Unsteady immiscible multiphase flow validation of a multiple-relaxation-time lattice Boltzmann method

The lattice Boltzmann modeling of immiscible multiphase flows needs to be further validated, especially when density variation occurs between the different flow phases. From this perspective, the goal of this research is to introduce the multiple-relaxation-time operator into a lattice Boltzmann mod...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. A, Mathematical and theoretical Vol. 47; no. 10; pp. 105501 - 24
Main Authors Leclaire, S, Pellerin, N, Reggio, M, Trépanier, J-Y
Format Journal Article
LanguageEnglish
Published IOP Publishing 14.03.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The lattice Boltzmann modeling of immiscible multiphase flows needs to be further validated, especially when density variation occurs between the different flow phases. From this perspective, the goal of this research is to introduce the multiple-relaxation-time operator into a lattice Boltzmann model in order to improve its numerical stability in the presence of large density and viscosity ratios. Essentially, this research shows that the introduction of this operator greatly improves the numerical stability of the approach compared to the original single-relaxation-time collision operator. In many lattice Boltzmann research studies, multiphase lattice Boltzmann methods are validated using a reduced number of test cases, and unsteady flow test cases are frequently omitted before much more complex flow configurations are simulated. In this context, several test cases are proposed to evaluate the behavior of a lattice Boltzmann method for simulating immiscible multiphase flows with high density and viscosity ratios. These are: (1) two-phase Couette flow; (2) three-phase Laplace law; (3) three-phase Zalesak disk; (4) two-phase flow between oscillating plates; (5) two-phase capillary wave; and (6) the two-phase oscillating cylindrical bubble. The first two involve a steady regime, and the remaining four an unsteady regime.
AbstractList The lattice Boltzmann modeling of immiscible multiphase flows needs to be further validated, especially when density variation occurs between the different flow phases. From this perspective, the goal of this research is to introduce the multiple-relaxation-time operator into a lattice Boltzmann model in order to improve its numerical stability in the presence of large density and viscosity ratios. Essentially, this research shows that the introduction of this operator greatly improves the numerical stability of the approach compared to the original single-relaxation-time collision operator. In many lattice Boltzmann research studies, multiphase lattice Boltzmann methods are validated using a reduced number of test cases, and unsteady flow test cases are frequently omitted before much more complex flow configurations are simulated. In this context, several test cases are proposed to evaluate the behavior of a lattice Boltzmann method for simulating immiscible multiphase flows with high density and viscosity ratios. These are: (1) two-phase Couette flow; (2) three-phase Laplace law; (3) three-phase Zalesak disk; (4) two-phase flow between oscillating plates; (5) two-phase capillary wave; and (6) the two-phase oscillating cylindrical bubble. The first two involve a steady regime, and the remaining four an unsteady regime.
Author Leclaire, S
Reggio, M
Trépanier, J-Y
Pellerin, N
Author_xml – sequence: 1
  givenname: S
  surname: Leclaire
  fullname: Leclaire, S
  email: sebastien.leclaire@polymtl.ca
  organization: Department of Mechanical Engineering , École Polytechnique, 2500, chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada
– sequence: 2
  givenname: N
  surname: Pellerin
  fullname: Pellerin, N
  organization: Department of Mechanical Engineering , École Polytechnique, 2500, chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada
– sequence: 3
  givenname: M
  surname: Reggio
  fullname: Reggio, M
  organization: Department of Mechanical Engineering , École Polytechnique, 2500, chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada
– sequence: 4
  givenname: J-Y
  surname: Trépanier
  fullname: Trépanier, J-Y
  organization: Department of Mechanical Engineering , École Polytechnique, 2500, chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada
BookMark eNqFkE1LAzEQhoNUsK3-BcnRy9pks9kP8KLFLyh4seeQzU5oSnZTN1m1_np3u8WDl8LADHnnGcgzQ5PGNYDQNSW3lOT5gmacRjmlbJFkC0r64pzQMzQ9BjGd_M2UXaCZ91tCeEKKeIpg3fgAstpjU9fGK1NawHVng9ltpAesrfvCn9KaSgbjGuw0lsfcQtSCld-HIAqmBmxlCEYBfnA2_NSyaXANYeOqS3SupfVwdexztH56fF--RKu359fl_SpSrMhCREExprNC0UJSzhOlWJKTRBY6lVUpk4RXcZkRVmrVl-JlnFZEaQUMclWlms3RzXh317qPDnwQw5_AWtmA67ygaVrkRZpx3q-m46pqnfctaLFrTS3bvaBEDF7FoEwMykSSjY-D1x68-wcqEw4OQiuNPY3HI27cTmxd1za9kFPQL5xTka8
CODEN JPHAC5
CitedBy_id crossref_primary_10_1103_PhysRevE_101_013313
crossref_primary_10_1016_j_pecs_2015_10_001
crossref_primary_10_1063_5_0155070
crossref_primary_10_1103_PhysRevE_95_033306
crossref_primary_10_1016_j_ijmultiphaseflow_2015_08_009
crossref_primary_10_1016_j_apm_2016_01_049
crossref_primary_10_3811_jjmf_29_433
crossref_primary_10_1155_2019_5176410
crossref_primary_10_1002_fld_4226
crossref_primary_10_1063_5_0021652
crossref_primary_10_1063_5_0151374
crossref_primary_10_1007_s40571_019_00250_3
crossref_primary_10_1016_j_advwatres_2021_103943
crossref_primary_10_1103_PhysRevE_96_013317
crossref_primary_10_1103_PhysRevFluids_5_063301
crossref_primary_10_1016_j_molliq_2019_111926
crossref_primary_10_1016_j_cherd_2019_10_035
crossref_primary_10_1017_jfm_2020_763
crossref_primary_10_1142_S0129183117500851
crossref_primary_10_1016_j_ijengsci_2020_103343
crossref_primary_10_1063_5_0061638
crossref_primary_10_1063_5_0190747
crossref_primary_10_1103_PhysRevE_97_023312
crossref_primary_10_1103_PhysRevE_94_023310
crossref_primary_10_1103_PhysRevE_102_013309
crossref_primary_10_1039_C9SM01408J
crossref_primary_10_1103_PhysRevE_98_013305
crossref_primary_10_1016_j_physa_2014_03_033
crossref_primary_10_1016_j_ces_2015_03_066
crossref_primary_10_1016_j_compfluid_2017_05_027
crossref_primary_10_1017_jfm_2022_542
crossref_primary_10_1063_5_0246091
crossref_primary_10_1002_fld_4002
crossref_primary_10_1016_j_cherd_2021_12_019
crossref_primary_10_1016_j_compfluid_2020_104480
Cites_doi 10.1103/PhysRevE.54.5041
10.1103/PhysRevE.47.1815
10.1103/PhysRevE.76.026708
10.1103/PhysRevA.43.4320
10.1088/1751-8113/40/14/018
10.1103/PhysRevE.82.066701
10.1016/0021-9991(79)90051-2
10.1016/j.compfluid.2011.04.001
10.1016/j.jcp.2006.02.015
10.1103/PhysRevE.75.026702
10.1103/PhysRevE.85.046309
10.1103/PhysRevE.87.043301
10.1006/jcph.1994.1123
10.1140/epjst/e2009-01007-9
10.1063/1.858769
10.1103/PhysRevE.71.056702
10.1016/j.compfluid.2010.12.020
10.1103/PhysRevE.57.R13
10.1142/S0129183113500216
10.1016/j.ijmultiphaseflow.2012.12.006
10.1103/PhysRevE.61.6546
10.1103/PhysRevE.80.036702
10.1016/j.jcp.2008.04.002
10.1371/journal.pbio.0050018
10.1007/BF01019743
10.1098/rsta.2001.0944
10.1103/PhysRevE.71.036701
10.1016/j.camwa.2009.08.042
10.1146/annurev-fluid-121108-145519
10.1007/BF02916206
10.1007/978-3-642-33374-3_5
10.1016/j.ces.2013.06.037
10.1007/s10409-012-0123-6
10.1103/PhysRevE.68.056302
10.1142/S0129183198001266
10.1016/j.jcp.2013.03.039
10.1103/PhysRevE.87.023304
10.1103/PhysRevE.88.043306
10.1016/j.ijmultiphaseflow.2013.07.001
10.1063/1.869307
10.1016/j.jcp.2006.10.023
10.1103/PhysRevE.82.046708
10.1006/jfls.1994.1008
10.1103/PhysRevE.77.036702
10.1016/j.ces.2013.05.054
10.1016/j.apm.2011.08.027
ContentType Journal Article
Copyright 2014 IOP Publishing Ltd
Copyright_xml – notice: 2014 IOP Publishing Ltd
DBID AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1088/1751-8113/47/10/105501
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Unsteady immiscible multiphase flow validation of a multiple-relaxation-time lattice Boltzmann method
EISSN 1751-8121
EndPage 24
ExternalDocumentID 10_1088_1751_8113_47_10_105501
jpa485496
GroupedDBID 1JI
4.4
5B3
5GY
5VS
5ZH
6TJ
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHWH
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
ACNCT
AEFHF
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
JCGBZ
KOT
LAP
M45
N5L
NT-
NT.
PJBAE
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
AAYXX
ADEQX
AERVB
CITATION
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c397t-1ec33f79c19a1554cc34804a9f6adba445d2b703bfcbfcc5b26d0cfce3e8cd6f3
IEDL.DBID IOP
ISSN 1751-8113
IngestDate Thu Jul 10 18:56:20 EDT 2025
Tue Jul 01 02:32:30 EDT 2025
Thu Apr 24 22:58:37 EDT 2025
Wed Aug 21 03:33:53 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-1ec33f79c19a1554cc34804a9f6adba445d2b703bfcbfcc5b26d0cfce3e8cd6f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1669896755
PQPubID 23500
PageCount 24
ParticipantIDs crossref_citationtrail_10_1088_1751_8113_47_10_105501
crossref_primary_10_1088_1751_8113_47_10_105501
proquest_miscellaneous_1669896755
iop_journals_10_1088_1751_8113_47_10_105501
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-03-14
PublicationDateYYYYMMDD 2014-03-14
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-14
  day: 14
PublicationDecade 2010
PublicationTitle Journal of physics. A, Mathematical and theoretical
PublicationTitleAbbrev JPhysA
PublicationTitleAlternate J. Phys. A: Math. Theor
PublicationYear 2014
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 44
45
47
48
49
d’Humieres D (34) 1992
50
52
10
54
11
12
Rannou G (19) 2008
13
14
15
16
17
18
Toutant A (53) 2006
1
2
3
4
Li S-M (51) 2007
5
6
7
Sidik N A C (42) 2007; 24
9
20
21
22
23
24
25
26
27
28
29
Lätt J (46) 2007
Leclaire S (39) 2013
Reis T (8) 2007; 40
30
31
Leclaire S (32) 2013
33
35
36
37
38
40
41
43
References_xml – ident: 4
  doi: 10.1103/PhysRevE.54.5041
– ident: 3
  doi: 10.1103/PhysRevE.47.1815
– ident: 15
  doi: 10.1103/PhysRevE.76.026708
– ident: 2
  doi: 10.1103/PhysRevA.43.4320
– volume: 40
  start-page: 4033
  issn: 1751-8121
  year: 2007
  ident: 8
  publication-title: J. Phys. A: Math. Theor.
  doi: 10.1088/1751-8113/40/14/018
– year: 2007
  ident: 46
– ident: 16
  doi: 10.1103/PhysRevE.82.066701
– volume: 24
  start-page: 68
  year: 2007
  ident: 42
  publication-title: J. Mekanikal
– ident: 43
  doi: 10.1016/0021-9991(79)90051-2
– ident: 13
  doi: 10.1016/j.compfluid.2011.04.001
– year: 2013
  ident: 32
– ident: 52
  doi: 10.1016/j.jcp.2006.02.015
– ident: 38
  doi: 10.1103/PhysRevE.75.026702
– ident: 9
  doi: 10.1103/PhysRevE.85.046309
– ident: 45
  doi: 10.1103/PhysRevE.87.043301
– ident: 36
  doi: 10.1006/jcph.1994.1123
– year: 2008
  ident: 19
– year: 2013
  ident: 39
  publication-title: J. Sci. Comput.
– ident: 40
  doi: 10.1140/epjst/e2009-01007-9
– ident: 7
  doi: 10.1063/1.858769
– ident: 11
  doi: 10.1103/PhysRevE.71.056702
– ident: 44
  doi: 10.1016/j.compfluid.2010.12.020
– ident: 5
  doi: 10.1103/PhysRevE.57.R13
– ident: 21
  doi: 10.1142/S0129183113500216
– ident: 37
  doi: 10.1016/j.ijmultiphaseflow.2012.12.006
– ident: 31
  doi: 10.1103/PhysRevE.61.6546
– ident: 35
  doi: 10.1103/PhysRevE.80.036702
– year: 2007
  ident: 51
– year: 2006
  ident: 53
– ident: 50
  doi: 10.1016/j.jcp.2008.04.002
– ident: 54
  doi: 10.1371/journal.pbio.0050018
– ident: 1
  doi: 10.1007/BF01019743
– ident: 10
  doi: 10.1098/rsta.2001.0944
– ident: 23
  doi: 10.1103/PhysRevE.71.036701
– ident: 24
  doi: 10.1016/j.camwa.2009.08.042
– ident: 20
  doi: 10.1146/annurev-fluid-121108-145519
– ident: 48
  doi: 10.1007/BF02916206
– ident: 26
  doi: 10.1007/978-3-642-33374-3_5
– ident: 17
  doi: 10.1016/j.ces.2013.06.037
– ident: 29
  doi: 10.1007/s10409-012-0123-6
– ident: 6
  doi: 10.1103/PhysRevE.68.056302
– ident: 30
  doi: 10.1142/S0129183198001266
– ident: 14
  doi: 10.1016/j.jcp.2013.03.039
– ident: 25
  doi: 10.1103/PhysRevE.87.023304
– ident: 33
  doi: 10.1103/PhysRevE.88.043306
– start-page: 450
  year: 1992
  ident: 34
  publication-title: Rarefied Gas Dynamics: Theory and Simulations
– ident: 22
  doi: 10.1016/j.ijmultiphaseflow.2013.07.001
– ident: 49
  doi: 10.1063/1.869307
– ident: 27
  doi: 10.1016/j.jcp.2006.10.023
– ident: 28
  doi: 10.1103/PhysRevE.82.046708
– ident: 47
  doi: 10.1006/jfls.1994.1008
– ident: 41
  doi: 10.1103/PhysRevE.77.036702
– ident: 18
  doi: 10.1016/j.ces.2013.05.054
– ident: 12
  doi: 10.1016/j.apm.2011.08.027
SSID ssj0054092
Score 2.2822893
Snippet The lattice Boltzmann modeling of immiscible multiphase flows needs to be further validated, especially when density variation occurs between the different...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105501
SubjectTerms Density
incompressible viscous fluids
lattice Boltzmann method
Lattices
Mathematical models
Multiphase flow
multiphase flows
Operators
particle methods and lattice-gas methods in fluid mechanics
Unsteady
Viscosity ratio
Title Unsteady immiscible multiphase flow validation of a multiple-relaxation-time lattice Boltzmann method
URI https://iopscience.iop.org/article/10.1088/1751-8113/47/10/105501
https://www.proquest.com/docview/1669896755
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS91AEF6speCL9ibVXthC32TPSbKbZPOopaKC1QcP-BZ2JrtUzEkONQcvv7472URQKVIKeQhJZtnMzs5MyDfzMfYt0UYqkJUwUZUK5bebAExAYA4RFhBLm1Oh8PHP7GCmjs7TEU3Y18K0i8H1T_xpaBQcVDgA4vTUB7xY6DiWU0Vl41OieKQKrpdSZxmRGByenI7O2OcjPS_yvcxYJPzXcR7Epxd-Dk-cdB959jcYjHMOgJPLybKDCd49auf4Xy_1mq0PeSnfDQJv2Ipt3rJXPT4Ur94xO2t6c7jlF_M5FfJCbXkAI_7ycZC7ur3m3mgvAkUTbx03fAQrCiqYuelvCOKy57XpCHPH99q6u5ubpuGByPo9m-3_OPt-IAaGBoE-j-lEbFFKlxcYF4YSE0SpdKRM4TJTgVEqrRLwPgUc-gNTSLIqQodWWo1V5uQmW23axn5g3DgAah8XaZurDBLjlE9mgPgGC0Clt1g6rkuJQ_tyYtGoy_43utYlqbAkFZYqDxdJhVtsei-3CA08npXY8atUDnv56tmnv47mUZL-CbPW2Hbp5TIi5_QfZOn2P434ka35rEwR0C1Wn9hq93tpP_vMp4MvvW3_Afxf9VI
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbaIhAX3ojyNBI35M3DTuIceXTV8ig9sFJvkWdiqxXZZMVmBfTX44mTlQChCiHlECUZKxmPZ8bKN_Mx9iLVRiqQtTBxnQnll5sATEFgATGWkEhbUKHwx-P8cKHenWanO-xgWwvTrUbXP_OnoVFwUOEIiNORD3iJ0EkiI0Vl4xFRPMZJtKrdLruSyVxSC_2jTyeTQ_Y5ycCNvJWbCoX_OtYvMWrXv8cfjnqIPvObASWyHpoWEujky2zTwwwvfmvp-N8fdovdGPNT_ioI3WY7tr3Drg44UVzfZXbRDmbxg58vl1TQC43lAZR45uMhd033jXvjPQ9UTbxz3PAJtCiocOb7cEMQpz1vTE_YO_66a_qLpWlbHgit77HF_ODzm0MxMjUI9PlMLxKLUrqixKQ0lKAgSqVjZUqXmxqMUlmdgvct4NAfmEGa1zE6tNJqrHMn77O9tmvtA8aNA6A2crG2hcohNU75pAaId7AEVHqfZdPcVDi2MSc2jaYafqdrXZEaK1JjpYpwkdS4z6Kt3Co08rhU4qWfqWpc0-tLn34-mUhF-ifsWmu7jZfLiaTTb8yyh_804jN27eTtvPpwdPz-EbvuEzVF2LdEPWZ7_deNfeKToR6eDqb-E7f0-rY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsteady+immiscible+multiphase+flow+validation+of+a+multiple-relaxation-time+lattice+Boltzmann+method&rft.jtitle=Journal+of+physics.+A%2C+Mathematical+and+theoretical&rft.au=Leclaire%2C+S&rft.au=Pellerin%2C+N&rft.au=Reggio%2C+M&rft.au=Trepanier%2C+J-Y&rft.date=2014-03-14&rft.issn=1751-8113&rft.eissn=1751-8121&rft.volume=47&rft.issue=10&rft.spage=1&rft.epage=24&rft_id=info:doi/10.1088%2F1751-8113%2F47%2F10%2F105501&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8113&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8113&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8113&client=summon