Unsteady immiscible multiphase flow validation of a multiple-relaxation-time lattice Boltzmann method
The lattice Boltzmann modeling of immiscible multiphase flows needs to be further validated, especially when density variation occurs between the different flow phases. From this perspective, the goal of this research is to introduce the multiple-relaxation-time operator into a lattice Boltzmann mod...
Saved in:
Published in | Journal of physics. A, Mathematical and theoretical Vol. 47; no. 10; pp. 105501 - 24 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
14.03.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The lattice Boltzmann modeling of immiscible multiphase flows needs to be further validated, especially when density variation occurs between the different flow phases. From this perspective, the goal of this research is to introduce the multiple-relaxation-time operator into a lattice Boltzmann model in order to improve its numerical stability in the presence of large density and viscosity ratios. Essentially, this research shows that the introduction of this operator greatly improves the numerical stability of the approach compared to the original single-relaxation-time collision operator. In many lattice Boltzmann research studies, multiphase lattice Boltzmann methods are validated using a reduced number of test cases, and unsteady flow test cases are frequently omitted before much more complex flow configurations are simulated. In this context, several test cases are proposed to evaluate the behavior of a lattice Boltzmann method for simulating immiscible multiphase flows with high density and viscosity ratios. These are: (1) two-phase Couette flow; (2) three-phase Laplace law; (3) three-phase Zalesak disk; (4) two-phase flow between oscillating plates; (5) two-phase capillary wave; and (6) the two-phase oscillating cylindrical bubble. The first two involve a steady regime, and the remaining four an unsteady regime. |
---|---|
AbstractList | The lattice Boltzmann modeling of immiscible multiphase flows needs to be further validated, especially when density variation occurs between the different flow phases. From this perspective, the goal of this research is to introduce the multiple-relaxation-time operator into a lattice Boltzmann model in order to improve its numerical stability in the presence of large density and viscosity ratios. Essentially, this research shows that the introduction of this operator greatly improves the numerical stability of the approach compared to the original single-relaxation-time collision operator. In many lattice Boltzmann research studies, multiphase lattice Boltzmann methods are validated using a reduced number of test cases, and unsteady flow test cases are frequently omitted before much more complex flow configurations are simulated. In this context, several test cases are proposed to evaluate the behavior of a lattice Boltzmann method for simulating immiscible multiphase flows with high density and viscosity ratios. These are: (1) two-phase Couette flow; (2) three-phase Laplace law; (3) three-phase Zalesak disk; (4) two-phase flow between oscillating plates; (5) two-phase capillary wave; and (6) the two-phase oscillating cylindrical bubble. The first two involve a steady regime, and the remaining four an unsteady regime. |
Author | Leclaire, S Reggio, M Trépanier, J-Y Pellerin, N |
Author_xml | – sequence: 1 givenname: S surname: Leclaire fullname: Leclaire, S email: sebastien.leclaire@polymtl.ca organization: Department of Mechanical Engineering , École Polytechnique, 2500, chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada – sequence: 2 givenname: N surname: Pellerin fullname: Pellerin, N organization: Department of Mechanical Engineering , École Polytechnique, 2500, chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada – sequence: 3 givenname: M surname: Reggio fullname: Reggio, M organization: Department of Mechanical Engineering , École Polytechnique, 2500, chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada – sequence: 4 givenname: J-Y surname: Trépanier fullname: Trépanier, J-Y organization: Department of Mechanical Engineering , École Polytechnique, 2500, chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada |
BookMark | eNqFkE1LAzEQhoNUsK3-BcnRy9pks9kP8KLFLyh4seeQzU5oSnZTN1m1_np3u8WDl8LADHnnGcgzQ5PGNYDQNSW3lOT5gmacRjmlbJFkC0r64pzQMzQ9BjGd_M2UXaCZ91tCeEKKeIpg3fgAstpjU9fGK1NawHVng9ltpAesrfvCn9KaSgbjGuw0lsfcQtSCld-HIAqmBmxlCEYBfnA2_NSyaXANYeOqS3SupfVwdexztH56fF--RKu359fl_SpSrMhCREExprNC0UJSzhOlWJKTRBY6lVUpk4RXcZkRVmrVl-JlnFZEaQUMclWlms3RzXh317qPDnwQw5_AWtmA67ygaVrkRZpx3q-m46pqnfctaLFrTS3bvaBEDF7FoEwMykSSjY-D1x68-wcqEw4OQiuNPY3HI27cTmxd1za9kFPQL5xTka8 |
CODEN | JPHAC5 |
CitedBy_id | crossref_primary_10_1103_PhysRevE_101_013313 crossref_primary_10_1016_j_pecs_2015_10_001 crossref_primary_10_1063_5_0155070 crossref_primary_10_1103_PhysRevE_95_033306 crossref_primary_10_1016_j_ijmultiphaseflow_2015_08_009 crossref_primary_10_1016_j_apm_2016_01_049 crossref_primary_10_3811_jjmf_29_433 crossref_primary_10_1155_2019_5176410 crossref_primary_10_1002_fld_4226 crossref_primary_10_1063_5_0021652 crossref_primary_10_1063_5_0151374 crossref_primary_10_1007_s40571_019_00250_3 crossref_primary_10_1016_j_advwatres_2021_103943 crossref_primary_10_1103_PhysRevE_96_013317 crossref_primary_10_1103_PhysRevFluids_5_063301 crossref_primary_10_1016_j_molliq_2019_111926 crossref_primary_10_1016_j_cherd_2019_10_035 crossref_primary_10_1017_jfm_2020_763 crossref_primary_10_1142_S0129183117500851 crossref_primary_10_1016_j_ijengsci_2020_103343 crossref_primary_10_1063_5_0061638 crossref_primary_10_1063_5_0190747 crossref_primary_10_1103_PhysRevE_97_023312 crossref_primary_10_1103_PhysRevE_94_023310 crossref_primary_10_1103_PhysRevE_102_013309 crossref_primary_10_1039_C9SM01408J crossref_primary_10_1103_PhysRevE_98_013305 crossref_primary_10_1016_j_physa_2014_03_033 crossref_primary_10_1016_j_ces_2015_03_066 crossref_primary_10_1016_j_compfluid_2017_05_027 crossref_primary_10_1017_jfm_2022_542 crossref_primary_10_1063_5_0246091 crossref_primary_10_1002_fld_4002 crossref_primary_10_1016_j_cherd_2021_12_019 crossref_primary_10_1016_j_compfluid_2020_104480 |
Cites_doi | 10.1103/PhysRevE.54.5041 10.1103/PhysRevE.47.1815 10.1103/PhysRevE.76.026708 10.1103/PhysRevA.43.4320 10.1088/1751-8113/40/14/018 10.1103/PhysRevE.82.066701 10.1016/0021-9991(79)90051-2 10.1016/j.compfluid.2011.04.001 10.1016/j.jcp.2006.02.015 10.1103/PhysRevE.75.026702 10.1103/PhysRevE.85.046309 10.1103/PhysRevE.87.043301 10.1006/jcph.1994.1123 10.1140/epjst/e2009-01007-9 10.1063/1.858769 10.1103/PhysRevE.71.056702 10.1016/j.compfluid.2010.12.020 10.1103/PhysRevE.57.R13 10.1142/S0129183113500216 10.1016/j.ijmultiphaseflow.2012.12.006 10.1103/PhysRevE.61.6546 10.1103/PhysRevE.80.036702 10.1016/j.jcp.2008.04.002 10.1371/journal.pbio.0050018 10.1007/BF01019743 10.1098/rsta.2001.0944 10.1103/PhysRevE.71.036701 10.1016/j.camwa.2009.08.042 10.1146/annurev-fluid-121108-145519 10.1007/BF02916206 10.1007/978-3-642-33374-3_5 10.1016/j.ces.2013.06.037 10.1007/s10409-012-0123-6 10.1103/PhysRevE.68.056302 10.1142/S0129183198001266 10.1016/j.jcp.2013.03.039 10.1103/PhysRevE.87.023304 10.1103/PhysRevE.88.043306 10.1016/j.ijmultiphaseflow.2013.07.001 10.1063/1.869307 10.1016/j.jcp.2006.10.023 10.1103/PhysRevE.82.046708 10.1006/jfls.1994.1008 10.1103/PhysRevE.77.036702 10.1016/j.ces.2013.05.054 10.1016/j.apm.2011.08.027 |
ContentType | Journal Article |
Copyright | 2014 IOP Publishing Ltd |
Copyright_xml | – notice: 2014 IOP Publishing Ltd |
DBID | AAYXX CITATION 7U5 8FD H8D L7M |
DOI | 10.1088/1751-8113/47/10/105501 |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Unsteady immiscible multiphase flow validation of a multiple-relaxation-time lattice Boltzmann method |
EISSN | 1751-8121 |
EndPage | 24 |
ExternalDocumentID | 10_1088_1751_8113_47_10_105501 jpa485496 |
GroupedDBID | 1JI 4.4 5B3 5GY 5VS 5ZH 6TJ 7.M 7.Q AAGCD AAGID AAJIO AAJKP AALHV AATNI ABCXL ABHWH ABQJV ABVAM ACAFW ACGFS ACHIP ACNCT AEFHF AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 EBS EDWGO EJD EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO JCGBZ KOT LAP M45 N5L NT- NT. PJBAE RIN RNS RO9 ROL RPA SY9 TN5 W28 AAYXX ADEQX AERVB CITATION 7U5 8FD H8D L7M |
ID | FETCH-LOGICAL-c397t-1ec33f79c19a1554cc34804a9f6adba445d2b703bfcbfcc5b26d0cfce3e8cd6f3 |
IEDL.DBID | IOP |
ISSN | 1751-8113 |
IngestDate | Thu Jul 10 18:56:20 EDT 2025 Tue Jul 01 02:32:30 EDT 2025 Thu Apr 24 22:58:37 EDT 2025 Wed Aug 21 03:33:53 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c397t-1ec33f79c19a1554cc34804a9f6adba445d2b703bfcbfcc5b26d0cfce3e8cd6f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1669896755 |
PQPubID | 23500 |
PageCount | 24 |
ParticipantIDs | crossref_citationtrail_10_1088_1751_8113_47_10_105501 crossref_primary_10_1088_1751_8113_47_10_105501 proquest_miscellaneous_1669896755 iop_journals_10_1088_1751_8113_47_10_105501 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-03-14 |
PublicationDateYYYYMMDD | 2014-03-14 |
PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-14 day: 14 |
PublicationDecade | 2010 |
PublicationTitle | Journal of physics. A, Mathematical and theoretical |
PublicationTitleAbbrev | JPhysA |
PublicationTitleAlternate | J. Phys. A: Math. Theor |
PublicationYear | 2014 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 44 45 47 48 49 d’Humieres D (34) 1992 50 52 10 54 11 12 Rannou G (19) 2008 13 14 15 16 17 18 Toutant A (53) 2006 1 2 3 4 Li S-M (51) 2007 5 6 7 Sidik N A C (42) 2007; 24 9 20 21 22 23 24 25 26 27 28 29 Lätt J (46) 2007 Leclaire S (39) 2013 Reis T (8) 2007; 40 30 31 Leclaire S (32) 2013 33 35 36 37 38 40 41 43 |
References_xml | – ident: 4 doi: 10.1103/PhysRevE.54.5041 – ident: 3 doi: 10.1103/PhysRevE.47.1815 – ident: 15 doi: 10.1103/PhysRevE.76.026708 – ident: 2 doi: 10.1103/PhysRevA.43.4320 – volume: 40 start-page: 4033 issn: 1751-8121 year: 2007 ident: 8 publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8113/40/14/018 – year: 2007 ident: 46 – ident: 16 doi: 10.1103/PhysRevE.82.066701 – volume: 24 start-page: 68 year: 2007 ident: 42 publication-title: J. Mekanikal – ident: 43 doi: 10.1016/0021-9991(79)90051-2 – ident: 13 doi: 10.1016/j.compfluid.2011.04.001 – year: 2013 ident: 32 – ident: 52 doi: 10.1016/j.jcp.2006.02.015 – ident: 38 doi: 10.1103/PhysRevE.75.026702 – ident: 9 doi: 10.1103/PhysRevE.85.046309 – ident: 45 doi: 10.1103/PhysRevE.87.043301 – ident: 36 doi: 10.1006/jcph.1994.1123 – year: 2008 ident: 19 – year: 2013 ident: 39 publication-title: J. Sci. Comput. – ident: 40 doi: 10.1140/epjst/e2009-01007-9 – ident: 7 doi: 10.1063/1.858769 – ident: 11 doi: 10.1103/PhysRevE.71.056702 – ident: 44 doi: 10.1016/j.compfluid.2010.12.020 – ident: 5 doi: 10.1103/PhysRevE.57.R13 – ident: 21 doi: 10.1142/S0129183113500216 – ident: 37 doi: 10.1016/j.ijmultiphaseflow.2012.12.006 – ident: 31 doi: 10.1103/PhysRevE.61.6546 – ident: 35 doi: 10.1103/PhysRevE.80.036702 – year: 2007 ident: 51 – year: 2006 ident: 53 – ident: 50 doi: 10.1016/j.jcp.2008.04.002 – ident: 54 doi: 10.1371/journal.pbio.0050018 – ident: 1 doi: 10.1007/BF01019743 – ident: 10 doi: 10.1098/rsta.2001.0944 – ident: 23 doi: 10.1103/PhysRevE.71.036701 – ident: 24 doi: 10.1016/j.camwa.2009.08.042 – ident: 20 doi: 10.1146/annurev-fluid-121108-145519 – ident: 48 doi: 10.1007/BF02916206 – ident: 26 doi: 10.1007/978-3-642-33374-3_5 – ident: 17 doi: 10.1016/j.ces.2013.06.037 – ident: 29 doi: 10.1007/s10409-012-0123-6 – ident: 6 doi: 10.1103/PhysRevE.68.056302 – ident: 30 doi: 10.1142/S0129183198001266 – ident: 14 doi: 10.1016/j.jcp.2013.03.039 – ident: 25 doi: 10.1103/PhysRevE.87.023304 – ident: 33 doi: 10.1103/PhysRevE.88.043306 – start-page: 450 year: 1992 ident: 34 publication-title: Rarefied Gas Dynamics: Theory and Simulations – ident: 22 doi: 10.1016/j.ijmultiphaseflow.2013.07.001 – ident: 49 doi: 10.1063/1.869307 – ident: 27 doi: 10.1016/j.jcp.2006.10.023 – ident: 28 doi: 10.1103/PhysRevE.82.046708 – ident: 47 doi: 10.1006/jfls.1994.1008 – ident: 41 doi: 10.1103/PhysRevE.77.036702 – ident: 18 doi: 10.1016/j.ces.2013.05.054 – ident: 12 doi: 10.1016/j.apm.2011.08.027 |
SSID | ssj0054092 |
Score | 2.2822893 |
Snippet | The lattice Boltzmann modeling of immiscible multiphase flows needs to be further validated, especially when density variation occurs between the different... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105501 |
SubjectTerms | Density incompressible viscous fluids lattice Boltzmann method Lattices Mathematical models Multiphase flow multiphase flows Operators particle methods and lattice-gas methods in fluid mechanics Unsteady Viscosity ratio |
Title | Unsteady immiscible multiphase flow validation of a multiple-relaxation-time lattice Boltzmann method |
URI | https://iopscience.iop.org/article/10.1088/1751-8113/47/10/105501 https://www.proquest.com/docview/1669896755 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS91AEF6speCL9ibVXthC32TPSbKbZPOopaKC1QcP-BZ2JrtUzEkONQcvv7472URQKVIKeQhJZtnMzs5MyDfzMfYt0UYqkJUwUZUK5bebAExAYA4RFhBLm1Oh8PHP7GCmjs7TEU3Y18K0i8H1T_xpaBQcVDgA4vTUB7xY6DiWU0Vl41OieKQKrpdSZxmRGByenI7O2OcjPS_yvcxYJPzXcR7Epxd-Dk-cdB959jcYjHMOgJPLybKDCd49auf4Xy_1mq0PeSnfDQJv2Ipt3rJXPT4Ur94xO2t6c7jlF_M5FfJCbXkAI_7ycZC7ur3m3mgvAkUTbx03fAQrCiqYuelvCOKy57XpCHPH99q6u5ubpuGByPo9m-3_OPt-IAaGBoE-j-lEbFFKlxcYF4YSE0SpdKRM4TJTgVEqrRLwPgUc-gNTSLIqQodWWo1V5uQmW23axn5g3DgAah8XaZurDBLjlE9mgPgGC0Clt1g6rkuJQ_tyYtGoy_43utYlqbAkFZYqDxdJhVtsei-3CA08npXY8atUDnv56tmnv47mUZL-CbPW2Hbp5TIi5_QfZOn2P434ka35rEwR0C1Wn9hq93tpP_vMp4MvvW3_Afxf9VI |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbaIhAX3ojyNBI35M3DTuIceXTV8ig9sFJvkWdiqxXZZMVmBfTX44mTlQChCiHlECUZKxmPZ8bKN_Mx9iLVRiqQtTBxnQnll5sATEFgATGWkEhbUKHwx-P8cKHenWanO-xgWwvTrUbXP_OnoVFwUOEIiNORD3iJ0EkiI0Vl4xFRPMZJtKrdLruSyVxSC_2jTyeTQ_Y5ycCNvJWbCoX_OtYvMWrXv8cfjnqIPvObASWyHpoWEujky2zTwwwvfmvp-N8fdovdGPNT_ioI3WY7tr3Drg44UVzfZXbRDmbxg58vl1TQC43lAZR45uMhd033jXvjPQ9UTbxz3PAJtCiocOb7cEMQpz1vTE_YO_66a_qLpWlbHgit77HF_ODzm0MxMjUI9PlMLxKLUrqixKQ0lKAgSqVjZUqXmxqMUlmdgvct4NAfmEGa1zE6tNJqrHMn77O9tmvtA8aNA6A2crG2hcohNU75pAaId7AEVHqfZdPcVDi2MSc2jaYafqdrXZEaK1JjpYpwkdS4z6Kt3Co08rhU4qWfqWpc0-tLn34-mUhF-ifsWmu7jZfLiaTTb8yyh_804jN27eTtvPpwdPz-EbvuEzVF2LdEPWZ7_deNfeKToR6eDqb-E7f0-rY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsteady+immiscible+multiphase+flow+validation+of+a+multiple-relaxation-time+lattice+Boltzmann+method&rft.jtitle=Journal+of+physics.+A%2C+Mathematical+and+theoretical&rft.au=Leclaire%2C+S&rft.au=Pellerin%2C+N&rft.au=Reggio%2C+M&rft.au=Trepanier%2C+J-Y&rft.date=2014-03-14&rft.issn=1751-8113&rft.eissn=1751-8121&rft.volume=47&rft.issue=10&rft.spage=1&rft.epage=24&rft_id=info:doi/10.1088%2F1751-8113%2F47%2F10%2F105501&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8113&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8113&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8113&client=summon |