Gelatin methacrylate scaffold for bone tissue engineering: The influence of polymer concentration

Gelatin methacrylate (GelMA) is an inexpensive, photocrosslinkable, cell‐responsive hydrogel which has drawn attention for a wide range of tissue engineering applications. The potential of GelMA scaffolds was demonstrated to be tunable for different tissue engineering (TE) applications through modif...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical materials research. Part A Vol. 106; no. 1; pp. 201 - 209
Main Authors Celikkin, Nehar, Mastrogiacomo, Simone, Jaroszewicz, Jakub, Walboomers, X. Frank, Swieszkowski, Wojciech
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gelatin methacrylate (GelMA) is an inexpensive, photocrosslinkable, cell‐responsive hydrogel which has drawn attention for a wide range of tissue engineering applications. The potential of GelMA scaffolds was demonstrated to be tunable for different tissue engineering (TE) applications through modifying the polymer concentration, methacrylation degree, or UV light intensity. Despite the promising results of GelMA hydrogels in tissue engineering, the influence of polymer concentration for bone tissue engineering (BTE) scaffolds was not established yet. Thus, in this study, we have demonstrated the effect of polymer concentration in GelMA scaffolds on osteogenic differentiation. We prepared GelMA scaffolds with 5 and 10% polymer concentrations and characterized the scaffolds in terms of porosity, pore size, swelling characteristics, and mechanical properties. Subsequent to the scaffolds characterization, the scaffolds were seeded with bone marrow derived rat mesenchymal stem cells and cultured in osteogenic media to evaluate the possible osteogenic differentiation effect exerted by the polymer concentration. After 7, 14, 21, and 28 days, DNA content, calcium deposition, and alkaline phosphatase (ALP) activity of scaffolds were evaluated quantitatively by colorimetric bioassays. Furthermore, the distribution of the calcium deposition within the scaffolds was attained qualitatively and quantitatively by microcomputer tomography (µCT). Our data suggest that GelMA hydrogels prepared with 5% polymer concentration has promoted homogeneous extracellular matrix calcification and it is a great candidate for BTE applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 201–209, 2018.
AbstractList Gelatin methacrylate (GelMA) is an inexpensive, photocrosslinkable, cell-responsive hydrogel which has drawn attention for a wide range of tissue engineering applications. The potential of GelMA scaffolds was demonstrated to be tunable for different tissue engineering (TE) applications through modifying the polymer concentration, methacrylation degree, or UV light intensity. Despite the promising results of GelMA hydrogels in tissue engineering, the influence of polymer concentration for bone tissue engineering (BTE) scaffolds was not established yet. Thus, in this study, we have demonstrated the effect of polymer concentration in GelMA scaffolds on osteogenic differentiation. We prepared GelMA scaffolds with 5 and 10% polymer concentrations and characterized the scaffolds in terms of porosity, pore size, swelling characteristics, and mechanical properties. Subsequent to the scaffolds characterization, the scaffolds were seeded with bone marrow derived rat mesenchymal stem cells and cultured in osteogenic media to evaluate the possible osteogenic differentiation effect exerted by the polymer concentration. After 7, 14, 21, and 28 days, DNA content, calcium deposition, and alkaline phosphatase (ALP) activity of scaffolds were evaluated quantitatively by colorimetric bioassays. Furthermore, the distribution of the calcium deposition within the scaffolds was attained qualitatively and quantitatively by microcomputer tomography (µCT). Our data suggest that GelMA hydrogels prepared with 5% polymer concentration has promoted homogeneous extracellular matrix calcification and it is a great candidate for BTE applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 201-209, 2018.
Abstract Gelatin methacrylate (GelMA) is an inexpensive, photocrosslinkable, cell‐responsive hydrogel which has drawn attention for a wide range of tissue engineering applications. The potential of GelMA scaffolds was demonstrated to be tunable for different tissue engineering (TE) applications through modifying the polymer concentration, methacrylation degree, or UV light intensity. Despite the promising results of GelMA hydrogels in tissue engineering, the influence of polymer concentration for bone tissue engineering (BTE) scaffolds was not established yet. Thus, in this study, we have demonstrated the effect of polymer concentration in GelMA scaffolds on osteogenic differentiation. We prepared GelMA scaffolds with 5 and 10% polymer concentrations and characterized the scaffolds in terms of porosity, pore size, swelling characteristics, and mechanical properties. Subsequent to the scaffolds characterization, the scaffolds were seeded with bone marrow derived rat mesenchymal stem cells and cultured in osteogenic media to evaluate the possible osteogenic differentiation effect exerted by the polymer concentration. After 7, 14, 21, and 28 days, DNA content, calcium deposition, and alkaline phosphatase (ALP) activity of scaffolds were evaluated quantitatively by colorimetric bioassays. Furthermore, the distribution of the calcium deposition within the scaffolds was attained qualitatively and quantitatively by microcomputer tomography (µCT). Our data suggest that GelMA hydrogels prepared with 5% polymer concentration has promoted homogeneous extracellular matrix calcification and it is a great candidate for BTE applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 201–209, 2018.
Author Jaroszewicz, Jakub
Mastrogiacomo, Simone
Celikkin, Nehar
Swieszkowski, Wojciech
Walboomers, X. Frank
Author_xml – sequence: 1
  givenname: Nehar
  surname: Celikkin
  fullname: Celikkin, Nehar
  organization: Warsaw University of Technology, Woloska 141, 02‐507
– sequence: 2
  givenname: Simone
  surname: Mastrogiacomo
  fullname: Mastrogiacomo, Simone
  organization: PO Box 9101, 6500 HB, Radboud University Medical Center
– sequence: 3
  givenname: Jakub
  surname: Jaroszewicz
  fullname: Jaroszewicz, Jakub
  organization: Warsaw University of Technology, Woloska 141, 02‐507
– sequence: 4
  givenname: X. Frank
  surname: Walboomers
  fullname: Walboomers, X. Frank
  organization: PO Box 9101, 6500 HB, Radboud University Medical Center
– sequence: 5
  givenname: Wojciech
  surname: Swieszkowski
  fullname: Swieszkowski, Wojciech
  email: wojciech.swieszkowski@inmat.pw.edu.pl
  organization: Warsaw University of Technology, Woloska 141, 02‐507
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28884519$$D View this record in MEDLINE/PubMed
BookMark eNp90DtPwzAUBWALgXhP7MgSCxJKie3YidkK4ikQS5kt17luUyV2sROh_ntcCgwMTH7o07lX5wBtO-8AoROSj0ie08vFtBvpEROUii20TzinWSEF317fC5kxKsUeOohxkbDIOd1Fe7SqqoITuY_0PbS6bxzuoJ9rE1bpBTgaba1va2x9wNM0DvdNjANgcLPGAYTGza7wZA64cbYdwBnA3uKlb1cdBGx8-nB9SMHeHaEdq9sIx9_nIXq7u53cPGTPr_ePN-PnzDBZisyUFYEps5LT3FbWmIIC4aYWNbe8LEkpmJDGWk4plLVlYIEaS4iWtZFQADtE55vcZfDvA8RedU000LbagR-iIpKVnJKKlIme_aELPwSXtktKVFQyKXlSFxtlgo8xgFXL0HQ6rBTJ1bp5lZpXWn01n_Tpd-Yw7aD-tT9VJ0A34KNpYfVflnq6fhlvUj8Bgk-Rzw
CitedBy_id crossref_primary_10_1002_jbm_b_35067
crossref_primary_10_1016_j_bioactmat_2021_10_024
crossref_primary_10_1002_app_53362
crossref_primary_10_3390_jfb13020041
crossref_primary_10_3390_polym13223880
crossref_primary_10_1080_09205063_2022_2155780
crossref_primary_10_3389_fbioe_2022_931800
crossref_primary_10_1016_j_bioactmat_2024_04_032
crossref_primary_10_1002_cbic_202100030
crossref_primary_10_3390_polym15040791
crossref_primary_10_1007_s40204_021_00150_x
crossref_primary_10_1007_s10856_019_6333_8
crossref_primary_10_1089_ten_tea_2020_0041
crossref_primary_10_1007_s10856_024_06800_3
crossref_primary_10_1002_jbm_a_37267
crossref_primary_10_1007_s13770_020_00301_4
crossref_primary_10_1016_j_eurpolymj_2019_07_007
crossref_primary_10_1016_j_bioactmat_2022_10_018
crossref_primary_10_3390_nano13040705
crossref_primary_10_1016_j_ijbiomac_2020_10_078
crossref_primary_10_1016_j_cej_2020_124715
crossref_primary_10_1021_acsomega_9b02751
crossref_primary_10_1097_SCS_0000000000006020
crossref_primary_10_1021_acs_biomac_3c00279
crossref_primary_10_3390_bioengineering8110169
crossref_primary_10_1002_wcms_1655
crossref_primary_10_1016_j_mtcomm_2023_105696
crossref_primary_10_3390_jfb14060317
crossref_primary_10_1016_j_engreg_2021_03_002
crossref_primary_10_1166_jbt_2022_2887
crossref_primary_10_3389_fbioe_2021_810155
crossref_primary_10_1016_j_bioactmat_2022_12_013
crossref_primary_10_1016_j_heliyon_2023_e14490
crossref_primary_10_1002_mabi_201800168
crossref_primary_10_3390_ma12152476
crossref_primary_10_1016_j_compositesb_2019_107415
crossref_primary_10_1002_btm2_10216
crossref_primary_10_1021_acsomega_1c01806
crossref_primary_10_1021_acsabm_3c00964
crossref_primary_10_1016_j_electacta_2023_143026
crossref_primary_10_1016_j_molliq_2024_124982
crossref_primary_10_3390_ma14092461
crossref_primary_10_1016_j_bioactmat_2021_01_007
crossref_primary_10_1002_smll_202302506
crossref_primary_10_3390_polym15092092
crossref_primary_10_3389_fmats_2022_944755
crossref_primary_10_1039_C9BM01271K
crossref_primary_10_1007_s12668_023_01150_w
crossref_primary_10_1049_nbt2_12136
crossref_primary_10_1002_adma_202209300
crossref_primary_10_1021_acsbiomaterials_1c00136
crossref_primary_10_1039_C9RA02695A
crossref_primary_10_1007_s10853_023_08374_x
crossref_primary_10_3390_biom13050811
crossref_primary_10_3390_polym12122944
crossref_primary_10_3390_ma16227214
crossref_primary_10_1089_ten_tea_2020_0377
crossref_primary_10_1002_mabi_202000183
crossref_primary_10_1016_j_jiec_2024_05_047
crossref_primary_10_1021_acsbiomaterials_8b01647
crossref_primary_10_3390_bioengineering10020204
crossref_primary_10_1021_acs_biomac_3c00909
crossref_primary_10_1007_s12015_019_09893_4
crossref_primary_10_1021_acs_chemmater_4c00564
crossref_primary_10_1088_1748_605X_ad4df7
crossref_primary_10_1007_s00784_023_05135_7
crossref_primary_10_3390_jfb13040252
crossref_primary_10_3390_polym10111290
crossref_primary_10_1016_j_tice_2021_101553
crossref_primary_10_1016_j_reactfunctpolym_2019_104445
crossref_primary_10_3390_gels8050275
crossref_primary_10_1002_mabi_202200509
crossref_primary_10_1016_j_bprint_2019_e00073
crossref_primary_10_1186_s13287_023_03260_4
crossref_primary_10_1016_j_ijbiomac_2022_12_267
crossref_primary_10_1016_j_mtcomm_2023_106869
crossref_primary_10_1016_j_bioactmat_2019_11_002
crossref_primary_10_1007_s10735_020_09877_6
crossref_primary_10_3390_ijms23020832
crossref_primary_10_1089_ten_tea_2018_0237
crossref_primary_10_1016_j_bioactmat_2021_03_040
crossref_primary_10_1002_jbm_a_37235
crossref_primary_10_1089_ten_tea_2020_0350
crossref_primary_10_1016_j_tice_2024_102418
crossref_primary_10_1021_acsbiomaterials_2c01122
crossref_primary_10_1039_C9PY01021A
crossref_primary_10_1088_1758_5090_abdc86
crossref_primary_10_1088_1748_605X_ab401f
crossref_primary_10_1007_s10439_020_02537_6
crossref_primary_10_1002_app_54310
crossref_primary_10_1016_j_micron_2018_12_006
crossref_primary_10_1016_j_mtbio_2022_100528
crossref_primary_10_1039_C9BM01236B
crossref_primary_10_1002_mabi_202300227
crossref_primary_10_1002_adhm_201900979
crossref_primary_10_3389_fbioe_2020_00474
crossref_primary_10_1016_j_bioadv_2024_213885
crossref_primary_10_1002_adhm_201801218
crossref_primary_10_1093_rb_rbab044
crossref_primary_10_1002_adhm_202201701
crossref_primary_10_1021_acsbiomaterials_3c01132
crossref_primary_10_1016_j_jare_2021_12_012
crossref_primary_10_1166_jbt_2024_3350
crossref_primary_10_1002_jbm_a_36370
crossref_primary_10_1016_j_msec_2018_09_062
crossref_primary_10_1186_s42825_020_00043_y
crossref_primary_10_3390_polym11020367
crossref_primary_10_1177_08853282221082921
crossref_primary_10_1016_j_bioadv_2023_213692
crossref_primary_10_3390_ijms221810153
crossref_primary_10_1016_j_bprint_2022_e00212
crossref_primary_10_1016_j_mtbio_2023_100775
crossref_primary_10_1039_D3SM01365K
crossref_primary_10_1177_08853282241258302
crossref_primary_10_3390_gels9020100
crossref_primary_10_1016_j_bioadv_2023_213737
Cites_doi 10.3233/THC-2007-15102
10.2217/rme.13.76
10.1016/j.biomaterials.2015.08.045
10.1007/978-1-4471-1934-0_2
10.1016/j.msec.2017.04.016
10.3390/polym8080269
10.1016/j.actbio.2013.04.002
10.1016/B978-0-12-382239-0.00002-9
10.1016/j.tcb.2013.05.004
10.1039/C3TB21246G
10.1089/ten.tea.2008.0099
10.1016/j.biomaterials.2013.05.060
10.1002/jbm.a.34823
10.1016/j.actbio.2014.09.033
10.1016/S0142-9612(03)00340-5
10.1038/nprot.2016.037
10.1016/j.biomaterials.2016.12.026
10.1016/j.biomaterials.2014.10.020
10.1039/C7TB01350G
10.1111/jcmm.12061
10.1002/mabi.201200471
10.1126/science.1116995
10.1089/ten.tea.2009.0798
10.1039/C4RA02271H
10.1002/adhm.201500005
10.1002/jbm.a.34774
10.1016/j.job.2012.01.004
10.1016/j.tibtech.2016.07.001
10.1016/j.actbio.2013.10.005
10.1080/00914037.2016.1163561
10.1039/C5TB02251G
10.1016/j.biomaterials.2010.03.064
10.1146/annurev.cellbio.042308.113248
10.1021/nn507488s
10.1016/j.msec.2012.07.046
10.1016/j.tibtech.2016.01.002
10.1016/j.actbio.2014.08.010
10.1615/CritRevBiomedEng.v40.i5.10
10.1006/bbrc.2002.6519
10.1002/jcp.20109
10.1016/j.msec.2015.04.004
10.1021/ar900226q
10.1088/1758-5090/8/3/035002
10.1021/bm990017d
10.1007/s10856-012-4684-5
10.1007/s10529-015-1921-2
10.1161/01.RES.0000039537.73816.E5
10.1007/s10856-012-4731-2
ContentType Journal Article
Copyright 2017 Wiley Periodicals, Inc.
2018 Wiley Periodicals, Inc.
Copyright_xml – notice: 2017 Wiley Periodicals, Inc.
– notice: 2018 Wiley Periodicals, Inc.
DBID NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1002/jbm.a.36226
DatabaseName PubMed
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database

PubMed
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1552-4965
EndPage 209
ExternalDocumentID 10_1002_jbm_a_36226
28884519
JBMA36226
Genre article
Journal Article
GrantInformation_xml – fundername: European Union's Seventh Framework
  funderid: 607868
GroupedDBID ---
-~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
1ZS
31~
33P
4.4
4ZD
50Z
51W
51X
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
BAFTC
BDRZF
BFHJK
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
J0M
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
QB0
QRW
R.K
RNS
ROL
RWI
RYL
SUPJJ
SV3
UB1
V2E
W8V
W99
WIH
WIK
WJL
WQJ
WRC
WXSBR
XG1
XV2
ZZTAW
~IA
~WT
1OB
NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c3976-c781eb3f9520f8fcc42e15cd6d5f577176369cff522e7df3efe2cf11a9dc9e4e3
IEDL.DBID DR2
ISSN 1549-3296
IngestDate Sat Aug 17 02:45:47 EDT 2024
Fri Sep 13 01:20:24 EDT 2024
Thu Sep 26 17:27:32 EDT 2024
Sat Sep 28 08:47:41 EDT 2024
Sat Aug 24 00:55:43 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords GelMA hydrogels
µCT imaging of hydrogels
bone tissue engineering
effect of polymer concentration
Language English
License 2017 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3976-c781eb3f9520f8fcc42e15cd6d5f577176369cff522e7df3efe2cf11a9dc9e4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 28884519
PQID 1968293995
PQPubID 2034572
PageCount 9
ParticipantIDs proquest_miscellaneous_1937521817
proquest_journals_1968293995
crossref_primary_10_1002_jbm_a_36226
pubmed_primary_28884519
wiley_primary_10_1002_jbm_a_36226_JBMA36226
PublicationCentury 2000
PublicationDate January 2018
2018-Jan
2018-01-00
20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: January 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Mount Laurel
PublicationTitle Journal of biomedical materials research. Part A
PublicationTitleAlternate J Biomed Mater Res A
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2015; 56
2015; 37
2009; 25
2010; 31
2002; 292
2010; 16
2015; 73
2005; 310
2013; 23
2015; 11
1995
2000; 1
1992
2015; 7];37
2015; 9
2012; 54
2016; 34
2013; 9
2007; 15
2016; 11
2016; 4
2016; 5
2010; 43
2014; 4
2013; 17
2014; 2
2013; 33
2013; 13
2013; 34
2005; 202
2017; 78
2016; 65
2003; 24
2017; 120
2002; 91
2013
2014; 9
2012; 23
2016; 8
2009; 15
2014; 10
2012; 40
2014; 102
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_28_1
O'Brien FJ (e_1_2_7_50_1) 2007; 15
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
Anderson HC. (e_1_2_7_49_1) 1995
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 9
  start-page: 7651
  year: 2013
  end-page: 7661
  article-title: A self‐assembling peptide matrix used to control stiffness and binding site density supports the formation of microvascular networks in three dimensions
  publication-title: Acta Biomater
– volume: 10
  start-page: 4961
  year: 2014
  end-page: 4970
  article-title: Mineralized gelatin methacrylate‐based matrices induce osteogenic differentiation of human induced pluripotent stem cells
  publication-title: Acta Biomater
– volume: 9
  start-page: 41
  year: 2014
  end-page: 51
  article-title: Injectable gel graft for bone defect repair
  publication-title: Regen Med
– volume: 10
  start-page: 214
  year: 2014
  end-page: 223
  article-title: A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate
  publication-title: Acta Biomater
– volume: 23
  start-page: 2607
  year: 2012
  end-page: 2617
  article-title: Stiff gelatin hydrogels can be photo‐chemically synthesized from low viscous gelatin solutions using molecularly functionalized gelatin with a high degree of methacrylation
  publication-title: J Mater Sci Mater Med
– volume: 5
  start-page: 108
  year: 2016
  end-page: 118
  article-title: Photocrosslinkable gelatin hydrogel for epidermal tissue engineering
  publication-title: Adv Healthc Mater
– volume: 40
  start-page: 363
  year: 2012
  end-page: 408
  article-title: Bone tissue engineering: Recent advances and challenges
  publication-title: Crit Rev Biomed Eng
– volume: 33
  start-page: 28
  year: 2013
  end-page: 36
  article-title: Bone scaffolds with homogeneous and discrete gradient mechanical properties
  publication-title: Mater Sci Eng C
– volume: 292
  start-page: 1
  year: 2002
  end-page: 7
  article-title: Bone tissue engineering: Hope vs hype
  publication-title: Biochem Biophys Res Commun
– volume: 34
  start-page: 6785
  year: 2013
  end-page: 6796
  article-title: Transdermal regulation of vascular network bioengineering using a photopolymerizable methacrylated gelatin hydrogel
  publication-title: Biomaterials
– volume: 310
  start-page: 1713
  year: 2005
  end-page: 1716
  article-title: Tissue cells feel and respond to the stiffness of their substrate
  publication-title: Science
– volume: 34
  start-page: 683
  year: 2016
  end-page: 685
  article-title: Textile processes for engineering tissues with biomimetic architectures and properties
  publication-title: Trends Biotechnol
– start-page: 266
  year: 1995
  end-page: 280
  article-title: Molecular biology of matrix vesicles
  publication-title: Clin Orthop Relat Res
– volume: 11
  start-page: 162
  year: 2015
  end-page: 172
  article-title: A versatile bioink for three‐dimensional printing of cellular scaffolds based on thermally and photo‐triggered tandem gelation
  publication-title: Acta Biomater
– volume: 102
  start-page: 1415
  year: 2014
  end-page: 1421
  article-title: Collagen‐gelatin‐genipin‐hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: In vitro evidences
  publication-title: J Biomed Mater Res A
– volume: 1
  start-page: 31
  year: 2000
  end-page: 38
  article-title: Structural and rheological properties of methacrylamide modified gelatin hydrogels
  publication-title: Biomacromolecules
– volume: 78
  start-page: 1277
  year: 2017
  end-page: 1199
  article-title: Naturally derived proteins and glycosaminoglycan scaffolds for tissue engineering applications
  publication-title: Mater Sci Eng C
– volume: 54
  start-page: 19
  year: 2012
  end-page: 24
  article-title: Fine structure of bone matrix calcification
  publication-title: J Oral Biosci
– start-page: 9
  year: 1992
  end-page: 12
  article-title: Natural history of autografts and allografts
  publication-title: Bone implant grafting
– volume: 7];37
  start-page: 174
  year: 2015
  end-page: 182
  article-title: Endochondral bone formation in gelatin methacrylamide hydrogel with embedded cartilage‐derived matrix particles
  publication-title: Biomaterials
– volume: 25
  start-page: 377
  year: 2009
  end-page: 406
  article-title: Mechanisms of stem cell self‐renewal
  publication-title: Annu Rev Cell Dev Annu Rev
– volume: 8
  start-page: 269
  year: 2016
  article-title: 3D culture of chondrocytes in gelatin hydrogels with different stiffness
  publication-title: Polymers
– volume: 34
  start-page: 394
  year: 2016
  end-page: 407
  article-title: Gelatin‐methacryloyl hydrogels: Towards biofabrication‐based tissue repair
  publication-title: Trends Biotechnol
– volume: 13
  start-page: 551
  year: 2013
  end-page: 561
  article-title: Gelatin‐methacrylamide hydrogels as potential biomaterials for fabrication of tissue‐engineered cartilage constructs
  publication-title: Macromol Biosci
– volume: 4
  start-page: 21997
  year: 2014
  article-title: Biomimetic mineralization of anionic gelatin hydrogels: Effect of degree of methacrylation
  publication-title: RSC Adv
– volume: 2
  start-page: 1584
  year: 2014
  article-title: Enhanced bone regeneration with a gold nanoparticle–hydrogel complex
  publication-title: J Mater Chem B
– volume: 73
  start-page: 254
  year: 2015
  end-page: 271
  article-title: Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels
  publication-title: Biomaterials
– volume: 43
  start-page: 419
  year: 2010
  end-page: 428
  article-title: Bioinspired materials for controlling stem cell fate
  publication-title: Acc Chem Res
– volume: 5
  start-page: 5753
  year: 2017
  end-page: 5762
  article-title: Influence of microporous gelatin hydrogels on chondrocyte functions
  publication-title: J Mater Chem B
– volume: 91
  start-page: 877
  year: 2002
  end-page: 887
  article-title: Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology
  publication-title: Circ Res
– volume: 4
  start-page: 1070
  year: 2016
  end-page: 1080
  article-title: Biomimetic gelatin methacrylamide hydrogel scaffolds for bone tissue engineering
  publication-title: J Mater Chem B
– volume: 37
  start-page: 2349
  year: 2015
  end-page: 2355
  article-title: Improved properties of bone and cartilage tissue from 3D inkjet‐bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG‐GelMA
  publication-title: Biotechnol Lett.
– volume: 16
  start-page: 2675
  year: 2010
  end-page: 2685
  article-title: Photocrosslinkable hyaluronan‐gelatin hydrogels for two‐step bioprinting
  publication-title: Tissue Eng Part A
– volume: 8
  start-page: 35002
  year: 2016
  article-title: 3D bioprinting of BM‐MSCs‐loaded ECM biomimetic hydrogels for in vitro neocartilage formation
  publication-title: Biofabrication
– volume: 23
  start-page: 2267
  year: 2012
  end-page: 2279
  article-title: Hydrogels of collagen/chondroitin sulfate/hyaluronan interpenetrating polymer network for cartilage tissue engineering
  publication-title: J Mater Sci Mater Med
– volume: 17
  start-page: 823
  year: 2013
  end-page: 832
  article-title: Cell adhesion and mechanical stimulation in the regulation of mesenchymal stem cell differentiation
  publication-title: J Cell Mol Med
– volume: 11
  start-page: 727
  year: 2016
  end-page: 746
  article-title: Functionalization, preparation and use of cell‐laden gelatin methacryloyl‐based hydrogels as modular tissue culture platforms
  publication-title: Nat Protoc
– volume: 120
  start-page: 139
  year: 2017
  end-page: 154
  article-title: Sequentially‐crosslinked bioactive hydrogels as nano‐patterned substrates with customizable stiffness and degradation for corneal tissue engineering applications
  publication-title: Biomaterials
– volume: 65
  start-page: 807
  year: 2016
  end-page: 815
  article-title: Nanoengineered biocomposite tricomponent polymer based matrices for bone tissue engineering
  publication-title: Int J Polym Mater Polym Biomater
– volume: 15
  start-page: 3
  year: 2007
  end-page: 17
  article-title: The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering
  publication-title: Technol Heal Care
– volume: 102
  start-page: 1092
  year: 2014
  end-page: 1101
  article-title: Effect of substrate stiffness on the functions of rat bone marrow and adipose tissue derived mesenchymal stem cells in vitro
  publication-title: J Biomed Mater Res
– volume: 202
  start-page: 41
  year: 2005
  end-page: 48
  article-title: Characterization of adhesion and differentiation markers of osteogenic marrow stromal cells
  publication-title: J Cell Physiol
– volume: 9
  start-page: 3109
  year: 2015
  end-page: 3118
  article-title: Bioactive nanoengineered hydrogels for bone tissue engineering: A growth‐factor‐free approach
  publication-title: ACS Nano
– volume: 56
  start-page: 311
  year: 2015
  end-page: 317
  article-title: Biodegradable hyaluronic acid hydrogels to control release of dexamethasone through aqueous Diels‐Alder chemistry for adipose tissue engineering
  publication-title: Mater Sci Eng C Mater Biol Appl
– volume: 15
  start-page: 1041
  year: 2009
  end-page: 1052
  article-title: Differential maturation and structure‐function relationships in mesenchymal stem cell‐ and chondrocyte‐seeded hydrogels
  publication-title: Tissue Eng Part A
– volume: 31
  start-page: 5536
  year: 2010
  end-page: 5544
  article-title: Cell‐laden microengineered gelatin methacrylate hydrogels
  publication-title: Biomaterials
– volume: 23
  start-page: 484
  year: 2013
  end-page: 492
  article-title: Metabolism in physiological cell proliferation and differentiation
  publication-title: Trends Cell Biol
– volume: 24
  start-page: 4337
  year: 2003
  end-page: 4351
  article-title: Hydrogels for tissue engineering: scaffold design variables and applications
  publication-title: Biomaterials
– year: 2013
– volume: 15
  start-page: 3
  year: 2007
  ident: e_1_2_7_50_1
  article-title: The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering
  publication-title: Technol Heal Care
  doi: 10.3233/THC-2007-15102
  contributor:
    fullname: O'Brien FJ
– ident: e_1_2_7_15_1
  doi: 10.2217/rme.13.76
– ident: e_1_2_7_27_1
  doi: 10.1016/j.biomaterials.2015.08.045
– ident: e_1_2_7_2_1
  doi: 10.1007/978-1-4471-1934-0_2
– ident: e_1_2_7_19_1
  doi: 10.1016/j.msec.2017.04.016
– ident: e_1_2_7_28_1
  doi: 10.3390/polym8080269
– ident: e_1_2_7_38_1
  doi: 10.1016/j.actbio.2013.04.002
– ident: e_1_2_7_40_1
  doi: 10.1016/B978-0-12-382239-0.00002-9
– ident: e_1_2_7_46_1
  doi: 10.1016/j.tcb.2013.05.004
– ident: e_1_2_7_23_1
  doi: 10.1039/C3TB21246G
– ident: e_1_2_7_7_1
  doi: 10.1089/ten.tea.2008.0099
– ident: e_1_2_7_34_1
  doi: 10.1016/j.biomaterials.2013.05.060
– ident: e_1_2_7_9_1
  doi: 10.1002/jbm.a.34823
– ident: e_1_2_7_6_1
  doi: 10.1016/j.actbio.2014.09.033
– ident: e_1_2_7_20_1
  doi: 10.1016/S0142-9612(03)00340-5
– ident: e_1_2_7_22_1
  doi: 10.1038/nprot.2016.037
– start-page: 266
  year: 1995
  ident: e_1_2_7_49_1
  article-title: Molecular biology of matrix vesicles
  publication-title: Clin Orthop Relat Res
  contributor:
    fullname: Anderson HC.
– ident: e_1_2_7_43_1
  doi: 10.1016/j.biomaterials.2016.12.026
– ident: e_1_2_7_17_1
  doi: 10.1016/j.biomaterials.2014.10.020
– ident: e_1_2_7_29_1
  doi: 10.1039/C7TB01350G
– ident: e_1_2_7_36_1
  doi: 10.1111/jcmm.12061
– ident: e_1_2_7_30_1
  doi: 10.1002/mabi.201200471
– ident: e_1_2_7_37_1
  doi: 10.1126/science.1116995
– ident: e_1_2_7_8_1
  doi: 10.1089/ten.tea.2009.0798
– ident: e_1_2_7_18_1
  doi: 10.1039/C4RA02271H
– ident: e_1_2_7_44_1
  doi: 10.1002/adhm.201500005
– ident: e_1_2_7_45_1
  doi: 10.1002/jbm.a.34774
– ident: e_1_2_7_48_1
  doi: 10.1016/j.job.2012.01.004
– ident: e_1_2_7_21_1
  doi: 10.1016/j.tibtech.2016.07.001
– ident: e_1_2_7_11_1
  doi: 10.1016/j.actbio.2013.10.005
– ident: e_1_2_7_5_1
  doi: 10.1080/00914037.2016.1163561
– ident: e_1_2_7_25_1
  doi: 10.1039/C5TB02251G
– ident: e_1_2_7_33_1
  doi: 10.1016/j.biomaterials.2010.03.064
– ident: e_1_2_7_47_1
  doi: 10.1146/annurev.cellbio.042308.113248
– ident: e_1_2_7_32_1
  doi: 10.1021/nn507488s
– ident: e_1_2_7_10_1
  doi: 10.1016/j.msec.2012.07.046
– ident: e_1_2_7_16_1
  doi: 10.1016/j.tibtech.2016.01.002
– ident: e_1_2_7_31_1
  doi: 10.1016/j.actbio.2014.08.010
– ident: e_1_2_7_4_1
  doi: 10.1615/CritRevBiomedEng.v40.i5.10
– ident: e_1_2_7_3_1
  doi: 10.1006/bbrc.2002.6519
– ident: e_1_2_7_42_1
  doi: 10.1002/jcp.20109
– ident: e_1_2_7_14_1
  doi: 10.1016/j.msec.2015.04.004
– ident: e_1_2_7_41_1
  doi: 10.1021/ar900226q
– ident: e_1_2_7_13_1
  doi: 10.1088/1758-5090/8/3/035002
– ident: e_1_2_7_39_1
  doi: 10.1021/bm990017d
– ident: e_1_2_7_12_1
  doi: 10.1007/s10856-012-4684-5
– ident: e_1_2_7_24_1
  doi: 10.1007/s10529-015-1921-2
– ident: e_1_2_7_35_1
  doi: 10.1161/01.RES.0000039537.73816.E5
– ident: e_1_2_7_26_1
  doi: 10.1007/s10856-012-4731-2
SSID ssj0026052
Score 2.58294
Snippet Gelatin methacrylate (GelMA) is an inexpensive, photocrosslinkable, cell‐responsive hydrogel which has drawn attention for a wide range of tissue engineering...
Gelatin methacrylate (GelMA) is an inexpensive, photocrosslinkable, cell-responsive hydrogel which has drawn attention for a wide range of tissue engineering...
Abstract Gelatin methacrylate (GelMA) is an inexpensive, photocrosslinkable, cell‐responsive hydrogel which has drawn attention for a wide range of tissue...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 201
SubjectTerms Alkaline phosphatase
Bioassays
Biocompatibility
Biomedical materials
Bone marrow
bone tissue engineering
Bones
Calcification
Calcium
Colorimetry
Deoxyribonucleic acid
Deposition
Differentiation
DNA
effect of polymer concentration
Extracellular matrix
Gelatin
GelMA hydrogels
Hydrogels
Light intensity
Luminous intensity
Mechanical properties
Mesenchyme
Polymers
Pore size
Porosity
Scaffolds
Stem cell transplantation
Stem cells
Tissue engineering
Ultraviolet radiation
µCT imaging of hydrogels
Title Gelatin methacrylate scaffold for bone tissue engineering: The influence of polymer concentration
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.a.36226
https://www.ncbi.nlm.nih.gov/pubmed/28884519
https://www.proquest.com/docview/1968293995/abstract/
https://search.proquest.com/docview/1937521817
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA7iSQ_uS3WUCHOTjnZJk3gbxQVhPIgDcytJmoBbK7Mc9Nf7XtoZNxD01pKEpnlLvpfle4S0M8FtJpIiVDB7hKnWMtQOotaUK54okUbG4npH7ya76qfXAzZozubgXZiaH2K24IaW4f01GrjSo6MP0tAH_dxRHfC_MRJuI5UeQqLbGXkUAnW_1wkRUJjEMmtu50HJ0ae2X-ejHyDzK2b1k87Fcp1ZdeS5CvGsyWNnMtYd8_aNyfHf_7NClho4Sru1_qySOVuukcVPJIXrRF3683IlxWTTygxf4c3SkVHOVU8FBdBLdVVaOvYipPaj7QkFJaT30zQotHL0pXp6fbZDavC2ZNlQ9m6Q_sX53dlV2CRmCA3Cl9BwEUEQ7iSLj51wxqSxjZgpsoI5xiFAzJJMGucA21leuMQ6GxsXRUoWRtrUJptkvoSebROqkY1KAWxh2qVMKIH7ehBSMSndMXcqIO2pePKXmn8jr5mW4xxGLFe5H7GAtKaiyxsjHOXgXASgGSlZQA5mxWA-uCeiSltNsE7CGcIcHpCtWuSz78RCCGTfCcihF9xvHcivT3td_7Tzp9q7ZAEgmKgXdVpkfjyc2D2AOWO977X5He3M-I8
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOBQOPNoC4elK3Kos5OHY5gYIWCjLoQKJm2U7tsQrQcvuAX49Yye7QCtVKrdEthXH4_F8M7a_AdguOLMFz8pYofWIc61FrB16rTlTLFM8T4z18Y7eRdG9ys-u6XUbcPN3YRp-iHHAzWtGWK-9gvuA9M4ba-itfuioDi7AaTEJ06jwNLhUv8f0UR6qh91O9IHiLBVFez8PS3beNf5okf6CmR9RazA7x_MgRx1uTpvcdYYD3TEvf3A5fv6PFmCuRaRkv5lCizBhq68w-46n8Buok3BkriI-37Qy_Wd8s-TJKOfq-5Ig7iW6riwZBCkS-9Z2j-A8JDejTCikduSxvn9-sH1i_IXJqmXt_Q5Xx0eXh924zc0QG49gYsN4gn64EzTdddwZk6c2oaYsSuooQx-xyAphnEN4Z1npMutsalySKFEaYXObLcFUhT1bAaI9IZVC5EK1yylX3G_toVdFhXC7zKkItkfykY8NBYdsyJZTiSMmlQwjFsH6SHay1cMniesLR0AjBI3gx7gYNchvi6jK1kNfJ2PUIx0WwXIj8_F3Us65J-CJ4GeQ3L86IM8OevvhafW_am_Bl-5l71yen178WoMZRGS8ifGsw9SgP7QbiHoGejNM7VeCHfyx
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkRA98H4EChipN5Rt8_CLW6EspdAKISr1ZtmOR4K2yWofh_LrGTvZbQsSEtwS2VYcz4z9zdj-BmBTKBmEqprc0uqR187p3CF5rbW0srKqLnyI8Y6DQ7F3VO8f8-PhbE68C9PzQ6wCbtEy0nwdDXzS4NYFaegPdzayI5p_S3EdbtSiKqNS735dsUdFpJ42O8kFyqlUDNfzqGTrUuOrC9IfKPMqaE2rzvhOn1p1lsgK42GTk9Fi7kb-529Ujv_9Q3fh9oBH2U6vQPfgWmjvw_ollsIHYD-kA3Mti9mmrZ-e01tgM28Ru9OGEeplrmsDmycZsnDR9g0jLWTfl3lQWIds0p2en4Up8_G6ZDtw9j6Eo_H7b-_28iEzQ-4jfsm9VAV54ah5uY0Kva_LUHDfiIYjl-Qhikpoj0jgLsgGq4Ch9FgUVjdehzpUj2CtpZ49AeYiHZUl3MId1lxZFTf2yKfiWuO2RJvB5lI8ZtITcJieark0NGLGmjRiGWwsRWcGK5wZml0UwRmteQavVsVkP3FTxLahW8Q6leQR58gMHvciX32nVEpF-p0MXifB_a0DZv_twU56evpPtV_CzS-7Y_P54-GnZ3CL4JjqAzwbsDafLsJzgjxz9yIp9i-V_ftg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gelatin+methacrylate+scaffold+for+bone+tissue+engineering%3A+The+influence+of+polymer+concentration&rft.jtitle=Journal+of+biomedical+materials+research.+Part+A&rft.au=Celikkin%2C+Nehar&rft.au=Mastrogiacomo%2C+Simone&rft.au=Jaroszewicz%2C+Jakub&rft.au=Walboomers%2C+X+Frank&rft.date=2018-01-01&rft.eissn=1552-4965&rft.volume=106&rft.issue=1&rft.spage=201&rft.epage=209&rft_id=info:doi/10.1002%2Fjbm.a.36226&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-3296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-3296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-3296&client=summon