Specific Properties of the ODE’s Flow in Dimension Two Versus Dimension Three
This paper deals with the asymptotics of the ODE’s flow induced by a regular vector field b on the d -dimensional torus R d / Z d . First, we start by revisiting the Franks-Misiurewicz theorem which claims that the Herman rotation set of any two-dimensional continuous flow is a closed line segment o...
Saved in:
Published in | Journal of dynamics and differential equations Vol. 36; no. 1; pp. 421 - 461 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2024
Springer Nature B.V Springer Verlag |
Subjects | |
Online Access | Get full text |
ISSN | 1040-7294 1572-9222 |
DOI | 10.1007/s10884-022-10154-1 |
Cover
Abstract | This paper deals with the asymptotics of the ODE’s flow induced by a regular vector field
b
on the
d
-dimensional torus
R
d
/
Z
d
. First, we start by revisiting the Franks-Misiurewicz theorem which claims that the Herman rotation set of any two-dimensional continuous flow is a closed line segment of
R
2
. Various general examples illustrate this result, among which a complete study of the Stepanoff flow associated with a vector field
b
=
a
ζ
, where
ζ
is a constant vector in
R
2
. Furthermore, several extensions of the Franks-Misiurewicz theorem are obtained in the two-dimensional ODE’s context. On the one hand, we provide some interesting stability properties in the case where the Herman rotation set has a commensurable direction. On the other hand, we present new results highlighting the exceptional character of the opposite case,
i.e.
when the Herman rotation set is a closed line segment with
0
R
2
at one end and with an irrational slope, if it is not reduced to a single point. Besides this, given a pair
(
μ
,
ν
)
of invariant probability measures for the flow, we establish new Fourier relations between the determinant
det
(
μ
b
^
(
j
)
,
ν
b
^
(
k
)
)
and the determinant
det
(
j
,
k
)
for any pair (
j
,
k
) of non null integer vectors, which can be regarded as an extension of the Franks-Misiurewicz theorem. Next, in contrast with dimension two, any three-dimensional closed convex polyhedron with rational vertices is shown to be the rotation set associated with a suitable vector field
b
. Finally, in the case of an invariant measure
μ
with a regular density and a non null mass
μ
(
b
)
with respect to
b
, we show that the homogenization of the two-dimensional transport equation with the oscillating velocity
b
(
x
/
ε
)
as
ε
tends to 0, leads us to a nonlocal limit transport equation, but with the effective constant velocity
μ
(
b
)
. |
---|---|
AbstractList | This paper deals with the asymptotics of the ODE's flow induced by a regular vector field $b$ on the $d$-dimensional torus $\R^d/\Z^d$.First, we start by revisiting the Franks-Misiurewicz theorem which claims that the Herman rotation set of any two-dimensional continuous flow is a closed line segment of $\R^2$. Various general examples illustrate this result, among which a complete study of the Stepanoff flow associated with a vector field $b=a\,\zeta$, where $\zeta$ is a constant vector in $\R^2$.Furthermore, several extensions of the Franks-Misiurewicz theorem are obtained in the two-dimensional ODE's context. On the one hand, we provide some interesting stability properties in the case where the Herman rotation set has a commensurable direction. On the other hand, we present new results highlighting the exceptional character of the opposite case, {\em i.e.} when the Herman rotation set is a closed line segment with $0_{\R^2}$ at one end and with an irrational slope, if it is not reduced to a single point.Besides this, given a pair $(\mu,\nu)$ of invariant probability measures for the flow, we establish new Fourier relations between the determinant $\det\,(\widehat{\mu b}(j),\widehat{\nu b}(k))$ and the determinant $\det\,(j,k)$ for any pair $(j,k)$ of non null integer vectors, which can be regarded as an extension of the Franks-Misiurewicz theorem.Next, in contrast with dimension two, any three-dimensional closed convex polyhedron with rational vertices is shown to be the rotation set associated with a suitable vector field~$b$.Finally, in the case of an invariant measure $\mu$ with a regular density and a non null mass $\mu(b)$ with respect to~$b$, we show that the homogenization of the two-dimensional transport equation with the oscillating velocity $b(x/\ep)$ as $\ep$ tends to $0$, leads us to a nonlocal limit transport equation, but with the effective constant velocity~$\mu(b)$. This paper deals with the asymptotics of the ODE’s flow induced by a regular vector field b on the d -dimensional torus R d / Z d . First, we start by revisiting the Franks-Misiurewicz theorem which claims that the Herman rotation set of any two-dimensional continuous flow is a closed line segment of R 2 . Various general examples illustrate this result, among which a complete study of the Stepanoff flow associated with a vector field b = a ζ , where ζ is a constant vector in R 2 . Furthermore, several extensions of the Franks-Misiurewicz theorem are obtained in the two-dimensional ODE’s context. On the one hand, we provide some interesting stability properties in the case where the Herman rotation set has a commensurable direction. On the other hand, we present new results highlighting the exceptional character of the opposite case, i.e. when the Herman rotation set is a closed line segment with 0 R 2 at one end and with an irrational slope, if it is not reduced to a single point. Besides this, given a pair ( μ , ν ) of invariant probability measures for the flow, we establish new Fourier relations between the determinant det ( μ b ^ ( j ) , ν b ^ ( k ) ) and the determinant det ( j , k ) for any pair ( j , k ) of non null integer vectors, which can be regarded as an extension of the Franks-Misiurewicz theorem. Next, in contrast with dimension two, any three-dimensional closed convex polyhedron with rational vertices is shown to be the rotation set associated with a suitable vector field b . Finally, in the case of an invariant measure μ with a regular density and a non null mass μ ( b ) with respect to b , we show that the homogenization of the two-dimensional transport equation with the oscillating velocity b ( x / ε ) as ε tends to 0, leads us to a nonlocal limit transport equation, but with the effective constant velocity μ ( b ) . This paper deals with the asymptotics of the ODE’s flow induced by a regular vector field b on the d-dimensional torus Rd/Zd. First, we start by revisiting the Franks-Misiurewicz theorem which claims that the Herman rotation set of any two-dimensional continuous flow is a closed line segment of R2. Various general examples illustrate this result, among which a complete study of the Stepanoff flow associated with a vector field b=aζ, where ζ is a constant vector in R2. Furthermore, several extensions of the Franks-Misiurewicz theorem are obtained in the two-dimensional ODE’s context. On the one hand, we provide some interesting stability properties in the case where the Herman rotation set has a commensurable direction. On the other hand, we present new results highlighting the exceptional character of the opposite case, i.e. when the Herman rotation set is a closed line segment with 0R2 at one end and with an irrational slope, if it is not reduced to a single point. Besides this, given a pair (μ,ν) of invariant probability measures for the flow, we establish new Fourier relations between the determinant det(μb^(j),νb^(k)) and the determinant det(j,k) for any pair (j, k) of non null integer vectors, which can be regarded as an extension of the Franks-Misiurewicz theorem. Next, in contrast with dimension two, any three-dimensional closed convex polyhedron with rational vertices is shown to be the rotation set associated with a suitable vector field b. Finally, in the case of an invariant measure μ with a regular density and a non null mass μ(b) with respect to b, we show that the homogenization of the two-dimensional transport equation with the oscillating velocity b(x/ε) as ε tends to 0, leads us to a nonlocal limit transport equation, but with the effective constant velocity μ(b). |
Author | Briane, Marc Hervé, Loïc |
Author_xml | – sequence: 1 givenname: Marc surname: Briane fullname: Briane, Marc email: mbriane@insa-rennes.fr organization: The University of Rennes, INSA Rennes, CNRS, IRMAR - UMR 6625 – sequence: 2 givenname: Loïc surname: Hervé fullname: Hervé, Loïc organization: The University of Rennes, INSA Rennes, CNRS, IRMAR - UMR 6625 |
BackLink | https://hal.science/hal-03412162$$DView record in HAL |
BookMark | eNp9kE1OwzAQhS1UJChwAVaWWLEIjH-S2EtEW0CqVCR-tlaSTqirEAc7BbHjGlyPk5ASEIhFVzMavTfzzRuSQe1qJOSQwQkDSE8DA6VkBJxHDFgsI7ZFdlmc8khzzgddDxKilGu5Q4YhLAFAK6F3yeymwcKWtqDX3jXoW4uBupK2C6Sz0fjj7T3QSeVeqK3pyD5iHayr6e2Lo_fowyr8HS484j7ZLrMq4MF33SN3k_Ht-WU0nV1cnZ9No0LotI1YkSvQskMAkc6ZLGMt4jTGTCW5Uh0mVwWqRMC8SBLUOAfF8jzlucrnqRRc7JHjfu8iq0zj7WPmX43LrLk8m5r1DIRknCX8mXXao17bePe0wtCapVv5usMzXAsBkkG83qh6VeFdCB5LU9g2a7vPWp_ZyjAw66hNH7XpojZfUZv1Af7P-kO00SR6U-jE9QP6X6oNrk8t4pC2 |
CitedBy_id | crossref_primary_10_1016_j_jde_2025_02_052 crossref_primary_10_1137_23M1617539 |
Cites_doi | 10.1216/RMJ-1979-9-2-273 10.1137/0523084 10.24033/bsmf.1736 10.1016/s0294-1449(16)30317-1 10.1137/0152003 10.1090/S0002-9939-1953-0060812-4 10.1017/S0143385700006040 10.1007/s10231-018-0803-3 10.4064/fm-137-1-45-52 10.1090/S0002-9939-1990-1021217-5 10.1137/0520043 10.1007/978-1-4471-7287-1 10.1007/BF01393835 10.1137/S0036139996299820 10.1090/S0002-9904-1952-09580-X 10.1090/S0002-9947-1989-0958891-1 10.5802/jep.122 10.2307/1969161 10.1017/S014338570200144X 10.1088/0266-5611/32/6/065002 10.1017/S0143385700006787 10.1112/jlms/s2-40.3.490 10.1093/qmath/9.1.275 10.5802/jedp.398 10.1016/j.jde.2021.09.035 10.1007/978-1-4615-6927-5 10.1007/BFb0063447 10.1137/1.9780898719222 10.1017/S0143385700009366 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION JQ2 1XC VOOES |
DOI | 10.1007/s10884-022-10154-1 |
DatabaseName | CrossRef ProQuest Computer Science Collection Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1572-9222 |
EndPage | 461 |
ExternalDocumentID | oai_HAL_hal_03412162v1 10_1007_s10884_022_10154_1 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WIP WK8 YLTOR Z45 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ JQ2 1XC VOOES |
ID | FETCH-LOGICAL-c397t-1cb8094839037d14f593575ea86b8829428ce8630dc66e9ed081bb72b8bd74323 |
IEDL.DBID | U2A |
ISSN | 1040-7294 |
IngestDate | Fri Sep 12 12:39:04 EDT 2025 Sat Sep 13 14:31:25 EDT 2025 Tue Jul 01 03:46:32 EDT 2025 Thu Apr 24 23:07:33 EDT 2025 Fri Feb 21 02:41:21 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Transport equation 37C40 Rotation set 34E10 Invariant measure 37C10 ODE’s flow Homogenization Asymptotics Fourier coefficients 42B05 transport equation Mathematics Subject Classification: 34E10 homogenization asymptotics ODE's flow invariant measure rotation set |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c397t-1cb8094839037d14f593575ea86b8829428ce8630dc66e9ed081bb72b8bd74323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://hal.science/hal-03412162 |
PQID | 2933041052 |
PQPubID | 2043775 |
PageCount | 41 |
ParticipantIDs | hal_primary_oai_HAL_hal_03412162v1 proquest_journals_2933041052 crossref_citationtrail_10_1007_s10884_022_10154_1 crossref_primary_10_1007_s10884_022_10154_1 springer_journals_10_1007_s10884_022_10154_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of dynamics and differential equations |
PublicationTitleAbbrev | J Dyn Diff Equat |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V Springer Verlag |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer Verlag |
References | Kwapisz (CR23) 1992; 12 Hou, Xin (CR21) 1992; 52 Stepanoff (CR34) 1936; 3 CR19 Amirat, Hamdache, Ziani (CR3) 1989; 6 CR17 CR16 Franks (CR14) 1989; 311 Tassa (CR38) 1997; 57 CR13 Misiurewicz, Ziemian (CR27) 1991; 137 Oxtoby (CR30) 1953; 4 DiPerna, Lions (CR12) 1989; 98 CR10 Lukkassen, Nguetseng, Wall (CR24) 2002; 2 Marchetto (CR25) 1979; 9 Peirone (CR32) 2019; 198 Tartar, Colombini (CR37) 1989 Llibre, Mackay (CR22) 1991; 11 Golse (CR18) 1992; 314 CR5 Misiurewicz, Ziemian (CR26) 1989; 40 Strelcyn (CR36) 1972; 100 Amirat, Hamdache, Ziani (CR4) 1991; 312 CR8 Coudène (CR11) 2016 Franks, Misiurewicz (CR15) 1990; 109 Briane (CR7) 2020; 7 CR9 Oxtoby (CR29) 1952; 58 Allaire (CR1) 1992; 23 CR20 Nguetseng (CR28) 1989; 20 Strelcyn (CR35) 1970; 271 Akutowicz (CR2) 1958; 9 Peirone (CR31) 2003; 23 Briane (CR6) 2016; 32 Siegel (CR33) 1945; 46 M Briane (10154_CR6) 2016; 32 10154_CR10 10154_CR13 RJ DiPerna (10154_CR12) 1989; 98 EJ Akutowicz (10154_CR2) 1958; 9 R Peirone (10154_CR31) 2003; 23 L Tartar (10154_CR37) 1989 J Franks (10154_CR15) 1990; 109 J-M Strelcyn (10154_CR36) 1972; 100 M Briane (10154_CR7) 2020; 7 Y Amirat (10154_CR3) 1989; 6 CL Siegel (10154_CR33) 1945; 46 M Misiurewicz (10154_CR27) 1991; 137 R Peirone (10154_CR32) 2019; 198 10154_CR9 D Lukkassen (10154_CR24) 2002; 2 F Golse (10154_CR18) 1992; 314 10154_CR5 10154_CR20 J Kwapisz (10154_CR23) 1992; 12 10154_CR8 TY Hou (10154_CR21) 1992; 52 JC Oxtoby (10154_CR30) 1953; 4 JC Oxtoby (10154_CR29) 1952; 58 Y Amirat (10154_CR4) 1991; 312 Y Coudène (10154_CR11) 2016 W Stepanoff (10154_CR34) 1936; 3 D Marchetto (10154_CR25) 1979; 9 M Misiurewicz (10154_CR26) 1989; 40 J-M Strelcyn (10154_CR35) 1970; 271 10154_CR19 J Llibre (10154_CR22) 1991; 11 T Tassa (10154_CR38) 1997; 57 G Nguetseng (10154_CR28) 1989; 20 G Allaire (10154_CR1) 1992; 23 10154_CR17 J Franks (10154_CR14) 1989; 311 10154_CR16 |
References_xml | – volume: 9 start-page: 273 issue: 2 year: 1979 end-page: 281 ident: CR25 article-title: Stepanoff flows on orientable surfaces publication-title: Rocky Mountain J. Math doi: 10.1216/RMJ-1979-9-2-273 – volume: 23 start-page: 1482 issue: 6 year: 1992 end-page: 1518 ident: CR1 article-title: Homogenization and two-scale convergence publication-title: SIAM J. Math. Anal. doi: 10.1137/0523084 – volume: 100 start-page: 195 year: 1972 end-page: 208 ident: CR36 article-title: Flots sur le tore et nombres de rotation (French) publication-title: Bull. Soc. Math. France doi: 10.24033/bsmf.1736 – volume: 6 start-page: 397 issue: 5 year: 1989 end-page: 417 ident: CR3 article-title: “Homogénéisation d’équations hyperboliques du premier ordre et application aux écoulements miscibles en milieu poreux” (French) [Homogenization of a system of first-order hyperbolic equations and application to miscible flows in a porous medium] publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire doi: 10.1016/s0294-1449(16)30317-1 – volume: 52 start-page: 34 issue: 1 year: 1992 end-page: 45 ident: CR21 article-title: Homogenization of linear transport equations with oscillatory vector fields publication-title: SIAM J. Appl. Math. doi: 10.1137/0152003 – volume: 4 start-page: 982 year: 1953 end-page: 987 ident: CR30 article-title: Stepanoff flows on the torus publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-1953-0060812-4 – ident: CR16 – volume: 11 start-page: 115 issue: 1 year: 1991 end-page: 128 ident: CR22 article-title: Rotation vectors and entropy for homeomorphisms of the torus isotopic to the relation publication-title: Ergodic Theory Dynam. Syst. doi: 10.1017/S0143385700006040 – volume: 198 start-page: 869 issue: 3 year: 2019 end-page: 879 ident: CR32 article-title: Homogenization of ODE’s in publication-title: Ann. Mat. Pura Appl. doi: 10.1007/s10231-018-0803-3 – ident: CR10 – volume: 2 start-page: 35 issue: 1 year: 2002 end-page: 86 ident: CR24 article-title: Two-scale convergence publication-title: Int. J. Pure Appl. Math. – volume: 314 start-page: 115 issue: 2 year: 1992 end-page: 120 ident: CR18 article-title: “Perturbations de systèmes dynamiques et moyennisation en vitesse des EDP” (French), [On perturbations of dynamical systems and the velocity averaging method for PDEs] publication-title: C. R. Acad. Sci. Paris Sér. I Math. – ident: CR8 – volume: 3 start-page: 239 year: 1936 end-page: 253 ident: CR34 article-title: Sur une extension du théorème ergodique publication-title: Compositio Math. – volume: 137 start-page: 45 issue: 1 year: 1991 end-page: 52 ident: CR27 article-title: Rotation sets and ergodic measures for torus homeomorphisms publication-title: Fund. Math. doi: 10.4064/fm-137-1-45-52 – volume: 109 start-page: 243 issue: 1 year: 1990 end-page: 249 ident: CR15 article-title: Rotation sets of toral flows publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-1990-1021217-5 – volume: 20 start-page: 608 issue: 3 year: 1989 end-page: 623 ident: CR28 article-title: A general convergence result for a functional related to the theory of homogenization publication-title: SIAM J. Math. Anal. doi: 10.1137/0520043 – volume: 312 start-page: 37 issue: 1 year: 1991 end-page: 40 ident: CR4 article-title: Homogénéisation par décomposition en fréquences d’une équation de transport dans (French) [Homogenization by decomposition into frequencies of a transport equation in ] publication-title: C. R. Acad. Sci. Paris Sér. I Math – start-page: 190 year: 2016 ident: CR11 publication-title: Ergodic Theory and Dynamical Systems doi: 10.1007/978-1-4471-7287-1 – volume: 98 start-page: 511 issue: 3 year: 1989 end-page: 547 ident: CR12 article-title: Ordinary differential equations, transport theory and Sobolev spaces publication-title: Invent. Math. doi: 10.1007/BF01393835 – volume: 57 start-page: 1390 issue: 5 year: 1997 end-page: 1405 ident: CR38 article-title: Homogenization of two-dimensional linear flows with integral invariance publication-title: SIAM J. Appl. Math. doi: 10.1137/S0036139996299820 – ident: CR19 – volume: 58 start-page: 116 year: 1952 end-page: 136 ident: CR29 article-title: Ergodic sets publication-title: Bull. Am. Math. Soc. doi: 10.1090/S0002-9904-1952-09580-X – volume: 311 start-page: 107 issue: 1 year: 1989 end-page: 115 ident: CR14 article-title: Realizing rotation vectors for torus homeomorphisms publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1989-0958891-1 – volume: 7 start-page: 479 year: 2020 end-page: 495 ident: CR7 article-title: Homogenization of linear transport equations. A new approach publication-title: J. École Polytechnique - Mathématiques doi: 10.5802/jep.122 – volume: 46 start-page: 423 issue: 3 year: 1945 end-page: 428 ident: CR33 article-title: Note on differential equations on the torus publication-title: Ann. Math. doi: 10.2307/1969161 – volume: 23 start-page: 919 issue: 3 year: 2003 end-page: 933 ident: CR31 article-title: Convergence of solutions of linear transport equations publication-title: Ergodic Theory Dynam. Syst. doi: 10.1017/S014338570200144X – ident: CR17 – ident: CR13 – volume: 32 start-page: 22 issue: 6 year: 2016 ident: CR6 article-title: Isotropic realizability of a strain field for the two-dimensional incompressible elasticity system publication-title: Inverse Problems doi: 10.1088/0266-5611/32/6/065002 – start-page: 925 year: 1989 end-page: 938 ident: CR37 article-title: Nonlocal effects induced by homogenization, Partial differential equations and the calculus of variations publication-title: The Progress in Nonlinear Differential Equations and Their Applications – ident: CR9 – volume: 12 start-page: 333 issue: 2 year: 1992 end-page: 339 ident: CR23 article-title: Every convex polygon with rational vertices is a rotation set publication-title: Ergodic Theory Dynam. Syst. doi: 10.1017/S0143385700006787 – ident: CR5 – volume: 40 start-page: 490 issue: 3 year: 1989 end-page: 506 ident: CR26 article-title: Rotation sets for maps of tori publication-title: J. London Math. Soc. (2) doi: 10.1112/jlms/s2-40.3.490 – volume: 9 start-page: 275 issue: 2 year: 1958 end-page: 281 ident: CR2 article-title: The ergodic property of the characteristics on a torus publication-title: Quart. J. Math. Oxford doi: 10.1093/qmath/9.1.275 – ident: CR20 – volume: 271 start-page: 903 year: 1970 end-page: 905 ident: CR35 article-title: Stricte ergodicité des flots spéciaux (French) publication-title: C. R. Acad. Sci. Paris Sér. A – volume: 58 start-page: 116 year: 1952 ident: 10154_CR29 publication-title: Bull. Am. Math. Soc. doi: 10.1090/S0002-9904-1952-09580-X – ident: 10154_CR5 – volume: 9 start-page: 273 issue: 2 year: 1979 ident: 10154_CR25 publication-title: Rocky Mountain J. Math doi: 10.1216/RMJ-1979-9-2-273 – volume: 198 start-page: 869 issue: 3 year: 2019 ident: 10154_CR32 publication-title: Ann. Mat. Pura Appl. doi: 10.1007/s10231-018-0803-3 – volume: 12 start-page: 333 issue: 2 year: 1992 ident: 10154_CR23 publication-title: Ergodic Theory Dynam. Syst. doi: 10.1017/S0143385700006787 – volume: 4 start-page: 982 year: 1953 ident: 10154_CR30 publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-1953-0060812-4 – volume: 311 start-page: 107 issue: 1 year: 1989 ident: 10154_CR14 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1989-0958891-1 – volume: 20 start-page: 608 issue: 3 year: 1989 ident: 10154_CR28 publication-title: SIAM J. Math. Anal. doi: 10.1137/0520043 – ident: 10154_CR17 doi: 10.5802/jedp.398 – volume: 109 start-page: 243 issue: 1 year: 1990 ident: 10154_CR15 publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-1990-1021217-5 – start-page: 190 volume-title: Ergodic Theory and Dynamical Systems year: 2016 ident: 10154_CR11 doi: 10.1007/978-1-4471-7287-1 – volume: 271 start-page: 903 year: 1970 ident: 10154_CR35 publication-title: C. R. Acad. Sci. Paris Sér. A – ident: 10154_CR9 doi: 10.1016/j.jde.2021.09.035 – volume: 2 start-page: 35 issue: 1 year: 2002 ident: 10154_CR24 publication-title: Int. J. Pure Appl. Math. – ident: 10154_CR10 doi: 10.1007/978-1-4615-6927-5 – volume: 98 start-page: 511 issue: 3 year: 1989 ident: 10154_CR12 publication-title: Invent. Math. doi: 10.1007/BF01393835 – volume: 23 start-page: 1482 issue: 6 year: 1992 ident: 10154_CR1 publication-title: SIAM J. Math. Anal. doi: 10.1137/0523084 – ident: 10154_CR8 – volume: 23 start-page: 919 issue: 3 year: 2003 ident: 10154_CR31 publication-title: Ergodic Theory Dynam. Syst. doi: 10.1017/S014338570200144X – ident: 10154_CR16 doi: 10.1007/BFb0063447 – start-page: 925 volume-title: The Progress in Nonlinear Differential Equations and Their Applications year: 1989 ident: 10154_CR37 – ident: 10154_CR19 – ident: 10154_CR20 doi: 10.1137/1.9780898719222 – volume: 3 start-page: 239 year: 1936 ident: 10154_CR34 publication-title: Compositio Math. – volume: 312 start-page: 37 issue: 1 year: 1991 ident: 10154_CR4 publication-title: C. R. Acad. Sci. Paris Sér. I Math – volume: 9 start-page: 275 issue: 2 year: 1958 ident: 10154_CR2 publication-title: Quart. J. Math. Oxford doi: 10.1093/qmath/9.1.275 – volume: 46 start-page: 423 issue: 3 year: 1945 ident: 10154_CR33 publication-title: Ann. Math. doi: 10.2307/1969161 – volume: 137 start-page: 45 issue: 1 year: 1991 ident: 10154_CR27 publication-title: Fund. Math. doi: 10.4064/fm-137-1-45-52 – volume: 6 start-page: 397 issue: 5 year: 1989 ident: 10154_CR3 publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire doi: 10.1016/s0294-1449(16)30317-1 – volume: 100 start-page: 195 year: 1972 ident: 10154_CR36 publication-title: Bull. Soc. Math. France doi: 10.24033/bsmf.1736 – volume: 32 start-page: 22 issue: 6 year: 2016 ident: 10154_CR6 publication-title: Inverse Problems doi: 10.1088/0266-5611/32/6/065002 – volume: 7 start-page: 479 year: 2020 ident: 10154_CR7 publication-title: J. École Polytechnique - Mathématiques doi: 10.5802/jep.122 – volume: 11 start-page: 115 issue: 1 year: 1991 ident: 10154_CR22 publication-title: Ergodic Theory Dynam. Syst. doi: 10.1017/S0143385700006040 – volume: 40 start-page: 490 issue: 3 year: 1989 ident: 10154_CR26 publication-title: J. London Math. Soc. (2) doi: 10.1112/jlms/s2-40.3.490 – ident: 10154_CR13 doi: 10.1017/S0143385700009366 – volume: 314 start-page: 115 issue: 2 year: 1992 ident: 10154_CR18 publication-title: C. R. Acad. Sci. Paris Sér. I Math. – volume: 52 start-page: 34 issue: 1 year: 1992 ident: 10154_CR21 publication-title: SIAM J. Appl. Math. doi: 10.1137/0152003 – volume: 57 start-page: 1390 issue: 5 year: 1997 ident: 10154_CR38 publication-title: SIAM J. Appl. Math. doi: 10.1137/S0036139996299820 |
SSID | ssj0009839 |
Score | 2.357498 |
Snippet | This paper deals with the asymptotics of the ODE’s flow induced by a regular vector field
b
on the
d
-dimensional torus
R
d
/
Z
d
. First, we start by... This paper deals with the asymptotics of the ODE’s flow induced by a regular vector field b on the d-dimensional torus Rd/Zd. First, we start by revisiting the... This paper deals with the asymptotics of the ODE's flow induced by a regular vector field $b$ on the $d$-dimensional torus $\R^d/\Z^d$.First, we start by... |
SourceID | hal proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 421 |
SubjectTerms | Analysis of PDEs Apexes Applications of Mathematics Continuous flow Determinants Fields (mathematics) Invariants Mathematics Mathematics and Statistics Ordinary Differential Equations Partial Differential Equations Rotation Segments Theorems Toruses Transport equations Two dimensional flow Vectors (mathematics) |
Title | Specific Properties of the ODE’s Flow in Dimension Two Versus Dimension Three |
URI | https://link.springer.com/article/10.1007/s10884-022-10154-1 https://www.proquest.com/docview/2933041052 https://hal.science/hal-03412162 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTsMwDI5gu8AB8SsGY4oQN6jUn7RNjxXbmIAxDps0TlGTpmLS1KJ1Y1deg9fjSXCydhsIkLi2bqvaSfzZsb8gdOEFrkO4Hxm-lzgGiYQ0eGAlMJZl4CYcHCJX-Y7ug9cZkNuhOyyawvKy2r3cktQr9VqzG6XEUNXnlnL8BsQ8VRdidzUdB3a4otql-vwwS9fK2QEpWmV-fscXd7T5rIoh15Dmt81R7XPau2inAIs4XFh3D23IdB9td5dMq_kB6ukD5JORwI8qrT5R_Kg4SzCI4F6z9fH2nuP2OJvjUYqbislfZcdwf55hlSmb5esXwazyEA3arf51xygOSTAEQImpYQlOIUSDfzYdP7ZI4gYOQDAZUY8Deg4gvBCSeo4ZC8-TgYwBA3Du25zyGNCD7RyhSpql8hhhKrmI3dg1pU-Jw3kQqS44M4pUCA0rWw1Zpa6YKBjE1UEWY7biPlb6ZaBfpvXLrBq6XD7zsuDP-FP6HEywFFTU153wnqlrJrhb2_LsVxCqlxZixYTLma0TMwAW7Rq6Kq22uv37J0_-J36KtmDIkUUVWh1VppOZPANYMuUNVA1vnu5aDT0aPwEwmNYu |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oHNSDbyM-N8ab1vTd7ZEoiALqARI9bbrbbSQSaixo4sm_4d_zlzhbWkCiJly309fMtPPN7DwAjl3fsWzuBZrnRpZmB0Jq3Dci1GXpOxFHg8hVvKN549ba9vW9c58VhSV5tnu-JZn-qSeK3Si1NZV9bijDr6HPU7TRB9cLUCxfPtQr42a7NJ0gZqTZcqZvZ8Uyv1_lh0Gaf1TpkBNYc2p7NLU61RVo5887TDZ5Ohv0-Zl4n2rlOOsLrcJyBkNJeag3azAne-uw1Bz1cE024DYdTR91BLlTAfsX1XmVxBFBEnJ7Ufn6-ExItRu_kU6PXKgZASruRlpvMVExuEEyuYgKIzehXa20zmtaNn5BEwhS-pohOEXnD3mpW15o2JHjWwjuZEBdjrjcR8dFSOpaeihcV_oyRHTBuWdyykPEJaa1BYVe3JPbQKjkInRCR5cetS3O_UDV1-lBoJxz_GeWwMhlwETWm1yNyOiycVdlxSyGzGIps5hRgpPROc_Dzhz_Uh-haEeEqql2rdxgak1HQ24arvmKRHu55Fn2KSfMTEM-CEPNEpzmghwf_vuWO7ORH8JCrdVssMbVTX0XFk0ET8Nctz0o9F8Gch_BT58fZLr-DZfl9Ho |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSAgOiFUUCliIG0TEzuYcK9qqQLdDK_VmxYkjKlVp1YVe-Q1-jy9hJk0XECBxdSaJMuN4nsczbwi5cX3HspUXGJ4bW4YdhNpQPothLmvfiRU4RIXxjnrDrXbsp67TXaviT7PdF0eS85oGZGlKJvfDKL5fK3wTwjYwE50hCDBg_7MFyzHDmd7hxRXtrkh7ibE0b477dlY28_MzvrimzRdMjFxDnd8OSlP_U9knexlwpMW5pQ_Ihk4OyW59ybo6PiLNtJl83AtpC0PsI-RKpYOYgghtlsofb-9jWukPZrSX0BKy-mOkjLZnA4pRs-l4fRBMrI9Jp1JuP1SNrGGCEQKsmBgsVAK2a_DNpuVFzI4d3wI4pgPhKkDSPmw1Qi1cy4xC19W-jgAPKOVxJVQESIJbJySXDBJ9SqjQKoycyDG1J2xLKT_AijgzCHA7DatcnrCFrmSYsYljU4u-XPEgo34l6Fem-pUsT26X9wznXBp_Sl-DCZaCSINdLdYkjpngejlz-SsIFRYWktnPN5Y8DdIAcOR5crew2ury7688-5_4FdlulSqy9th4Pic7HNDOPDmtQHKT0VRfAFqZqMt0Qn4CihDbyQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Specific+Properties+of+the+ODE%E2%80%99s+Flow+in+Dimension+Two+Versus+Dimension+Three&rft.jtitle=Journal+of+dynamics+and+differential+equations&rft.au=Briane+Marc&rft.au=Herv%C3%A9+Lo%C3%AFc&rft.date=2024-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1040-7294&rft.eissn=1572-9222&rft.volume=36&rft.spage=421&rft.epage=461&rft_id=info:doi/10.1007%2Fs10884-022-10154-1&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-7294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-7294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-7294&client=summon |