Predicting Floodplain Hypoxia in the Atchafalaya River, Louisiana, USA, a Large, Regulated Southern Floodplain River System

The Atchafalaya River Basin Floodway (ARBF), a regulated river/floodplain distributary of the Mississippi River, experiences an annual flood pulse that strongly influences floodplain physicochemistry. We developed several metrics to investigate the relationship between the timing and magnitude of th...

Full description

Saved in:
Bibliographic Details
Published inRiver research and applications Vol. 32; no. 5; pp. 845 - 855
Main Authors Pasco, T. E., Kaller, M. D., Harlan, R., Kelso, W. E., Rutherford, D. A., Roberts, S.
Format Journal Article
LanguageEnglish
Published Bognor Regis Blackwell Publishing Ltd 01.06.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Atchafalaya River Basin Floodway (ARBF), a regulated river/floodplain distributary of the Mississippi River, experiences an annual flood pulse that strongly influences floodplain physicochemistry. We developed several metrics to investigate the relationship between the timing and magnitude of the flood pulse and floodplain hypoxia, which in most years is a spatially extensive and temporally prolonged problem in the lower ARBF. Principal components analysis of flood metrics from 2001 to 2009 revealed contrasting flood types (early cool and late warm), but component‐based general linear models were unable to predict the magnitude of hypoxia in ARBF water management areas (WMAs). Further analyses based on temperature and geographic information system‐determined WMA inundation with generalized additive models (GAMs) revealed WMA‐specific patterns of hypoxia, but the likelihood of hypoxia consistently increased when temperatures approached 20°C and inundation rose above 20–30%. Validation with held‐out data based on logistic regression indicated that the models constructed with the 2001–2009 temperature and inundation data were able to accurately predict the probabilities of hypoxia in two WMAs based on data collected from 2010 to 2013. The GAMs were an effective tool for visualizing and predicting the probability of hypoxia based on two easily generated parameters. Our analyses indicate that modification of the Atchafalaya River flood pulse could reduce the magnitude of hypoxia within the lower ARBF, subject to engineering (control structure operation) and economic (commercial fisheries production) constraints, by minimizing floodplain inundation after water temperatures reach 20°C. Copyright © 2015 John Wiley & Sons, Ltd.
AbstractList The Atchafalaya River Basin Floodway (ARBF), a regulated river/floodplain distributary of the Mississippi River, experiences an annual flood pulse that strongly influences floodplain physicochemistry. We developed several metrics to investigate the relationship between the timing and magnitude of the flood pulse and floodplain hypoxia, which in most years is a spatially extensive and temporally prolonged problem in the lower ARBF. Principal components analysis of flood metrics from 2001 to 2009 revealed contrasting flood types (early cool and late warm), but component-based general linear models were unable to predict the magnitude of hypoxia in ARBF water management areas (WMAs). Further analyses based on temperature and geographic information system-determined WMA inundation with generalized additive models (GAMs) revealed WMA-specific patterns of hypoxia, but the likelihood of hypoxia consistently increased when temperatures approached 20°C and inundation rose above 20-30%. Validation with held-out data based on logistic regression indicated that the models constructed with the 2001-2009 temperature and inundation data were able to accurately predict the probabilities of hypoxia in two WMAs based on data collected from 2010 to 2013. The GAMs were an effective tool for visualizing and predicting the probability of hypoxia based on two easily generated parameters. Our analyses indicate that modification of the Atchafalaya River flood pulse could reduce the magnitude of hypoxia within the lower ARBF, subject to engineering (control structure operation) and economic (commercial fisheries production) constraints, by minimizing floodplain inundation after water temperatures reach 20°C. Copyright © 2015 John Wiley & Sons, Ltd.
The Atchafalaya River Basin Floodway (ARBF), a regulated river/floodplain distributary of the Mississippi River, experiences an annual flood pulse that strongly influences floodplain physicochemistry. We developed several metrics to investigate the relationship between the timing and magnitude of the flood pulse and floodplain hypoxia, which in most years is a spatially extensive and temporally prolonged problem in the lower ARBF. Principal components analysis of flood metrics from 2001 to 2009 revealed contrasting flood types (early cool and late warm), but component-based general linear models were unable to predict the magnitude of hypoxia in ARBF water management areas (WMAs). Further analyses based on temperature and geographic information system-determined WMA inundation with generalized additive models (GAMs) revealed WMA-specific patterns of hypoxia, but the likelihood of hypoxia consistently increased when temperatures approached 20 degree C and inundation rose above 20-30%. Validation with held-out data based on logistic regression indicated that the models constructed with the 2001-2009 temperature and inundation data were able to accurately predict the probabilities of hypoxia in two WMAs based on data collected from 2010 to 2013. The GAMs were an effective tool for visualizing and predicting the probability of hypoxia based on two easily generated parameters. Our analyses indicate that modification of the Atchafalaya River flood pulse could reduce the magnitude of hypoxia within the lower ARBF, subject to engineering (control structure operation) and economic (commercial fisheries production) constraints, by minimizing floodplain inundation after water temperatures reach 20 degree C.
Author Pasco, T. E.
Roberts, S.
Harlan, R.
Kaller, M. D.
Rutherford, D. A.
Kelso, W. E.
Author_xml – sequence: 1
  givenname: T. E.
  surname: Pasco
  fullname: Pasco, T. E.
  email: Correspondence to: T. E. Pasco, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, USA., tpasco1@lsu.edu
  organization: School of Renewable Natural Resources, Louisiana State University Agricultural Center, LA, Baton Rouge, USA
– sequence: 2
  givenname: M. D.
  surname: Kaller
  fullname: Kaller, M. D.
  organization: School of Renewable Natural Resources, Louisiana State University Agricultural Center, LA, Baton Rouge, USA
– sequence: 3
  givenname: R.
  surname: Harlan
  fullname: Harlan, R.
  organization: School of Renewable Natural Resources, Louisiana State University Agricultural Center, LA, Baton Rouge, USA
– sequence: 4
  givenname: W. E.
  surname: Kelso
  fullname: Kelso, W. E.
  organization: School of Renewable Natural Resources, Louisiana State University Agricultural Center, LA, Baton Rouge, USA
– sequence: 5
  givenname: D. A.
  surname: Rutherford
  fullname: Rutherford, D. A.
  organization: School of Renewable Natural Resources, Louisiana State University Agricultural Center, LA, Baton Rouge, USA
– sequence: 6
  givenname: S.
  surname: Roberts
  fullname: Roberts, S.
  organization: New Orleans District, US Army Corps of Engineers, LA, New Orleans, USA
BookMark eNqNkU9v00AQxS1UJNqCxEdYiQuHOOzYXq_3GFUkRaQFEiokLqvJeppucbzprg21-PLdNij8EUicZg6_9zTz3lFy0LqWkuQ58DFwnr3yHseZ4vmj5BBELlIoSnmw34V6khyFcM05yEpVh8n3955qazrbrtm0ca7eNmhbdjps3a1FFtfuitikM1d4iQ0OyBb2K_kRm7veBostjtjFcjJiyObo1zRiC1r3DXZUs6Xro9i3vxo_qNlyCB1tniaPo2egZz_mcXIxff3x5DSdv5u9OZnMU5Mrmae1kFhQJQ1VHOvMrBQnwYtilStVC6FglXFYqbwygEh1IaAsAbIqAxCGDObHycud79a7m55Cpzc2GGoabMn1QUOVl6UUMZH_QHkleQEii-iLP9Br1_s2PqJBKqFKqEoZqfGOMt6F4OlSG9thZ13bebSNBq7va9OxNn1f288L9oKttxv0w9_QdId-sw0N_-T0YjH5nbcx_ds9j_6LjpdKoT-dzzTMPr_9IM6mWuZ3JXm2MQ
CitedBy_id crossref_primary_10_1002_esp_5347
crossref_primary_10_1007_s10533_018_0449_7
crossref_primary_10_1071_MF18452
crossref_primary_10_1111_fme_12422
crossref_primary_10_1029_2021WR030731
crossref_primary_10_1016_j_ecolmodel_2017_03_016
crossref_primary_10_5869_fc_2019_v24_1_23
crossref_primary_10_1007_s13157_023_01668_5
crossref_primary_10_1029_2023WR035026
crossref_primary_10_1656_058_019_0114
crossref_primary_10_1016_j_jenvman_2021_112213
crossref_primary_10_1002_rra_3417
crossref_primary_10_1016_j_chemosphere_2018_04_094
crossref_primary_10_3389_fenvs_2024_1213001
Cites_doi 10.1002/rrr.3450060203
10.1577/1548-8659(2001)130<0107:EOEHAW>2.0.CO;2
10.2307/1313335
10.1002/(SICI)1099-1646(199911/12)15:6<525::AID-RRR554>3.0.CO;2-Q
10.1672/08-62.1
10.2307/1313099
10.1139/f89-228
10.1002/rrr.3450110109
10.1002/9780470696026.ch17
10.1007/978-0-387-87458-6
10.1111/rec.12120
10.1016/j.ecolmodel.2006.11.017
10.1126/science.1107887
10.1046/j.1440-1770.2000.00091.x
10.1080/02705060.2003.9664492
10.1073/pnas.1201423109
10.1023/A:1003951930525
10.1111/j.1365-2427.2011.02647.x
10.1023/A:1007536009916
10.1590/S1679-62252013005000008
10.1139/f03-057
10.1016/j.marpolbul.2004.10.050
10.1016/j.jhydrol.2012.04.057
10.1071/MF06025
10.3133/ofr20081320
10.1016/j.geomorph.2013.06.016
10.1046/j.1365-2427.1999.00404.x
10.1007/s00267-002-2737-0
10.1111/j.1440-1770.2003.00222.x
10.1002/rra.1251
10.1023/A:1023288922394
10.3354/ame039057
10.1046/j.1365-2427.2002.00905.x
10.1002/rra.2567
10.1046/j.1095-8649.2003.00169.x
10.1672/06-132.1
10.1071/MF99112
10.1002/(SICI)1099-1646(199911/12)15:6<505::AID-RRR553>3.0.CO;2-V
10.1672/0277-5212(2000)020<0470:SDOAFA>2.0.CO;2
10.1007/BF00017572
10.2307/2531595
10.1002/rra.1610
10.1023/A:1003488332055
10.1023/A:1003856103586
10.2307/1939574
10.1577/1548-8659(2001)130<0276:PEOTFP>2.0.CO;2
10.1007/BF00005289
10.1111/j.1365-2427.2012.02865.x
10.1016/S1095-6433(02)00195-2
10.1071/MF11275
10.1641/0006-3568(2000)050[0807:REOHAO]2.0.CO;2
10.1139/a06-006
10.1007/s10750-011-0978-8
10.1017/CBO9780511525575.007
10.1007/s10750-010-0470-x
10.1017/CBO9780511615146
10.1016/j.jembe.2009.07.027
10.1207/s15327906mbr0102_10
ContentType Journal Article
Copyright Copyright © 2015 John Wiley & Sons, Ltd.
Copyright © 2016 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2015 John Wiley & Sons, Ltd.
– notice: Copyright © 2016 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7QH
7SN
7SS
7ST
7UA
C1K
F1W
H95
H96
L.G
SOI
7S9
L.6
DOI 10.1002/rra.2903
DatabaseName Istex
CrossRef
Aqualine
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Entomology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1535-1467
EndPage 855
ExternalDocumentID 4087156811
10_1002_rra_2903
RRA2903
ark_67375_WNG_1GZKQ5MF_7
Genre article
GeographicLocations USA, Louisiana, Atchafalaya R
ASW, USA, Louisiana
North America, Mississippi R
USA, Louisiana, Atchafalaya R. basin
Louisiana
Mississippi River
GeographicLocations_xml – name: North America, Mississippi R
– name: ASW, USA, Louisiana
– name: USA, Louisiana, Atchafalaya R
– name: USA, Louisiana, Atchafalaya R. basin
– name: Mississippi River
– name: Louisiana
GrantInformation_xml – fundername: U.S. Army Corps of Engineers
GroupedDBID ..I
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TWZ
UB1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
XV2
Y6R
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7QH
7SN
7SS
7ST
7UA
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
H95
H96
L.G
SOI
7S9
L.6
ID FETCH-LOGICAL-c3973-d57a4e87ce80ad2cb90e5044b399d5591b201b938c1aaed4516611282115ceca3
IEDL.DBID DR2
ISSN 1535-1459
IngestDate Fri Jul 11 18:23:41 EDT 2025
Fri Jul 11 02:23:48 EDT 2025
Wed Aug 13 06:13:20 EDT 2025
Tue Jul 01 00:52:45 EDT 2025
Thu Apr 24 23:00:54 EDT 2025
Wed Jan 22 16:28:30 EST 2025
Wed Oct 30 09:48:59 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3973-d57a4e87ce80ad2cb90e5044b399d5591b201b938c1aaed4516611282115ceca3
Notes istex:1089764E756B0313A3E298A9FCCB5761E0DE26E3
ark:/67375/WNG-1GZKQ5MF-7
U.S. Army Corps of Engineers
ArticleID:RRA2903
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1795961867
PQPubID 1046366
PageCount 11
ParticipantIDs proquest_miscellaneous_1836675178
proquest_miscellaneous_1808704152
proquest_journals_1795961867
crossref_citationtrail_10_1002_rra_2903
crossref_primary_10_1002_rra_2903
wiley_primary_10_1002_rra_2903_RRA2903
istex_primary_ark_67375_WNG_1GZKQ5MF_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-06
June 2016
2016-06-00
20160601
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle River research and applications
PublicationTitleAlternate River Res. Applic
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Poff NL, Ward JV. 1989. Implications of streamflow variability and predictability for lotic community structure: a regional analysis of streamflow patterns. Canadian Journal of Fisheries and Aquatic Sciences 46(10): 1805-1818
Pollock MS, Clarke LMJ, Dube MG. 2007. The effects of hypoxia on fishes: from ecological relevance to physiological effects. Environmental Reviews 15: 1-14.
Hupp CR, Demas CR, Kroes DE, Day RH, Doyle TW. 2008. Recent sedimentation patterns within the central Atchafalaya Basin, Louisiana. Wetlands 16: 125-140.
Battle JM, Mihuc TB. 2000. Decomposition dynamics of aquatic macrophytes in the lower Atchafalaya, a large floodplain river. Hydrobiologia 418: 123-136.
Faraway JJ. 2006. Extending the Linear Model with R: Geneneralized Linear, Mixed Effect, and Nonparametric Regression Models. Chapman and Hall: Boca Raton, Florida.
Ward JV, Stanford JA. 1995. Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. Regulated Rivers: Research and Management 11: 105-19.
Kaller MD, Kelso WE, Halloran B, Rutherford DA. 2011. Effects of spatial scale on assessment of dissolved oxygen dynamics in the Atchafalaya River Basin, Louisiana. Hydrobiologia 658(1): 7-15
Bechara JA. 1996. The relative importance of water quality, sediment composition and floating vegetation in explaining the macrobenthic community structure of floodplain lakes (Paraná River, Argentina). Hydrobiologia 333: 95-109.
Rejas D, Muylaert K, De Meester L. 2005. Nutrient limitation of bacteria and sources of nutrients supporting nutrient-limited bacterial growth in an Amazonian floodplain lake. Aquatic Microbial Ecology 39: 57-67.
Gorski K, De Leeuw JJ, Winter HV, Vekhov DA, Minin AE, Buije AD, Nagelkerke LAJ. 2011. Fish recruitment in a large, temperate floodplain: the importance of annual flooding, temperature, and habitat complexity. Freshwater Biology 56: 2210-2225.
Petry P, Bayley PB, Markle DF. 2003. Relationships between fish assemblages, macrophytes, and environmental gradients in the Amazon River floodplains. Journal of Fish Biology 63: 547-579.
Lewis WM. 2000. Basis for the protection and management of tropical lakes. Lakes and Reservoirs: Research and Management 5: 34-48.
Hirst CN, Jackson DA. 2007. Reconstructing community relationships: the impact of sampling error, ordination approach, and gradient length. Biodiversity Research 13: 361-371.
King AJ, Tonkin Z, Lieshcke J. 2012. Short-term effects of a prolonged blackwater event on aquatic fauna in the Murray River, Australia: considerations for future events. Marine and Freshwater Research 63: 576-586.
Burgess OT, Pine WE, Walsh SJ. 2013. Importance of floodplain connectivity to fish populations in the Apalachicola River, Florida. River Research and Applications 29: 718-733.
Bayley PB. 1991. The flood-pulse advantage and the restoration of river-floodplain systems. Regulated Rivers: Research and Management 6: 75-86.
Fontenot QC, Rutherford DA, Kelso WE. 2001. Effects of environmental hypoxia associated with the annual flood pulse on the distribution of larval sunfish and shad in the Atchafalaya River basin, Louisiana. Transactions of the American Fisheries Society 130: 107-116.
Bunn SE, Arthington AH. 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30: 492-507.
Gordon ND, McMahon TA, Finlayson BL, Gippel CJ, Nathan RJ. 2004. Stream Hydrology: An Introduction for Ecologists, 2nd edition. John Wiley & Sons Ltd., West Sussex, England.
Robertson AI, Bunn SE, Boon PI, Walker KF. 1999. Sources, sinks and transformations of organic carbon in Australian floodplain rivers. Marine and Freshwater Research 50: 813-829
Humphries P, King AJ, Koehn JD. 1999. Fish, flows and flood plains: links between freshwater fishes and their environment in the Murray-Darling River system, Australia. Environmental Biology of Fishes 56: 129-151.
Balcombe SR, Arthington AH, Foster ND, Thoms MC, Wilson GG, Bunn SE. 2006. Fish assemblages of a Australian dryland river: abundance, assemblage structure, and recruitment patterns in the Warrego River, Murray-Darling Basin. Marine and Freshwater Research 57: 619-633.
Fisher SJ, Willis DW. 2000. Seasonal dynamics of aquatic fauna and habitat parameters in a perched upper Missouri River wetland. Wetlands 20: 470-478.
Saint-Paul U, Soares GM. 1987. Diurnal distribution and behavioral responses of fishes to extreme hypoxia in an Amazon floodplain lake. Environmental Biology of Fishes 20: 91-104.
Walley R. 2007. Community structure and habitat associations of native and introduced macrophytes in the Atchafalaya River Basin Louisiana, M. S Thesis, Louisiana State University. Baton Rouge, Louisiana.
de Oliveira MD, Calheiros DF. 2000. Flood pulse influence on phytoplankton communities of the south Pantanal floodplain, Brazil. Hydrobiologia 427: 101-112.
Kelso WE, Rutherford DA, Davidson N. 2003. Diel vertical migration of cladocerans and copepods in the Atchafalaya River Basin Floodplain. Journal of Freshwater Ecology 18(2): 259-268
Vanderploeg HA, Ludsin SA, Ruberg SA, Höök TO, Pothoven SA, Brandt SB, Land GA, Liebig JR, Cavaletto JF. 2009. Hypoxia affects spatial distributions and overlap of pelagic fish, zooplankton, and phytoplankton in Lake Erie. Journal of Experimental Marine Biology and Ecology 381: S92-S107.
Whitworth KL, Baldwin DS, Kerr JL. 2012. Drought, floods and water quality: drivers of a severe hypoxic blackwater event in a major river system (the southern Murray-Darling Basin, Australia). Journal of Hydrology 450-451: 190-198.
Stallins JA, Nesius M, Smith M, Watson K. 2010. Biogeomorphic characterization of floodplain forest change in response to reduced flows along the Apalachicola River, Florida. River Research and Applications 26: 242-260.
Amoros C, Bornette G. 2002. Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater Biology 47: 761-776.
Rutherford DA, Gelwicks KR, Kelso WE. 2001. Physicochemical effects of the flood pulse on fishes in the Atchafalaya River Basin, Louisiana. Transactions of the American Fisheries Society 130(2): 276-288.
Schultz R, Dibble E. 2012. Effects of invasive macrophytes on freshwater fish and macroinvertebrate communities: the role of invasive plant traits. Hydrobiologia 684: 1-14.
Alford JB, Walker MR. 2013. Managing the flood pulse for optimal fisheries production in the Atchafalaya River Basin, Louisiana (USA). River Research and Applications 29: 279-296.
Townsend SA, Edwards CA. 2003. A fish kill event, hypoxia and other limnological impacts associated with early wet season flow into a lake on the Mary River floodplain, tropical northern Australia. Lakes and Reservoirs: Research and Management 8: 169-176.
Schramm Jr. HL, Cox MS, Tietjen TE, Ezell AW. 2009. Nutrient dynamics in the lower Mississippi River floodplain: comparing present and historic hydrologic conditions. Wetlands 29: 476-489.
Baldwin DS. 1999. Dissolved organic matter and phosphorus leached from fresh and 'terrestrially' aged river red gum leaves: implications for assessing river-floodplain interactions. Freshwater Biology 41: 675-685.
Jackson DA. 1993. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74: 2204-2214.
Beesley L, King AJ, Amstaetter F, Koehn JD, Gawne B, Price A, Nielsen DL, Vilizzi L, Meredith SN. 2012. Does flooding affect spatiotemporal variation of fish assemblages in temperate floodplain wetlands? Freshwater Biology 57: 2230-2246.
Kroes DE, Kraemer TF. 2013. Human-induced stream channel abandonment/capture and filling of floodplain channels within the Atchafalaya River Basin, Louisiana. Geomorphology 201: 148-156.
Howitt JA, Baldwin DS, Rees GN, Williams JL. 2007. Modelling blackwater: predicting water quality during flooding of lowland river forests. Ecological Modelling 203: 229-242.
Sabo MJ, Bryan CF, Kelso WE, Rutherford DA. 1999a. Hydrology and aquatic habitat characteristics of a riverine swamp: I. influence of flow on water temperature and chemistry. Regulated Rivers: Research & Management 15(6): 505-523.
Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD, Sparks RE, Stromberg JC. 1997. The Natural Flow Regime. BioScience 47(11): 769-784.
Perna C, Burrows D. 2005. Improved dissolved oxygen status following removal of exotic weed mats in important fish habitat lagoons of the tropical Burdekin River floodplain, Australia. Marine Pollution Bulletin 51: 138-148.
Farjalla VF. 2014. Are the mizing zones between aquatic ecosystems hot spots of bacterial production in the Amazon River system? Hydrobiologia 489: 197-205.
Chapman LJ, Chapman CA, Nordlie FG, Rosenberger AE. 2002. Physiological refugia: swamps, hypoxia tolerance and maintenance of fish diversity in the Lake Victoria region. Comparative biochemistry and Physiology Part A 133: 421-437.
Galat DL, Fredrickson LH, Humburg DD, Bataille KJ, Bodie JR, Dohrenwend J, Gelwicks GT, Havel JE, Helmers DL, Hooker JB, Jones JR, Knowlton MF, Kubisiak J, Mazourek J, McColpin AC, Renken RB, Semlitsch RD. 1998. Flooding to restore connectivity of regulated, large-river wetlands. BioScience 48:721-33.
Tockner K, Schiemer F, Baumgartner C, Kum G, Weigand E, Zweimüller I, Ward JV. 1999. The Danube restoration project: species diversity patterns across connectivity gradients in the floodplain system Regulated Rivers. Research & Management 15(1-3): 245-258.
DeLong ER, DeLong DM, Clarke-Pearson DL. 1988. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44: 837-845.
King AJ, Humphries P, Lake PS. 2003. Fish recruitment on floodplains: The roles of patterns of flooding and life history characteristics. Canadian Journal of Fisheries and Aquatic Sciences 60: 773-786.
Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM. 2009. Mixed effects models and extensions in ecology with R. Springer: New York, New York.
Bonvillain CP, Rutherford DA, Kelso WE, Murphy CE. 2013.
2000; 418
1999b; 15
2013; 29
1998; 48
2012; 684
2000; 5
1997; 47
2000; 50
2013; 201
1999; 41
2011; 56
2003; 18
2012; 450–451
2012; 57
1989; 46
2013; 19
2002; 47
2010; 26
2001; 130
2000
1999; 15
2003; 8
1993; 74
1988; 44
1999; 56
2005; 308
1999; 50
1996; 333
2005; 39
2014; 489
1989
2012; 63
2007; 203
1966; 1
2004; 42
2011; 658
2002; 30
2006; 57
2002; 133
2008; 16
1995; 11
2000; 20
2009
2008
2007
2006
1995
1998; 379
2005
2004
2003
2007; 13
1991; 6
2007; 15
2009; 29
2012; 109
1987; 20
2000; 427
2005; 51
2009; 381
2014
2013
1999a; 15
2003; 60
2003; 63
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
Freeman MC (e_1_2_6_24_1) 2005
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_34_1
Colon‐Gaud JC (e_1_2_6_16_1) 2004; 42
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_41_1
e_1_2_6_60_1
Bonvillain CP (e_1_2_6_11_1) 2013; 19
e_1_2_6_9_1
Gordon ND (e_1_2_6_26_1) 2004
e_1_2_6_5_1
e_1_2_6_7_1
Faraway JJ (e_1_2_6_20_1) 2006
Junk W (e_1_2_6_35_1) 1989
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_45_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_12_1
e_1_2_6_33_1
Tockner K (e_1_2_6_62_1) 1999; 15
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_37_1
e_1_2_6_58_1
Hughes RM (e_1_2_6_30_1) 2005
e_1_2_6_63_1
e_1_2_6_42_1
Walley R (e_1_2_6_65_1) 2007
Hirst CN (e_1_2_6_28_1) 2007; 13
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – reference: Balcombe SR, Arthington AH, Foster ND, Thoms MC, Wilson GG, Bunn SE. 2006. Fish assemblages of a Australian dryland river: abundance, assemblage structure, and recruitment patterns in the Warrego River, Murray-Darling Basin. Marine and Freshwater Research 57: 619-633.
– reference: Colon-Gaud JC, Kelso WE, Rutherford DA. 2004. Spatial distribution of macroinvertebrates inhabiting hydrilla and coontail beds in the Atchafalaya Basin, Louisiana. Journal of Aquatic Plant Management 42: 85-91.
– reference: Nilsson C, Reidy CA, Dynesius M, Revenga C. 2005. Fragmentation and flow regulation of the world's large river systems. Science 308: 405-408.
– reference: Ziv G, Baran E, Nam S, Rodriquez-Iturbe I, Levin SA. 2012. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proceedings of the National Academy of Sciences 109: 5609-5614.
– reference: Sabo MJ, Bryan CF, Kelso WE, Rutherford DA. 1999b. Hydrology and aquatic habitat characteristics of a riverine swamp: II. hydrology and the occurrence of chronic hypoxia. Regulated Rivers: Research & Management 15(6): 525-544.
– reference: Jackson DA. 1993. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74: 2204-2214.
– reference: Alford JB, Walker MR. 2013. Managing the flood pulse for optimal fisheries production in the Atchafalaya River Basin, Louisiana (USA). River Research and Applications 29: 279-296.
– reference: Schramm Jr. HL, Cox MS, Tietjen TE, Ezell AW. 2009. Nutrient dynamics in the lower Mississippi River floodplain: comparing present and historic hydrologic conditions. Wetlands 29: 476-489.
– reference: Ward JV, Stanford JA. 1995. Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. Regulated Rivers: Research and Management 11: 105-19.
– reference: Bonvillain CP, Rutherford DA, Kelso WE, Murphy CE. 2013. Biotic and abiotic influences on populatin characteristics of Procambarus clarkii in the Atchafalaya River Basin, Louisiana. Freshwater Crayfish 19: 125-136.
– reference: Battle JM, Mihuc TB. 2000. Decomposition dynamics of aquatic macrophytes in the lower Atchafalaya, a large floodplain river. Hydrobiologia 418: 123-136.
– reference: Howitt JA, Baldwin DS, Rees GN, Williams JL. 2007. Modelling blackwater: predicting water quality during flooding of lowland river forests. Ecological Modelling 203: 229-242.
– reference: Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM. 2009. Mixed effects models and extensions in ecology with R. Springer: New York, New York.
– reference: Humphries P, King AJ, Koehn JD. 1999. Fish, flows and flood plains: links between freshwater fishes and their environment in the Murray-Darling River system, Australia. Environmental Biology of Fishes 56: 129-151.
– reference: Poff NL, Ward JV. 1989. Implications of streamflow variability and predictability for lotic community structure: a regional analysis of streamflow patterns. Canadian Journal of Fisheries and Aquatic Sciences 46(10): 1805-1818
– reference: Saint-Paul U, Soares GM. 1987. Diurnal distribution and behavioral responses of fishes to extreme hypoxia in an Amazon floodplain lake. Environmental Biology of Fishes 20: 91-104.
– reference: Vanderploeg HA, Ludsin SA, Ruberg SA, Höök TO, Pothoven SA, Brandt SB, Land GA, Liebig JR, Cavaletto JF. 2009. Hypoxia affects spatial distributions and overlap of pelagic fish, zooplankton, and phytoplankton in Lake Erie. Journal of Experimental Marine Biology and Ecology 381: S92-S107.
– reference: Tockner K, Schiemer F, Baumgartner C, Kum G, Weigand E, Zweimüller I, Ward JV. 1999. The Danube restoration project: species diversity patterns across connectivity gradients in the floodplain system Regulated Rivers. Research & Management 15(1-3): 245-258.
– reference: Kelso WE, Rutherford DA, Davidson N. 2003. Diel vertical migration of cladocerans and copepods in the Atchafalaya River Basin Floodplain. Journal of Freshwater Ecology 18(2): 259-268
– reference: Bayley PB. 1991. The flood-pulse advantage and the restoration of river-floodplain systems. Regulated Rivers: Research and Management 6: 75-86.
– reference: DeLong ER, DeLong DM, Clarke-Pearson DL. 1988. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44: 837-845.
– reference: Hirst CN, Jackson DA. 2007. Reconstructing community relationships: the impact of sampling error, ordination approach, and gradient length. Biodiversity Research 13: 361-371.
– reference: Townsend SA, Edwards CA. 2003. A fish kill event, hypoxia and other limnological impacts associated with early wet season flow into a lake on the Mary River floodplain, tropical northern Australia. Lakes and Reservoirs: Research and Management 8: 169-176.
– reference: Sabo MJ, Bryan CF, Kelso WE, Rutherford DA. 1999a. Hydrology and aquatic habitat characteristics of a riverine swamp: I. influence of flow on water temperature and chemistry. Regulated Rivers: Research & Management 15(6): 505-523.
– reference: Cattell RB. 1966. The scree test for the number of factors. Multivariate Behavioral Research 1: 629-637.
– reference: Pollock MS, Clarke LMJ, Dube MG. 2007. The effects of hypoxia on fishes: from ecological relevance to physiological effects. Environmental Reviews 15: 1-14.
– reference: Whitworth KL, Baldwin DS, Kerr JL. 2012. Drought, floods and water quality: drivers of a severe hypoxic blackwater event in a major river system (the southern Murray-Darling Basin, Australia). Journal of Hydrology 450-451: 190-198.
– reference: Baldwin DS. 1999. Dissolved organic matter and phosphorus leached from fresh and 'terrestrially' aged river red gum leaves: implications for assessing river-floodplain interactions. Freshwater Biology 41: 675-685.
– reference: Lepŝ J, Smilauer P. 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press: New York, New York.
– reference: Amoros C, Bornette G. 2002. Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater Biology 47: 761-776.
– reference: Farjalla VF. 2014. Are the mizing zones between aquatic ecosystems hot spots of bacterial production in the Amazon River system? Hydrobiologia 489: 197-205.
– reference: Chapman LJ, Chapman CA, Nordlie FG, Rosenberger AE. 2002. Physiological refugia: swamps, hypoxia tolerance and maintenance of fish diversity in the Lake Victoria region. Comparative biochemistry and Physiology Part A 133: 421-437.
– reference: Hupp CR, Demas CR, Kroes DE, Day RH, Doyle TW. 2008. Recent sedimentation patterns within the central Atchafalaya Basin, Louisiana. Wetlands 16: 125-140.
– reference: Lewis WM. 2000. Basis for the protection and management of tropical lakes. Lakes and Reservoirs: Research and Management 5: 34-48.
– reference: Fisher SJ, Willis DW. 2000. Seasonal dynamics of aquatic fauna and habitat parameters in a perched upper Missouri River wetland. Wetlands 20: 470-478.
– reference: Galat DL, Fredrickson LH, Humburg DD, Bataille KJ, Bodie JR, Dohrenwend J, Gelwicks GT, Havel JE, Helmers DL, Hooker JB, Jones JR, Knowlton MF, Kubisiak J, Mazourek J, McColpin AC, Renken RB, Semlitsch RD. 1998. Flooding to restore connectivity of regulated, large-river wetlands. BioScience 48:721-33.
– reference: Kaller MD, Kelso WE, Halloran B, Rutherford DA. 2011. Effects of spatial scale on assessment of dissolved oxygen dynamics in the Atchafalaya River Basin, Louisiana. Hydrobiologia 658(1): 7-15
– reference: Rejas D, Muylaert K, De Meester L. 2005. Nutrient limitation of bacteria and sources of nutrients supporting nutrient-limited bacterial growth in an Amazonian floodplain lake. Aquatic Microbial Ecology 39: 57-67.
– reference: Bunn SE, Arthington AH. 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30: 492-507.
– reference: Kroes DE, Kraemer TF. 2013. Human-induced stream channel abandonment/capture and filling of floodplain channels within the Atchafalaya River Basin, Louisiana. Geomorphology 201: 148-156.
– reference: Davidson NL, Kelso WE, Rutherford DA. 1998. Relationship between environmental variables and the abundance of cladocerans and copepods in the Atchafalaya River Basin. Hydrobiologia 379: 175-181.
– reference: Walley R. 2007. Community structure and habitat associations of native and introduced macrophytes in the Atchafalaya River Basin Louisiana, M. S Thesis, Louisiana State University. Baton Rouge, Louisiana.
– reference: Pringle CM, Freeman MC, Freeman BJ. 2000. Regional effect of hydrologic alterations on riverine macrobiota in the new world: tropical-temperate comparisons. BioScience 50: 807-823
– reference: de Oliveira MD, Calheiros DF. 2000. Flood pulse influence on phytoplankton communities of the south Pantanal floodplain, Brazil. Hydrobiologia 427: 101-112.
– reference: King AJ, Tonkin Z, Lieshcke J. 2012. Short-term effects of a prolonged blackwater event on aquatic fauna in the Murray River, Australia: considerations for future events. Marine and Freshwater Research 63: 576-586.
– reference: Stallins JA, Nesius M, Smith M, Watson K. 2010. Biogeomorphic characterization of floodplain forest change in response to reduced flows along the Apalachicola River, Florida. River Research and Applications 26: 242-260.
– reference: King AJ, Humphries P, Lake PS. 2003. Fish recruitment on floodplains: The roles of patterns of flooding and life history characteristics. Canadian Journal of Fisheries and Aquatic Sciences 60: 773-786.
– reference: Bechara JA. 1996. The relative importance of water quality, sediment composition and floating vegetation in explaining the macrobenthic community structure of floodplain lakes (Paraná River, Argentina). Hydrobiologia 333: 95-109.
– reference: Burgess OT, Pine WE, Walsh SJ. 2013. Importance of floodplain connectivity to fish populations in the Apalachicola River, Florida. River Research and Applications 29: 718-733.
– reference: Perna C, Burrows D. 2005. Improved dissolved oxygen status following removal of exotic weed mats in important fish habitat lagoons of the tropical Burdekin River floodplain, Australia. Marine Pollution Bulletin 51: 138-148.
– reference: Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD, Sparks RE, Stromberg JC. 1997. The Natural Flow Regime. BioScience 47(11): 769-784.
– reference: Robertson AI, Bunn SE, Boon PI, Walker KF. 1999. Sources, sinks and transformations of organic carbon in Australian floodplain rivers. Marine and Freshwater Research 50: 813-829
– reference: Gorski K, De Leeuw JJ, Winter HV, Vekhov DA, Minin AE, Buije AD, Nagelkerke LAJ. 2011. Fish recruitment in a large, temperate floodplain: the importance of annual flooding, temperature, and habitat complexity. Freshwater Biology 56: 2210-2225.
– reference: Petry P, Bayley PB, Markle DF. 2003. Relationships between fish assemblages, macrophytes, and environmental gradients in the Amazon River floodplains. Journal of Fish Biology 63: 547-579.
– reference: Schultz R, Dibble E. 2012. Effects of invasive macrophytes on freshwater fish and macroinvertebrate communities: the role of invasive plant traits. Hydrobiologia 684: 1-14.
– reference: Gordon ND, McMahon TA, Finlayson BL, Gippel CJ, Nathan RJ. 2004. Stream Hydrology: An Introduction for Ecologists, 2nd edition. John Wiley & Sons Ltd., West Sussex, England.
– reference: Rutherford DA, Gelwicks KR, Kelso WE. 2001. Physicochemical effects of the flood pulse on fishes in the Atchafalaya River Basin, Louisiana. Transactions of the American Fisheries Society 130(2): 276-288.
– reference: Beesley L, King AJ, Amstaetter F, Koehn JD, Gawne B, Price A, Nielsen DL, Vilizzi L, Meredith SN. 2012. Does flooding affect spatiotemporal variation of fish assemblages in temperate floodplain wetlands? Freshwater Biology 57: 2230-2246.
– reference: Fontenot QC, Rutherford DA, Kelso WE. 2001. Effects of environmental hypoxia associated with the annual flood pulse on the distribution of larval sunfish and shad in the Atchafalaya River basin, Louisiana. Transactions of the American Fisheries Society 130: 107-116.
– reference: Faraway JJ. 2006. Extending the Linear Model with R: Geneneralized Linear, Mixed Effect, and Nonparametric Regression Models. Chapman and Hall: Boca Raton, Florida.
– start-page: 1
  year: 2005
  end-page: 12
– start-page: 91
  year: 1995
  end-page: 173
– year: 2009
– volume: 48
  start-page: 721
  year: 1998
  end-page: 33
  article-title: Flooding to restore connectivity of regulated, large‐river wetlands
  publication-title: BioScience
– volume: 418
  start-page: 123
  year: 2000
  end-page: 136
  article-title: Decomposition dynamics of aquatic macrophytes in the lower Atchafalaya, a large floodplain river
  publication-title: Hydrobiologia
– volume: 1
  start-page: 629
  year: 1966
  end-page: 637
  article-title: The scree test for the number of factors
  publication-title: Multivariate Behavioral Research
– volume: 8
  start-page: 169
  year: 2003
  end-page: 176
  article-title: A fish kill event, hypoxia and other limnological impacts associated with early wet season flow into a lake on the Mary River floodplain, tropical northern Australia
  publication-title: Lakes and Reservoirs: Research and Management
– volume: 379
  start-page: 175
  year: 1998
  end-page: 181
  article-title: Relationship between environmental variables and the abundance of cladocerans and copepods in the Atchafalaya River Basin
  publication-title: Hydrobiologia
– volume: 18
  start-page: 259
  issue: 2
  year: 2003
  end-page: 268
  article-title: Diel vertical migration of cladocerans and copepods in the Atchafalaya River Basin Floodplain
  publication-title: Journal of Freshwater Ecology
– volume: 308
  start-page: 405
  year: 2005
  end-page: 408
  article-title: Fragmentation and flow regulation of the world's large river systems
  publication-title: Science
– volume: 130
  start-page: 276
  issue: 2
  year: 2001
  end-page: 288
  article-title: Physicochemical effects of the flood pulse on fishes in the Atchafalaya River Basin, Louisiana
  publication-title: Transactions of the American Fisheries Society
– volume: 427
  start-page: 101
  year: 2000
  end-page: 112
  article-title: Flood pulse influence on phytoplankton communities of the south Pantanal floodplain, Brazil
  publication-title: Hydrobiologia
– volume: 44
  start-page: 837
  year: 1988
  end-page: 845
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics
– volume: 658
  start-page: 7
  issue: 1
  year: 2011
  end-page: 15
  article-title: Effects of spatial scale on assessment of dissolved oxygen dynamics in the Atchafalaya River Basin, Louisiana
  publication-title: Hydrobiologia
– year: 2014
– volume: 20
  start-page: 470
  year: 2000
  end-page: 478
  article-title: Seasonal dynamics of aquatic fauna and habitat parameters in a perched upper Missouri River wetland
  publication-title: Wetlands
– start-page: 242
  year: 2000
  end-page: 260
– start-page: 557
  year: 2005
  end-page: 585
– volume: 56
  start-page: 2210
  year: 2011
  end-page: 2225
  article-title: Fish recruitment in a large, temperate floodplain: the importance of annual flooding, temperature, and habitat complexity
  publication-title: Freshwater Biology
– volume: 684
  start-page: 1
  year: 2012
  end-page: 14
  article-title: Effects of invasive macrophytes on freshwater fish and macroinvertebrate communities: the role of invasive plant traits
  publication-title: Hydrobiologia
– volume: 333
  start-page: 95
  year: 1996
  end-page: 109
  article-title: The relative importance of water quality, sediment composition and floating vegetation in explaining the macrobenthic community structure of floodplain lakes (Paraná River, Argentina)
  publication-title: Hydrobiologia
– volume: 39
  start-page: 57
  year: 2005
  end-page: 67
  article-title: Nutrient limitation of bacteria and sources of nutrients supporting nutrient‐limited bacterial growth in an Amazonian floodplain lake
  publication-title: Aquatic Microbial Ecology
– volume: 29
  start-page: 279
  year: 2013
  end-page: 296
  article-title: Managing the flood pulse for optimal fisheries production in the Atchafalaya River Basin, Louisiana (USA)
  publication-title: River Research and Applications
– volume: 41
  start-page: 675
  year: 1999
  end-page: 685
  article-title: Dissolved organic matter and phosphorus leached from fresh and ‘terrestrially’ aged river red gum leaves: implications for assessing river‐floodplain interactions
  publication-title: Freshwater Biology
– volume: 203
  start-page: 229
  year: 2007
  end-page: 242
  article-title: Modelling blackwater: predicting water quality during flooding of lowland river forests
  publication-title: Ecological Modelling
– volume: 63
  start-page: 547
  year: 2003
  end-page: 579
  article-title: Relationships between fish assemblages, macrophytes, and environmental gradients in the Amazon River floodplains
  publication-title: Journal of Fish Biology
– volume: 46
  start-page: 1805
  issue: 10
  year: 1989
  end-page: 1818
  article-title: Implications of streamflow variability and predictability for lotic community structure: a regional analysis of streamflow patterns
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 26
  start-page: 242
  year: 2010
  end-page: 260
  article-title: Biogeomorphic characterization of floodplain forest change in response to reduced flows along the Apalachicola River, Florida
  publication-title: River Research and Applications
– volume: 6
  start-page: 75
  year: 1991
  end-page: 86
  article-title: The flood‐pulse advantage and the restoration of river‐floodplain systems
  publication-title: Regulated Rivers: Research and Management
– volume: 133
  start-page: 421
  year: 2002
  end-page: 437
  article-title: Physiological refugia: swamps, hypoxia tolerance and maintenance of fish diversity in the Lake Victoria region
  publication-title: Comparative biochemistry and Physiology Part A
– year: 2004
– volume: 19
  start-page: 125
  year: 2013
  end-page: 136
  article-title: Biotic and abiotic influences on populatin characteristics of Procambarus clarkii in the Atchafalaya River Basin, Louisiana
  publication-title: Freshwater Crayfish
– volume: 57
  start-page: 2230
  year: 2012
  end-page: 2246
  article-title: Does flooding affect spatiotemporal variation of fish assemblages in temperate floodplain wetlands?
  publication-title: Freshwater Biology
– volume: 201
  start-page: 148
  year: 2013
  end-page: 156
  article-title: Human‐induced stream channel abandonment/capture and filling of floodplain channels within the Atchafalaya River Basin, Louisiana
  publication-title: Geomorphology
– volume: 15
  start-page: 245
  issue: 1–3
  year: 1999
  end-page: 258
  article-title: The Danube restoration project: species diversity patterns across connectivity gradients in the floodplain system Regulated Rivers
  publication-title: Research & Management
– volume: 15
  start-page: 1
  year: 2007
  end-page: 14
  article-title: The effects of hypoxia on fishes: from ecological relevance to physiological effects
  publication-title: Environmental Reviews
– volume: 30
  start-page: 492
  year: 2002
  end-page: 507
  article-title: Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity
  publication-title: Environmental Management
– volume: 57
  start-page: 619
  year: 2006
  end-page: 633
  article-title: Fish assemblages of a Australian dryland river: abundance, assemblage structure, and recruitment patterns in the Warrego River, Murray‐Darling Basin
  publication-title: Marine and Freshwater Research
– volume: 56
  start-page: 129
  year: 1999
  end-page: 151
  article-title: Fish, flows and flood plains: links between freshwater fishes and their environment in the Murray‐Darling River system, Australia
  publication-title: Environmental Biology of Fishes
– volume: 489
  start-page: 197
  year: 2014
  end-page: 205
  article-title: Are the mizing zones between aquatic ecosystems hot spots of bacterial production in the Amazon River system?
  publication-title: Hydrobiologia
– volume: 11
  start-page: 105
  year: 1995
  end-page: 19
  article-title: Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation
  publication-title: Regulated Rivers: Research and Management
– volume: 15
  start-page: 505
  issue: 6
  year: 1999a
  end-page: 523
  article-title: Hydrology and aquatic habitat characteristics of a riverine swamp: I. influence of flow on water temperature and chemistry
  publication-title: Regulated Rivers: Research & Management
– start-page: 2008
  year: 2008
  end-page: 1320
– volume: 130
  start-page: 107
  year: 2001
  end-page: 116
  article-title: Effects of environmental hypoxia associated with the annual flood pulse on the distribution of larval sunfish and shad in the Atchafalaya River basin, Louisiana
  publication-title: Transactions of the American Fisheries Society
– volume: 50
  start-page: 807
  year: 2000
  end-page: 823
  article-title: Regional effect of hydrologic alterations on riverine macrobiota in the new world: tropical‐temperate comparisons
  publication-title: BioScience
– year: 2007
– year: 2003
– volume: 47
  start-page: 761
  year: 2002
  end-page: 776
  article-title: Connectivity and biocomplexity in waterbodies of riverine floodplains
  publication-title: Freshwater Biology
– volume: 450–451
  start-page: 190
  year: 2012
  end-page: 198
  article-title: Drought, floods and water quality: drivers of a severe hypoxic blackwater event in a major river system (the southern Murray‐Darling Basin, Australia)
  publication-title: Journal of Hydrology
– volume: 60
  start-page: 773
  year: 2003
  end-page: 786
  article-title: Fish recruitment on floodplains: The roles of patterns of flooding and life history characteristics
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 381
  start-page: S92
  year: 2009
  end-page: S107
  article-title: Hypoxia affects spatial distributions and overlap of pelagic fish, zooplankton, and phytoplankton in Lake Erie
  publication-title: Journal of Experimental Marine Biology and Ecology
– volume: 13
  start-page: 361
  year: 2007
  end-page: 371
  article-title: Reconstructing community relationships: the impact of sampling error, ordination approach, and gradient length
  publication-title: Biodiversity Research
– start-page: 110
  year: 1989
  end-page: 127
– volume: 5
  start-page: 34
  year: 2000
  end-page: 48
  article-title: Basis for the protection and management of tropical lakes
  publication-title: Lakes and Reservoirs: Research and Management
– volume: 29
  start-page: 718
  year: 2013
  end-page: 733
  article-title: Importance of floodplain connectivity to fish populations in the Apalachicola River, Florida
  publication-title: River Research and Applications
– volume: 20
  start-page: 91
  year: 1987
  end-page: 104
  article-title: Diurnal distribution and behavioral responses of fishes to extreme hypoxia in an Amazon floodplain lake
  publication-title: Environmental Biology of Fishes
– volume: 47
  start-page: 769
  issue: 11
  year: 1997
  end-page: 784
  article-title: The Natural Flow Regime
  publication-title: BioScience
– volume: 109
  start-page: 5609
  year: 2012
  end-page: 5614
  article-title: Trading‐off fish biodiversity, food security, and hydropower in the Mekong River Basin
  publication-title: Proceedings of the National Academy of Sciences
– year: 2006
– volume: 16
  start-page: 125
  year: 2008
  end-page: 140
  article-title: Recent sedimentation patterns within the central Atchafalaya Basin, Louisiana
  publication-title: Wetlands
– volume: 51
  start-page: 138
  year: 2005
  end-page: 148
  article-title: Improved dissolved oxygen status following removal of exotic weed mats in important fish habitat lagoons of the tropical Burdekin River floodplain, Australia
  publication-title: Marine Pollution Bulletin
– volume: 63
  start-page: 576
  year: 2012
  end-page: 586
  article-title: Short‐term effects of a prolonged blackwater event on aquatic fauna in the Murray River, Australia: considerations for future events
  publication-title: Marine and Freshwater Research
– volume: 15
  start-page: 525
  issue: 6
  year: 1999b
  end-page: 544
  article-title: Hydrology and aquatic habitat characteristics of a riverine swamp: II. hydrology and the occurrence of chronic hypoxia
  publication-title: Regulated Rivers: Research & Management
– volume: 74
  start-page: 2204
  year: 1993
  end-page: 2214
  article-title: Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches
  publication-title: Ecology
– volume: 29
  start-page: 476
  year: 2009
  end-page: 489
  article-title: Nutrient dynamics in the lower Mississippi River floodplain: comparing present and historic hydrologic conditions
  publication-title: Wetlands
– volume: 42
  start-page: 85
  year: 2004
  end-page: 91
  article-title: Spatial distribution of macroinvertebrates inhabiting hydrilla and coontail beds in the Atchafalaya Basin, Louisiana
  publication-title: Journal of Aquatic Plant Management
– year: 2013
– volume: 50
  start-page: 813
  year: 1999
  end-page: 829
  article-title: Sources, sinks and transformations of organic carbon in Australian floodplain rivers
  publication-title: Marine and Freshwater Research
– ident: e_1_2_6_8_1
  doi: 10.1002/rrr.3450060203
– ident: e_1_2_6_23_1
  doi: 10.1577/1548-8659(2001)130<0107:EOEHAW>2.0.CO;2
– ident: e_1_2_6_25_1
  doi: 10.2307/1313335
– ident: e_1_2_6_56_1
  doi: 10.1002/(SICI)1099-1646(199911/12)15:6<525::AID-RRR554>3.0.CO;2-Q
– ident: e_1_2_6_58_1
  doi: 10.1672/08-62.1
– ident: e_1_2_6_48_1
  doi: 10.2307/1313099
– ident: e_1_2_6_49_1
  doi: 10.1139/f89-228
– start-page: 110
  volume-title: Proceedings of the International Large River Symposium
  year: 1989
  ident: e_1_2_6_35_1
– ident: e_1_2_6_66_1
  doi: 10.1002/rrr.3450110109
– ident: e_1_2_6_34_1
  doi: 10.1002/9780470696026.ch17
– ident: e_1_2_6_69_1
  doi: 10.1007/978-0-387-87458-6
– ident: e_1_2_6_47_1
  doi: 10.1111/rec.12120
– ident: e_1_2_6_29_1
  doi: 10.1016/j.ecolmodel.2006.11.017
– ident: e_1_2_6_43_1
  doi: 10.1126/science.1107887
– volume: 13
  start-page: 361
  year: 2007
  ident: e_1_2_6_28_1
  article-title: Reconstructing community relationships: the impact of sampling error, ordination approach, and gradient length
  publication-title: Biodiversity Research
– ident: e_1_2_6_42_1
  doi: 10.1046/j.1440-1770.2000.00091.x
– ident: e_1_2_6_37_1
  doi: 10.1080/02705060.2003.9664492
– ident: e_1_2_6_68_1
  doi: 10.1073/pnas.1201423109
– ident: e_1_2_6_18_1
  doi: 10.1023/A:1003951930525
– ident: e_1_2_6_27_1
  doi: 10.1111/j.1365-2427.2011.02647.x
– ident: e_1_2_6_31_1
  doi: 10.1023/A:1007536009916
– ident: e_1_2_6_46_1
  doi: 10.1590/S1679-62252013005000008
– volume-title: Extending the Linear Model with R: Geneneralized Linear, Mixed Effect, and Nonparametric Regression Models
  year: 2006
  ident: e_1_2_6_20_1
– volume: 42
  start-page: 85
  year: 2004
  ident: e_1_2_6_16_1
  article-title: Spatial distribution of macroinvertebrates inhabiting hydrilla and coontail beds in the Atchafalaya Basin, Louisiana
  publication-title: Journal of Aquatic Plant Management
– ident: e_1_2_6_38_1
  doi: 10.1139/f03-057
– ident: e_1_2_6_44_1
  doi: 10.1016/j.marpolbul.2004.10.050
– ident: e_1_2_6_67_1
  doi: 10.1016/j.jhydrol.2012.04.057
– volume: 15
  start-page: 245
  issue: 1
  year: 1999
  ident: e_1_2_6_62_1
  article-title: The Danube restoration project: species diversity patterns across connectivity gradients in the floodplain system Regulated Rivers
  publication-title: Research & Management
– ident: e_1_2_6_5_1
  doi: 10.1071/MF06025
– volume: 19
  start-page: 125
  year: 2013
  ident: e_1_2_6_11_1
  article-title: Biotic and abiotic influences on populatin characteristics of Procambarus clarkii in the Atchafalaya River Basin, Louisiana
  publication-title: Freshwater Crayfish
– ident: e_1_2_6_3_1
  doi: 10.3133/ofr20081320
– ident: e_1_2_6_40_1
  doi: 10.1016/j.geomorph.2013.06.016
– ident: e_1_2_6_6_1
  doi: 10.1046/j.1365-2427.1999.00404.x
– ident: e_1_2_6_12_1
  doi: 10.1007/s00267-002-2737-0
– ident: e_1_2_6_63_1
  doi: 10.1111/j.1440-1770.2003.00222.x
– start-page: 557
  volume-title: Historical Changees in Large River Fish Assemblages of the Americas
  year: 2005
  ident: e_1_2_6_24_1
– ident: e_1_2_6_60_1
  doi: 10.1002/rra.1251
– volume-title: Community structure and habitat associations of native and introduced macrophytes in the Atchafalaya River Basin Louisiana
  year: 2007
  ident: e_1_2_6_65_1
– ident: e_1_2_6_21_1
  doi: 10.1023/A:1023288922394
– ident: e_1_2_6_52_1
  doi: 10.3354/ame039057
– ident: e_1_2_6_4_1
  doi: 10.1046/j.1365-2427.2002.00905.x
– ident: e_1_2_6_13_1
  doi: 10.1002/rra.2567
– ident: e_1_2_6_45_1
  doi: 10.1046/j.1095-8649.2003.00169.x
– ident: e_1_2_6_32_1
  doi: 10.1672/06-132.1
– start-page: 1
  volume-title: Historical Changees in Large River Fish Assemblages of the Americas
  year: 2005
  ident: e_1_2_6_30_1
– ident: e_1_2_6_53_1
  doi: 10.1071/MF99112
– ident: e_1_2_6_55_1
  doi: 10.1002/(SICI)1099-1646(199911/12)15:6<505::AID-RRR553>3.0.CO;2-V
– ident: e_1_2_6_22_1
  doi: 10.1672/0277-5212(2000)020<0470:SDOAFA>2.0.CO;2
– ident: e_1_2_6_9_1
  doi: 10.1007/BF00017572
– ident: e_1_2_6_19_1
  doi: 10.2307/2531595
– ident: e_1_2_6_2_1
  doi: 10.1002/rra.1610
– ident: e_1_2_6_17_1
  doi: 10.1023/A:1003488332055
– ident: e_1_2_6_7_1
  doi: 10.1023/A:1003856103586
– ident: e_1_2_6_33_1
  doi: 10.2307/1939574
– ident: e_1_2_6_54_1
  doi: 10.1577/1548-8659(2001)130<0276:PEOTFP>2.0.CO;2
– ident: e_1_2_6_57_1
  doi: 10.1007/BF00005289
– ident: e_1_2_6_10_1
  doi: 10.1111/j.1365-2427.2012.02865.x
– ident: e_1_2_6_15_1
  doi: 10.1016/S1095-6433(02)00195-2
– ident: e_1_2_6_39_1
  doi: 10.1071/MF11275
– ident: e_1_2_6_51_1
  doi: 10.1641/0006-3568(2000)050[0807:REOHAO]2.0.CO;2
– volume-title: Stream Hydrology: An Introduction for Ecologists
  year: 2004
  ident: e_1_2_6_26_1
– ident: e_1_2_6_50_1
  doi: 10.1139/a06-006
– ident: e_1_2_6_59_1
  doi: 10.1007/s10750-011-0978-8
– ident: e_1_2_6_61_1
  doi: 10.1017/CBO9780511525575.007
– ident: e_1_2_6_36_1
  doi: 10.1007/s10750-010-0470-x
– ident: e_1_2_6_41_1
  doi: 10.1017/CBO9780511615146
– ident: e_1_2_6_64_1
  doi: 10.1016/j.jembe.2009.07.027
– ident: e_1_2_6_14_1
  doi: 10.1207/s15327906mbr0102_10
SSID ssj0017898
Score 2.2173817
Snippet The Atchafalaya River Basin Floodway (ARBF), a regulated river/floodplain distributary of the Mississippi River, experiences an annual flood pulse that...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 845
SubjectTerms Atchafalaya River
data collection
engineering
fisheries
flood pulse
floodplain
Floodplains
Floods
Floodways
Freshwater
general additive model
Geographic information systems
Hypoxia
linear models
Louisiana
Mississippi River
Physicochemical properties
prediction
principal component analysis
Principal components analysis
probability
regression analysis
Remote sensing
River basins
River regulations
Rivers
spatial data
Water management
Water temperature
watersheds
Title Predicting Floodplain Hypoxia in the Atchafalaya River, Louisiana, USA, a Large, Regulated Southern Floodplain River System
URI https://api.istex.fr/ark:/67375/WNG-1GZKQ5MF-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frra.2903
https://www.proquest.com/docview/1795961867
https://www.proquest.com/docview/1808704152
https://www.proquest.com/docview/1836675178
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQe4EDlJfYUpArIbhstnk5j-MKsV1BW0FgRQUHa-JMpFVX2VW6K7Xw55lxHmwRIMQpkTyOHHvG-Rx__kaIF16pfFSYOuwwThgV6KRJiI5f-ikagsAe8nnn07NoOgvfnqvzllXJZ2EafYj-hxtHhp2vOcAhvzz6KRpa1zDyUyv0yVQtxkNZrxzlxYlNg0vxrBwvVGmnO-v6R13FG1-iXe7Uqxswcxus2q_N5J742rWzIZlcjDbrfGS-_SLh-H8vsifutiBUjhuvuS9uYfVA3NmSJnwovr-veQuHSdFywuT21QLmlZxer5ZXc5B0S8hRjmnMoYQFXIPMmOExlCfLzZwPZsJQzj6OhxLkCZPNhzJrst5jIW3aPqyr7Qfb2rLRT38kZpM3n15PnTZRg2MIzgROoWIIMYkNJi4UvslTF5Ubhjmhn4KWLF5OMCNPg8R4AFhwbuCIcF5Ci09l0EDwWOxUywqfMNMqd0vE0gXCHWDiNALfzYFAlCqVCqKBeNUNmjatijkn01joRn_Z19SdmrtzIA57y1Wj3PEbm5d23HsDqC-Y6RYr_fnsWHvHX959UKcTHQ_EQecYug3yS-1xnnbON0DFh30xhSfvuUCFyw3ZJC7NiIyS_mYTRLRuI5-l9lhP-WODdZaN-br_r4ZPxW3q-6ghtx2InXW9wWcEo9b5cxswPwBWVBjA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELem7QF44BtRGOBJCF6aLl_Oh3iqgK6wtoKwimlCsi7ORapWpVVopQ3-ee6SJnQIEOIpkXyOHPvO_jk5_35CPHdy5aLC2GKHsfwgQyuOfLTc3I3REAR2kM87jyfBcOq_P1WnO-JVcxam5odoP7hxZFTzNQc4f5A-_MkaWpbQc2Nm-txjQW8mzn-TtNxRThhVQrgU0cpyfBU3zLO2e9jUvLIW7XG3XlwBmttwtVpvBrfEl6aldZrJeW-9Snvm2y8kjv_5KrfFzQ0Olf3ace6IHSzuihtb7IT3xPcPJf_F4bxoOeD89uUcZoUcXi4XFzOQdEvgUfZp2CGHOVyCTDjJoytHi_WMz2ZCV04_9bsS5IjzzbsyqYXvMZOVch-WxfaDq9qyplC_L6aDtyevh9ZGq8EyhGg8K1Mh-BiFBiMbMteksY3K9v2UAFBGuxYnJaSRxl5kHADMWB44IKgX0f5TGTTgPRC7xaLAh5xsldo5Ym4DQQ8wYRyAa6dAOErlSnlBR7xsRk2bDZE562nMdU3B7GrqTs3d2REHreWyJu_4jc2LauBbAyjPOdktVPrz5Eg7R2fHH9V4oMOO2G88Q2_i_Kt2WKqdJQeo-KAtpgjl3y5Q4GJNNpFNkyIDpb_ZeAFt3chpqT2Vq_yxwTpJ-nx99K-Gz8S14cl4pEfvJsePxXUah6DOddsXu6tyjU8IVa3Sp1X0_ADPRxzc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF2hVkLwwB0RKLCVELzEqW_ry2NEcQNNoxKIqOBhNV6PpaiRE5lEauHnmfGNFAFCPNmSx9Z6d8Y-a589R4gXTq5cVBhbnDCWH2RoxZGPlpu7MRqCwA7yeueTSTCa-e_O1FnDquS1MLU-RPfBjSujel5zga-y_OCnaGhZwsCNWehz1w_smG0bDqeddJQTRpUPLhW0shxfxa3wrO0etGdeeRXtcq9eXMGZ22i1et0kt8WXtqE1y-R8sFmnA_PtFw3H_7uTO-JWg0LlsE6bu-IaFvfEzS1twvvi-2nJ_3CYFS0TZrevFjAv5OhytbyYg6Rdgo5ySIMOOSzgEuSUKR59OV5u5rwyE_py9mHYlyDHzDbvy2lte4-ZrHz7sCy2L1ydLWsB9Qdilrz5-HpkNU4NliE841mZCsHHKDQY2ZC5Jo1tVLbvpwR_MpqzOCnhjDT2IuMAYMbmwAEBvYhmn8qgAe-h2CmWBT5iqlVq54i5DQQ8wIRxAK6dAqEolSvlBT3xqh00bRoZc3bTWOhagNnV1J2au7Mn9rvIVS3d8ZuYl9W4dwFQnjPVLVT60-RIO0efj9-rk0SHPbHXJoZuqvyrdtionQ0H6PB-d5jqk3-6QIHLDcVENj0SGSb9LcYLaOJGOUvtqTLljw3W0-mQt4__NfC5uH56mOjx28nxE3GDhiGoiW57YmddbvApQap1-qyqnR9llBuL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Floodplain+Hypoxia+in+the+Atchafalaya+River%2C+Louisiana%2C+USA%2C+a+Large%2C+Regulated+Southern+Floodplain+River+System&rft.jtitle=River+research+and+applications&rft.au=Pasco%2C+T.+E.&rft.au=Kaller%2C+M.+D.&rft.au=Harlan%2C+R.&rft.au=Kelso%2C+W.+E.&rft.date=2016-06-01&rft.issn=1535-1459&rft.eissn=1535-1467&rft.volume=32&rft.issue=5&rft.spage=845&rft.epage=855&rft_id=info:doi/10.1002%2Frra.2903&rft.externalDBID=10.1002%252Frra.2903&rft.externalDocID=RRA2903
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-1459&client=summon