Synthesis and characterization of biogenic selenium nanoparticles with antimicrobial properties made by Staphylococcus aureus, methicillin‐resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa

Antimicrobial resistance is a global concern that affects more than two million people each year. Therefore, new approaches to kill bacteria are needed. One of the most promising methodologies may come from metallic nanoparticles, since bacteria may not develop a resistance to these nanostructures a...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical materials research. Part A Vol. 106; no. 5; pp. 1400 - 1412
Main Authors Medina Cruz, David, Mi, Gujie, Webster, Thomas J.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.05.2018
Subjects
Online AccessGet full text
ISSN1549-3296
1552-4965
1552-4965
DOI10.1002/jbm.a.36347

Cover

Abstract Antimicrobial resistance is a global concern that affects more than two million people each year. Therefore, new approaches to kill bacteria are needed. One of the most promising methodologies may come from metallic nanoparticles, since bacteria may not develop a resistance to these nanostructures as they do for antibiotics. While metallic nanoparticle synthesis methods have been well studied, they are often accompanied by significant drawbacks such as cost, extreme processing conditions, and toxic waste production since they use harsh chemicals such as corrosive agents (hydrazine) or strong acids (hydrochloride acid). In this work, we explored the environmentally safe synthesis of selenium nanoparticles, which have shown promise in killing bacteria. Using Escherichia coli, Pseudomonas aeruginosa, Methicillin‐resistance Staphylococcus aureus, and S. aureus, 90–150 nm average diameter selenium nanoparticles were synthesized using an environmentally safe approach. Nanoparticles were characterized using transmission electron microscopy, energy dispersive X‐ray spectroscopy to determine the chemical composition, and inductively coupled plasma mass spectrometry to validate chemistry. Nanoparticles were also characterized and tested for their ability to inhibit bacterial growth. A decay in bacterial growth after 24 h was achieved against both S. aureus and E. coli at biogenic selenium nanoparticle concentrations from 25 to 250 µg/mL and showed no significant cytotoxicity effect against human dermal fibroblasts for 24 h. Bacteria were able to synthesize selenium nanoparticles through the use of different functional structures within the organisms, mainly enzymes such as selenite reductases. Therefore, biogenic selenium nanoparticles made by bacteria represent a viable approach to reduce bacteria growth without antibiotics overcoming the drawbacks of synthetic methods that employ toxic chemicals. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1400–1412, 2018.
AbstractList Antimicrobial resistance is a global concern that affects more than two million people each year. Therefore, new approaches to kill bacteria are needed. One of the most promising methodologies may come from metallic nanoparticles, since bacteria may not develop a resistance to these nanostructures as they do for antibiotics. While metallic nanoparticle synthesis methods have been well studied, they are often accompanied by significant drawbacks such as cost, extreme processing conditions, and toxic waste production since they use harsh chemicals such as corrosive agents (hydrazine) or strong acids (hydrochloride acid). In this work, we explored the environmentally safe synthesis of selenium nanoparticles, which have shown promise in killing bacteria. Using Escherichia coli, Pseudomonas aeruginosa, Methicillin-resistance Staphylococcus aureus, and S. aureus, 90-150 nm average diameter selenium nanoparticles were synthesized using an environmentally safe approach. Nanoparticles were characterized using transmission electron microscopy, energy dispersive X-ray spectroscopy to determine the chemical composition, and inductively coupled plasma mass spectrometry to validate chemistry. Nanoparticles were also characterized and tested for their ability to inhibit bacterial growth. A decay in bacterial growth after 24 h was achieved against both S. aureus and E. coli at biogenic selenium nanoparticle concentrations from 25 to 250 µg/mL and showed no significant cytotoxicity effect against human dermal fibroblasts for 24 h. Bacteria were able to synthesize selenium nanoparticles through the use of different functional structures within the organisms, mainly enzymes such as selenite reductases. Therefore, biogenic selenium nanoparticles made by bacteria represent a viable approach to reduce bacteria growth without antibiotics overcoming the drawbacks of synthetic methods that employ toxic chemicals. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1400-1412, 2018.
Antimicrobial resistance is a global concern that affects more than two million people each year. Therefore, new approaches to kill bacteria are needed. One of the most promising methodologies may come from metallic nanoparticles, since bacteria may not develop a resistance to these nanostructures as they do for antibiotics. While metallic nanoparticle synthesis methods have been well studied, they are often accompanied by significant drawbacks such as cost, extreme processing conditions, and toxic waste production since they use harsh chemicals such as corrosive agents (hydrazine) or strong acids (hydrochloride acid). In this work, we explored the environmentally safe synthesis of selenium nanoparticles, which have shown promise in killing bacteria. Using Escherichia coli, Pseudomonas aeruginosa, Methicillin‐resistance Staphylococcus aureus , and S. aureus , 90–150 nm average diameter selenium nanoparticles were synthesized using an environmentally safe approach. Nanoparticles were characterized using transmission electron microscopy, energy dispersive X‐ray spectroscopy to determine the chemical composition, and inductively coupled plasma mass spectrometry to validate chemistry. Nanoparticles were also characterized and tested for their ability to inhibit bacterial growth. A decay in bacterial growth after 24 h was achieved against both S. aureus and E. coli at biogenic selenium nanoparticle concentrations from 25 to 250 µg/mL and showed no significant cytotoxicity effect against human dermal fibroblasts for 24 h. Bacteria were able to synthesize selenium nanoparticles through the use of different functional structures within the organisms, mainly enzymes such as selenite reductases. Therefore, biogenic selenium nanoparticles made by bacteria represent a viable approach to reduce bacteria growth without antibiotics overcoming the drawbacks of synthetic methods that employ toxic chemicals. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1400–1412, 2018.
Antimicrobial resistance is a global concern that affects more than two million people each year. Therefore, new approaches to kill bacteria are needed. One of the most promising methodologies may come from metallic nanoparticles, since bacteria may not develop a resistance to these nanostructures as they do for antibiotics. While metallic nanoparticle synthesis methods have been well studied, they are often accompanied by significant drawbacks such as cost, extreme processing conditions, and toxic waste production since they use harsh chemicals such as corrosive agents (hydrazine) or strong acids (hydrochloride acid). In this work, we explored the environmentally safe synthesis of selenium nanoparticles, which have shown promise in killing bacteria. Using Escherichia coli, Pseudomonas aeruginosa, Methicillin-resistance Staphylococcus aureus, and S. aureus, 90-150 nm average diameter selenium nanoparticles were synthesized using an environmentally safe approach. Nanoparticles were characterized using transmission electron microscopy, energy dispersive X-ray spectroscopy to determine the chemical composition, and inductively coupled plasma mass spectrometry to validate chemistry. Nanoparticles were also characterized and tested for their ability to inhibit bacterial growth. A decay in bacterial growth after 24 h was achieved against both S. aureus and E. coli at biogenic selenium nanoparticle concentrations from 25 to 250 µg/mL and showed no significant cytotoxicity effect against human dermal fibroblasts for 24 h. Bacteria were able to synthesize selenium nanoparticles through the use of different functional structures within the organisms, mainly enzymes such as selenite reductases. Therefore, biogenic selenium nanoparticles made by bacteria represent a viable approach to reduce bacteria growth without antibiotics overcoming the drawbacks of synthetic methods that employ toxic chemicals. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1400-1412, 2018.Antimicrobial resistance is a global concern that affects more than two million people each year. Therefore, new approaches to kill bacteria are needed. One of the most promising methodologies may come from metallic nanoparticles, since bacteria may not develop a resistance to these nanostructures as they do for antibiotics. While metallic nanoparticle synthesis methods have been well studied, they are often accompanied by significant drawbacks such as cost, extreme processing conditions, and toxic waste production since they use harsh chemicals such as corrosive agents (hydrazine) or strong acids (hydrochloride acid). In this work, we explored the environmentally safe synthesis of selenium nanoparticles, which have shown promise in killing bacteria. Using Escherichia coli, Pseudomonas aeruginosa, Methicillin-resistance Staphylococcus aureus, and S. aureus, 90-150 nm average diameter selenium nanoparticles were synthesized using an environmentally safe approach. Nanoparticles were characterized using transmission electron microscopy, energy dispersive X-ray spectroscopy to determine the chemical composition, and inductively coupled plasma mass spectrometry to validate chemistry. Nanoparticles were also characterized and tested for their ability to inhibit bacterial growth. A decay in bacterial growth after 24 h was achieved against both S. aureus and E. coli at biogenic selenium nanoparticle concentrations from 25 to 250 µg/mL and showed no significant cytotoxicity effect against human dermal fibroblasts for 24 h. Bacteria were able to synthesize selenium nanoparticles through the use of different functional structures within the organisms, mainly enzymes such as selenite reductases. Therefore, biogenic selenium nanoparticles made by bacteria represent a viable approach to reduce bacteria growth without antibiotics overcoming the drawbacks of synthetic methods that employ toxic chemicals. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1400-1412, 2018.
Author Medina Cruz, David
Mi, Gujie
Webster, Thomas J.
Author_xml – sequence: 1
  givenname: David
  surname: Medina Cruz
  fullname: Medina Cruz, David
  organization: Universitat Rovira I Virgili
– sequence: 2
  givenname: Gujie
  surname: Mi
  fullname: Mi, Gujie
  organization: Nanomedicine Science and Technology Center, Northeastern University
– sequence: 3
  givenname: Thomas J.
  surname: Webster
  fullname: Webster, Thomas J.
  email: th.webster@neu.edu
  organization: Nanomedicine Science and Technology Center, Northeastern University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29356322$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1uEzEUhUeoiP7Aij2yxKaIJHhsz2S8DFX5UysQgbXl8dx0buWxg-1RFVY8Aq8IT4KTtJuqYnUt3e9cH_ue4-LAeQdF8byks5JS9ua6HWZ6xmsu5o-Ko7Kq2FTIujrYnoWccibrw-I4xusM17RiT4pDJnlVc8aOij_LjUs9RIxEu46YXgdtEgT8qRN6R_yKtOivwKEhEWyu40Ccdn6tQ0JjIZIbTH0WJxzQBN-itmQd_BpyP3cH3QFpN2SZ9LrfWG-8MWO-bAwwxgkZIPVo0Fp0f3_9DlsjKc96GCenl1-Xi1cTch5Nnz2aHjUx3uJkZ_5LhLHzg3c6CyCMV-h81E-LxyttIzy7rSfF93fn384-TC8-v_94triYGi7n82lXCVNXAJILWnZC1C1lXMO8AQqtYYaJtqlELXXTGAqsqgVQJqBpBOcgGOMnxel-bn78jxFiUgNGA9ZqB36MqpSNlCVvGpnRl_fQaz8Gl90pRktZMjaXVaZe3FJjO0Cn1gEHHTbqbnkZKPdA_vYYA6yUwbRbWwoarSqp2gZE5YAorXYByZrX9zR3Yx-m2Z6-QQub_6Hq09vLxV70D3WG0sU
CitedBy_id crossref_primary_10_1007_s42247_023_00455_6
crossref_primary_10_1039_D3MA00512G
crossref_primary_10_3390_molecules27217166
crossref_primary_10_1016_j_carbpol_2020_117125
crossref_primary_10_1016_j_ijpharm_2024_124864
crossref_primary_10_1186_s12951_021_00978_2
crossref_primary_10_3390_agriculture11121244
crossref_primary_10_3390_fermentation7030130
crossref_primary_10_1088_2631_8695_ac8f1c
crossref_primary_10_1017_S1431927619006044
crossref_primary_10_1186_s13104_019_4396_8
crossref_primary_10_1007_s10876_019_01705_6
crossref_primary_10_1016_j_bmt_2023_12_001
crossref_primary_10_1080_17425247_2020_1727441
crossref_primary_10_3390_foods13244026
crossref_primary_10_1016_j_microb_2024_100207
crossref_primary_10_3390_molecules26123611
crossref_primary_10_3390_sci6040083
crossref_primary_10_1016_j_jinorgbio_2022_111938
crossref_primary_10_1016_j_matlet_2018_11_134
crossref_primary_10_1016_j_jbiotec_2020_11_004
crossref_primary_10_1016_j_btre_2020_e00427
crossref_primary_10_1016_j_ijbiomac_2020_01_019
crossref_primary_10_1016_j_envres_2023_115659
crossref_primary_10_1016_j_jhazmat_2021_128122
crossref_primary_10_1016_j_jddst_2023_104663
crossref_primary_10_1016_j_ijbiomac_2019_01_224
crossref_primary_10_1039_C9GC00131J
crossref_primary_10_1007_s10904_023_02959_4
crossref_primary_10_3389_fmicb_2020_02105
crossref_primary_10_1080_17518253_2024_2448171
crossref_primary_10_1039_D4NR05271D
crossref_primary_10_1186_s12896_024_00855_4
crossref_primary_10_1007_s12668_023_01059_4
crossref_primary_10_1016_j_lwt_2025_117441
crossref_primary_10_1007_s11051_018_4354_8
crossref_primary_10_1007_s11274_023_03673_6
crossref_primary_10_1021_acsanm_3c02415
crossref_primary_10_1016_j_sab_2022_106611
crossref_primary_10_1002_jsfa_9756
crossref_primary_10_1007_s10904_022_02406_w
crossref_primary_10_1039_D3SU00145H
crossref_primary_10_2147_IJN_S279094
crossref_primary_10_1155_2022_4118048
crossref_primary_10_1016_j_btre_2023_e00787
crossref_primary_10_1038_s41598_022_11804_6
crossref_primary_10_1016_j_colsurfb_2023_113638
crossref_primary_10_3390_ijms22030989
crossref_primary_10_1007_s10853_019_04019_0
crossref_primary_10_1016_j_procbio_2022_03_014
crossref_primary_10_3390_microorganisms8040566
crossref_primary_10_1016_j_envpol_2021_117519
crossref_primary_10_1007_s11274_022_03374_6
crossref_primary_10_3390_microorganisms12010148
crossref_primary_10_2478_ausal_2021_0002
crossref_primary_10_1007_s12221_020_9461_3
crossref_primary_10_3389_fphar_2021_682284
crossref_primary_10_1039_D2MA00756H
crossref_primary_10_1016_j_aqrep_2025_102627
crossref_primary_10_1016_j_colsurfb_2020_111381
crossref_primary_10_3390_su14031784
crossref_primary_10_1016_j_jtice_2024_105602
crossref_primary_10_1016_j_matpr_2021_09_044
crossref_primary_10_3390_biomimetics6020034
crossref_primary_10_1007_s12668_023_01077_2
crossref_primary_10_21676_23897864_4546
crossref_primary_10_1186_s40104_024_01128_y
crossref_primary_10_1007_s10853_022_07259_9
crossref_primary_10_1080_08927014_2023_2199932
crossref_primary_10_1007_s41742_024_00696_1
crossref_primary_10_1016_j_ejps_2019_105087
crossref_primary_10_3390_jfb14010024
crossref_primary_10_1016_j_heliyon_2021_e08057
crossref_primary_10_3390_nano13030424
crossref_primary_10_1016_j_jddst_2021_102607
crossref_primary_10_2139_ssrn_4019351
crossref_primary_10_52547_ArchHygSci_9_4_275
crossref_primary_10_1080_00032719_2024_2328361
crossref_primary_10_1016_j_chemphyslip_2022_105241
crossref_primary_10_1016_j_mtsust_2023_100420
crossref_primary_10_1007_s11094_021_02518_6
crossref_primary_10_1016_j_jtumed_2022_10_006
crossref_primary_10_1016_j_ijbiomac_2024_137321
crossref_primary_10_1021_acsomega_2c05469
crossref_primary_10_1007_s40122_021_00239_y
crossref_primary_10_1080_01652176_2024_2319830
crossref_primary_10_3390_antibiotics10121461
crossref_primary_10_54392_irjmt25112
crossref_primary_10_1038_s41598_023_28284_x
crossref_primary_10_1007_s12668_024_01592_w
crossref_primary_10_1039_D2FO00206J
crossref_primary_10_2147_IJN_S240293
crossref_primary_10_1007_s12011_025_04569_2
crossref_primary_10_25130_tjas_23_4_3
crossref_primary_10_1007_s10534_024_00622_0
crossref_primary_10_3390_nano12050779
crossref_primary_10_1016_j_dyepig_2024_111957
crossref_primary_10_1088_2515_7639_ab8186
crossref_primary_10_1590_fst_63622
crossref_primary_10_1002_advs_202303167
Cites_doi 10.1042/BST20120087
10.1099/jmm.0.009720-0
10.1016/j.matlet.2009.06.018
10.1073/pnas.1105959108
10.1007/s12011-012-9480-z
10.1016/j.nantod.2010.05.003
10.1016/j.talanta.2012.12.043
10.1049/mnl.2015.0353
10.1038/jid.2009.95
10.3390/ijms12095971
10.1074/jbc.M405887200
10.2147/IJN.S105173
10.1016/j.tibtech.2015.03.004
10.1038/nrmicro3028
10.1002/bit.25147
10.1063/1.4824148
10.1021/cg701125k
10.1002/jccs.200400038
10.1128/AEM.65.11.4734-4740.1999
10.1002/path.1700350603
10.1016/j.cis.2013.12.011
10.1128/AEM.63.8.3079-3084.1997
10.1016/j.apsusc.2010.12.113
10.1023/B:RESB.0000040471.15700.03
10.1128/jb.119.3.1057-1060.1974
10.1007/s11595-013-0817-z
10.3390/ijms18010120
10.1007/s00253-015-6622-1
10.1039/C5NR08771F
10.1016/j.solidstatesciences.2008.03.026
10.1007/BF00154233
10.1016/j.colsurfb.2011.04.019
10.1128/AEM.00568-06
10.1007/s00253-016-7300-7
10.1021/la3003838
10.1016/S1005-0302(11)60126-6
10.1016/j.jpowsour.2014.09.029
ContentType Journal Article
Copyright 2018 Wiley Periodicals, Inc.
Copyright_xml – notice: 2018 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1002/jbm.a.36347
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1552-4965
EndPage 1412
ExternalDocumentID 29356322
10_1002_jbm_a_36347
JBMA36347
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Chemical Engineering Department Northeastern University
GroupedDBID ---
-~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
1ZS
31~
33P
4.4
4ZD
50Z
51W
51X
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
BAFTC
BDRZF
BFHJK
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
J0M
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
QB0
QRW
R.K
RNS
ROL
RWI
RYL
SUPJJ
SV3
UB1
V2E
W8V
W99
WIH
WIK
WJL
WQJ
WRC
WXSBR
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
1OB
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c3977-d54c65ee93401d446b023ae78e0ebc2c24b85469a88c0e2564e024e88433e4223
IEDL.DBID DR2
ISSN 1549-3296
1552-4965
IngestDate Fri Sep 05 08:45:21 EDT 2025
Wed Aug 13 02:48:34 EDT 2025
Thu Apr 03 06:57:32 EDT 2025
Thu Apr 24 22:51:13 EDT 2025
Tue Jul 01 00:57:43 EDT 2025
Wed Jan 22 17:06:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords nanoparticle
bacteria
biogenic
selenium
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2018 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3977-d54c65ee93401d446b023ae78e0ebc2c24b85469a88c0e2564e024e88433e4223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 29356322
PQID 2019122795
PQPubID 2034572
PageCount 13
ParticipantIDs proquest_miscellaneous_1989913889
proquest_journals_2019122795
pubmed_primary_29356322
crossref_citationtrail_10_1002_jbm_a_36347
crossref_primary_10_1002_jbm_a_36347
wiley_primary_10_1002_jbm_a_36347_JBMA36347
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2018
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: May 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Mount Laurel
PublicationTitle Journal of biomedical materials research. Part A
PublicationTitleAlternate J Biomed Mater Res A
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 257
2009; 63
2013; 1
2013; 28
2006; 72
1997; 63
2013; 107
2015; 33
2015; 99
1932; 35
2016; 100
2008; 8
1999; 65
2008; 10
2011; 12
2014; 272
2014; 111
2013; 8
2011; 6
2016; 11
1993; 6
2012; 150
2011; 2011
2009; 58
2004; 51
2011; 108
2004; 279
2014; 209
2013; 11
2017; 12
2003; 2
2011; 86
1974; 119
2012; 28
2017; 18
2009; 129
2012; 7
2011; 27
2010; 5
2016; 8
2012; 40
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_29_1
Singh R (e_1_2_5_16_1) 2013; 8
e_1_2_5_42_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
Ghosh S (e_1_2_5_3_1) 2012; 7
e_1_2_5_7_1
e_1_2_5_10_1
Kumar M. (e_1_2_5_5_1) 2011; 2011
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_2_1
Gerrard T (e_1_2_5_35_1) 1974; 119
Shim K (e_1_2_5_24_1) 2017; 12
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
Tran PA (e_1_2_5_19_1) 2011; 6
References_xml – volume: 12
  start-page: 5971
  year: 2011
  end-page: 5992
  article-title: The role of antimicrobial peptides in preventing multidrug‐resistant bacterial infections and biofilm formation
  publication-title: Int J Mol Sci
– volume: 1
  start-page: 042114
  year: 2013
  article-title: Green synthesis of selenium nanoparticles by excimer pulsed laser ablation in water
  publication-title: APL Mater
– volume: 8
  start-page: 4277
  year: 2013
  end-page: 4290
  article-title: Synthesis, optimization, and characterization of silver nanoparticles from and their enhanced antibacterial activity when combined with antibiotics
  publication-title: Int J Nanomed
– volume: 150
  start-page: 376
  year: 2012
  end-page: 380
  article-title: In vitro influences of TiO nanoparticles on barley ( L.) tissue culture
  publication-title: Biol Trace Elem Res
– volume: 63
  start-page: 1949
  year: 2009
  end-page: 1951
  article-title: Structure and characterization of TeO nanoparticles prepared in acid medium
  publication-title: Mater Lett
– volume: 58
  start-page: 1067
  year: 2009
  end-page: 1073
  article-title: Role of persisters and small‐colony variants in antibiotic resistance of planktonic and biofilm‐associated : An in vitro study
  publication-title: J Med Microbiol
– volume: 6
  start-page: 55
  year: 1993
  end-page: 59
  article-title: Metal resistance in Acinetobacter and its relation to beta‐lactamase production
  publication-title: Biometals
– volume: 257
  start-page: 4510
  year: 2011
  end-page: 4518
  article-title: Synthesis of antimicrobial monophase silver‐doped hydroxyapatite nanopowders for bone tissue engineering
  publication-title: Appl Surf Sci
– volume: 272
  start-page: 940
  year: 2014
  end-page: 945
  article-title: Facile synthesis of PdAgTe nanowires with superior electrocatalytic activity
  publication-title: J Power Sources
– volume: 11
  start-page: 91
  year: 2016
  end-page: 93
  article-title: Synthesis of spherical amorphous selenium nano and microparticles with tunable sizes
  publication-title: Micro Nano Lett
– volume: 10
  start-page: 1549
  year: 2008
  end-page: 1555
  article-title: Surfactant‐assisted synthesis of bundle‐like nanostructures with well‐aligned Te nanorods
  publication-title: Solid State Sci
– volume: 72
  start-page: 5173
  year: 2006
  end-page: 5180
  article-title: Resolution of distinct membrane‐bound enzymes from SLD1a‐1 that are responsible for the selective reduction of nitrate and selenate oxyanions
  publication-title: Appl Environ Microbiol
– volume: 111
  start-page: 858
  year: 2014
  end-page: 865
  article-title: Biogenic tellurium nanorods as a novel antivirulence agent inhibiting pyoverdine production in
  publication-title: Biotechnol Bioeng
– volume: 33
  start-page: 323
  year: 2015
  end-page: 330
  article-title: Selenium biomineralization for biotechnological applications
  publication-title: Trends Biotechnol
– volume: 28
  start-page: 1048
  year: 2013
  end-page: 1052
  article-title: Preparation of elemental tellurium nanoparticles—Sucrose sol and its antioxidant activity
  publication-title: J Wuhan Univ Technol Mater Sci Ed
– volume: 51
  start-page: 239
  year: 2004
  end-page: 242
  article-title: Observation of the growth of selenium nanoparticles
  publication-title: J Chin Chem Soc
– volume: 99
  start-page: 4579
  year: 2015
  end-page: 4593
  article-title: Bacteriagenic silver nanoparticles: Synthesis, mechanism, and applications
  publication-title: Appl Microbiol Biotechnol
– volume: 279
  start-page: 50662
  year: 2004
  end-page: 50669
  article-title: Similarities between the abiotic reduction of selenite with glutathione and the dissimilatory reaction mediated by and
  publication-title: J Biol Chem
– volume: 7
  start-page: 483
  year: 2012
  end-page: 496
  article-title: Synthesis of silver nanoparticles using dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents
  publication-title: Int J Nanomed
– volume: 129
  start-page: 2463
  year: 2009
  end-page: 2469
  article-title: Antimicrobial and healing efficacy of sustained release nitric oxide nanoparticles against skin infection
  publication-title: J Invest Dermatol
– volume: 86
  start-page: 353
  year: 2011
  end-page: 358
  article-title: Synthesis of gold and silver nanoparticles using purified URAK
  publication-title: Colloids Surf B Biointerfaces
– volume: 119
  start-page: 1057
  year: 1974
  end-page: 1060
  article-title: Detection of selenium deposits in by electron microscopy
  publication-title: J Bacteriol
– volume: 28
  start-page: 8140
  year: 2012
  end-page: 8148
  article-title: Antibacterial activity of glutathione‐coated silver nanoparticles against gram positive and gram negative bacteria
  publication-title: Langmuir
– volume: 2
  start-page: 293
  year: 2003
  end-page: 306
  article-title: Disinfection in food processing‐efficacy testing of disinfectants
  publication-title: Rev Environ Sci Biotechnol
– volume: 12
  start-page: 21
  year: 2017
  end-page: 26
  article-title: Synthesis and cytotoxicity of dendritic platinum nanoparticles with HEK‐293 cells
  publication-title: Chemistry
– volume: 65
  start-page: 4734
  year: 1999
  end-page: 4740
  article-title: Reduction of selenite and detoxification of elemental selenium by the phototrophic bacterium
  publication-title: Appl Environ Microbiol
– volume: 11
  start-page: 371
  year: 2013
  end-page: 384
  article-title: Antimicrobial activity of metals: Mechanisms, molecular targets, and applications
  publication-title: Nat Rev Microbiol
– volume: 8
  start-page: 3376
  year: 2016
  end-page: 3385
  article-title: Intrinsic fluorescence of selenium nanoparticles for cellular imaging applications
  publication-title: Nanoscale
– volume: 63
  start-page: 3079
  year: 1997
  end-page: 3084
  article-title: Reduction of selenium oxyanions by SLD1a‐1: Isolation and growth of the bacterium and its expulsion of selenium particles
  publication-title: Appl Environ Microbiol
– volume: 100
  start-page: 2555
  year: 2016
  end-page: 2566
  article-title: Biogenic selenium nanoparticles: Current status and future prospects
  publication-title: Appl Microbiol Biotechnol
– volume: 5
  start-page: 213
  year: 2010
  end-page: 230
  article-title: Functionalization of nanoparticles for biomedical applications
  publication-title: Nanotoday
– volume: 18
  start-page: 120
  year: 2017
  article-title: The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles
  publication-title: Int J Mol Sci
– volume: 209
  start-page: 40
  year: 2014
  end-page: 48
  article-title: Microbial synthesis of gold nanoparticles: Current status and future prospects
  publication-title: Adv Colloid Interface Sci
– volume: 6
  start-page: 1553
  year: 2011
  end-page: 1558
  article-title: Selenium nanoparticles inhibit growth
  publication-title: Int J Nanomed
– volume: 8
  start-page: 1902
  year: 2008
  end-page: 1908
  article-title: Superlong high‐quality tellurium nanotubes: synthesis, characterization, and optical property
  publication-title: Cryst Growth Design
– volume: 11
  start-page: 3641
  year: 2016
  end-page: 3654
  article-title: The effect of red‐allotrope selenium nanoparticles on head and neck squamous cell viability and growth
  publication-title: Int J Nanomed
– volume: 35
  start-page: 831
  year: 1932
  end-page: 842
  article-title: On the specific antibacterial properties of penicillin and potassium tellurite
  publication-title: J Pathol
– volume: 27
  start-page: 685
  year: 2011
  end-page: 690
  article-title: Preparation and characterization of nano‐silver loaded montmorillonite with strong antibacterial activity and slow release property
  publication-title: J Mater Sci Technol
– volume: 2011
  start-page: 1
  year: 2011
  end-page: 6
  article-title: An organic acid‐induced synthesis and characterization of selenium nanoparticles
  publication-title: J Nanotechnol
– volume: 107
  start-page: 263
  year: 2013
  article-title: A novel selenium nanoparticles‐enhanced chemiluminescence system for determination of dinitrobutylphenol
  publication-title: Talanta
– volume: 108
  start-page: 1348
  year: 2011
  article-title: Bacterial process for selenium nanosphere assembly
  publication-title: Proc Natl Acad Sci USA
– volume: 40
  start-page: 1239
  year: 2012
  end-page: 1243
  article-title: Biomineralization of selenium by the selenate‐respiring bacterium
  publication-title: Biochem Soc Trans
– ident: e_1_2_5_36_1
  doi: 10.1042/BST20120087
– ident: e_1_2_5_14_1
  doi: 10.1099/jmm.0.009720-0
– ident: e_1_2_5_26_1
  doi: 10.1016/j.matlet.2009.06.018
– ident: e_1_2_5_37_1
  doi: 10.1073/pnas.1105959108
– ident: e_1_2_5_8_1
  doi: 10.1007/s12011-012-9480-z
– ident: e_1_2_5_28_1
  doi: 10.1016/j.nantod.2010.05.003
– ident: e_1_2_5_4_1
  doi: 10.1016/j.talanta.2012.12.043
– ident: e_1_2_5_25_1
  doi: 10.1049/mnl.2015.0353
– ident: e_1_2_5_9_1
  doi: 10.1038/jid.2009.95
– ident: e_1_2_5_12_1
  doi: 10.3390/ijms12095971
– ident: e_1_2_5_39_1
  doi: 10.1074/jbc.M405887200
– ident: e_1_2_5_43_1
  doi: 10.2147/IJN.S105173
– ident: e_1_2_5_11_1
  doi: 10.1016/j.tibtech.2015.03.004
– volume: 8
  start-page: 4277
  year: 2013
  ident: e_1_2_5_16_1
  article-title: Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics
  publication-title: Int J Nanomed
– ident: e_1_2_5_6_1
  doi: 10.1038/nrmicro3028
– ident: e_1_2_5_10_1
  doi: 10.1002/bit.25147
– ident: e_1_2_5_20_1
  doi: 10.1063/1.4824148
– ident: e_1_2_5_29_1
  doi: 10.1021/cg701125k
– ident: e_1_2_5_7_1
  doi: 10.1002/jccs.200400038
– ident: e_1_2_5_34_1
  doi: 10.1128/AEM.65.11.4734-4740.1999
– ident: e_1_2_5_2_1
  doi: 10.1002/path.1700350603
– ident: e_1_2_5_13_1
  doi: 10.1016/j.cis.2013.12.011
– ident: e_1_2_5_38_1
  doi: 10.1128/AEM.63.8.3079-3084.1997
– ident: e_1_2_5_17_1
  doi: 10.1016/j.apsusc.2010.12.113
– ident: e_1_2_5_21_1
  doi: 10.1023/B:RESB.0000040471.15700.03
– volume: 119
  start-page: 1057
  year: 1974
  ident: e_1_2_5_35_1
  article-title: Detection of selenium deposits in Escherichia coli by electron microscopy
  publication-title: J Bacteriol
  doi: 10.1128/jb.119.3.1057-1060.1974
– ident: e_1_2_5_27_1
  doi: 10.1007/s11595-013-0817-z
– volume: 2011
  start-page: 1
  year: 2011
  ident: e_1_2_5_5_1
  article-title: An organic acid‐induced synthesis and characterization of selenium nanoparticles
  publication-title: J Nanotechnol
– ident: e_1_2_5_42_1
  doi: 10.3390/ijms18010120
– ident: e_1_2_5_15_1
  doi: 10.1007/s00253-015-6622-1
– ident: e_1_2_5_23_1
  doi: 10.1039/C5NR08771F
– ident: e_1_2_5_30_1
  doi: 10.1016/j.solidstatesciences.2008.03.026
– ident: e_1_2_5_33_1
  doi: 10.1007/BF00154233
– ident: e_1_2_5_32_1
  doi: 10.1016/j.colsurfb.2011.04.019
– ident: e_1_2_5_40_1
  doi: 10.1128/AEM.00568-06
– ident: e_1_2_5_41_1
  doi: 10.1007/s00253-016-7300-7
– volume: 7
  start-page: 483
  year: 2012
  ident: e_1_2_5_3_1
  article-title: Synthesis of silver nanoparticles using dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents
  publication-title: Int J Nanomed
– ident: e_1_2_5_18_1
  doi: 10.1021/la3003838
– volume: 12
  start-page: 21
  year: 2017
  ident: e_1_2_5_24_1
  article-title: Synthesis and cytotoxicity of dendritic platinum nanoparticles with HEK‐293 cells
  publication-title: Chemistry
– ident: e_1_2_5_22_1
  doi: 10.1016/S1005-0302(11)60126-6
– volume: 6
  start-page: 1553
  year: 2011
  ident: e_1_2_5_19_1
  article-title: Selenium nanoparticles inhibit Staphylococcus aureus growth
  publication-title: Int J Nanomed
– ident: e_1_2_5_31_1
  doi: 10.1016/j.jpowsour.2014.09.029
SSID ssj0026052
Score 2.5439308
Snippet Antimicrobial resistance is a global concern that affects more than two million people each year. Therefore, new approaches to kill bacteria are needed. One of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1400
SubjectTerms Anti-Infective Agents - pharmacology
Antibiotics
Antiinfectives and antibacterials
Antimicrobial agents
Antimicrobial resistance
Bacteria
Bacterial corrosion
Biocompatibility
biogenic
Colony Count, Microbial
Cytotoxicity
Dermis - cytology
Drug resistance
E coli
Electron microscopy
Energy consumption
Energy transmission
Escherichia coli
Escherichia coli - drug effects
Fibroblasts
Fibroblasts - cytology
Fibroblasts - drug effects
Fibroblasts - metabolism
Hazardous wastes
Humans
Hydrazine
Inductively coupled plasma mass spectrometry
Inhibitory Concentration 50
Mass spectrometry
Mass spectroscopy
Metal Nanoparticles - chemistry
Metal Nanoparticles - toxicity
Metal Nanoparticles - ultrastructure
Methicillin
Methicillin-Resistant Staphylococcus aureus - drug effects
Methicillin-Resistant Staphylococcus aureus - growth & development
Microbial Sensitivity Tests
Microbial Viability - drug effects
nanoparticle
Nanoparticles
Particle Size
Pseudomonas aeruginosa
Pseudomonas aeruginosa - drug effects
Pseudomonas aeruginosa - growth & development
Reductases
Selenite
Selenium
Selenium - pharmacology
Skin
Sodium Selenite - pharmacology
Spectrometry, X-Ray Emission
Staphylococcus aureus
Staphylococcus aureus - drug effects
Staphylococcus aureus - growth & development
Synthesis
Toxic wastes
Toxicity
Transmission electron microscopy
Title Synthesis and characterization of biogenic selenium nanoparticles with antimicrobial properties made by Staphylococcus aureus, methicillin‐resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.a.36347
https://www.ncbi.nlm.nih.gov/pubmed/29356322
https://www.proquest.com/docview/2019122795
https://www.proquest.com/docview/1989913889
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVQT3CA8p1SkJF64GOz3Y0d1z4u0KqqtAi1VOotsh2vlMI6Vbw5lBM_gb8Iv4QZJw0tVEhwi2RbduQ39ht7_IaQrQVgqFQMo6eYSLlmPFXZxKVO5XqhlTRG443u_L3YP-YHJ_lJH5uDb2E6fYjhwA0tI67XaODahO1foqGnZjnWYyYYx7fkUyZQOf_d4SAehUQ93nWCB5SyTIn-dR6UbF9qe3U_-oNkXuWscdPZu9NlVg1RqxBjTT6N25UZ2y-_KTn-9_-sk9s9HaWzDj93yQ3n75Fbl0QK75PvR-ceWGKoAtW-pHZQeO4ecNJ6QU1VAw4rSzF1k6_aJfXagzfeB91RPOyFxqtqWUXdJ-jxDC8BGlRzpUtdOmrOKfBemHPYXGtrW-isbVwbRhRzXFcWj4X8j6_fGhwIZj6-vjp9MT88mr0c0d2AaKwwkpsC1qtRHPyH4NqyBsvT0MA1LfxmHfQDcry3-_Htftonhkgt8tW0zLkVuXOKgXdYgkNrgHlotyPdxBmb2YwbmYPfr6W0EwekjjugIk5KzpjjQIgekjVfe_eYUOsmVqjMCGFLXhpYvnYWFnYIa2QppLEJeXUBj8L2qumYvONz0ek9ZwXMW6GLOG8J2Roqn3ViIddX27zAWdGvGKEAIqamKOeYJ-T5UAy2jhc42ru6DQXGt6kpk1Il5FGHz6EfoG25gNU5Ia8jyv42gOLgzXwWvzb-qfYTchOGKbt4z02ytmpa9xQ42co8i6b3EwKdOUA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagHIAD70eggJF6ALrZbmPHax8XaLWUboX6kHqzbMcrBVin2mwO5cRP4C_CL2EmyYYWKiS4RbItT-QZ-5vx-BtC1qagQ5limD3FRMwN47FKBj72KjVTo6S1Bm90J3tifMR3jtPjNuCGb2Eafogu4IaWUe_XaOAYkN74xRr60c76ps8E48PL5AoHqIHO19v9jj4KoXp92wk-UMwSJdr3edCycWbw-RPpD5h5HrXWx872TaKXAjfZJp_61cL23ZffuBz__49ukRstIqWjRoVuk0s-3CHXz_AU3iXfD04DAMUyL6kJGXUdyXPzhpMWU2rzAlQxdxSrN4W8mtFgAjjkbd4dxXgvDF7ks7ymfoIZT_AeYI6ErnRmMk_tKQXoC8sO52vhXAWTVXNflT2KZa5zh5Gh8OPrtzkKgsWPL-5OX0z2D0Yve3SrRIXMMZmbgrrnvVr4D6WvsgKMz8AAP6_gN4vS3CNH21uHb8ZxWxsidghZ4yzlTqTeKwYOYgY-rQXwYfxQ-oG3LnEJtzIF199I6QYecB33gEa8lJwxzwET3ScroQj-IaHOD5xQiRXCZTyzsIMNpw4OCWdlJqR1EXm11A_tWuJ0rN_xWTeUz4mGddNG1-sWkbWu80nDF3Jxt9Wloul20yg1YDG1iYyOaUSed81g7niHY4IvqlJjipvaZFKqiDxoFLSbB5BbKmCDjsh6rWZ_E0DvvJ6M6q9H_9T7Gbk6Ppzs6t13e-8fk2sgsmzSP1fJymJe-ScA0Rb2aW2HPwFmtj1f
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWgSAgWvB-BAkbqgsdkOk0cj7McoKNSmKpqqdSd5VektEwySiaLsuIT-EX4Eu510tBChQS7SLZlRz7XPte-PpeQtQwwZNMYo6diHjIVszCNRi50aaIylQqtFd7oznb41gHbPkwOu9gcfAvT6kP0B25oGX69RgNf2Gz9l2jokZ4P1TDmMRtfJlcYBy6BnGivV49Cpu4vO8EFCuMo5d3zPChZP9P4_Ib0B8s8T1r9rjO92aZWrb1YIQabHA-bpR6aL79JOf73D90iNzo-SictgG6TS664Q66fUSm8S77vnxRAE-u8pqqw1PQSz-0LTlpmVOclADE3FHM3FXkzp4UqwB3vou4onvZC42U-z73wE_S4wFuACuVc6VxZR_UJBeILkw67a2lMA501lWvqAcUk17nBc6Hix9dvFQ4EUx9fXJ2-mO3tT14O6GaNcMwxlJsC2POBH_xu7RpbgukpaOCqBn6zrNU9cjDd_PR2K-wyQ4QGCWtoE2Z44lwag3towaPVQD2UGws3ctpEJmJaJOD4KyHMyAGrYw64iBOCxbFjwIjuk5WiLNxDQo0bGZ5GmnNjmdWwfo0zA1uE0cJyoU1AXp3CQ5pONh2zd3yWreBzJGHepJJ-3gKy1ldetGohF1dbPcWZ7JaMWgITSzdQzzEJyPO-GIwdb3BU4cqmlhjglm7EQqQBedDis-8HeFvCYXkOyGuPsr8NQG6_mU3816N_qv2MXN19N5Uf3-98eEyuwYhFG_u5SlaWVeOeAD9b6qfeCn8ClF08Dg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+and+characterization+of+biogenic+selenium+nanoparticles+with+antimicrobial+properties+made+by+Staphylococcus+aureus%2C+methicillin%E2%80%90resistant+Staphylococcus+aureus+%28MRSA%29%2C+Escherichia+coli%2C+and+Pseudomonas+aeruginosa&rft.jtitle=Journal+of+biomedical+materials+research.+Part+A&rft.au=Medina+Cruz%2C+David&rft.au=Mi%2C+Gujie&rft.au=Webster%2C+Thomas+J.&rft.date=2018-05-01&rft.issn=1549-3296&rft.eissn=1552-4965&rft.volume=106&rft.issue=5&rft.spage=1400&rft.epage=1412&rft_id=info:doi/10.1002%2Fjbm.a.36347&rft.externalDBID=10.1002%252Fjbm.a.36347&rft.externalDocID=JBMA36347
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-3296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-3296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-3296&client=summon