Specific Properties of the ODE’s Flow in Dimension Two Versus Dimension Three

This paper deals with the asymptotics of the ODE’s flow induced by a regular vector field b on the d -dimensional torus R d / Z d . First, we start by revisiting the Franks-Misiurewicz theorem which claims that the Herman rotation set of any two-dimensional continuous flow is a closed line segment o...

Full description

Saved in:
Bibliographic Details
Published inJournal of dynamics and differential equations Vol. 36; no. 1; pp. 421 - 461
Main Authors Briane, Marc, Hervé, Loïc
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2024
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text
ISSN1040-7294
1572-9222
DOI10.1007/s10884-022-10154-1

Cover

Abstract This paper deals with the asymptotics of the ODE’s flow induced by a regular vector field b on the d -dimensional torus R d / Z d . First, we start by revisiting the Franks-Misiurewicz theorem which claims that the Herman rotation set of any two-dimensional continuous flow is a closed line segment of R 2 . Various general examples illustrate this result, among which a complete study of the Stepanoff flow associated with a vector field b = a ζ , where ζ is a constant vector in R 2 . Furthermore, several extensions of the Franks-Misiurewicz theorem are obtained in the two-dimensional ODE’s context. On the one hand, we provide some interesting stability properties in the case where the Herman rotation set has a commensurable direction. On the other hand, we present new results highlighting the exceptional character of the opposite case, i.e. when the Herman rotation set is a closed line segment with 0 R 2 at one end and with an irrational slope, if it is not reduced to a single point. Besides this, given a pair ( μ , ν ) of invariant probability measures for the flow, we establish new Fourier relations between the determinant det ( μ b ^ ( j ) , ν b ^ ( k ) ) and the determinant det ( j , k ) for any pair ( j ,  k ) of non null integer vectors, which can be regarded as an extension of the Franks-Misiurewicz theorem. Next, in contrast with dimension two, any three-dimensional closed convex polyhedron with rational vertices is shown to be the rotation set associated with a suitable vector field b . Finally, in the case of an invariant measure μ with a regular density and a non null mass μ ( b ) with respect to b , we show that the homogenization of the two-dimensional transport equation with the oscillating velocity b ( x / ε ) as ε tends to 0, leads us to a nonlocal limit transport equation, but with the effective constant velocity  μ ( b ) .
AbstractList This paper deals with the asymptotics of the ODE's flow induced by a regular vector field $b$ on the $d$-dimensional torus $\R^d/\Z^d$.First, we start by revisiting the Franks-Misiurewicz theorem which claims that the Herman rotation set of any two-dimensional continuous flow is a closed line segment of $\R^2$. Various general examples illustrate this result, among which a complete study of the Stepanoff flow associated with a vector field $b=a\,\zeta$, where $\zeta$ is a constant vector in $\R^2$.Furthermore, several extensions of the Franks-Misiurewicz theorem are obtained in the two-dimensional ODE's context. On the one hand, we provide some interesting stability properties in the case where the Herman rotation set has a commensurable direction. On the other hand, we present new results highlighting the exceptional character of the opposite case, {\em i.e.} when the Herman rotation set is a closed line segment with $0_{\R^2}$ at one end and with an irrational slope, if it is not reduced to a single point.Besides this, given a pair $(\mu,\nu)$ of invariant probability measures for the flow, we establish new Fourier relations between the determinant $\det\,(\widehat{\mu b}(j),\widehat{\nu b}(k))$ and the determinant $\det\,(j,k)$ for any pair $(j,k)$ of non null integer vectors, which can be regarded as an extension of the Franks-Misiurewicz theorem.Next, in contrast with dimension two, any three-dimensional closed convex polyhedron with rational vertices is shown to be the rotation set associated with a suitable vector field~$b$.Finally, in the case of an invariant measure $\mu$ with a regular density and a non null mass $\mu(b)$ with respect to~$b$, we show that the homogenization of the two-dimensional transport equation with the oscillating velocity $b(x/\ep)$ as $\ep$ tends to $0$, leads us to a nonlocal limit transport equation, but with the effective constant velocity~$\mu(b)$.
This paper deals with the asymptotics of the ODE’s flow induced by a regular vector field b on the d -dimensional torus R d / Z d . First, we start by revisiting the Franks-Misiurewicz theorem which claims that the Herman rotation set of any two-dimensional continuous flow is a closed line segment of R 2 . Various general examples illustrate this result, among which a complete study of the Stepanoff flow associated with a vector field b = a ζ , where ζ is a constant vector in R 2 . Furthermore, several extensions of the Franks-Misiurewicz theorem are obtained in the two-dimensional ODE’s context. On the one hand, we provide some interesting stability properties in the case where the Herman rotation set has a commensurable direction. On the other hand, we present new results highlighting the exceptional character of the opposite case, i.e. when the Herman rotation set is a closed line segment with 0 R 2 at one end and with an irrational slope, if it is not reduced to a single point. Besides this, given a pair ( μ , ν ) of invariant probability measures for the flow, we establish new Fourier relations between the determinant det ( μ b ^ ( j ) , ν b ^ ( k ) ) and the determinant det ( j , k ) for any pair ( j ,  k ) of non null integer vectors, which can be regarded as an extension of the Franks-Misiurewicz theorem. Next, in contrast with dimension two, any three-dimensional closed convex polyhedron with rational vertices is shown to be the rotation set associated with a suitable vector field b . Finally, in the case of an invariant measure μ with a regular density and a non null mass μ ( b ) with respect to b , we show that the homogenization of the two-dimensional transport equation with the oscillating velocity b ( x / ε ) as ε tends to 0, leads us to a nonlocal limit transport equation, but with the effective constant velocity  μ ( b ) .
This paper deals with the asymptotics of the ODE’s flow induced by a regular vector field b on the d-dimensional torus Rd/Zd. First, we start by revisiting the Franks-Misiurewicz theorem which claims that the Herman rotation set of any two-dimensional continuous flow is a closed line segment of R2. Various general examples illustrate this result, among which a complete study of the Stepanoff flow associated with a vector field b=aζ, where ζ is a constant vector in R2. Furthermore, several extensions of the Franks-Misiurewicz theorem are obtained in the two-dimensional ODE’s context. On the one hand, we provide some interesting stability properties in the case where the Herman rotation set has a commensurable direction. On the other hand, we present new results highlighting the exceptional character of the opposite case, i.e. when the Herman rotation set is a closed line segment with 0R2 at one end and with an irrational slope, if it is not reduced to a single point. Besides this, given a pair (μ,ν) of invariant probability measures for the flow, we establish new Fourier relations between the determinant det(μb^(j),νb^(k)) and the determinant det(j,k) for any pair (j, k) of non null integer vectors, which can be regarded as an extension of the Franks-Misiurewicz theorem. Next, in contrast with dimension two, any three-dimensional closed convex polyhedron with rational vertices is shown to be the rotation set associated with a suitable vector field b. Finally, in the case of an invariant measure μ with a regular density and a non null mass μ(b) with respect to b, we show that the homogenization of the two-dimensional transport equation with the oscillating velocity b(x/ε) as ε tends to 0, leads us to a nonlocal limit transport equation, but with the effective constant velocity μ(b).
Author Briane, Marc
Hervé, Loïc
Author_xml – sequence: 1
  givenname: Marc
  surname: Briane
  fullname: Briane, Marc
  email: mbriane@insa-rennes.fr
  organization: The University of Rennes, INSA Rennes, CNRS, IRMAR - UMR 6625
– sequence: 2
  givenname: Loïc
  surname: Hervé
  fullname: Hervé, Loïc
  organization: The University of Rennes, INSA Rennes, CNRS, IRMAR - UMR 6625
BackLink https://hal.science/hal-03412162$$DView record in HAL
BookMark eNp9kE1OwzAQhS1UJChwAVaWWLEIjH-S2EtEW0CqVCR-tlaSTqirEAc7BbHjGlyPk5ASEIhFVzMavTfzzRuSQe1qJOSQwQkDSE8DA6VkBJxHDFgsI7ZFdlmc8khzzgddDxKilGu5Q4YhLAFAK6F3yeymwcKWtqDX3jXoW4uBupK2C6Sz0fjj7T3QSeVeqK3pyD5iHayr6e2Lo_fowyr8HS484j7ZLrMq4MF33SN3k_Ht-WU0nV1cnZ9No0LotI1YkSvQskMAkc6ZLGMt4jTGTCW5Uh0mVwWqRMC8SBLUOAfF8jzlucrnqRRc7JHjfu8iq0zj7WPmX43LrLk8m5r1DIRknCX8mXXao17bePe0wtCapVv5usMzXAsBkkG83qh6VeFdCB5LU9g2a7vPWp_ZyjAw66hNH7XpojZfUZv1Af7P-kO00SR6U-jE9QP6X6oNrk8t4pC2
CitedBy_id crossref_primary_10_1016_j_jde_2025_02_052
crossref_primary_10_1137_23M1617539
Cites_doi 10.1216/RMJ-1979-9-2-273
10.1137/0523084
10.24033/bsmf.1736
10.1016/s0294-1449(16)30317-1
10.1137/0152003
10.1090/S0002-9939-1953-0060812-4
10.1017/S0143385700006040
10.1007/s10231-018-0803-3
10.4064/fm-137-1-45-52
10.1090/S0002-9939-1990-1021217-5
10.1137/0520043
10.1007/978-1-4471-7287-1
10.1007/BF01393835
10.1137/S0036139996299820
10.1090/S0002-9904-1952-09580-X
10.1090/S0002-9947-1989-0958891-1
10.5802/jep.122
10.2307/1969161
10.1017/S014338570200144X
10.1088/0266-5611/32/6/065002
10.1017/S0143385700006787
10.1112/jlms/s2-40.3.490
10.1093/qmath/9.1.275
10.5802/jedp.398
10.1016/j.jde.2021.09.035
10.1007/978-1-4615-6927-5
10.1007/BFb0063447
10.1137/1.9780898719222
10.1017/S0143385700009366
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
JQ2
1XC
VOOES
DOI 10.1007/s10884-022-10154-1
DatabaseName CrossRef
ProQuest Computer Science Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList

ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1572-9222
EndPage 461
ExternalDocumentID oai_HAL_hal_03412162v1
10_1007_s10884_022_10154_1
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WIP
WK8
YLTOR
Z45
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
JQ2
1XC
VOOES
ID FETCH-LOGICAL-c397t-1cb8094839037d14f593575ea86b8829428ce8630dc66e9ed081bb72b8bd74323
IEDL.DBID U2A
ISSN 1040-7294
IngestDate Fri Sep 12 12:39:04 EDT 2025
Sat Sep 13 14:31:25 EDT 2025
Tue Jul 01 03:46:32 EDT 2025
Thu Apr 24 23:07:33 EDT 2025
Fri Feb 21 02:41:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Transport equation
37C40
Rotation set
34E10
Invariant measure
37C10
ODE’s flow
Homogenization
Asymptotics
Fourier coefficients
42B05
transport equation Mathematics Subject Classification: 34E10
homogenization
asymptotics
ODE's flow
invariant measure
rotation set
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-1cb8094839037d14f593575ea86b8829428ce8630dc66e9ed081bb72b8bd74323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://hal.science/hal-03412162
PQID 2933041052
PQPubID 2043775
PageCount 41
ParticipantIDs hal_primary_oai_HAL_hal_03412162v1
proquest_journals_2933041052
crossref_citationtrail_10_1007_s10884_022_10154_1
crossref_primary_10_1007_s10884_022_10154_1
springer_journals_10_1007_s10884_022_10154_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of dynamics and differential equations
PublicationTitleAbbrev J Dyn Diff Equat
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References Kwapisz (CR23) 1992; 12
Hou, Xin (CR21) 1992; 52
Stepanoff (CR34) 1936; 3
CR19
Amirat, Hamdache, Ziani (CR3) 1989; 6
CR17
CR16
Franks (CR14) 1989; 311
Tassa (CR38) 1997; 57
CR13
Misiurewicz, Ziemian (CR27) 1991; 137
Oxtoby (CR30) 1953; 4
DiPerna, Lions (CR12) 1989; 98
CR10
Lukkassen, Nguetseng, Wall (CR24) 2002; 2
Marchetto (CR25) 1979; 9
Peirone (CR32) 2019; 198
Tartar, Colombini (CR37) 1989
Llibre, Mackay (CR22) 1991; 11
Golse (CR18) 1992; 314
CR5
Misiurewicz, Ziemian (CR26) 1989; 40
Strelcyn (CR36) 1972; 100
Amirat, Hamdache, Ziani (CR4) 1991; 312
CR8
Coudène (CR11) 2016
Franks, Misiurewicz (CR15) 1990; 109
Briane (CR7) 2020; 7
CR9
Oxtoby (CR29) 1952; 58
Allaire (CR1) 1992; 23
CR20
Nguetseng (CR28) 1989; 20
Strelcyn (CR35) 1970; 271
Akutowicz (CR2) 1958; 9
Peirone (CR31) 2003; 23
Briane (CR6) 2016; 32
Siegel (CR33) 1945; 46
M Briane (10154_CR6) 2016; 32
10154_CR10
10154_CR13
RJ DiPerna (10154_CR12) 1989; 98
EJ Akutowicz (10154_CR2) 1958; 9
R Peirone (10154_CR31) 2003; 23
L Tartar (10154_CR37) 1989
J Franks (10154_CR15) 1990; 109
J-M Strelcyn (10154_CR36) 1972; 100
M Briane (10154_CR7) 2020; 7
Y Amirat (10154_CR3) 1989; 6
CL Siegel (10154_CR33) 1945; 46
M Misiurewicz (10154_CR27) 1991; 137
R Peirone (10154_CR32) 2019; 198
10154_CR9
D Lukkassen (10154_CR24) 2002; 2
F Golse (10154_CR18) 1992; 314
10154_CR5
10154_CR20
J Kwapisz (10154_CR23) 1992; 12
10154_CR8
TY Hou (10154_CR21) 1992; 52
JC Oxtoby (10154_CR30) 1953; 4
JC Oxtoby (10154_CR29) 1952; 58
Y Amirat (10154_CR4) 1991; 312
Y Coudène (10154_CR11) 2016
W Stepanoff (10154_CR34) 1936; 3
D Marchetto (10154_CR25) 1979; 9
M Misiurewicz (10154_CR26) 1989; 40
J-M Strelcyn (10154_CR35) 1970; 271
10154_CR19
J Llibre (10154_CR22) 1991; 11
T Tassa (10154_CR38) 1997; 57
G Nguetseng (10154_CR28) 1989; 20
G Allaire (10154_CR1) 1992; 23
10154_CR17
J Franks (10154_CR14) 1989; 311
10154_CR16
References_xml – volume: 9
  start-page: 273
  issue: 2
  year: 1979
  end-page: 281
  ident: CR25
  article-title: Stepanoff flows on orientable surfaces
  publication-title: Rocky Mountain J. Math
  doi: 10.1216/RMJ-1979-9-2-273
– volume: 23
  start-page: 1482
  issue: 6
  year: 1992
  end-page: 1518
  ident: CR1
  article-title: Homogenization and two-scale convergence
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0523084
– volume: 100
  start-page: 195
  year: 1972
  end-page: 208
  ident: CR36
  article-title: Flots sur le tore et nombres de rotation (French)
  publication-title: Bull. Soc. Math. France
  doi: 10.24033/bsmf.1736
– volume: 6
  start-page: 397
  issue: 5
  year: 1989
  end-page: 417
  ident: CR3
  article-title: “Homogénéisation d’équations hyperboliques du premier ordre et application aux écoulements miscibles en milieu poreux” (French) [Homogenization of a system of first-order hyperbolic equations and application to miscible flows in a porous medium]
  publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire
  doi: 10.1016/s0294-1449(16)30317-1
– volume: 52
  start-page: 34
  issue: 1
  year: 1992
  end-page: 45
  ident: CR21
  article-title: Homogenization of linear transport equations with oscillatory vector fields
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0152003
– volume: 4
  start-page: 982
  year: 1953
  end-page: 987
  ident: CR30
  article-title: Stepanoff flows on the torus
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1953-0060812-4
– ident: CR16
– volume: 11
  start-page: 115
  issue: 1
  year: 1991
  end-page: 128
  ident: CR22
  article-title: Rotation vectors and entropy for homeomorphisms of the torus isotopic to the relation
  publication-title: Ergodic Theory Dynam. Syst.
  doi: 10.1017/S0143385700006040
– volume: 198
  start-page: 869
  issue: 3
  year: 2019
  end-page: 879
  ident: CR32
  article-title: Homogenization of ODE’s in
  publication-title: Ann. Mat. Pura Appl.
  doi: 10.1007/s10231-018-0803-3
– ident: CR10
– volume: 2
  start-page: 35
  issue: 1
  year: 2002
  end-page: 86
  ident: CR24
  article-title: Two-scale convergence
  publication-title: Int. J. Pure Appl. Math.
– volume: 314
  start-page: 115
  issue: 2
  year: 1992
  end-page: 120
  ident: CR18
  article-title: “Perturbations de systèmes dynamiques et moyennisation en vitesse des EDP” (French), [On perturbations of dynamical systems and the velocity averaging method for PDEs]
  publication-title: C. R. Acad. Sci. Paris Sér. I Math.
– ident: CR8
– volume: 3
  start-page: 239
  year: 1936
  end-page: 253
  ident: CR34
  article-title: Sur une extension du théorème ergodique
  publication-title: Compositio Math.
– volume: 137
  start-page: 45
  issue: 1
  year: 1991
  end-page: 52
  ident: CR27
  article-title: Rotation sets and ergodic measures for torus homeomorphisms
  publication-title: Fund. Math.
  doi: 10.4064/fm-137-1-45-52
– volume: 109
  start-page: 243
  issue: 1
  year: 1990
  end-page: 249
  ident: CR15
  article-title: Rotation sets of toral flows
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1990-1021217-5
– volume: 20
  start-page: 608
  issue: 3
  year: 1989
  end-page: 623
  ident: CR28
  article-title: A general convergence result for a functional related to the theory of homogenization
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0520043
– volume: 312
  start-page: 37
  issue: 1
  year: 1991
  end-page: 40
  ident: CR4
  article-title: Homogénéisation par décomposition en fréquences d’une équation de transport dans (French) [Homogenization by decomposition into frequencies of a transport equation in ]
  publication-title: C. R. Acad. Sci. Paris Sér. I Math
– start-page: 190
  year: 2016
  ident: CR11
  publication-title: Ergodic Theory and Dynamical Systems
  doi: 10.1007/978-1-4471-7287-1
– volume: 98
  start-page: 511
  issue: 3
  year: 1989
  end-page: 547
  ident: CR12
  article-title: Ordinary differential equations, transport theory and Sobolev spaces
  publication-title: Invent. Math.
  doi: 10.1007/BF01393835
– volume: 57
  start-page: 1390
  issue: 5
  year: 1997
  end-page: 1405
  ident: CR38
  article-title: Homogenization of two-dimensional linear flows with integral invariance
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/S0036139996299820
– ident: CR19
– volume: 58
  start-page: 116
  year: 1952
  end-page: 136
  ident: CR29
  article-title: Ergodic sets
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0002-9904-1952-09580-X
– volume: 311
  start-page: 107
  issue: 1
  year: 1989
  end-page: 115
  ident: CR14
  article-title: Realizing rotation vectors for torus homeomorphisms
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1989-0958891-1
– volume: 7
  start-page: 479
  year: 2020
  end-page: 495
  ident: CR7
  article-title: Homogenization of linear transport equations. A new approach
  publication-title: J. École Polytechnique - Mathématiques
  doi: 10.5802/jep.122
– volume: 46
  start-page: 423
  issue: 3
  year: 1945
  end-page: 428
  ident: CR33
  article-title: Note on differential equations on the torus
  publication-title: Ann. Math.
  doi: 10.2307/1969161
– volume: 23
  start-page: 919
  issue: 3
  year: 2003
  end-page: 933
  ident: CR31
  article-title: Convergence of solutions of linear transport equations
  publication-title: Ergodic Theory Dynam. Syst.
  doi: 10.1017/S014338570200144X
– ident: CR17
– ident: CR13
– volume: 32
  start-page: 22
  issue: 6
  year: 2016
  ident: CR6
  article-title: Isotropic realizability of a strain field for the two-dimensional incompressible elasticity system
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/32/6/065002
– start-page: 925
  year: 1989
  end-page: 938
  ident: CR37
  article-title: Nonlocal effects induced by homogenization, Partial differential equations and the calculus of variations
  publication-title: The Progress in Nonlinear Differential Equations and Their Applications
– ident: CR9
– volume: 12
  start-page: 333
  issue: 2
  year: 1992
  end-page: 339
  ident: CR23
  article-title: Every convex polygon with rational vertices is a rotation set
  publication-title: Ergodic Theory Dynam. Syst.
  doi: 10.1017/S0143385700006787
– ident: CR5
– volume: 40
  start-page: 490
  issue: 3
  year: 1989
  end-page: 506
  ident: CR26
  article-title: Rotation sets for maps of tori
  publication-title: J. London Math. Soc. (2)
  doi: 10.1112/jlms/s2-40.3.490
– volume: 9
  start-page: 275
  issue: 2
  year: 1958
  end-page: 281
  ident: CR2
  article-title: The ergodic property of the characteristics on a torus
  publication-title: Quart. J. Math. Oxford
  doi: 10.1093/qmath/9.1.275
– ident: CR20
– volume: 271
  start-page: 903
  year: 1970
  end-page: 905
  ident: CR35
  article-title: Stricte ergodicité des flots spéciaux (French)
  publication-title: C. R. Acad. Sci. Paris Sér. A
– volume: 58
  start-page: 116
  year: 1952
  ident: 10154_CR29
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0002-9904-1952-09580-X
– ident: 10154_CR5
– volume: 9
  start-page: 273
  issue: 2
  year: 1979
  ident: 10154_CR25
  publication-title: Rocky Mountain J. Math
  doi: 10.1216/RMJ-1979-9-2-273
– volume: 198
  start-page: 869
  issue: 3
  year: 2019
  ident: 10154_CR32
  publication-title: Ann. Mat. Pura Appl.
  doi: 10.1007/s10231-018-0803-3
– volume: 12
  start-page: 333
  issue: 2
  year: 1992
  ident: 10154_CR23
  publication-title: Ergodic Theory Dynam. Syst.
  doi: 10.1017/S0143385700006787
– volume: 4
  start-page: 982
  year: 1953
  ident: 10154_CR30
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1953-0060812-4
– volume: 311
  start-page: 107
  issue: 1
  year: 1989
  ident: 10154_CR14
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1989-0958891-1
– volume: 20
  start-page: 608
  issue: 3
  year: 1989
  ident: 10154_CR28
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0520043
– ident: 10154_CR17
  doi: 10.5802/jedp.398
– volume: 109
  start-page: 243
  issue: 1
  year: 1990
  ident: 10154_CR15
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1990-1021217-5
– start-page: 190
  volume-title: Ergodic Theory and Dynamical Systems
  year: 2016
  ident: 10154_CR11
  doi: 10.1007/978-1-4471-7287-1
– volume: 271
  start-page: 903
  year: 1970
  ident: 10154_CR35
  publication-title: C. R. Acad. Sci. Paris Sér. A
– ident: 10154_CR9
  doi: 10.1016/j.jde.2021.09.035
– volume: 2
  start-page: 35
  issue: 1
  year: 2002
  ident: 10154_CR24
  publication-title: Int. J. Pure Appl. Math.
– ident: 10154_CR10
  doi: 10.1007/978-1-4615-6927-5
– volume: 98
  start-page: 511
  issue: 3
  year: 1989
  ident: 10154_CR12
  publication-title: Invent. Math.
  doi: 10.1007/BF01393835
– volume: 23
  start-page: 1482
  issue: 6
  year: 1992
  ident: 10154_CR1
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0523084
– ident: 10154_CR8
– volume: 23
  start-page: 919
  issue: 3
  year: 2003
  ident: 10154_CR31
  publication-title: Ergodic Theory Dynam. Syst.
  doi: 10.1017/S014338570200144X
– ident: 10154_CR16
  doi: 10.1007/BFb0063447
– start-page: 925
  volume-title: The Progress in Nonlinear Differential Equations and Their Applications
  year: 1989
  ident: 10154_CR37
– ident: 10154_CR19
– ident: 10154_CR20
  doi: 10.1137/1.9780898719222
– volume: 3
  start-page: 239
  year: 1936
  ident: 10154_CR34
  publication-title: Compositio Math.
– volume: 312
  start-page: 37
  issue: 1
  year: 1991
  ident: 10154_CR4
  publication-title: C. R. Acad. Sci. Paris Sér. I Math
– volume: 9
  start-page: 275
  issue: 2
  year: 1958
  ident: 10154_CR2
  publication-title: Quart. J. Math. Oxford
  doi: 10.1093/qmath/9.1.275
– volume: 46
  start-page: 423
  issue: 3
  year: 1945
  ident: 10154_CR33
  publication-title: Ann. Math.
  doi: 10.2307/1969161
– volume: 137
  start-page: 45
  issue: 1
  year: 1991
  ident: 10154_CR27
  publication-title: Fund. Math.
  doi: 10.4064/fm-137-1-45-52
– volume: 6
  start-page: 397
  issue: 5
  year: 1989
  ident: 10154_CR3
  publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire
  doi: 10.1016/s0294-1449(16)30317-1
– volume: 100
  start-page: 195
  year: 1972
  ident: 10154_CR36
  publication-title: Bull. Soc. Math. France
  doi: 10.24033/bsmf.1736
– volume: 32
  start-page: 22
  issue: 6
  year: 2016
  ident: 10154_CR6
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/32/6/065002
– volume: 7
  start-page: 479
  year: 2020
  ident: 10154_CR7
  publication-title: J. École Polytechnique - Mathématiques
  doi: 10.5802/jep.122
– volume: 11
  start-page: 115
  issue: 1
  year: 1991
  ident: 10154_CR22
  publication-title: Ergodic Theory Dynam. Syst.
  doi: 10.1017/S0143385700006040
– volume: 40
  start-page: 490
  issue: 3
  year: 1989
  ident: 10154_CR26
  publication-title: J. London Math. Soc. (2)
  doi: 10.1112/jlms/s2-40.3.490
– ident: 10154_CR13
  doi: 10.1017/S0143385700009366
– volume: 314
  start-page: 115
  issue: 2
  year: 1992
  ident: 10154_CR18
  publication-title: C. R. Acad. Sci. Paris Sér. I Math.
– volume: 52
  start-page: 34
  issue: 1
  year: 1992
  ident: 10154_CR21
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0152003
– volume: 57
  start-page: 1390
  issue: 5
  year: 1997
  ident: 10154_CR38
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/S0036139996299820
SSID ssj0009839
Score 2.357498
Snippet This paper deals with the asymptotics of the ODE’s flow induced by a regular vector field b on the d -dimensional torus R d / Z d . First, we start by...
This paper deals with the asymptotics of the ODE’s flow induced by a regular vector field b on the d-dimensional torus Rd/Zd. First, we start by revisiting the...
This paper deals with the asymptotics of the ODE's flow induced by a regular vector field $b$ on the $d$-dimensional torus $\R^d/\Z^d$.First, we start by...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 421
SubjectTerms Analysis of PDEs
Apexes
Applications of Mathematics
Continuous flow
Determinants
Fields (mathematics)
Invariants
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
Partial Differential Equations
Rotation
Segments
Theorems
Toruses
Transport equations
Two dimensional flow
Vectors (mathematics)
Title Specific Properties of the ODE’s Flow in Dimension Two Versus Dimension Three
URI https://link.springer.com/article/10.1007/s10884-022-10154-1
https://www.proquest.com/docview/2933041052
https://hal.science/hal-03412162
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTsMwDI5gu8AB8SsGY4oQN6jUn7RNjxXbmIAxDps0TlGTpmLS1KJ1Y1deg9fjSXCydhsIkLi2bqvaSfzZsb8gdOEFrkO4Hxm-lzgGiYQ0eGAlMJZl4CYcHCJX-Y7ug9cZkNuhOyyawvKy2r3cktQr9VqzG6XEUNXnlnL8BsQ8VRdidzUdB3a4otql-vwwS9fK2QEpWmV-fscXd7T5rIoh15Dmt81R7XPau2inAIs4XFh3D23IdB9td5dMq_kB6ukD5JORwI8qrT5R_Kg4SzCI4F6z9fH2nuP2OJvjUYqbislfZcdwf55hlSmb5esXwazyEA3arf51xygOSTAEQImpYQlOIUSDfzYdP7ZI4gYOQDAZUY8Deg4gvBCSeo4ZC8-TgYwBA3Du25zyGNCD7RyhSpql8hhhKrmI3dg1pU-Jw3kQqS44M4pUCA0rWw1Zpa6YKBjE1UEWY7biPlb6ZaBfpvXLrBq6XD7zsuDP-FP6HEywFFTU153wnqlrJrhb2_LsVxCqlxZixYTLma0TMwAW7Rq6Kq22uv37J0_-J36KtmDIkUUVWh1VppOZPANYMuUNVA1vnu5aDT0aPwEwmNYu
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oHNSDbyM-N8ab1vTd7ZEoiALqARI9bbrbbSQSaixo4sm_4d_zlzhbWkCiJly309fMtPPN7DwAjl3fsWzuBZrnRpZmB0Jq3Dci1GXpOxFHg8hVvKN549ba9vW9c58VhSV5tnu-JZn-qSeK3Si1NZV9bijDr6HPU7TRB9cLUCxfPtQr42a7NJ0gZqTZcqZvZ8Uyv1_lh0Gaf1TpkBNYc2p7NLU61RVo5887TDZ5Ohv0-Zl4n2rlOOsLrcJyBkNJeag3azAne-uw1Bz1cE024DYdTR91BLlTAfsX1XmVxBFBEnJ7Ufn6-ExItRu_kU6PXKgZASruRlpvMVExuEEyuYgKIzehXa20zmtaNn5BEwhS-pohOEXnD3mpW15o2JHjWwjuZEBdjrjcR8dFSOpaeihcV_oyRHTBuWdyykPEJaa1BYVe3JPbQKjkInRCR5cetS3O_UDV1-lBoJxz_GeWwMhlwETWm1yNyOiycVdlxSyGzGIps5hRgpPROc_Dzhz_Uh-haEeEqql2rdxgak1HQ24arvmKRHu55Fn2KSfMTEM-CEPNEpzmghwf_vuWO7ORH8JCrdVssMbVTX0XFk0ET8Nctz0o9F8Gch_BT58fZLr-DZfl9Ho
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSAgOiFUUCliIG0TEzuYcK9qqQLdDK_VmxYkjKlVp1YVe-Q1-jy9hJk0XECBxdSaJMuN4nsczbwi5cX3HspUXGJ4bW4YdhNpQPothLmvfiRU4RIXxjnrDrXbsp67TXaviT7PdF0eS85oGZGlKJvfDKL5fK3wTwjYwE50hCDBg_7MFyzHDmd7hxRXtrkh7ibE0b477dlY28_MzvrimzRdMjFxDnd8OSlP_U9knexlwpMW5pQ_Ihk4OyW59ybo6PiLNtJl83AtpC0PsI-RKpYOYgghtlsofb-9jWukPZrSX0BKy-mOkjLZnA4pRs-l4fRBMrI9Jp1JuP1SNrGGCEQKsmBgsVAK2a_DNpuVFzI4d3wI4pgPhKkDSPmw1Qi1cy4xC19W-jgAPKOVxJVQESIJbJySXDBJ9SqjQKoycyDG1J2xLKT_AijgzCHA7DatcnrCFrmSYsYljU4u-XPEgo34l6Fem-pUsT26X9wznXBp_Sl-DCZaCSINdLdYkjpngejlz-SsIFRYWktnPN5Y8DdIAcOR5crew2ury7688-5_4FdlulSqy9th4Pic7HNDOPDmtQHKT0VRfAFqZqMt0Qn4CihDbyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Specific+Properties+of+the+ODE%E2%80%99s+Flow+in+Dimension+Two+Versus+Dimension+Three&rft.jtitle=Journal+of+dynamics+and+differential+equations&rft.au=Briane+Marc&rft.au=Herv%C3%A9+Lo%C3%AFc&rft.date=2024-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1040-7294&rft.eissn=1572-9222&rft.volume=36&rft.spage=421&rft.epage=461&rft_id=info:doi/10.1007%2Fs10884-022-10154-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-7294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-7294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-7294&client=summon