UAVid: A semantic segmentation dataset for UAV imagery
[Display omitted] Semantic segmentation has been one of the leading research interests in computer vision recently. It serves as a perception foundation for many fields, such as robotics and autonomous driving. The fast development of semantic segmentation attributes enormously to the large scale da...
Saved in:
Published in | ISPRS journal of photogrammetry and remote sensing Vol. 165; pp. 108 - 119 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
Semantic segmentation has been one of the leading research interests in computer vision recently. It serves as a perception foundation for many fields, such as robotics and autonomous driving. The fast development of semantic segmentation attributes enormously to the large scale datasets, especially for the deep learning related methods. There already exist several semantic segmentation datasets for comparison among semantic segmentation methods in complex urban scenes, such as the Cityscapes and CamVid datasets, where the side views of the objects are captured with a camera mounted on the driving car. There also exist semantic labeling datasets for the airborne images and the satellite images, where the nadir views of the objects are captured. However, only a few datasets capture urban scenes from an oblique Unmanned Aerial Vehicle (UAV) perspective, where both of the top view and the side view of the objects can be observed, providing more information for object recognition. In this paper, we introduce our UAVid dataset, a new high-resolution UAV semantic segmentation dataset as a complement, which brings new challenges, including large scale variation, moving object recognition and temporal consistency preservation. Our UAV dataset consists of 30 video sequences capturing high-resolution images in oblique views. In total, 300 images have been densely labeled with 8 classes for the semantic labeling task. We have provided several deep learning baseline methods with pre-training, among which the proposed Multi-Scale-Dilation net performs the best via multi-scale feature extraction, reaching a mean intersection-over-union (IoU) score around 50%. We have also explored the influence of spatial-temporal regularization for sequence data by leveraging on feature space optimization (FSO) and 3D conditional random field (CRF). Our UAVid website and the labeling tool have been published online (https://uavid.nl/). |
---|---|
AbstractList | Semantic segmentation has been one of the leading research interests in computer vision recently. It serves as a perception foundation for many fields, such as robotics and autonomous driving. The fast development of semantic segmentation attributes enormously to the large scale datasets, especially for the deep learning related methods. There already exist several semantic segmentation datasets for comparison among semantic segmentation methods in complex urban scenes, such as the Cityscapes and CamVid datasets, where the side views of the objects are captured with a camera mounted on the driving car. There also exist semantic labeling datasets for the airborne images and the satellite images, where the nadir views of the objects are captured. However, only a few datasets capture urban scenes from an oblique Unmanned Aerial Vehicle (UAV) perspective, where both of the top view and the side view of the objects can be observed, providing more information for object recognition. In this paper, we introduce our UAVid dataset, a new high-resolution UAV semantic segmentation dataset as a complement, which brings new challenges, including large scale variation, moving object recognition and temporal consistency preservation. Our UAV dataset consists of 30 video sequences capturing high-resolution images in oblique views. In total, 300 images have been densely labeled with 8 classes for the semantic labeling task. We have provided several deep learning baseline methods with pre-training, among which the proposed Multi-Scale-Dilation net performs the best via multi-scale feature extraction, reaching a mean intersection-over-union (IoU) score around 50%. We have also explored the influence of spatial-temporal regularization for sequence data by leveraging on feature space optimization (FSO) and 3D conditional random field (CRF). Our UAVid website and the labeling tool have been published online (https://uavid.nl/). [Display omitted] Semantic segmentation has been one of the leading research interests in computer vision recently. It serves as a perception foundation for many fields, such as robotics and autonomous driving. The fast development of semantic segmentation attributes enormously to the large scale datasets, especially for the deep learning related methods. There already exist several semantic segmentation datasets for comparison among semantic segmentation methods in complex urban scenes, such as the Cityscapes and CamVid datasets, where the side views of the objects are captured with a camera mounted on the driving car. There also exist semantic labeling datasets for the airborne images and the satellite images, where the nadir views of the objects are captured. However, only a few datasets capture urban scenes from an oblique Unmanned Aerial Vehicle (UAV) perspective, where both of the top view and the side view of the objects can be observed, providing more information for object recognition. In this paper, we introduce our UAVid dataset, a new high-resolution UAV semantic segmentation dataset as a complement, which brings new challenges, including large scale variation, moving object recognition and temporal consistency preservation. Our UAV dataset consists of 30 video sequences capturing high-resolution images in oblique views. In total, 300 images have been densely labeled with 8 classes for the semantic labeling task. We have provided several deep learning baseline methods with pre-training, among which the proposed Multi-Scale-Dilation net performs the best via multi-scale feature extraction, reaching a mean intersection-over-union (IoU) score around 50%. We have also explored the influence of spatial-temporal regularization for sequence data by leveraging on feature space optimization (FSO) and 3D conditional random field (CRF). Our UAVid website and the labeling tool have been published online (https://uavid.nl/). |
Author | Yilmaz, Alper Lyu, Ye Vosselman, George Xia, Gui-Song Yang, Michael Ying |
Author_xml | – sequence: 1 givenname: Ye orcidid: 0000-0002-6665-7748 surname: Lyu fullname: Lyu, Ye organization: Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, the Netherlands – sequence: 2 givenname: George surname: Vosselman fullname: Vosselman, George organization: Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, the Netherlands – sequence: 3 givenname: Gui-Song orcidid: 0000-0001-7660-6090 surname: Xia fullname: Xia, Gui-Song organization: School of Computer Science, State Key Lab. of LIESMARS, Wuhan University, China – sequence: 4 givenname: Alper surname: Yilmaz fullname: Yilmaz, Alper organization: Department of Civil, Environmental and Geodetic Engineering, Ohio State University, USA – sequence: 5 givenname: Michael Ying orcidid: 0000-0002-0649-9987 surname: Yang fullname: Yang, Michael Ying email: michael.yang@utwente.nl organization: Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, the Netherlands |
BookMark | eNqNkD1PwzAQhi1UJNrCbyAjS8LZjp0EiaGq-JIqsVBWy3EulaN8FNtF6r8nVRADCwynu-F9XumeBZn1Q4-EXFNIKFB52yTW751vxkkYMEhAJADFGZnTPGNxzriYkTkULI1ZRuUFWXjfAAAVMp8TuV292-ouWkUeO90Ha8Zj12EfdLBDH1U6aI8hqgcXjdHIdnqH7nhJzmvderz63kuyfXx4Wz_Hm9enl_VqExteZCFmVJZU1yWUICnHtIK8rHkqayNSxitRFVpoyLXUlJd5ipxBJrTRLEWDQtZ8SW6m3r0bPg7og-qsN9i2usfh4BUrclEwkTE6Ru-nqHGD9w5rZez0RHDatoqCOvlSjfrxpU6-FAg1-hr57Be_d-O37vgPcjWROJr4tOiUNxZ7g5V1aIKqBvtnxxdWvIyo |
CitedBy_id | crossref_primary_10_1061_JITSE4_ISENG_2351 crossref_primary_10_1109_TGRS_2021_3117851 crossref_primary_10_1080_01431161_2023_2295835 crossref_primary_10_1109_TGRS_2024_3523505 crossref_primary_10_3390_rs16152827 crossref_primary_10_1016_j_jag_2023_103646 crossref_primary_10_3390_aerospace10100880 crossref_primary_10_1109_TCSVT_2024_3454227 crossref_primary_10_1007_s11263_024_02247_9 crossref_primary_10_1016_j_jag_2022_102677 crossref_primary_10_1016_j_jag_2023_103362 crossref_primary_10_3390_rs16183449 crossref_primary_10_1007_s12145_024_01355_x crossref_primary_10_1016_j_isprsjprs_2025_01_017 crossref_primary_10_1016_j_isprsjprs_2025_03_015 crossref_primary_10_1109_JSTARS_2024_3452250 crossref_primary_10_1080_01431161_2023_2297176 crossref_primary_10_1016_j_isprsjprs_2024_03_012 crossref_primary_10_1109_TPAMI_2021_3119563 crossref_primary_10_3390_rs15082139 crossref_primary_10_1016_j_ifacol_2023_03_052 crossref_primary_10_1155_2022_6010912 crossref_primary_10_1109_TGRS_2024_3493963 crossref_primary_10_1109_JSTARS_2024_3443268 crossref_primary_10_1109_JIOT_2024_3418859 crossref_primary_10_1109_JSTARS_2023_3275068 crossref_primary_10_1016_j_eswa_2024_124019 crossref_primary_10_61186_jgit_10_4_87 crossref_primary_10_1109_JSTARS_2025_3531984 crossref_primary_10_1016_j_jag_2025_104440 crossref_primary_10_1016_j_measurement_2023_112612 crossref_primary_10_1007_s10462_020_09943_1 crossref_primary_10_1109_ACCESS_2021_3061102 crossref_primary_10_1109_TGRS_2023_3278133 crossref_primary_10_1109_TGRS_2023_3234549 crossref_primary_10_1109_TGRS_2024_3502401 crossref_primary_10_1016_j_tust_2020_103677 crossref_primary_10_1109_TCAD_2022_3184928 crossref_primary_10_1016_j_isprsjprs_2021_06_006 crossref_primary_10_1016_j_isprsjprs_2022_03_001 crossref_primary_10_3390_rs15133275 crossref_primary_10_1016_j_isprsjprs_2021_03_024 crossref_primary_10_1016_j_wasman_2023_10_023 crossref_primary_10_1007_s11760_022_02463_1 crossref_primary_10_3390_rs14164008 crossref_primary_10_1016_j_ufug_2022_127785 crossref_primary_10_3389_fevo_2023_1201125 crossref_primary_10_1007_s11760_024_03106_3 crossref_primary_10_1109_TGRS_2022_3225843 crossref_primary_10_3390_aerospace10070604 crossref_primary_10_1007_s11042_024_19391_6 crossref_primary_10_1109_TGRS_2022_3150917 crossref_primary_10_3390_rs16061036 crossref_primary_10_1016_j_cageo_2022_105196 crossref_primary_10_1109_TITS_2024_3432761 crossref_primary_10_1016_j_jag_2022_103062 crossref_primary_10_1049_cvi2_12313 crossref_primary_10_3390_app14051986 crossref_primary_10_3390_rs16122077 crossref_primary_10_1016_j_jag_2024_103661 crossref_primary_10_1109_JSTARS_2024_3378695 crossref_primary_10_3233_JIFS_210349 crossref_primary_10_1016_j_isprsjprs_2021_12_006 crossref_primary_10_1109_TITS_2023_3312290 crossref_primary_10_1109_TNNLS_2023_3338732 crossref_primary_10_3390_ijgi9120728 crossref_primary_10_1145_3486616 crossref_primary_10_1109_TGRS_2024_3385318 crossref_primary_10_1007_s00521_021_06564_9 crossref_primary_10_3390_rs15194668 crossref_primary_10_1109_TGRS_2022_3223416 crossref_primary_10_3390_s25061786 crossref_primary_10_3390_rs16193622 crossref_primary_10_1016_j_ijcce_2021_11_005 crossref_primary_10_1016_j_comcom_2022_10_011 crossref_primary_10_1109_TGRS_2023_3345475 crossref_primary_10_1109_TNNLS_2021_3106391 crossref_primary_10_1109_TIV_2022_3193418 crossref_primary_10_3390_rs15061690 crossref_primary_10_3390_en13246496 crossref_primary_10_3390_rs14194969 crossref_primary_10_1109_JSTARS_2024_3472296 crossref_primary_10_1109_TGRS_2024_3465496 crossref_primary_10_3390_drones7020066 crossref_primary_10_3390_rs13163065 crossref_primary_10_1080_01431161_2024_2388875 crossref_primary_10_15622_ia_23_4_5 crossref_primary_10_1109_JSTARS_2024_3486724 crossref_primary_10_1109_LGRS_2025_3534994 crossref_primary_10_1109_TGRS_2024_3386918 crossref_primary_10_1109_TGRS_2024_3457674 crossref_primary_10_1109_LGRS_2022_3187760 crossref_primary_10_32604_cmes_2023_027764 crossref_primary_10_3390_electronics11213450 crossref_primary_10_1016_j_autcon_2024_105746 crossref_primary_10_3390_s23146514 crossref_primary_10_3390_drones8020046 crossref_primary_10_1080_01431161_2022_2142081 crossref_primary_10_1109_JSTARS_2024_3470316 crossref_primary_10_3788_LOP241148 crossref_primary_10_1109_TGRS_2024_3453868 crossref_primary_10_1109_ACCESS_2025_3548513 crossref_primary_10_3390_s23115288 crossref_primary_10_1016_j_landurbplan_2022_104569 crossref_primary_10_1109_TGRS_2021_3108781 crossref_primary_10_1109_TGRS_2024_3453501 crossref_primary_10_21923_jesd_1087477 crossref_primary_10_3390_rs14030533 crossref_primary_10_3390_a17120594 crossref_primary_10_1109_TVT_2023_3349312 crossref_primary_10_1109_JSTARS_2025_3525801 crossref_primary_10_1109_JSTARS_2023_3247455 crossref_primary_10_3390_drones9020097 crossref_primary_10_1088_1361_6501_ad6026 crossref_primary_10_3390_math10244735 crossref_primary_10_1080_01431161_2022_2030071 crossref_primary_10_1016_j_ecolind_2022_109615 crossref_primary_10_1109_LGRS_2024_3432922 crossref_primary_10_1109_TGRS_2024_3463204 crossref_primary_10_1109_JSTARS_2024_3437737 crossref_primary_10_1177_02783649241305153 crossref_primary_10_3390_rs13061053 crossref_primary_10_1016_j_robot_2022_104288 crossref_primary_10_1109_JSTARS_2021_3070368 crossref_primary_10_3390_rs15123157 crossref_primary_10_1109_JMASS_2023_3332948 crossref_primary_10_1109_JSTARS_2021_3104382 crossref_primary_10_1109_JSTARS_2023_3280029 crossref_primary_10_3390_ijgi13110402 crossref_primary_10_1109_TGRS_2022_3179379 crossref_primary_10_1109_TGRS_2023_3316166 crossref_primary_10_53297_0002306X_2022_v75_1_72 crossref_primary_10_1088_2634_4386_ac9b86 crossref_primary_10_1109_TCSVT_2020_3037234 crossref_primary_10_3390_rs16173278 crossref_primary_10_3390_ijgi11090494 crossref_primary_10_1007_s00521_024_10165_7 crossref_primary_10_3390_rs14215513 crossref_primary_10_3390_rs15102580 crossref_primary_10_1109_TGRS_2024_3487576 crossref_primary_10_3390_rs15051325 crossref_primary_10_2139_ssrn_4129749 crossref_primary_10_3390_app10207347 crossref_primary_10_1016_j_knosys_2024_111939 crossref_primary_10_1109_TGRS_2022_3214246 crossref_primary_10_1155_2021_2996940 crossref_primary_10_1109_TGRS_2021_3133109 crossref_primary_10_3390_s20174855 crossref_primary_10_1016_j_isprsjprs_2022_06_008 crossref_primary_10_1016_j_isprsjprs_2024_03_022 crossref_primary_10_1016_j_patcog_2022_109019 crossref_primary_10_1109_ACCESS_2025_3538906 crossref_primary_10_3390_app112311494 crossref_primary_10_1016_j_isprsjprs_2021_02_009 |
Cites_doi | 10.1016/j.biosystemseng.2010.11.010 10.1016/j.isprsjprs.2017.07.010 10.1109/CVPR.2017.565 10.1109/JSTARS.2016.2569162 10.5244/C.30.144 10.1109/TPAMI.2014.2377715 10.1016/j.isprsjprs.2013.10.004 10.1109/WACV.2018.00168 10.1109/CVPR.2015.7298965 10.1177/0278364913491297 10.1109/JSTARS.2014.2305441 10.3390/rs8080689 10.1007/s11263-014-0733-5 10.1016/j.rse.2019.111322 10.1109/CVPRW.2018.00031 10.3390/rs11212505 10.3390/rs9020171 10.1109/CVPR.2016.350 10.1007/978-3-319-46448-0_27 10.1109/CVPR.2017.544 10.1109/CVPR.2018.00132 10.1109/TPAMI.2010.143 10.1007/978-3-030-01234-2_49 10.1007/s10846-012-9759-5 10.1109/TPAMI.2012.120 |
ContentType | Journal Article |
Copyright | 2020 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
Copyright_xml | – notice: 2020 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.isprsjprs.2020.05.009 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1872-8235 |
EndPage | 119 |
ExternalDocumentID | 10_1016_j_isprsjprs_2020_05_009 S0924271620301295 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSV SSZ T5K T9H WUQ ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c397t-216b1afb0b0613e4d08bf346fc5423d5d9a5a08a6a13b84e32075aca24ece56f3 |
IEDL.DBID | .~1 |
ISSN | 0924-2716 |
IngestDate | Tue Aug 05 11:20:36 EDT 2025 Tue Jul 01 03:46:43 EDT 2025 Thu Apr 24 23:01:50 EDT 2025 Fri Feb 23 02:47:40 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning UAV Semantic segmentation Dataset |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c397t-216b1afb0b0613e4d08bf346fc5423d5d9a5a08a6a13b84e32075aca24ece56f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6665-7748 0000-0001-7660-6090 0000-0002-0649-9987 |
OpenAccessLink | https://research.utwente.nl/en/publications/0839a8f9-4463-48c1-905e-10e03a7d62f7 |
PQID | 2985925721 |
PQPubID | 24069 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2985925721 crossref_citationtrail_10_1016_j_isprsjprs_2020_05_009 crossref_primary_10_1016_j_isprsjprs_2020_05_009 elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2020_05_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2020 2020-07-00 20200701 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: July 2020 |
PublicationDecade | 2020 |
PublicationTitle | ISPRS journal of photogrammetry and remote sensing |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Caesar, H., Uijlings, J., Ferrari, V., 2018. Coco-stuff: Thing and stuff classes in context. In: CVPR. Du, Qi, Yu, Yang, Duan, Li, Zhang, Huang, Tian (b0095) 2018 Everingham, Eslami, Van Gool, Williams, Winn, Zisserman (b0100) 2015; 111 Lottes, Khanna, Pfeifer, Siegwart, Stachniss (b0140) 2017 Brostow, Shotton, Fauqueur, Cipolla (b0020) 2008 Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H., 2018. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: ECCV. Geiger, Lenz, Stiller, Urtasun (b0105) 2013; 32 Semsch, Jakob, Pavlicek, Pechoucek (b0190) 2009 Dollár, Zitnick (b0090) 2015; 37 Perez, Maza, Caballero, Scarlatti, Casado, Ollero (b0160) 2013; 69 Richmond, D., Kainmueller, D., Yang, M.Y., Myers, G., Rother, C., 2016. Mapping auto-context to a deep, sparse convnet for semantic segmenation. In: British Machine Vision Conference (BMVC). Hosseini, O., Groth, O., Kirillov, A., Yang, M.Y., Rother, C., 2017. Analyzing modular cnn architectures for joint depth prediction and semantic segmentation. In: International Conference on Robotics and Automation (ICRA). Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic segmentation. In: CVPR. Brox, Malik (b0025) 2011; 33 Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T., 2018. Bdd100k: A diverse driving video database with scalable annotation tooling. arXiv preprint arXiv:1805.04687. Liu, Fan, Wang, Bai, Xiang, Pan (b0130) 2018 Milioto, Lottes, Stachniss (b0145) 2017; 4 Sundaram, Brox, Keutzer (b0195) 2010 Tong, X.Y., Xia, G.S., Lu, Q., Shen, H., Li, S., You, S., Zhang, L., Land-cover classification with high-resolution remote sensing images using transferable deep models. Remote Sens. Environ. 237, 111322. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al., 2016. Tensorflow: a system for large-scale machine learning. In: OSDI, pp. 265–283. Demir, I., Koperski, K., Lindenbaum, D., Pang, G., Huang, J., Basu, S., Hughes, F., Tuia, D., Raska, R., 2018. Deepglobe 2018: A challenge to parse the earth through satellite images. In: CVPRW. Chebrolu, Läbe, Stachniss (b0050) 2018; 3 Zhu, P., Wen, L., Bian, X., Haibin, L., Hu, Q., 2018. Vision meets drones: A challenge. arXiv preprint arXiv:1804.07437. Zhao, Shi, Qi, Wang, Jia (b0225) 2017 Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A., 2017. Scene parsing through ade20k dataset. In: CVPR. Yu, F., Koltun, V., 2016. Multi-scale context aggregation by dilated convolutions. In: ICLR. Nigam, I., Huang, C., Ramanan, D., 2018. Ensemble Knowledge Transfer for Semantic Segmentation. In IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1499-1508. Debes, Merentitis, Heremans, Hahn, Frangiadakis, van Kasteren, Liao, Bellens, Pizurica, Gautama, Philips, Prasad, Du, Pacifici (b0080) 2014; 7 Robicquet, Sadeghian, Alahi, Savarese (b0170) 2016 Rottensteiner, Sohn, Gerke, Wegner, Breitkopf, Jung (b0180) 2014; 93 Yang, Liao, Ackermann, Rosenhahn (b0210) 2017; 131 Achanta, Shaji, Smith, Lucchi, Fua, Süsstrunk (b0010) 2012; 34 Caelles, S., Maninis, K.K., Pont-Tuset, J., Leal-Taixé, L., Cremers, D., Van Gool, L., 2017. One-shot video object segmentation. In: CVPR. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B., 2016. The cityscapes dataset for semantic urban scene understanding. In: CVPR. Kim, B., Yim, J., Kim, J., 2018. Highway driving dataset for semantic video segmentation. In: BMVC. Adelson, Anderson, Bergen, Burt, Ogden (b0015) 1984; 29 Kundu, Vineet, Koltun (b0120) 2016 Crommelinck, S., Bennett, R., Gerke, M., Yang, M.Y., Vosselman, G., 2017. Contour detection for uav-based cadastral mapping. Remote Sens. Crommelinck, S., Bennett, R., Gerke, M., Nex, F., Yang, M.Y., Vosselman, G., 2016. Review of automatic feature extraction from high-resolution optical sensor data for uav-based cadastral mapping. Remote Sens. Brox, Bruhn, Papenberg, Weickert (b0030) 2004 Crommelinck, Koeva, Yang, Vosselman (b0075) 2019; 11 Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár, Zitnick (b0125) 2014 Scharwächter, Enzweiler, Franke, Roth (b0185) 2013 Ronneberger, Fischer, Brox (b0175) 2015 Campos-Taberner, Romero-Soriano, Gatta, Camps-Valls, Lagrange, Saux, Beaupère, Boulch, Chan-Hon-Tong, Herbin, Randrianarivo, Ferecatu, Shimoni, Moser, Tuia (b0045) 2016 Xiang, Tian (b0205) 2011; 108 Mueller, M., Smith, N., Ghanem, B., 2016. A benchmark and simulator for uav tracking. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (Eds.), ECCV. 10.1016/j.isprsjprs.2020.05.009_b0070 Semsch (10.1016/j.isprsjprs.2020.05.009_b0190) 2009 Everingham (10.1016/j.isprsjprs.2020.05.009_b0100) 2015; 111 Zhao (10.1016/j.isprsjprs.2020.05.009_b0225) 2017 Brox (10.1016/j.isprsjprs.2020.05.009_b0025) 2011; 33 Campos-Taberner (10.1016/j.isprsjprs.2020.05.009_b0045) 2016 10.1016/j.isprsjprs.2020.05.009_b0005 Robicquet (10.1016/j.isprsjprs.2020.05.009_b0170) 2016 Ronneberger (10.1016/j.isprsjprs.2020.05.009_b0175) 2015 10.1016/j.isprsjprs.2020.05.009_b0200 Chebrolu (10.1016/j.isprsjprs.2020.05.009_b0050) 2018; 3 10.1016/j.isprsjprs.2020.05.009_b0165 10.1016/j.isprsjprs.2020.05.009_b0220 10.1016/j.isprsjprs.2020.05.009_b0065 Kundu (10.1016/j.isprsjprs.2020.05.009_b0120) 2016 10.1016/j.isprsjprs.2020.05.009_b0085 10.1016/j.isprsjprs.2020.05.009_b0040 Perez (10.1016/j.isprsjprs.2020.05.009_b0160) 2013; 69 10.1016/j.isprsjprs.2020.05.009_b0060 Milioto (10.1016/j.isprsjprs.2020.05.009_b0145) 2017; 4 Crommelinck (10.1016/j.isprsjprs.2020.05.009_b0075) 2019; 11 Liu (10.1016/j.isprsjprs.2020.05.009_b0130) 2018 Lottes (10.1016/j.isprsjprs.2020.05.009_b0140) 2017 Sundaram (10.1016/j.isprsjprs.2020.05.009_b0195) 2010 Brostow (10.1016/j.isprsjprs.2020.05.009_b0020) 2008 Geiger (10.1016/j.isprsjprs.2020.05.009_b0105) 2013; 32 Scharwächter (10.1016/j.isprsjprs.2020.05.009_b0185) 2013 Du (10.1016/j.isprsjprs.2020.05.009_b0095) 2018 Achanta (10.1016/j.isprsjprs.2020.05.009_b0010) 2012; 34 Brox (10.1016/j.isprsjprs.2020.05.009_b0030) 2004 10.1016/j.isprsjprs.2020.05.009_b0215 10.1016/j.isprsjprs.2020.05.009_b0115 10.1016/j.isprsjprs.2020.05.009_b0235 10.1016/j.isprsjprs.2020.05.009_b0135 10.1016/j.isprsjprs.2020.05.009_b0035 10.1016/j.isprsjprs.2020.05.009_b0155 Adelson (10.1016/j.isprsjprs.2020.05.009_b0015) 1984; 29 10.1016/j.isprsjprs.2020.05.009_b0055 Dollár (10.1016/j.isprsjprs.2020.05.009_b0090) 2015; 37 10.1016/j.isprsjprs.2020.05.009_b0110 Rottensteiner (10.1016/j.isprsjprs.2020.05.009_b0180) 2014; 93 10.1016/j.isprsjprs.2020.05.009_b0230 Yang (10.1016/j.isprsjprs.2020.05.009_b0210) 2017; 131 Debes (10.1016/j.isprsjprs.2020.05.009_b0080) 2014; 7 Lin (10.1016/j.isprsjprs.2020.05.009_b0125) 2014 10.1016/j.isprsjprs.2020.05.009_b0150 Xiang (10.1016/j.isprsjprs.2020.05.009_b0205) 2011; 108 |
References_xml | – reference: Crommelinck, S., Bennett, R., Gerke, M., Yang, M.Y., Vosselman, G., 2017. Contour detection for uav-based cadastral mapping. Remote Sens. – volume: 29 start-page: 33 year: 1984 end-page: 41 ident: b0015 article-title: Pyramid methods in image processing publication-title: RCA Eng. – year: 2018 ident: b0095 article-title: The unmanned aerial vehicle benchmark: object detection and tracking publication-title: ECCV – reference: Kim, B., Yim, J., Kim, J., 2018. Highway driving dataset for semantic video segmentation. In: BMVC. – start-page: 234 year: 2015 end-page: 241 ident: b0175 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: MICCAI – reference: Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T., 2018. Bdd100k: A diverse driving video database with scalable annotation tooling. arXiv preprint arXiv:1805.04687. – reference: Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic segmentation. In: CVPR. – year: 2018 ident: b0130 article-title: Semantic labeling in very high resolution images via a self-cascaded convolutional neural network publication-title: ISPRS J. Photogram. Remote Sens. – reference: Richmond, D., Kainmueller, D., Yang, M.Y., Myers, G., Rother, C., 2016. Mapping auto-context to a deep, sparse convnet for semantic segmenation. In: British Machine Vision Conference (BMVC). – reference: Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al., 2016. Tensorflow: a system for large-scale machine learning. In: OSDI, pp. 265–283. – year: 2016 ident: b0045 article-title: Processing of extremely high-resolution lidar and rgb data: Outcome of the 2015 ieee grss data fusion contest part a: 2-d contest publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens – reference: Yu, F., Koltun, V., 2016. Multi-scale context aggregation by dilated convolutions. In: ICLR. – start-page: 3024 year: 2017 end-page: 3031 ident: b0140 article-title: Uav-based crop and weed classification for smart farming publication-title: ICRA – reference: Crommelinck, S., Bennett, R., Gerke, M., Nex, F., Yang, M.Y., Vosselman, G., 2016. Review of automatic feature extraction from high-resolution optical sensor data for uav-based cadastral mapping. Remote Sens. – reference: Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A., 2017. Scene parsing through ade20k dataset. In: CVPR. – start-page: 82 year: 2009 end-page: 85 ident: b0190 article-title: Autonomous uav surveillance in complex urban environments publication-title: International Joint Conference on Web Intelligence and Intelligent Agent Technology – start-page: 25 year: 2004 end-page: 36 ident: b0030 article-title: High accuracy optical flow estimation based on a theory for warping publication-title: ECCV – volume: 3 year: 2018 ident: b0050 article-title: Robust long-term registration of uav images of crop fields for precision agriculture publication-title: IEEE Robot. Automat. Lett. – volume: 93 start-page: 256 year: 2014 end-page: 271 ident: b0180 article-title: Results of the isprs benchmark on urban object detection and 3d building reconstruction publication-title: ISPRS J. Photogram. Remote Sens. – volume: 32 start-page: 1231 year: 2013 end-page: 1237 ident: b0105 article-title: Vision meets robotics: The kitti dataset publication-title: Int. J. Robot. Res. – reference: Zhu, P., Wen, L., Bian, X., Haibin, L., Hu, Q., 2018. Vision meets drones: A challenge. arXiv preprint arXiv:1804.07437. – reference: Mueller, M., Smith, N., Ghanem, B., 2016. A benchmark and simulator for uav tracking. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (Eds.), ECCV. – start-page: 3168 year: 2016 end-page: 3175 ident: b0120 article-title: Feature space optimization for semantic video segmentation publication-title: CVPR – reference: Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B., 2016. The cityscapes dataset for semantic urban scene understanding. In: CVPR. – start-page: 435 year: 2013 end-page: 445 ident: b0185 article-title: Efficient multi-cue scene segmentation publication-title: GCPR – reference: Nigam, I., Huang, C., Ramanan, D., 2018. Ensemble Knowledge Transfer for Semantic Segmentation. In IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1499-1508. – volume: 37 start-page: 1558 year: 2015 end-page: 1570 ident: b0090 article-title: Fast edge detection using structured forests publication-title: PAMI – volume: 34 start-page: 2274 year: 2012 end-page: 2282 ident: b0010 article-title: Slic superpixels compared to state-of-the-art superpixel methods publication-title: PAMI – start-page: 549 year: 2016 end-page: 565 ident: b0170 article-title: Learning social etiquette: Human trajectory understanding in crowded scenes publication-title: ECCV – volume: 111 start-page: 98 year: 2015 end-page: 136 ident: b0100 article-title: The pascal visual object classes challenge: A retrospective publication-title: IJCV – reference: Tong, X.Y., Xia, G.S., Lu, Q., Shen, H., Li, S., You, S., Zhang, L., Land-cover classification with high-resolution remote sensing images using transferable deep models. Remote Sens. Environ. 237, 111322. – start-page: 2881 year: 2017 end-page: 2890 ident: b0225 article-title: Pyramid scene parsing network publication-title: CVPR – volume: 4 start-page: 41 year: 2017 ident: b0145 article-title: Real-time blob-wise sugar beets vs weeds classification for monitoring fields using convolutional neural networks publication-title: ISPRS Ann. – volume: 108 start-page: 174 year: 2011 end-page: 190 ident: b0205 article-title: Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (uav) publication-title: Biosyst. Eng. – reference: Hosseini, O., Groth, O., Kirillov, A., Yang, M.Y., Rother, C., 2017. Analyzing modular cnn architectures for joint depth prediction and semantic segmentation. In: International Conference on Robotics and Automation (ICRA). – volume: 33 start-page: 500 year: 2011 end-page: 513 ident: b0025 article-title: Large displacement optical flow: descriptor matching in variational motion estimation publication-title: PAMI – reference: Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H., 2018. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: ECCV. – start-page: 44 year: 2008 end-page: 57 ident: b0020 article-title: Segmentation and recognition using structure from motion point clouds publication-title: ECCV – volume: 131 start-page: 15 year: 2017 end-page: 25 ident: b0210 article-title: On support relations and semantic scene graphs publication-title: ISPRS J. Photogramm. Remote Sens. – reference: Caesar, H., Uijlings, J., Ferrari, V., 2018. Coco-stuff: Thing and stuff classes in context. In: CVPR. – volume: 7 year: 2014 ident: b0080 article-title: Hyperspectral and lidar data fusion: Outcome of the 2013 grss data fusion contest publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. – reference: Demir, I., Koperski, K., Lindenbaum, D., Pang, G., Huang, J., Basu, S., Hughes, F., Tuia, D., Raska, R., 2018. Deepglobe 2018: A challenge to parse the earth through satellite images. In: CVPRW. – volume: 11 year: 2019 ident: b0075 article-title: Application of deep learning for delineation of visible cadastral boundaries from remote sensing imagery publication-title: Remote Sens. – start-page: 438 year: 2010 end-page: 451 ident: b0195 article-title: Dense point trajectories by gpu-accelerated large displacement optical flow publication-title: ECCV – reference: Caelles, S., Maninis, K.K., Pont-Tuset, J., Leal-Taixé, L., Cremers, D., Van Gool, L., 2017. One-shot video object segmentation. In: CVPR. – start-page: 740 year: 2014 end-page: 755 ident: b0125 article-title: Microsoft coco: Common objects in context publication-title: ECCV – volume: 69 start-page: 119 year: 2013 end-page: 130 ident: b0160 article-title: A ground control station for a multi-uav surveillance system publication-title: J. Intell. Robot. Syst. – start-page: 549 year: 2016 ident: 10.1016/j.isprsjprs.2020.05.009_b0170 article-title: Learning social etiquette: Human trajectory understanding in crowded scenes – start-page: 3168 year: 2016 ident: 10.1016/j.isprsjprs.2020.05.009_b0120 article-title: Feature space optimization for semantic video segmentation – start-page: 740 year: 2014 ident: 10.1016/j.isprsjprs.2020.05.009_b0125 article-title: Microsoft coco: Common objects in context – volume: 108 start-page: 174 year: 2011 ident: 10.1016/j.isprsjprs.2020.05.009_b0205 article-title: Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (uav) publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2010.11.010 – start-page: 2881 year: 2017 ident: 10.1016/j.isprsjprs.2020.05.009_b0225 article-title: Pyramid scene parsing network – volume: 3 year: 2018 ident: 10.1016/j.isprsjprs.2020.05.009_b0050 article-title: Robust long-term registration of uav images of crop fields for precision agriculture publication-title: IEEE Robot. Automat. Lett. – volume: 131 start-page: 15 year: 2017 ident: 10.1016/j.isprsjprs.2020.05.009_b0210 article-title: On support relations and semantic scene graphs publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.07.010 – ident: 10.1016/j.isprsjprs.2020.05.009_b0035 doi: 10.1109/CVPR.2017.565 – ident: 10.1016/j.isprsjprs.2020.05.009_b0005 – year: 2016 ident: 10.1016/j.isprsjprs.2020.05.009_b0045 article-title: Processing of extremely high-resolution lidar and rgb data: Outcome of the 2015 ieee grss data fusion contest part a: 2-d contest publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens doi: 10.1109/JSTARS.2016.2569162 – ident: 10.1016/j.isprsjprs.2020.05.009_b0165 doi: 10.5244/C.30.144 – volume: 37 start-page: 1558 year: 2015 ident: 10.1016/j.isprsjprs.2020.05.009_b0090 article-title: Fast edge detection using structured forests publication-title: PAMI doi: 10.1109/TPAMI.2014.2377715 – volume: 93 start-page: 256 year: 2014 ident: 10.1016/j.isprsjprs.2020.05.009_b0180 article-title: Results of the isprs benchmark on urban object detection and 3d building reconstruction publication-title: ISPRS J. Photogram. Remote Sens. doi: 10.1016/j.isprsjprs.2013.10.004 – ident: 10.1016/j.isprsjprs.2020.05.009_b0235 – ident: 10.1016/j.isprsjprs.2020.05.009_b0110 – ident: 10.1016/j.isprsjprs.2020.05.009_b0155 doi: 10.1109/WACV.2018.00168 – volume: 29 start-page: 33 year: 1984 ident: 10.1016/j.isprsjprs.2020.05.009_b0015 article-title: Pyramid methods in image processing publication-title: RCA Eng. – ident: 10.1016/j.isprsjprs.2020.05.009_b0135 doi: 10.1109/CVPR.2015.7298965 – start-page: 435 year: 2013 ident: 10.1016/j.isprsjprs.2020.05.009_b0185 article-title: Efficient multi-cue scene segmentation – start-page: 25 year: 2004 ident: 10.1016/j.isprsjprs.2020.05.009_b0030 article-title: High accuracy optical flow estimation based on a theory for warping – year: 2018 ident: 10.1016/j.isprsjprs.2020.05.009_b0130 article-title: Semantic labeling in very high resolution images via a self-cascaded convolutional neural network publication-title: ISPRS J. Photogram. Remote Sens. – start-page: 3024 year: 2017 ident: 10.1016/j.isprsjprs.2020.05.009_b0140 article-title: Uav-based crop and weed classification for smart farming – volume: 32 start-page: 1231 year: 2013 ident: 10.1016/j.isprsjprs.2020.05.009_b0105 article-title: Vision meets robotics: The kitti dataset publication-title: Int. J. Robot. Res. doi: 10.1177/0278364913491297 – ident: 10.1016/j.isprsjprs.2020.05.009_b0115 – volume: 7 year: 2014 ident: 10.1016/j.isprsjprs.2020.05.009_b0080 article-title: Hyperspectral and lidar data fusion: Outcome of the 2013 grss data fusion contest publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2014.2305441 – ident: 10.1016/j.isprsjprs.2020.05.009_b0065 doi: 10.3390/rs8080689 – start-page: 82 year: 2009 ident: 10.1016/j.isprsjprs.2020.05.009_b0190 article-title: Autonomous uav surveillance in complex urban environments – start-page: 44 year: 2008 ident: 10.1016/j.isprsjprs.2020.05.009_b0020 article-title: Segmentation and recognition using structure from motion point clouds – volume: 111 start-page: 98 year: 2015 ident: 10.1016/j.isprsjprs.2020.05.009_b0100 article-title: The pascal visual object classes challenge: A retrospective publication-title: IJCV doi: 10.1007/s11263-014-0733-5 – ident: 10.1016/j.isprsjprs.2020.05.009_b0200 doi: 10.1016/j.rse.2019.111322 – ident: 10.1016/j.isprsjprs.2020.05.009_b0085 doi: 10.1109/CVPRW.2018.00031 – volume: 11 year: 2019 ident: 10.1016/j.isprsjprs.2020.05.009_b0075 article-title: Application of deep learning for delineation of visible cadastral boundaries from remote sensing imagery publication-title: Remote Sens. doi: 10.3390/rs11212505 – year: 2018 ident: 10.1016/j.isprsjprs.2020.05.009_b0095 article-title: The unmanned aerial vehicle benchmark: object detection and tracking – ident: 10.1016/j.isprsjprs.2020.05.009_b0070 doi: 10.3390/rs9020171 – ident: 10.1016/j.isprsjprs.2020.05.009_b0060 doi: 10.1109/CVPR.2016.350 – ident: 10.1016/j.isprsjprs.2020.05.009_b0150 doi: 10.1007/978-3-319-46448-0_27 – start-page: 234 year: 2015 ident: 10.1016/j.isprsjprs.2020.05.009_b0175 article-title: U-net: Convolutional networks for biomedical image segmentation – ident: 10.1016/j.isprsjprs.2020.05.009_b0230 doi: 10.1109/CVPR.2017.544 – ident: 10.1016/j.isprsjprs.2020.05.009_b0215 – ident: 10.1016/j.isprsjprs.2020.05.009_b0040 doi: 10.1109/CVPR.2018.00132 – ident: 10.1016/j.isprsjprs.2020.05.009_b0220 – start-page: 438 year: 2010 ident: 10.1016/j.isprsjprs.2020.05.009_b0195 article-title: Dense point trajectories by gpu-accelerated large displacement optical flow – volume: 33 start-page: 500 year: 2011 ident: 10.1016/j.isprsjprs.2020.05.009_b0025 article-title: Large displacement optical flow: descriptor matching in variational motion estimation publication-title: PAMI doi: 10.1109/TPAMI.2010.143 – ident: 10.1016/j.isprsjprs.2020.05.009_b0055 doi: 10.1007/978-3-030-01234-2_49 – volume: 69 start-page: 119 year: 2013 ident: 10.1016/j.isprsjprs.2020.05.009_b0160 article-title: A ground control station for a multi-uav surveillance system publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-012-9759-5 – volume: 34 start-page: 2274 year: 2012 ident: 10.1016/j.isprsjprs.2020.05.009_b0010 article-title: Slic superpixels compared to state-of-the-art superpixel methods publication-title: PAMI doi: 10.1109/TPAMI.2012.120 – volume: 4 start-page: 41 year: 2017 ident: 10.1016/j.isprsjprs.2020.05.009_b0145 article-title: Real-time blob-wise sugar beets vs weeds classification for monitoring fields using convolutional neural networks publication-title: ISPRS Ann. |
SSID | ssj0001568 |
Score | 2.6784563 |
Snippet | [Display omitted]
Semantic segmentation has been one of the leading research interests in computer vision recently. It serves as a perception foundation for... Semantic segmentation has been one of the leading research interests in computer vision recently. It serves as a perception foundation for many fields, such as... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 108 |
SubjectTerms | cameras computer vision data collection Dataset Deep learning remote sensing robots Semantic segmentation UAV unmanned aerial vehicles |
Title | UAVid: A semantic segmentation dataset for UAV imagery |
URI | https://dx.doi.org/10.1016/j.isprsjprs.2020.05.009 https://www.proquest.com/docview/2985925721 |
Volume | 165 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDMCAoIAoLwWJNdRx7dRmqxBVAcECRd0sJ7UhFU2rJh268Nu5a5LyEBIDQ6QkOifR5XL3Of7ujpBzriIpnTJ-SA0W1abWV7GxPgPjEKZFnXP4Q__-Iez2-G1f9FfIVZULg7TK0vcXPn3hrcszjVKbjUmSNB4pTB0YFkBCVM8UJppz3kIrv3j_pHkERTocCvso_Y3jlWSTaTaEDSaKjC5KeCIz8fcI9cNXLwJQZ5tslcjRaxcPt0NWbFojm1_qCdbIetnS_HW-S8Je-zkZXHptL7MjUF8Sw87LqEw1Sj2khmY29wC0eiDqJSOsZjHfI73O9dNV1y-bJPgxQIncZ0EYBcZFNMLIbPmAysg1eehiAUhpIAbKCEOlCU3QjCS3TQYgwcSGcRtbEbrmPllNx6k9IJ6SLWmdwQiuOMMlSGz4IsBfwvVtIOskrBSj47KCODayeNMVVWyolxrVqFFNhQaN1gldDpwURTT-HnJZaV5_swcNrv7vwWfVu9LwteASiEnteAZCSgoFXooFh_-5wRHZwKOCtntMVvPpzJ4AOMmj04X1nZK19s1d9-ED-Qbj7Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BGYAB8RTlGSTWqI4bp3a3qgKVVxcoYrOc1IYgGipaBv49d41TAUJiYIgUJb4kujjffY7P3wGcxiqV0ikTJsyQqDazocqMDTl2DmFazDlHP_Rv-klvEF8-iIcF6FZrYSit0mN_iekztPZHGt6bjXGeN24ZDh04CSARq-dKLMISqVOJGix1Lq56_TkgR-WKOGofksG3NK98Mn6bPOOGY0XOZiqelJz4e5D6AdezGHS-DmuePAad8vk2YMEWm7D6RVJwE5Z9VfOnjy1IBp37fNgOOsHEjtCDeYY7jyO_2qgIKDt0YqcB8tYAmwb5iAQtPrZhcH521-2Fvk5CmCGbmIY8StLIuJSlFJxtPGQydc04cZlAsjQUQ2WEYdIkJmqmMrZNjjzBZIbHNrMicc0dqBWvhd2FQMmWtM5QEFcxp1lIqvkiEDLx-jaSdUgqx-jMi4hTLYsXXWWLPeu5RzV5VDOh0aN1YHPDcamj8bdJu_K8_tYlNKL938Yn1bvS-MHQLIgp7Os7NlJSKAQqHu395wbHsNy7u7nW1xf9q31YoTNlFu8B1KZv7_YQuco0PfJ98RPQZuae |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UAVid%3A+A+semantic+segmentation+dataset+for+UAV+imagery&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Lyu%2C+Ye&rft.au=Vosselman%2C+George&rft.au=Xia%2C+Gui-Song&rft.au=Yilmaz%2C+Alper&rft.date=2020-07-01&rft.issn=0924-2716&rft.volume=165+p.108-119&rft.spage=108&rft.epage=119&rft_id=info:doi/10.1016%2Fj.isprsjprs.2020.05.009&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon |