aa301801563ee43
Notes http://dx.doi.org/10.1016/j.memsci.2012.12.018
PageCount 8
ParticipantIDs crossref_primary_10_1016_j_memsci_2012_12_018
pascalfrancis_primary_26975176
fao_agris_US201600084739
elsevier_sciencedirect_doi_10_1016_j_memsci_2012_12_018
PublicationCentury 2000
PublicationDate 2013-03-01
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of membrane science
PublicationYear 2013
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References E.J. Lee, J.P. Lee, H.M. Sim, N.H. Kim, Modeling and verification of heat and moisture transfer in an enthalpy exchanger made of paper membrane, Int. J. Air-Cond. Refrig., in press.
Yue (bib20) 1992; 7
Linders, van den Broeke, Kapteijn (bib17) 2001; 47
Min, Wang (bib15) 2012; 409–410
Ashrae (bib22) 2001
Min, Su (bib13) 2010; 348
Zhang, Jiang (bib8) 1999; 163
Pan, Jensen, Bielech, Habgood (bib1) 1978; 22
Qi, Hay, Rood, Cal (bib18) 2000; 126
Hu, Min, Song (bib10) 2008; 51
Nasif, Al-Waked, Behnia, Morrison (bib11) 2012; 33
Golubovic, Hettiarachchi, Woerk (bib19) 2006; 49
Min, Hu, Liu (bib6) 2010; 357
Qi (bib16) 2004; 130
Chen, Scholes, Qiao, Kentish (bib5) 2011; 379
Gibson, Kendrick, Rivin, Sicuranza, Charmchi (bib2) 1995; 24
Min, Su (bib14) 2011; 31
Zhang (bib3) 2006; 49
Kuehn, Ramsey, Threlkeld (bib21) 1998
Larson, Simonson, Besant, Gibson (bib4) 2007; 302
Min, Hu, Song (bib7) 2011; 367
Niu, Zhang (bib9) 2001; 3
Min (10.1016/j.memsci.2012.12.018_bib13) 2010; 348
Nasif (10.1016/j.memsci.2012.12.018_bib11) 2012; 33
Niu (10.1016/j.memsci.2012.12.018_bib9) 2001; 3
Min (10.1016/j.memsci.2012.12.018_bib14) 2011; 31
Kuehn (10.1016/j.memsci.2012.12.018_bib21) 1998
Min (10.1016/j.memsci.2012.12.018_bib15) 2012; 409–410
Golubovic (10.1016/j.memsci.2012.12.018_bib19) 2006; 49
Zhang (10.1016/j.memsci.2012.12.018_bib8) 1999; 163
Hu (10.1016/j.memsci.2012.12.018_bib10) 2008; 51
Qi (10.1016/j.memsci.2012.12.018_bib18) 2000; 126
Larson (10.1016/j.memsci.2012.12.018_bib4) 2007; 302
Yue (10.1016/j.memsci.2012.12.018_bib20) 1992; 7
Min (10.1016/j.memsci.2012.12.018_bib7) 2011; 367
Chen (10.1016/j.memsci.2012.12.018_bib5) 2011; 379
Ashrae (10.1016/j.memsci.2012.12.018_bib22) 2001
10.1016/j.memsci.2012.12.018_bib12
Gibson (10.1016/j.memsci.2012.12.018_bib2) 1995; 24
Zhang (10.1016/j.memsci.2012.12.018_bib3) 2006; 49
Qi (10.1016/j.memsci.2012.12.018_bib16) 2004; 130
Min (10.1016/j.memsci.2012.12.018_bib6) 2010; 357
Pan (10.1016/j.memsci.2012.12.018_bib1) 1978; 22
Linders (10.1016/j.memsci.2012.12.018_bib17) 2001; 47
References_xml – volume: 51
  start-page: 2120
  year: 2008
  end-page: 2127
  ident: bib10
  article-title: Analysis of the effects of the heat of sorption on the process of heat transfer in moisture exchange across a membrane
  publication-title: Sci. China Ser. E
  contributor:
    fullname: Song
– volume: 302
  start-page: 136
  year: 2007
  end-page: 149
  ident: bib4
  article-title: The elastic and moisture transfer properties of polyethylene and polypropylene membranes for use in liquid-to-air energy exchangers
  publication-title: J. Membr. Sci.
  contributor:
    fullname: Gibson
– volume: 47
  start-page: 1885
  year: 2001
  end-page: 1892
  ident: bib17
  article-title: Binary adsorption equilibrium of organics and water on activated carbon
  publication-title: AIChE J.
  contributor:
    fullname: Kapteijn
– volume: 379
  start-page: 479
  year: 2011
  end-page: 487
  ident: bib5
  article-title: Water vapor permeation in polyimide membranes
  publication-title: J. Membr. Sci.
  contributor:
    fullname: Kentish
– volume: 31
  start-page: 4036
  year: 2011
  end-page: 4043
  ident: bib14
  article-title: Performance analysis of a membrane-based energy recovery ventilator: effects of outdoor air state
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Su
– volume: 163
  start-page: 29
  year: 1999
  end-page: 38
  ident: bib8
  article-title: Heat and mass transfer in a membrane-based energy recovery ventilator
  publication-title: J. Membr. Sci.
  contributor:
    fullname: Jiang
– volume: 130
  start-page: 472
  year: 2004
  end-page: 477
  ident: bib16
  article-title: Use of Dubinin–Astakhov equation to describe preloading effect of natural organic matter
  publication-title: J. Environ. Eng.
  contributor:
    fullname: Qi
– volume: 126
  start-page: 267
  year: 2000
  end-page: 271
  ident: bib18
  article-title: Equilibrium and heat of adsorption for water vapor and activated carbon
  publication-title: J. Environ. Eng.
  contributor:
    fullname: Cal
– year: 2001
  ident: bib22
  publication-title: Ashrae Handbook—Fundamentals
  contributor:
    fullname: Ashrae
– volume: 357
  start-page: 185
  year: 2010
  end-page: 191
  ident: bib6
  article-title: Evaluation of moisture diffusivities in various membranes
  publication-title: J. Membr. Sci.
  contributor:
    fullname: Liu
– volume: 3
  start-page: 179
  year: 2001
  end-page: 191
  ident: bib9
  article-title: Membrane based enthalpy exchanger: material considerations and clarification of moisture resistance
  publication-title: J. Membr. Sci.
  contributor:
    fullname: Zhang
– volume: 367
  start-page: 174
  year: 2011
  end-page: 181
  ident: bib7
  article-title: Experimental and numerical investigations of moisture permeation through membranes
  publication-title: J. Membr. Sci.
  contributor:
    fullname: Song
– volume: 49
  start-page: 2802
  year: 2006
  end-page: 2809
  ident: bib19
  article-title: Sorption properties for different types of molecular sieve and their influence on optimum dehumidification performance of desiccant wheels
  publication-title: Int. J. Heat Mass Transfer
  contributor:
    fullname: Woerk
– volume: 409–410
  start-page: 173
  year: 2012
  end-page: 179
  ident: bib15
  article-title: Heat of adsorption and its effects on transmembrane heat transfer
  publication-title: J. Membr. Sci.
  contributor:
    fullname: Wang
– volume: 22
  start-page: 2307
  year: 1978
  end-page: 2323
  ident: bib1
  article-title: Permeation of water vapor through cellulose triacetate membranes in hollow fiber form
  publication-title: J. Appl. Polym. Sci.
  contributor:
    fullname: Habgood
– volume: 348
  start-page: 376
  year: 2010
  end-page: 382
  ident: bib13
  article-title: Performance analysis of a membrane-based enthalpy exchanger: effects of the membrane properties on the exchanger performance
  publication-title: J. Membr. Sci.
  contributor:
    fullname: Su
– volume: 49
  start-page: 1176
  year: 2006
  end-page: 1184
  ident: bib3
  article-title: Investigation of moisture transfer effectiveness through a hydrophilic polymer membrane with a field and laboratory emission cell
  publication-title: Int. J. Heat Mass Transfer
  contributor:
    fullname: Zhang
– year: 1998
  ident: bib21
  article-title: Thermal Environmental Engineering
  contributor:
    fullname: Threlkeld
– volume: 33
  start-page: 1010
  year: 2012
  end-page: 1023
  ident: bib11
  article-title: Modeling of air-to-air enthalpy heat exchanger
  publication-title: Heat Transfer Eng.
  contributor:
    fullname: Morrison
– volume: 7
  start-page: 53
  year: 1992
  ident: bib20
  article-title: The density of water varying with temperature
  publication-title: Coll.e Chem.
  contributor:
    fullname: Yue
– volume: 24
  start-page: 322
  year: 1995
  end-page: 345
  ident: bib2
  article-title: An automated water vapor diffusion test method for fabrics, laminates, and films
  publication-title: J. Ind. Text.
  contributor:
    fullname: Charmchi
– volume: 379
  start-page: 479
  year: 2011
  ident: 10.1016/j.memsci.2012.12.018_bib5
  article-title: Water vapor permeation in polyimide membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2011.06.023
  contributor:
    fullname: Chen
– volume: 49
  start-page: 1176
  year: 2006
  ident: 10.1016/j.memsci.2012.12.018_bib3
  article-title: Investigation of moisture transfer effectiveness through a hydrophilic polymer membrane with a field and laboratory emission cell
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2005.08.029
  contributor:
    fullname: Zhang
– volume: 367
  start-page: 174
  year: 2011
  ident: 10.1016/j.memsci.2012.12.018_bib7
  article-title: Experimental and numerical investigations of moisture permeation through membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.10.064
  contributor:
    fullname: Min
– ident: 10.1016/j.memsci.2012.12.018_bib12
– volume: 409–410
  start-page: 173
  year: 2012
  ident: 10.1016/j.memsci.2012.12.018_bib15
  article-title: Heat of adsorption and its effects on transmembrane heat transfer
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2012.03.053
  contributor:
    fullname: Min
– volume: 31
  start-page: 4036
  year: 2011
  ident: 10.1016/j.memsci.2012.12.018_bib14
  article-title: Performance analysis of a membrane-based energy recovery ventilator: effects of outdoor air state
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2011.08.006
  contributor:
    fullname: Min
– volume: 348
  start-page: 376
  year: 2010
  ident: 10.1016/j.memsci.2012.12.018_bib13
  article-title: Performance analysis of a membrane-based enthalpy exchanger: effects of the membrane properties on the exchanger performance
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2009.11.032
  contributor:
    fullname: Min
– volume: 49
  start-page: 2802
  year: 2006
  ident: 10.1016/j.memsci.2012.12.018_bib19
  article-title: Sorption properties for different types of molecular sieve and their influence on optimum dehumidification performance of desiccant wheels
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2006.03.012
  contributor:
    fullname: Golubovic
– volume: 22
  start-page: 2307
  year: 1978
  ident: 10.1016/j.memsci.2012.12.018_bib1
  article-title: Permeation of water vapor through cellulose triacetate membranes in hollow fiber form
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.1978.070220822
  contributor:
    fullname: Pan
– year: 1998
  ident: 10.1016/j.memsci.2012.12.018_bib21
  contributor:
    fullname: Kuehn
– volume: 163
  start-page: 29
  year: 1999
  ident: 10.1016/j.memsci.2012.12.018_bib8
  article-title: Heat and mass transfer in a membrane-based energy recovery ventilator
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(99)00150-7
  contributor:
    fullname: Zhang
– volume: 357
  start-page: 185
  issue: 1–2
  year: 2010
  ident: 10.1016/j.memsci.2012.12.018_bib6
  article-title: Evaluation of moisture diffusivities in various membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.04.019
  contributor:
    fullname: Min
– year: 2001
  ident: 10.1016/j.memsci.2012.12.018_bib22
  contributor:
    fullname: Ashrae
– volume: 7
  start-page: 53
  issue: 3
  year: 1992
  ident: 10.1016/j.memsci.2012.12.018_bib20
  article-title: The density of water varying with temperature
  publication-title: Coll.e Chem.
  contributor:
    fullname: Yue
– volume: 24
  start-page: 322
  year: 1995
  ident: 10.1016/j.memsci.2012.12.018_bib2
  article-title: An automated water vapor diffusion test method for fabrics, laminates, and films
  publication-title: J. Ind. Text.
  contributor:
    fullname: Gibson
– volume: 302
  start-page: 136
  year: 2007
  ident: 10.1016/j.memsci.2012.12.018_bib4
  article-title: The elastic and moisture transfer properties of polyethylene and polypropylene membranes for use in liquid-to-air energy exchangers
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2007.06.050
  contributor:
    fullname: Larson
– volume: 33
  start-page: 1010
  issue: 12
  year: 2012
  ident: 10.1016/j.memsci.2012.12.018_bib11
  article-title: Modeling of air-to-air enthalpy heat exchanger
  publication-title: Heat Transfer Eng.
  doi: 10.1080/01457632.2012.659616
  contributor:
    fullname: Nasif
– volume: 47
  start-page: 1885
  year: 2001
  ident: 10.1016/j.memsci.2012.12.018_bib17
  article-title: Binary adsorption equilibrium of organics and water on activated carbon
  publication-title: AIChE J.
  doi: 10.1002/aic.690470818
  contributor:
    fullname: Linders
– volume: 130
  start-page: 472
  issue: 4
  year: 2004
  ident: 10.1016/j.memsci.2012.12.018_bib16
  article-title: Use of Dubinin–Astakhov equation to describe preloading effect of natural organic matter
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)0733-9372(2004)130:4(472)
  contributor:
    fullname: Qi
– volume: 126
  start-page: 267
  issue: 3
  year: 2000
  ident: 10.1016/j.memsci.2012.12.018_bib18
  article-title: Equilibrium and heat of adsorption for water vapor and activated carbon
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)0733-9372(2000)126:3(267)
  contributor:
    fullname: Qi
– volume: 3
  start-page: 179
  issue: 189
  year: 2001
  ident: 10.1016/j.memsci.2012.12.018_bib9
  article-title: Membrane based enthalpy exchanger: material considerations and clarification of moisture resistance
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(00)00680-3
  contributor:
    fullname: Niu
– volume: 51
  start-page: 2120
  issue: 12
  year: 2008
  ident: 10.1016/j.memsci.2012.12.018_bib10
  article-title: Analysis of the effects of the heat of sorption on the process of heat transfer in moisture exchange across a membrane
  publication-title: Sci. China Ser. E
  doi: 10.1007/s11431-008-0308-1
  contributor:
    fullname: Hu
SSID ssj0017089
Score 2.3140585
Snippet Coupled heat and moisture transfer through a membrane was modeled and analyzed. Two air fluids flow on each side of the membrane, with one fluid having a...
SourceID crossref
pascalfrancis
fao
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 150
SubjectTerms adsorption
Adsorption heat
air
artificial membranes
Chemistry
Colloidal state and disperse state
Exact sciences and technology
General and physical chemistry
heat tolerance
Heat transfer
humidity
Mass transfer
Membrane
Membranes
Moisture
Surface physical chemistry
temperature
Title Coupled heat and mass transfer during moisture exchange across a membrane
URI https://dx.doi.org/10.1016/j.memsci.2012.12.018
Volume 430
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-LnoQn7g-lhy8xm2TtNkel0VZFb3ogrcwbSeiuN1l3QVP_nYnaSsKgiD0VNJmOhNmvikz3zB2pjSaWJpYpElhBCFwEDmgFBAjodnMFf1A13R7l47G-voxeVxhw7YXxpdVNr6_9unBWzd3eo02e7Pn59595IlIVJ8ilCcO6nvGT03BiM70-cdXmUdsojAGzy8WfnXbPhdqvCY4oVf7Ai8Zfgr60R-_h6dVB1NfNwlvpDpXz7z4Fogut9lWgyD5oBZyh61gtcs2v_EK7rGr4XQ5e8WSe0_LoSr5hDAyXwSQinNe9ybyyZRsvJwjx_e6_5dDkIoDJ5Epja5wn40vLx6GI9HMTBAFIYuFkARH6HMK0FGRRllpQDqnlAOFIFWZKHA5QhZJF-VamSLSAMqTeFEepxC1OmBr1bTCQ8YJSRmDpkxyFekip9SIUjXtEoryZPc86TDRqsrOamoM29aMvdhatdar1tJFW3SYafVpf5jYkvf-48lDUr-FJ_J7dnwvPSueHwRgVNZh3R82-ZJEpplJYpMe_XvXY7Yhw-wLX3B2wtYW8yWeEgJZ5N1wxLpsfXB1M7r7BDQK1_s
link.rule.ids 315,786,790,4521,24144,27957,27958,45620,45714
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB0FegAOFRQQoSXsoddt7F3bGx9RVBRa4AKRuK3G9iyiapwoTSRO_HZm1zYCCakSkk_W2jt-Y828Wc0HwHedkImViWWWlkYyA0dZICmJMTGbzV05Cu2arq6zyTT5dZfe9WDc1cL4tMrW9jc2PVjr9s6wRXO4eHgY3kS-EYkesYfyjYNGegM-eTrv5zf8eHrJ84hNFObg-dXSL-_q50KS14xm_G6f4aXCqaCf_fG-f9pwOPeJk_iPsXPN0ItXnuh8Fz63FFKcNVLuQY_qL7DzqrHgPlyM5-vFX6qEN7UC60rMmCSLVWCptBRNcaKYzVnJ6yUJemwKgAUGqQQKFpnj6JoOYHr-83Y8ke3QBFkytVhJxXyEP6fEJCqzKK8MKue0dqgJla5Sja4gzCPloiLRpowSRO27eHEgp4kSfQib9bymIxBMpYwhU6WFjpKy4NiIY7XEpezmWfFF2gfZQWUXTW8M2yWN_bENtNZDa_niLfpgOjztGx1bNt__efKI4bd4z4bPTm-Ub4vnJwEYnfdh8EYnL5KoLDdpbLLjD-96CluT26tLe3lx_fsrbKswCMNnn32DzdVyTSdMR1bFIPxuz1Ji2Y0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coupled+heat+and+mass+transfer+during+moisture+exchange+across+a+membrane&rft.jtitle=Journal+of+membrane+science&rft.au=Min%2C+Jingchun&rft.au=Wang%2C+Lining&rft.date=2013-03-01&rft.issn=0376-7388&rft.volume=430&rft.spage=150&rft.epage=157&rft_id=info:doi/10.1016%2Fj.memsci.2012.12.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_memsci_2012_12_018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon