Synthesis and characterization of biogenic selenium nanoparticles with antimicrobial properties made by Staphylococcus aureus, methicillin‐resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa
Antimicrobial resistance is a global concern that affects more than two million people each year. Therefore, new approaches to kill bacteria are needed. One of the most promising methodologies may come from metallic nanoparticles, since bacteria may not develop a resistance to these nanostructures a...
Saved in:
Published in | Journal of biomedical materials research. Part A Vol. 106; no. 5; pp. 1400 - 1412 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.05.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1549-3296 1552-4965 1552-4965 |
DOI | 10.1002/jbm.a.36347 |
Cover
Abstract | Antimicrobial resistance is a global concern that affects more than two million people each year. Therefore, new approaches to kill bacteria are needed. One of the most promising methodologies may come from metallic nanoparticles, since bacteria may not develop a resistance to these nanostructures as they do for antibiotics. While metallic nanoparticle synthesis methods have been well studied, they are often accompanied by significant drawbacks such as cost, extreme processing conditions, and toxic waste production since they use harsh chemicals such as corrosive agents (hydrazine) or strong acids (hydrochloride acid). In this work, we explored the environmentally safe synthesis of selenium nanoparticles, which have shown promise in killing bacteria. Using Escherichia coli, Pseudomonas aeruginosa, Methicillin‐resistance Staphylococcus aureus, and S. aureus, 90–150 nm average diameter selenium nanoparticles were synthesized using an environmentally safe approach. Nanoparticles were characterized using transmission electron microscopy, energy dispersive X‐ray spectroscopy to determine the chemical composition, and inductively coupled plasma mass spectrometry to validate chemistry. Nanoparticles were also characterized and tested for their ability to inhibit bacterial growth. A decay in bacterial growth after 24 h was achieved against both S. aureus and E. coli at biogenic selenium nanoparticle concentrations from 25 to 250 µg/mL and showed no significant cytotoxicity effect against human dermal fibroblasts for 24 h. Bacteria were able to synthesize selenium nanoparticles through the use of different functional structures within the organisms, mainly enzymes such as selenite reductases. Therefore, biogenic selenium nanoparticles made by bacteria represent a viable approach to reduce bacteria growth without antibiotics overcoming the drawbacks of synthetic methods that employ toxic chemicals. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1400–1412, 2018. |
---|---|
AbstractList | Antimicrobial resistance is a global concern that affects more than two million people each year. Therefore, new approaches to kill bacteria are needed. One of the most promising methodologies may come from metallic nanoparticles, since bacteria may not develop a resistance to these nanostructures as they do for antibiotics. While metallic nanoparticle synthesis methods have been well studied, they are often accompanied by significant drawbacks such as cost, extreme processing conditions, and toxic waste production since they use harsh chemicals such as corrosive agents (hydrazine) or strong acids (hydrochloride acid). In this work, we explored the environmentally safe synthesis of selenium nanoparticles, which have shown promise in killing bacteria. Using Escherichia coli, Pseudomonas aeruginosa, Methicillin-resistance Staphylococcus aureus, and S. aureus, 90-150 nm average diameter selenium nanoparticles were synthesized using an environmentally safe approach. Nanoparticles were characterized using transmission electron microscopy, energy dispersive X-ray spectroscopy to determine the chemical composition, and inductively coupled plasma mass spectrometry to validate chemistry. Nanoparticles were also characterized and tested for their ability to inhibit bacterial growth. A decay in bacterial growth after 24 h was achieved against both S. aureus and E. coli at biogenic selenium nanoparticle concentrations from 25 to 250 µg/mL and showed no significant cytotoxicity effect against human dermal fibroblasts for 24 h. Bacteria were able to synthesize selenium nanoparticles through the use of different functional structures within the organisms, mainly enzymes such as selenite reductases. Therefore, biogenic selenium nanoparticles made by bacteria represent a viable approach to reduce bacteria growth without antibiotics overcoming the drawbacks of synthetic methods that employ toxic chemicals. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1400-1412, 2018. Antimicrobial resistance is a global concern that affects more than two million people each year. Therefore, new approaches to kill bacteria are needed. One of the most promising methodologies may come from metallic nanoparticles, since bacteria may not develop a resistance to these nanostructures as they do for antibiotics. While metallic nanoparticle synthesis methods have been well studied, they are often accompanied by significant drawbacks such as cost, extreme processing conditions, and toxic waste production since they use harsh chemicals such as corrosive agents (hydrazine) or strong acids (hydrochloride acid). In this work, we explored the environmentally safe synthesis of selenium nanoparticles, which have shown promise in killing bacteria. Using Escherichia coli, Pseudomonas aeruginosa, Methicillin‐resistance Staphylococcus aureus , and S. aureus , 90–150 nm average diameter selenium nanoparticles were synthesized using an environmentally safe approach. Nanoparticles were characterized using transmission electron microscopy, energy dispersive X‐ray spectroscopy to determine the chemical composition, and inductively coupled plasma mass spectrometry to validate chemistry. Nanoparticles were also characterized and tested for their ability to inhibit bacterial growth. A decay in bacterial growth after 24 h was achieved against both S. aureus and E. coli at biogenic selenium nanoparticle concentrations from 25 to 250 µg/mL and showed no significant cytotoxicity effect against human dermal fibroblasts for 24 h. Bacteria were able to synthesize selenium nanoparticles through the use of different functional structures within the organisms, mainly enzymes such as selenite reductases. Therefore, biogenic selenium nanoparticles made by bacteria represent a viable approach to reduce bacteria growth without antibiotics overcoming the drawbacks of synthetic methods that employ toxic chemicals. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1400–1412, 2018. Antimicrobial resistance is a global concern that affects more than two million people each year. Therefore, new approaches to kill bacteria are needed. One of the most promising methodologies may come from metallic nanoparticles, since bacteria may not develop a resistance to these nanostructures as they do for antibiotics. While metallic nanoparticle synthesis methods have been well studied, they are often accompanied by significant drawbacks such as cost, extreme processing conditions, and toxic waste production since they use harsh chemicals such as corrosive agents (hydrazine) or strong acids (hydrochloride acid). In this work, we explored the environmentally safe synthesis of selenium nanoparticles, which have shown promise in killing bacteria. Using Escherichia coli, Pseudomonas aeruginosa, Methicillin-resistance Staphylococcus aureus, and S. aureus, 90-150 nm average diameter selenium nanoparticles were synthesized using an environmentally safe approach. Nanoparticles were characterized using transmission electron microscopy, energy dispersive X-ray spectroscopy to determine the chemical composition, and inductively coupled plasma mass spectrometry to validate chemistry. Nanoparticles were also characterized and tested for their ability to inhibit bacterial growth. A decay in bacterial growth after 24 h was achieved against both S. aureus and E. coli at biogenic selenium nanoparticle concentrations from 25 to 250 µg/mL and showed no significant cytotoxicity effect against human dermal fibroblasts for 24 h. Bacteria were able to synthesize selenium nanoparticles through the use of different functional structures within the organisms, mainly enzymes such as selenite reductases. Therefore, biogenic selenium nanoparticles made by bacteria represent a viable approach to reduce bacteria growth without antibiotics overcoming the drawbacks of synthetic methods that employ toxic chemicals. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1400-1412, 2018.Antimicrobial resistance is a global concern that affects more than two million people each year. Therefore, new approaches to kill bacteria are needed. One of the most promising methodologies may come from metallic nanoparticles, since bacteria may not develop a resistance to these nanostructures as they do for antibiotics. While metallic nanoparticle synthesis methods have been well studied, they are often accompanied by significant drawbacks such as cost, extreme processing conditions, and toxic waste production since they use harsh chemicals such as corrosive agents (hydrazine) or strong acids (hydrochloride acid). In this work, we explored the environmentally safe synthesis of selenium nanoparticles, which have shown promise in killing bacteria. Using Escherichia coli, Pseudomonas aeruginosa, Methicillin-resistance Staphylococcus aureus, and S. aureus, 90-150 nm average diameter selenium nanoparticles were synthesized using an environmentally safe approach. Nanoparticles were characterized using transmission electron microscopy, energy dispersive X-ray spectroscopy to determine the chemical composition, and inductively coupled plasma mass spectrometry to validate chemistry. Nanoparticles were also characterized and tested for their ability to inhibit bacterial growth. A decay in bacterial growth after 24 h was achieved against both S. aureus and E. coli at biogenic selenium nanoparticle concentrations from 25 to 250 µg/mL and showed no significant cytotoxicity effect against human dermal fibroblasts for 24 h. Bacteria were able to synthesize selenium nanoparticles through the use of different functional structures within the organisms, mainly enzymes such as selenite reductases. Therefore, biogenic selenium nanoparticles made by bacteria represent a viable approach to reduce bacteria growth without antibiotics overcoming the drawbacks of synthetic methods that employ toxic chemicals. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1400-1412, 2018. |
Author | Medina Cruz, David Mi, Gujie Webster, Thomas J. |
Author_xml | – sequence: 1 givenname: David surname: Medina Cruz fullname: Medina Cruz, David organization: Universitat Rovira I Virgili – sequence: 2 givenname: Gujie surname: Mi fullname: Mi, Gujie organization: Nanomedicine Science and Technology Center, Northeastern University – sequence: 3 givenname: Thomas J. surname: Webster fullname: Webster, Thomas J. email: th.webster@neu.edu organization: Nanomedicine Science and Technology Center, Northeastern University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29356322$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1uEzEUhUeoiP7Aij2yxKaIJHhsz2S8DFX5UysQgbXl8dx0buWxg-1RFVY8Aq8IT4KTtJuqYnUt3e9cH_ue4-LAeQdF8byks5JS9ua6HWZ6xmsu5o-Ko7Kq2FTIujrYnoWccibrw-I4xusM17RiT4pDJnlVc8aOij_LjUs9RIxEu46YXgdtEgT8qRN6R_yKtOivwKEhEWyu40Ccdn6tQ0JjIZIbTH0WJxzQBN-itmQd_BpyP3cH3QFpN2SZ9LrfWG-8MWO-bAwwxgkZIPVo0Fp0f3_9DlsjKc96GCenl1-Xi1cTch5Nnz2aHjUx3uJkZ_5LhLHzg3c6CyCMV-h81E-LxyttIzy7rSfF93fn384-TC8-v_94triYGi7n82lXCVNXAJILWnZC1C1lXMO8AQqtYYaJtqlELXXTGAqsqgVQJqBpBOcgGOMnxel-bn78jxFiUgNGA9ZqB36MqpSNlCVvGpnRl_fQaz8Gl90pRktZMjaXVaZe3FJjO0Cn1gEHHTbqbnkZKPdA_vYYA6yUwbRbWwoarSqp2gZE5YAorXYByZrX9zR3Yx-m2Z6-QQub_6Hq09vLxV70D3WG0sU |
CitedBy_id | crossref_primary_10_1007_s42247_023_00455_6 crossref_primary_10_1039_D3MA00512G crossref_primary_10_3390_molecules27217166 crossref_primary_10_1016_j_carbpol_2020_117125 crossref_primary_10_1016_j_ijpharm_2024_124864 crossref_primary_10_1186_s12951_021_00978_2 crossref_primary_10_3390_agriculture11121244 crossref_primary_10_3390_fermentation7030130 crossref_primary_10_1088_2631_8695_ac8f1c crossref_primary_10_1017_S1431927619006044 crossref_primary_10_1186_s13104_019_4396_8 crossref_primary_10_1007_s10876_019_01705_6 crossref_primary_10_1016_j_bmt_2023_12_001 crossref_primary_10_1080_17425247_2020_1727441 crossref_primary_10_3390_foods13244026 crossref_primary_10_1016_j_microb_2024_100207 crossref_primary_10_3390_molecules26123611 crossref_primary_10_3390_sci6040083 crossref_primary_10_1016_j_jinorgbio_2022_111938 crossref_primary_10_1016_j_matlet_2018_11_134 crossref_primary_10_1016_j_jbiotec_2020_11_004 crossref_primary_10_1016_j_btre_2020_e00427 crossref_primary_10_1016_j_ijbiomac_2020_01_019 crossref_primary_10_1016_j_envres_2023_115659 crossref_primary_10_1016_j_jhazmat_2021_128122 crossref_primary_10_1016_j_jddst_2023_104663 crossref_primary_10_1016_j_ijbiomac_2019_01_224 crossref_primary_10_1039_C9GC00131J crossref_primary_10_1007_s10904_023_02959_4 crossref_primary_10_3389_fmicb_2020_02105 crossref_primary_10_1080_17518253_2024_2448171 crossref_primary_10_1039_D4NR05271D crossref_primary_10_1186_s12896_024_00855_4 crossref_primary_10_1007_s12668_023_01059_4 crossref_primary_10_1016_j_lwt_2025_117441 crossref_primary_10_1007_s11051_018_4354_8 crossref_primary_10_1007_s11274_023_03673_6 crossref_primary_10_1021_acsanm_3c02415 crossref_primary_10_1016_j_sab_2022_106611 crossref_primary_10_1002_jsfa_9756 crossref_primary_10_1007_s10904_022_02406_w crossref_primary_10_1039_D3SU00145H crossref_primary_10_2147_IJN_S279094 crossref_primary_10_1155_2022_4118048 crossref_primary_10_1016_j_btre_2023_e00787 crossref_primary_10_1038_s41598_022_11804_6 crossref_primary_10_1016_j_colsurfb_2023_113638 crossref_primary_10_3390_ijms22030989 crossref_primary_10_1007_s10853_019_04019_0 crossref_primary_10_1016_j_procbio_2022_03_014 crossref_primary_10_3390_microorganisms8040566 crossref_primary_10_1016_j_envpol_2021_117519 crossref_primary_10_1007_s11274_022_03374_6 crossref_primary_10_3390_microorganisms12010148 crossref_primary_10_2478_ausal_2021_0002 crossref_primary_10_1007_s12221_020_9461_3 crossref_primary_10_3389_fphar_2021_682284 crossref_primary_10_1039_D2MA00756H crossref_primary_10_1016_j_aqrep_2025_102627 crossref_primary_10_1016_j_colsurfb_2020_111381 crossref_primary_10_3390_su14031784 crossref_primary_10_1016_j_jtice_2024_105602 crossref_primary_10_1016_j_matpr_2021_09_044 crossref_primary_10_3390_biomimetics6020034 crossref_primary_10_1007_s12668_023_01077_2 crossref_primary_10_21676_23897864_4546 crossref_primary_10_1186_s40104_024_01128_y crossref_primary_10_1007_s10853_022_07259_9 crossref_primary_10_1080_08927014_2023_2199932 crossref_primary_10_1007_s41742_024_00696_1 crossref_primary_10_1016_j_ejps_2019_105087 crossref_primary_10_3390_jfb14010024 crossref_primary_10_1016_j_heliyon_2021_e08057 crossref_primary_10_3390_nano13030424 crossref_primary_10_1016_j_jddst_2021_102607 crossref_primary_10_2139_ssrn_4019351 crossref_primary_10_52547_ArchHygSci_9_4_275 crossref_primary_10_1080_00032719_2024_2328361 crossref_primary_10_1016_j_chemphyslip_2022_105241 crossref_primary_10_1016_j_mtsust_2023_100420 crossref_primary_10_1007_s11094_021_02518_6 crossref_primary_10_1016_j_jtumed_2022_10_006 crossref_primary_10_1016_j_ijbiomac_2024_137321 crossref_primary_10_1021_acsomega_2c05469 crossref_primary_10_1007_s40122_021_00239_y crossref_primary_10_1080_01652176_2024_2319830 crossref_primary_10_3390_antibiotics10121461 crossref_primary_10_54392_irjmt25112 crossref_primary_10_1038_s41598_023_28284_x crossref_primary_10_1007_s12668_024_01592_w crossref_primary_10_1039_D2FO00206J crossref_primary_10_2147_IJN_S240293 crossref_primary_10_1007_s12011_025_04569_2 crossref_primary_10_25130_tjas_23_4_3 crossref_primary_10_1007_s10534_024_00622_0 crossref_primary_10_3390_nano12050779 crossref_primary_10_1016_j_dyepig_2024_111957 crossref_primary_10_1088_2515_7639_ab8186 crossref_primary_10_1590_fst_63622 crossref_primary_10_1002_advs_202303167 |
Cites_doi | 10.1042/BST20120087 10.1099/jmm.0.009720-0 10.1016/j.matlet.2009.06.018 10.1073/pnas.1105959108 10.1007/s12011-012-9480-z 10.1016/j.nantod.2010.05.003 10.1016/j.talanta.2012.12.043 10.1049/mnl.2015.0353 10.1038/jid.2009.95 10.3390/ijms12095971 10.1074/jbc.M405887200 10.2147/IJN.S105173 10.1016/j.tibtech.2015.03.004 10.1038/nrmicro3028 10.1002/bit.25147 10.1063/1.4824148 10.1021/cg701125k 10.1002/jccs.200400038 10.1128/AEM.65.11.4734-4740.1999 10.1002/path.1700350603 10.1016/j.cis.2013.12.011 10.1128/AEM.63.8.3079-3084.1997 10.1016/j.apsusc.2010.12.113 10.1023/B:RESB.0000040471.15700.03 10.1128/jb.119.3.1057-1060.1974 10.1007/s11595-013-0817-z 10.3390/ijms18010120 10.1007/s00253-015-6622-1 10.1039/C5NR08771F 10.1016/j.solidstatesciences.2008.03.026 10.1007/BF00154233 10.1016/j.colsurfb.2011.04.019 10.1128/AEM.00568-06 10.1007/s00253-016-7300-7 10.1021/la3003838 10.1016/S1005-0302(11)60126-6 10.1016/j.jpowsour.2014.09.029 |
ContentType | Journal Article |
Copyright | 2018 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2018 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1002/jbm.a.36347 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1552-4965 |
EndPage | 1412 |
ExternalDocumentID | 29356322 10_1002_jbm_a_36347 JBMA36347 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Chemical Engineering Department Northeastern University |
GroupedDBID | --- -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 1ZS 31~ 33P 4.4 4ZD 50Z 51W 51X 52N 52O 52P 52S 52T 52W 52X 53G 5GY 5VS 66C 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZBYB AZFZN BAFTC BDRZF BFHJK BROTX BRXPI BY8 CO8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ J0M JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O9- OIG P2P P2W P2X P4D PQQKQ Q.N QB0 QRW R.K RNS ROL RWI RYL SUPJJ SV3 UB1 V2E W8V W99 WIH WIK WJL WQJ WRC WXSBR XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 1OB 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c3977-d54c65ee93401d446b023ae78e0ebc2c24b85469a88c0e2564e024e88433e4223 |
IEDL.DBID | DR2 |
ISSN | 1549-3296 1552-4965 |
IngestDate | Fri Sep 05 08:45:21 EDT 2025 Wed Aug 13 02:48:34 EDT 2025 Thu Apr 03 06:57:32 EDT 2025 Thu Apr 24 22:51:13 EDT 2025 Tue Jul 01 00:57:43 EDT 2025 Wed Jan 22 17:06:55 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | nanoparticle bacteria biogenic selenium |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2018 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3977-d54c65ee93401d446b023ae78e0ebc2c24b85469a88c0e2564e024e88433e4223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 29356322 |
PQID | 2019122795 |
PQPubID | 2034572 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1989913889 proquest_journals_2019122795 pubmed_primary_29356322 crossref_citationtrail_10_1002_jbm_a_36347 crossref_primary_10_1002_jbm_a_36347 wiley_primary_10_1002_jbm_a_36347_JBMA36347 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2018 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: May 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Mount Laurel |
PublicationTitle | Journal of biomedical materials research. Part A |
PublicationTitleAlternate | J Biomed Mater Res A |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 257 2009; 63 2013; 1 2013; 28 2006; 72 1997; 63 2013; 107 2015; 33 2015; 99 1932; 35 2016; 100 2008; 8 1999; 65 2008; 10 2011; 12 2014; 272 2014; 111 2013; 8 2011; 6 2016; 11 1993; 6 2012; 150 2011; 2011 2009; 58 2004; 51 2011; 108 2004; 279 2014; 209 2013; 11 2017; 12 2003; 2 2011; 86 1974; 119 2012; 28 2017; 18 2009; 129 2012; 7 2011; 27 2010; 5 2016; 8 2012; 40 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_29_1 Singh R (e_1_2_5_16_1) 2013; 8 e_1_2_5_42_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 Ghosh S (e_1_2_5_3_1) 2012; 7 e_1_2_5_7_1 e_1_2_5_10_1 Kumar M. (e_1_2_5_5_1) 2011; 2011 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_2_1 Gerrard T (e_1_2_5_35_1) 1974; 119 Shim K (e_1_2_5_24_1) 2017; 12 e_1_2_5_18_1 e_1_2_5_30_1 e_1_2_5_31_1 Tran PA (e_1_2_5_19_1) 2011; 6 |
References_xml | – volume: 12 start-page: 5971 year: 2011 end-page: 5992 article-title: The role of antimicrobial peptides in preventing multidrug‐resistant bacterial infections and biofilm formation publication-title: Int J Mol Sci – volume: 1 start-page: 042114 year: 2013 article-title: Green synthesis of selenium nanoparticles by excimer pulsed laser ablation in water publication-title: APL Mater – volume: 8 start-page: 4277 year: 2013 end-page: 4290 article-title: Synthesis, optimization, and characterization of silver nanoparticles from and their enhanced antibacterial activity when combined with antibiotics publication-title: Int J Nanomed – volume: 150 start-page: 376 year: 2012 end-page: 380 article-title: In vitro influences of TiO nanoparticles on barley ( L.) tissue culture publication-title: Biol Trace Elem Res – volume: 63 start-page: 1949 year: 2009 end-page: 1951 article-title: Structure and characterization of TeO nanoparticles prepared in acid medium publication-title: Mater Lett – volume: 58 start-page: 1067 year: 2009 end-page: 1073 article-title: Role of persisters and small‐colony variants in antibiotic resistance of planktonic and biofilm‐associated : An in vitro study publication-title: J Med Microbiol – volume: 6 start-page: 55 year: 1993 end-page: 59 article-title: Metal resistance in Acinetobacter and its relation to beta‐lactamase production publication-title: Biometals – volume: 257 start-page: 4510 year: 2011 end-page: 4518 article-title: Synthesis of antimicrobial monophase silver‐doped hydroxyapatite nanopowders for bone tissue engineering publication-title: Appl Surf Sci – volume: 272 start-page: 940 year: 2014 end-page: 945 article-title: Facile synthesis of PdAgTe nanowires with superior electrocatalytic activity publication-title: J Power Sources – volume: 11 start-page: 91 year: 2016 end-page: 93 article-title: Synthesis of spherical amorphous selenium nano and microparticles with tunable sizes publication-title: Micro Nano Lett – volume: 10 start-page: 1549 year: 2008 end-page: 1555 article-title: Surfactant‐assisted synthesis of bundle‐like nanostructures with well‐aligned Te nanorods publication-title: Solid State Sci – volume: 72 start-page: 5173 year: 2006 end-page: 5180 article-title: Resolution of distinct membrane‐bound enzymes from SLD1a‐1 that are responsible for the selective reduction of nitrate and selenate oxyanions publication-title: Appl Environ Microbiol – volume: 111 start-page: 858 year: 2014 end-page: 865 article-title: Biogenic tellurium nanorods as a novel antivirulence agent inhibiting pyoverdine production in publication-title: Biotechnol Bioeng – volume: 33 start-page: 323 year: 2015 end-page: 330 article-title: Selenium biomineralization for biotechnological applications publication-title: Trends Biotechnol – volume: 28 start-page: 1048 year: 2013 end-page: 1052 article-title: Preparation of elemental tellurium nanoparticles—Sucrose sol and its antioxidant activity publication-title: J Wuhan Univ Technol Mater Sci Ed – volume: 51 start-page: 239 year: 2004 end-page: 242 article-title: Observation of the growth of selenium nanoparticles publication-title: J Chin Chem Soc – volume: 99 start-page: 4579 year: 2015 end-page: 4593 article-title: Bacteriagenic silver nanoparticles: Synthesis, mechanism, and applications publication-title: Appl Microbiol Biotechnol – volume: 279 start-page: 50662 year: 2004 end-page: 50669 article-title: Similarities between the abiotic reduction of selenite with glutathione and the dissimilatory reaction mediated by and publication-title: J Biol Chem – volume: 7 start-page: 483 year: 2012 end-page: 496 article-title: Synthesis of silver nanoparticles using dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents publication-title: Int J Nanomed – volume: 129 start-page: 2463 year: 2009 end-page: 2469 article-title: Antimicrobial and healing efficacy of sustained release nitric oxide nanoparticles against skin infection publication-title: J Invest Dermatol – volume: 86 start-page: 353 year: 2011 end-page: 358 article-title: Synthesis of gold and silver nanoparticles using purified URAK publication-title: Colloids Surf B Biointerfaces – volume: 119 start-page: 1057 year: 1974 end-page: 1060 article-title: Detection of selenium deposits in by electron microscopy publication-title: J Bacteriol – volume: 28 start-page: 8140 year: 2012 end-page: 8148 article-title: Antibacterial activity of glutathione‐coated silver nanoparticles against gram positive and gram negative bacteria publication-title: Langmuir – volume: 2 start-page: 293 year: 2003 end-page: 306 article-title: Disinfection in food processing‐efficacy testing of disinfectants publication-title: Rev Environ Sci Biotechnol – volume: 12 start-page: 21 year: 2017 end-page: 26 article-title: Synthesis and cytotoxicity of dendritic platinum nanoparticles with HEK‐293 cells publication-title: Chemistry – volume: 65 start-page: 4734 year: 1999 end-page: 4740 article-title: Reduction of selenite and detoxification of elemental selenium by the phototrophic bacterium publication-title: Appl Environ Microbiol – volume: 11 start-page: 371 year: 2013 end-page: 384 article-title: Antimicrobial activity of metals: Mechanisms, molecular targets, and applications publication-title: Nat Rev Microbiol – volume: 8 start-page: 3376 year: 2016 end-page: 3385 article-title: Intrinsic fluorescence of selenium nanoparticles for cellular imaging applications publication-title: Nanoscale – volume: 63 start-page: 3079 year: 1997 end-page: 3084 article-title: Reduction of selenium oxyanions by SLD1a‐1: Isolation and growth of the bacterium and its expulsion of selenium particles publication-title: Appl Environ Microbiol – volume: 100 start-page: 2555 year: 2016 end-page: 2566 article-title: Biogenic selenium nanoparticles: Current status and future prospects publication-title: Appl Microbiol Biotechnol – volume: 5 start-page: 213 year: 2010 end-page: 230 article-title: Functionalization of nanoparticles for biomedical applications publication-title: Nanotoday – volume: 18 start-page: 120 year: 2017 article-title: The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles publication-title: Int J Mol Sci – volume: 209 start-page: 40 year: 2014 end-page: 48 article-title: Microbial synthesis of gold nanoparticles: Current status and future prospects publication-title: Adv Colloid Interface Sci – volume: 6 start-page: 1553 year: 2011 end-page: 1558 article-title: Selenium nanoparticles inhibit growth publication-title: Int J Nanomed – volume: 8 start-page: 1902 year: 2008 end-page: 1908 article-title: Superlong high‐quality tellurium nanotubes: synthesis, characterization, and optical property publication-title: Cryst Growth Design – volume: 11 start-page: 3641 year: 2016 end-page: 3654 article-title: The effect of red‐allotrope selenium nanoparticles on head and neck squamous cell viability and growth publication-title: Int J Nanomed – volume: 35 start-page: 831 year: 1932 end-page: 842 article-title: On the specific antibacterial properties of penicillin and potassium tellurite publication-title: J Pathol – volume: 27 start-page: 685 year: 2011 end-page: 690 article-title: Preparation and characterization of nano‐silver loaded montmorillonite with strong antibacterial activity and slow release property publication-title: J Mater Sci Technol – volume: 2011 start-page: 1 year: 2011 end-page: 6 article-title: An organic acid‐induced synthesis and characterization of selenium nanoparticles publication-title: J Nanotechnol – volume: 107 start-page: 263 year: 2013 article-title: A novel selenium nanoparticles‐enhanced chemiluminescence system for determination of dinitrobutylphenol publication-title: Talanta – volume: 108 start-page: 1348 year: 2011 article-title: Bacterial process for selenium nanosphere assembly publication-title: Proc Natl Acad Sci USA – volume: 40 start-page: 1239 year: 2012 end-page: 1243 article-title: Biomineralization of selenium by the selenate‐respiring bacterium publication-title: Biochem Soc Trans – ident: e_1_2_5_36_1 doi: 10.1042/BST20120087 – ident: e_1_2_5_14_1 doi: 10.1099/jmm.0.009720-0 – ident: e_1_2_5_26_1 doi: 10.1016/j.matlet.2009.06.018 – ident: e_1_2_5_37_1 doi: 10.1073/pnas.1105959108 – ident: e_1_2_5_8_1 doi: 10.1007/s12011-012-9480-z – ident: e_1_2_5_28_1 doi: 10.1016/j.nantod.2010.05.003 – ident: e_1_2_5_4_1 doi: 10.1016/j.talanta.2012.12.043 – ident: e_1_2_5_25_1 doi: 10.1049/mnl.2015.0353 – ident: e_1_2_5_9_1 doi: 10.1038/jid.2009.95 – ident: e_1_2_5_12_1 doi: 10.3390/ijms12095971 – ident: e_1_2_5_39_1 doi: 10.1074/jbc.M405887200 – ident: e_1_2_5_43_1 doi: 10.2147/IJN.S105173 – ident: e_1_2_5_11_1 doi: 10.1016/j.tibtech.2015.03.004 – volume: 8 start-page: 4277 year: 2013 ident: e_1_2_5_16_1 article-title: Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics publication-title: Int J Nanomed – ident: e_1_2_5_6_1 doi: 10.1038/nrmicro3028 – ident: e_1_2_5_10_1 doi: 10.1002/bit.25147 – ident: e_1_2_5_20_1 doi: 10.1063/1.4824148 – ident: e_1_2_5_29_1 doi: 10.1021/cg701125k – ident: e_1_2_5_7_1 doi: 10.1002/jccs.200400038 – ident: e_1_2_5_34_1 doi: 10.1128/AEM.65.11.4734-4740.1999 – ident: e_1_2_5_2_1 doi: 10.1002/path.1700350603 – ident: e_1_2_5_13_1 doi: 10.1016/j.cis.2013.12.011 – ident: e_1_2_5_38_1 doi: 10.1128/AEM.63.8.3079-3084.1997 – ident: e_1_2_5_17_1 doi: 10.1016/j.apsusc.2010.12.113 – ident: e_1_2_5_21_1 doi: 10.1023/B:RESB.0000040471.15700.03 – volume: 119 start-page: 1057 year: 1974 ident: e_1_2_5_35_1 article-title: Detection of selenium deposits in Escherichia coli by electron microscopy publication-title: J Bacteriol doi: 10.1128/jb.119.3.1057-1060.1974 – ident: e_1_2_5_27_1 doi: 10.1007/s11595-013-0817-z – volume: 2011 start-page: 1 year: 2011 ident: e_1_2_5_5_1 article-title: An organic acid‐induced synthesis and characterization of selenium nanoparticles publication-title: J Nanotechnol – ident: e_1_2_5_42_1 doi: 10.3390/ijms18010120 – ident: e_1_2_5_15_1 doi: 10.1007/s00253-015-6622-1 – ident: e_1_2_5_23_1 doi: 10.1039/C5NR08771F – ident: e_1_2_5_30_1 doi: 10.1016/j.solidstatesciences.2008.03.026 – ident: e_1_2_5_33_1 doi: 10.1007/BF00154233 – ident: e_1_2_5_32_1 doi: 10.1016/j.colsurfb.2011.04.019 – ident: e_1_2_5_40_1 doi: 10.1128/AEM.00568-06 – ident: e_1_2_5_41_1 doi: 10.1007/s00253-016-7300-7 – volume: 7 start-page: 483 year: 2012 ident: e_1_2_5_3_1 article-title: Synthesis of silver nanoparticles using dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents publication-title: Int J Nanomed – ident: e_1_2_5_18_1 doi: 10.1021/la3003838 – volume: 12 start-page: 21 year: 2017 ident: e_1_2_5_24_1 article-title: Synthesis and cytotoxicity of dendritic platinum nanoparticles with HEK‐293 cells publication-title: Chemistry – ident: e_1_2_5_22_1 doi: 10.1016/S1005-0302(11)60126-6 – volume: 6 start-page: 1553 year: 2011 ident: e_1_2_5_19_1 article-title: Selenium nanoparticles inhibit Staphylococcus aureus growth publication-title: Int J Nanomed – ident: e_1_2_5_31_1 doi: 10.1016/j.jpowsour.2014.09.029 |
SSID | ssj0026052 |
Score | 2.5439308 |
Snippet | Antimicrobial resistance is a global concern that affects more than two million people each year. Therefore, new approaches to kill bacteria are needed. One of... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1400 |
SubjectTerms | Anti-Infective Agents - pharmacology Antibiotics Antiinfectives and antibacterials Antimicrobial agents Antimicrobial resistance Bacteria Bacterial corrosion Biocompatibility biogenic Colony Count, Microbial Cytotoxicity Dermis - cytology Drug resistance E coli Electron microscopy Energy consumption Energy transmission Escherichia coli Escherichia coli - drug effects Fibroblasts Fibroblasts - cytology Fibroblasts - drug effects Fibroblasts - metabolism Hazardous wastes Humans Hydrazine Inductively coupled plasma mass spectrometry Inhibitory Concentration 50 Mass spectrometry Mass spectroscopy Metal Nanoparticles - chemistry Metal Nanoparticles - toxicity Metal Nanoparticles - ultrastructure Methicillin Methicillin-Resistant Staphylococcus aureus - drug effects Methicillin-Resistant Staphylococcus aureus - growth & development Microbial Sensitivity Tests Microbial Viability - drug effects nanoparticle Nanoparticles Particle Size Pseudomonas aeruginosa Pseudomonas aeruginosa - drug effects Pseudomonas aeruginosa - growth & development Reductases Selenite Selenium Selenium - pharmacology Skin Sodium Selenite - pharmacology Spectrometry, X-Ray Emission Staphylococcus aureus Staphylococcus aureus - drug effects Staphylococcus aureus - growth & development Synthesis Toxic wastes Toxicity Transmission electron microscopy |
Title | Synthesis and characterization of biogenic selenium nanoparticles with antimicrobial properties made by Staphylococcus aureus, methicillin‐resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.a.36347 https://www.ncbi.nlm.nih.gov/pubmed/29356322 https://www.proquest.com/docview/2019122795 https://www.proquest.com/docview/1989913889 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVQT3CA8p1SkJF64GOz3Y0d1z4u0KqqtAi1VOotsh2vlMI6Vbw5lBM_gb8Iv4QZJw0tVEhwi2RbduQ39ht7_IaQrQVgqFQMo6eYSLlmPFXZxKVO5XqhlTRG443u_L3YP-YHJ_lJH5uDb2E6fYjhwA0tI67XaODahO1foqGnZjnWYyYYx7fkUyZQOf_d4SAehUQ93nWCB5SyTIn-dR6UbF9qe3U_-oNkXuWscdPZu9NlVg1RqxBjTT6N25UZ2y-_KTn-9_-sk9s9HaWzDj93yQ3n75Fbl0QK75PvR-ceWGKoAtW-pHZQeO4ecNJ6QU1VAw4rSzF1k6_aJfXagzfeB91RPOyFxqtqWUXdJ-jxDC8BGlRzpUtdOmrOKfBemHPYXGtrW-isbVwbRhRzXFcWj4X8j6_fGhwIZj6-vjp9MT88mr0c0d2AaKwwkpsC1qtRHPyH4NqyBsvT0MA1LfxmHfQDcry3-_Htftonhkgt8tW0zLkVuXOKgXdYgkNrgHlotyPdxBmb2YwbmYPfr6W0EwekjjugIk5KzpjjQIgekjVfe_eYUOsmVqjMCGFLXhpYvnYWFnYIa2QppLEJeXUBj8L2qumYvONz0ek9ZwXMW6GLOG8J2Roqn3ViIddX27zAWdGvGKEAIqamKOeYJ-T5UAy2jhc42ru6DQXGt6kpk1Il5FGHz6EfoG25gNU5Ia8jyv42gOLgzXwWvzb-qfYTchOGKbt4z02ytmpa9xQ42co8i6b3EwKdOUA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagHIAD70eggJF6ALrZbmPHax8XaLWUboX6kHqzbMcrBVin2mwO5cRP4C_CL2EmyYYWKiS4RbItT-QZ-5vx-BtC1qagQ5limD3FRMwN47FKBj72KjVTo6S1Bm90J3tifMR3jtPjNuCGb2Eafogu4IaWUe_XaOAYkN74xRr60c76ps8E48PL5AoHqIHO19v9jj4KoXp92wk-UMwSJdr3edCycWbw-RPpD5h5HrXWx872TaKXAjfZJp_61cL23ZffuBz__49ukRstIqWjRoVuk0s-3CHXz_AU3iXfD04DAMUyL6kJGXUdyXPzhpMWU2rzAlQxdxSrN4W8mtFgAjjkbd4dxXgvDF7ks7ymfoIZT_AeYI6ErnRmMk_tKQXoC8sO52vhXAWTVXNflT2KZa5zh5Gh8OPrtzkKgsWPL-5OX0z2D0Yve3SrRIXMMZmbgrrnvVr4D6WvsgKMz8AAP6_gN4vS3CNH21uHb8ZxWxsidghZ4yzlTqTeKwYOYgY-rQXwYfxQ-oG3LnEJtzIF199I6QYecB33gEa8lJwxzwET3ScroQj-IaHOD5xQiRXCZTyzsIMNpw4OCWdlJqR1EXm11A_tWuJ0rN_xWTeUz4mGddNG1-sWkbWu80nDF3Jxt9Wloul20yg1YDG1iYyOaUSed81g7niHY4IvqlJjipvaZFKqiDxoFLSbB5BbKmCDjsh6rWZ_E0DvvJ6M6q9H_9T7Gbk6Ppzs6t13e-8fk2sgsmzSP1fJymJe-ScA0Rb2aW2HPwFmtj1f |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWgSAgWvB-BAkbqgsdkOk0cj7McoKNSmKpqqdSd5VektEwySiaLsuIT-EX4Eu510tBChQS7SLZlRz7XPte-PpeQtQwwZNMYo6diHjIVszCNRi50aaIylQqtFd7oznb41gHbPkwOu9gcfAvT6kP0B25oGX69RgNf2Gz9l2jokZ4P1TDmMRtfJlcYBy6BnGivV49Cpu4vO8EFCuMo5d3zPChZP9P4_Ib0B8s8T1r9rjO92aZWrb1YIQabHA-bpR6aL79JOf73D90iNzo-SictgG6TS664Q66fUSm8S77vnxRAE-u8pqqw1PQSz-0LTlpmVOclADE3FHM3FXkzp4UqwB3vou4onvZC42U-z73wE_S4wFuACuVc6VxZR_UJBeILkw67a2lMA501lWvqAcUk17nBc6Hix9dvFQ4EUx9fXJ2-mO3tT14O6GaNcMwxlJsC2POBH_xu7RpbgukpaOCqBn6zrNU9cjDd_PR2K-wyQ4QGCWtoE2Z44lwag3towaPVQD2UGws3ctpEJmJaJOD4KyHMyAGrYw64iBOCxbFjwIjuk5WiLNxDQo0bGZ5GmnNjmdWwfo0zA1uE0cJyoU1AXp3CQ5pONh2zd3yWreBzJGHepJJ-3gKy1ldetGohF1dbPcWZ7JaMWgITSzdQzzEJyPO-GIwdb3BU4cqmlhjglm7EQqQBedDis-8HeFvCYXkOyGuPsr8NQG6_mU3816N_qv2MXN19N5Uf3-98eEyuwYhFG_u5SlaWVeOeAD9b6qfeCn8ClF08Dg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+and+characterization+of+biogenic+selenium+nanoparticles+with+antimicrobial+properties+made+by+Staphylococcus+aureus%2C+methicillin%E2%80%90resistant+Staphylococcus+aureus+%28MRSA%29%2C+Escherichia+coli%2C+and+Pseudomonas+aeruginosa&rft.jtitle=Journal+of+biomedical+materials+research.+Part+A&rft.au=Medina+Cruz%2C+David&rft.au=Mi%2C+Gujie&rft.au=Webster%2C+Thomas+J.&rft.date=2018-05-01&rft.issn=1549-3296&rft.eissn=1552-4965&rft.volume=106&rft.issue=5&rft.spage=1400&rft.epage=1412&rft_id=info:doi/10.1002%2Fjbm.a.36347&rft.externalDBID=10.1002%252Fjbm.a.36347&rft.externalDocID=JBMA36347 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-3296&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-3296&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-3296&client=summon |