Predicting Floodplain Hypoxia in the Atchafalaya River, Louisiana, USA, a Large, Regulated Southern Floodplain River System
The Atchafalaya River Basin Floodway (ARBF), a regulated river/floodplain distributary of the Mississippi River, experiences an annual flood pulse that strongly influences floodplain physicochemistry. We developed several metrics to investigate the relationship between the timing and magnitude of th...
Saved in:
Published in | River research and applications Vol. 32; no. 5; pp. 845 - 855 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Blackwell Publishing Ltd
01.06.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Atchafalaya River Basin Floodway (ARBF), a regulated river/floodplain distributary of the Mississippi River, experiences an annual flood pulse that strongly influences floodplain physicochemistry. We developed several metrics to investigate the relationship between the timing and magnitude of the flood pulse and floodplain hypoxia, which in most years is a spatially extensive and temporally prolonged problem in the lower ARBF. Principal components analysis of flood metrics from 2001 to 2009 revealed contrasting flood types (early cool and late warm), but component‐based general linear models were unable to predict the magnitude of hypoxia in ARBF water management areas (WMAs). Further analyses based on temperature and geographic information system‐determined WMA inundation with generalized additive models (GAMs) revealed WMA‐specific patterns of hypoxia, but the likelihood of hypoxia consistently increased when temperatures approached 20°C and inundation rose above 20–30%. Validation with held‐out data based on logistic regression indicated that the models constructed with the 2001–2009 temperature and inundation data were able to accurately predict the probabilities of hypoxia in two WMAs based on data collected from 2010 to 2013. The GAMs were an effective tool for visualizing and predicting the probability of hypoxia based on two easily generated parameters. Our analyses indicate that modification of the Atchafalaya River flood pulse could reduce the magnitude of hypoxia within the lower ARBF, subject to engineering (control structure operation) and economic (commercial fisheries production) constraints, by minimizing floodplain inundation after water temperatures reach 20°C. Copyright © 2015 John Wiley & Sons, Ltd. |
---|---|
AbstractList | The Atchafalaya River Basin Floodway (ARBF), a regulated river/floodplain distributary of the Mississippi River, experiences an annual flood pulse that strongly influences floodplain physicochemistry. We developed several metrics to investigate the relationship between the timing and magnitude of the flood pulse and floodplain hypoxia, which in most years is a spatially extensive and temporally prolonged problem in the lower ARBF. Principal components analysis of flood metrics from 2001 to 2009 revealed contrasting flood types (early cool and late warm), but component-based general linear models were unable to predict the magnitude of hypoxia in ARBF water management areas (WMAs). Further analyses based on temperature and geographic information system-determined WMA inundation with generalized additive models (GAMs) revealed WMA-specific patterns of hypoxia, but the likelihood of hypoxia consistently increased when temperatures approached 20°C and inundation rose above 20-30%. Validation with held-out data based on logistic regression indicated that the models constructed with the 2001-2009 temperature and inundation data were able to accurately predict the probabilities of hypoxia in two WMAs based on data collected from 2010 to 2013. The GAMs were an effective tool for visualizing and predicting the probability of hypoxia based on two easily generated parameters. Our analyses indicate that modification of the Atchafalaya River flood pulse could reduce the magnitude of hypoxia within the lower ARBF, subject to engineering (control structure operation) and economic (commercial fisheries production) constraints, by minimizing floodplain inundation after water temperatures reach 20°C. Copyright © 2015 John Wiley & Sons, Ltd. The Atchafalaya River Basin Floodway (ARBF), a regulated river/floodplain distributary of the Mississippi River, experiences an annual flood pulse that strongly influences floodplain physicochemistry. We developed several metrics to investigate the relationship between the timing and magnitude of the flood pulse and floodplain hypoxia, which in most years is a spatially extensive and temporally prolonged problem in the lower ARBF. Principal components analysis of flood metrics from 2001 to 2009 revealed contrasting flood types (early cool and late warm), but component-based general linear models were unable to predict the magnitude of hypoxia in ARBF water management areas (WMAs). Further analyses based on temperature and geographic information system-determined WMA inundation with generalized additive models (GAMs) revealed WMA-specific patterns of hypoxia, but the likelihood of hypoxia consistently increased when temperatures approached 20 degree C and inundation rose above 20-30%. Validation with held-out data based on logistic regression indicated that the models constructed with the 2001-2009 temperature and inundation data were able to accurately predict the probabilities of hypoxia in two WMAs based on data collected from 2010 to 2013. The GAMs were an effective tool for visualizing and predicting the probability of hypoxia based on two easily generated parameters. Our analyses indicate that modification of the Atchafalaya River flood pulse could reduce the magnitude of hypoxia within the lower ARBF, subject to engineering (control structure operation) and economic (commercial fisheries production) constraints, by minimizing floodplain inundation after water temperatures reach 20 degree C. |
Author | Pasco, T. E. Roberts, S. Harlan, R. Kaller, M. D. Rutherford, D. A. Kelso, W. E. |
Author_xml | – sequence: 1 givenname: T. E. surname: Pasco fullname: Pasco, T. E. email: Correspondence to: T. E. Pasco, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, USA., tpasco1@lsu.edu organization: School of Renewable Natural Resources, Louisiana State University Agricultural Center, LA, Baton Rouge, USA – sequence: 2 givenname: M. D. surname: Kaller fullname: Kaller, M. D. organization: School of Renewable Natural Resources, Louisiana State University Agricultural Center, LA, Baton Rouge, USA – sequence: 3 givenname: R. surname: Harlan fullname: Harlan, R. organization: School of Renewable Natural Resources, Louisiana State University Agricultural Center, LA, Baton Rouge, USA – sequence: 4 givenname: W. E. surname: Kelso fullname: Kelso, W. E. organization: School of Renewable Natural Resources, Louisiana State University Agricultural Center, LA, Baton Rouge, USA – sequence: 5 givenname: D. A. surname: Rutherford fullname: Rutherford, D. A. organization: School of Renewable Natural Resources, Louisiana State University Agricultural Center, LA, Baton Rouge, USA – sequence: 6 givenname: S. surname: Roberts fullname: Roberts, S. organization: New Orleans District, US Army Corps of Engineers, LA, New Orleans, USA |
BookMark | eNqNkU9v00AQxS1UJNqCxEdYiQuHOOzYXq_3GFUkRaQFEiokLqvJeppucbzprg21-PLdNij8EUicZg6_9zTz3lFy0LqWkuQ58DFwnr3yHseZ4vmj5BBELlIoSnmw34V6khyFcM05yEpVh8n3955qazrbrtm0ca7eNmhbdjps3a1FFtfuitikM1d4iQ0OyBb2K_kRm7veBostjtjFcjJiyObo1zRiC1r3DXZUs6Xro9i3vxo_qNlyCB1tniaPo2egZz_mcXIxff3x5DSdv5u9OZnMU5Mrmae1kFhQJQ1VHOvMrBQnwYtilStVC6FglXFYqbwygEh1IaAsAbIqAxCGDObHycud79a7m55Cpzc2GGoabMn1QUOVl6UUMZH_QHkleQEii-iLP9Br1_s2PqJBKqFKqEoZqfGOMt6F4OlSG9thZ13bebSNBq7va9OxNn1f288L9oKttxv0w9_QdId-sw0N_-T0YjH5nbcx_ds9j_6LjpdKoT-dzzTMPr_9IM6mWuZ3JXm2MQ |
CitedBy_id | crossref_primary_10_1002_esp_5347 crossref_primary_10_1007_s10533_018_0449_7 crossref_primary_10_1071_MF18452 crossref_primary_10_1111_fme_12422 crossref_primary_10_1029_2021WR030731 crossref_primary_10_1016_j_ecolmodel_2017_03_016 crossref_primary_10_5869_fc_2019_v24_1_23 crossref_primary_10_1007_s13157_023_01668_5 crossref_primary_10_1029_2023WR035026 crossref_primary_10_1656_058_019_0114 crossref_primary_10_1016_j_jenvman_2021_112213 crossref_primary_10_1002_rra_3417 crossref_primary_10_1016_j_chemosphere_2018_04_094 crossref_primary_10_3389_fenvs_2024_1213001 |
Cites_doi | 10.1002/rrr.3450060203 10.1577/1548-8659(2001)130<0107:EOEHAW>2.0.CO;2 10.2307/1313335 10.1002/(SICI)1099-1646(199911/12)15:6<525::AID-RRR554>3.0.CO;2-Q 10.1672/08-62.1 10.2307/1313099 10.1139/f89-228 10.1002/rrr.3450110109 10.1002/9780470696026.ch17 10.1007/978-0-387-87458-6 10.1111/rec.12120 10.1016/j.ecolmodel.2006.11.017 10.1126/science.1107887 10.1046/j.1440-1770.2000.00091.x 10.1080/02705060.2003.9664492 10.1073/pnas.1201423109 10.1023/A:1003951930525 10.1111/j.1365-2427.2011.02647.x 10.1023/A:1007536009916 10.1590/S1679-62252013005000008 10.1139/f03-057 10.1016/j.marpolbul.2004.10.050 10.1016/j.jhydrol.2012.04.057 10.1071/MF06025 10.3133/ofr20081320 10.1016/j.geomorph.2013.06.016 10.1046/j.1365-2427.1999.00404.x 10.1007/s00267-002-2737-0 10.1111/j.1440-1770.2003.00222.x 10.1002/rra.1251 10.1023/A:1023288922394 10.3354/ame039057 10.1046/j.1365-2427.2002.00905.x 10.1002/rra.2567 10.1046/j.1095-8649.2003.00169.x 10.1672/06-132.1 10.1071/MF99112 10.1002/(SICI)1099-1646(199911/12)15:6<505::AID-RRR553>3.0.CO;2-V 10.1672/0277-5212(2000)020<0470:SDOAFA>2.0.CO;2 10.1007/BF00017572 10.2307/2531595 10.1002/rra.1610 10.1023/A:1003488332055 10.1023/A:1003856103586 10.2307/1939574 10.1577/1548-8659(2001)130<0276:PEOTFP>2.0.CO;2 10.1007/BF00005289 10.1111/j.1365-2427.2012.02865.x 10.1016/S1095-6433(02)00195-2 10.1071/MF11275 10.1641/0006-3568(2000)050[0807:REOHAO]2.0.CO;2 10.1139/a06-006 10.1007/s10750-011-0978-8 10.1017/CBO9780511525575.007 10.1007/s10750-010-0470-x 10.1017/CBO9780511615146 10.1016/j.jembe.2009.07.027 10.1207/s15327906mbr0102_10 |
ContentType | Journal Article |
Copyright | Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2015 John Wiley & Sons, Ltd. – notice: Copyright © 2016 John Wiley & Sons, Ltd. |
DBID | BSCLL AAYXX CITATION 7QH 7SN 7SS 7ST 7UA C1K F1W H95 H96 L.G SOI 7S9 L.6 |
DOI | 10.1002/rra.2903 |
DatabaseName | Istex CrossRef Aqualine Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Entomology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1535-1467 |
EndPage | 855 |
ExternalDocumentID | 4087156811 10_1002_rra_2903 RRA2903 ark_67375_WNG_1GZKQ5MF_7 |
Genre | article |
GeographicLocations | USA, Louisiana, Atchafalaya R ASW, USA, Louisiana North America, Mississippi R USA, Louisiana, Atchafalaya R. basin Louisiana Mississippi River |
GeographicLocations_xml | – name: North America, Mississippi R – name: ASW, USA, Louisiana – name: USA, Louisiana, Atchafalaya R – name: USA, Louisiana, Atchafalaya R. basin – name: Mississippi River – name: Louisiana |
GrantInformation_xml | – fundername: U.S. Army Corps of Engineers |
GroupedDBID | ..I .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TWZ UB1 W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WUPDE WXSBR WYISQ XG1 XV2 Y6R ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7QH 7SN 7SS 7ST 7UA AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W H95 H96 L.G SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c3973-d57a4e87ce80ad2cb90e5044b399d5591b201b938c1aaed4516611282115ceca3 |
IEDL.DBID | DR2 |
ISSN | 1535-1459 |
IngestDate | Fri Jul 11 18:23:41 EDT 2025 Fri Jul 11 02:23:48 EDT 2025 Wed Aug 13 06:13:20 EDT 2025 Tue Jul 01 00:52:45 EDT 2025 Thu Apr 24 23:00:54 EDT 2025 Wed Jan 22 16:28:30 EST 2025 Wed Oct 30 09:48:59 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3973-d57a4e87ce80ad2cb90e5044b399d5591b201b938c1aaed4516611282115ceca3 |
Notes | istex:1089764E756B0313A3E298A9FCCB5761E0DE26E3 ark:/67375/WNG-1GZKQ5MF-7 U.S. Army Corps of Engineers ArticleID:RRA2903 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1795961867 |
PQPubID | 1046366 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1836675178 proquest_miscellaneous_1808704152 proquest_journals_1795961867 crossref_citationtrail_10_1002_rra_2903 crossref_primary_10_1002_rra_2903 wiley_primary_10_1002_rra_2903_RRA2903 istex_primary_ark_67375_WNG_1GZKQ5MF_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-06 June 2016 2016-06-00 20160601 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06 |
PublicationDecade | 2010 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | River research and applications |
PublicationTitleAlternate | River Res. Applic |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Poff NL, Ward JV. 1989. Implications of streamflow variability and predictability for lotic community structure: a regional analysis of streamflow patterns. Canadian Journal of Fisheries and Aquatic Sciences 46(10): 1805-1818 Pollock MS, Clarke LMJ, Dube MG. 2007. The effects of hypoxia on fishes: from ecological relevance to physiological effects. Environmental Reviews 15: 1-14. Hupp CR, Demas CR, Kroes DE, Day RH, Doyle TW. 2008. Recent sedimentation patterns within the central Atchafalaya Basin, Louisiana. Wetlands 16: 125-140. Battle JM, Mihuc TB. 2000. Decomposition dynamics of aquatic macrophytes in the lower Atchafalaya, a large floodplain river. Hydrobiologia 418: 123-136. Faraway JJ. 2006. Extending the Linear Model with R: Geneneralized Linear, Mixed Effect, and Nonparametric Regression Models. Chapman and Hall: Boca Raton, Florida. Ward JV, Stanford JA. 1995. Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. Regulated Rivers: Research and Management 11: 105-19. Kaller MD, Kelso WE, Halloran B, Rutherford DA. 2011. Effects of spatial scale on assessment of dissolved oxygen dynamics in the Atchafalaya River Basin, Louisiana. Hydrobiologia 658(1): 7-15 Bechara JA. 1996. The relative importance of water quality, sediment composition and floating vegetation in explaining the macrobenthic community structure of floodplain lakes (Paraná River, Argentina). Hydrobiologia 333: 95-109. Rejas D, Muylaert K, De Meester L. 2005. Nutrient limitation of bacteria and sources of nutrients supporting nutrient-limited bacterial growth in an Amazonian floodplain lake. Aquatic Microbial Ecology 39: 57-67. Gorski K, De Leeuw JJ, Winter HV, Vekhov DA, Minin AE, Buije AD, Nagelkerke LAJ. 2011. Fish recruitment in a large, temperate floodplain: the importance of annual flooding, temperature, and habitat complexity. Freshwater Biology 56: 2210-2225. Petry P, Bayley PB, Markle DF. 2003. Relationships between fish assemblages, macrophytes, and environmental gradients in the Amazon River floodplains. Journal of Fish Biology 63: 547-579. Lewis WM. 2000. Basis for the protection and management of tropical lakes. Lakes and Reservoirs: Research and Management 5: 34-48. Hirst CN, Jackson DA. 2007. Reconstructing community relationships: the impact of sampling error, ordination approach, and gradient length. Biodiversity Research 13: 361-371. King AJ, Tonkin Z, Lieshcke J. 2012. Short-term effects of a prolonged blackwater event on aquatic fauna in the Murray River, Australia: considerations for future events. Marine and Freshwater Research 63: 576-586. Burgess OT, Pine WE, Walsh SJ. 2013. Importance of floodplain connectivity to fish populations in the Apalachicola River, Florida. River Research and Applications 29: 718-733. Bayley PB. 1991. The flood-pulse advantage and the restoration of river-floodplain systems. Regulated Rivers: Research and Management 6: 75-86. Fontenot QC, Rutherford DA, Kelso WE. 2001. Effects of environmental hypoxia associated with the annual flood pulse on the distribution of larval sunfish and shad in the Atchafalaya River basin, Louisiana. Transactions of the American Fisheries Society 130: 107-116. Bunn SE, Arthington AH. 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30: 492-507. Gordon ND, McMahon TA, Finlayson BL, Gippel CJ, Nathan RJ. 2004. Stream Hydrology: An Introduction for Ecologists, 2nd edition. John Wiley & Sons Ltd., West Sussex, England. Robertson AI, Bunn SE, Boon PI, Walker KF. 1999. Sources, sinks and transformations of organic carbon in Australian floodplain rivers. Marine and Freshwater Research 50: 813-829 Humphries P, King AJ, Koehn JD. 1999. Fish, flows and flood plains: links between freshwater fishes and their environment in the Murray-Darling River system, Australia. Environmental Biology of Fishes 56: 129-151. Balcombe SR, Arthington AH, Foster ND, Thoms MC, Wilson GG, Bunn SE. 2006. Fish assemblages of a Australian dryland river: abundance, assemblage structure, and recruitment patterns in the Warrego River, Murray-Darling Basin. Marine and Freshwater Research 57: 619-633. Fisher SJ, Willis DW. 2000. Seasonal dynamics of aquatic fauna and habitat parameters in a perched upper Missouri River wetland. Wetlands 20: 470-478. Saint-Paul U, Soares GM. 1987. Diurnal distribution and behavioral responses of fishes to extreme hypoxia in an Amazon floodplain lake. Environmental Biology of Fishes 20: 91-104. Walley R. 2007. Community structure and habitat associations of native and introduced macrophytes in the Atchafalaya River Basin Louisiana, M. S Thesis, Louisiana State University. Baton Rouge, Louisiana. de Oliveira MD, Calheiros DF. 2000. Flood pulse influence on phytoplankton communities of the south Pantanal floodplain, Brazil. Hydrobiologia 427: 101-112. Kelso WE, Rutherford DA, Davidson N. 2003. Diel vertical migration of cladocerans and copepods in the Atchafalaya River Basin Floodplain. Journal of Freshwater Ecology 18(2): 259-268 Vanderploeg HA, Ludsin SA, Ruberg SA, Höök TO, Pothoven SA, Brandt SB, Land GA, Liebig JR, Cavaletto JF. 2009. Hypoxia affects spatial distributions and overlap of pelagic fish, zooplankton, and phytoplankton in Lake Erie. Journal of Experimental Marine Biology and Ecology 381: S92-S107. Whitworth KL, Baldwin DS, Kerr JL. 2012. Drought, floods and water quality: drivers of a severe hypoxic blackwater event in a major river system (the southern Murray-Darling Basin, Australia). Journal of Hydrology 450-451: 190-198. Stallins JA, Nesius M, Smith M, Watson K. 2010. Biogeomorphic characterization of floodplain forest change in response to reduced flows along the Apalachicola River, Florida. River Research and Applications 26: 242-260. Amoros C, Bornette G. 2002. Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater Biology 47: 761-776. Rutherford DA, Gelwicks KR, Kelso WE. 2001. Physicochemical effects of the flood pulse on fishes in the Atchafalaya River Basin, Louisiana. Transactions of the American Fisheries Society 130(2): 276-288. Schultz R, Dibble E. 2012. Effects of invasive macrophytes on freshwater fish and macroinvertebrate communities: the role of invasive plant traits. Hydrobiologia 684: 1-14. Alford JB, Walker MR. 2013. Managing the flood pulse for optimal fisheries production in the Atchafalaya River Basin, Louisiana (USA). River Research and Applications 29: 279-296. Townsend SA, Edwards CA. 2003. A fish kill event, hypoxia and other limnological impacts associated with early wet season flow into a lake on the Mary River floodplain, tropical northern Australia. Lakes and Reservoirs: Research and Management 8: 169-176. Schramm Jr. HL, Cox MS, Tietjen TE, Ezell AW. 2009. Nutrient dynamics in the lower Mississippi River floodplain: comparing present and historic hydrologic conditions. Wetlands 29: 476-489. Baldwin DS. 1999. Dissolved organic matter and phosphorus leached from fresh and 'terrestrially' aged river red gum leaves: implications for assessing river-floodplain interactions. Freshwater Biology 41: 675-685. Jackson DA. 1993. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74: 2204-2214. Beesley L, King AJ, Amstaetter F, Koehn JD, Gawne B, Price A, Nielsen DL, Vilizzi L, Meredith SN. 2012. Does flooding affect spatiotemporal variation of fish assemblages in temperate floodplain wetlands? Freshwater Biology 57: 2230-2246. Kroes DE, Kraemer TF. 2013. Human-induced stream channel abandonment/capture and filling of floodplain channels within the Atchafalaya River Basin, Louisiana. Geomorphology 201: 148-156. Howitt JA, Baldwin DS, Rees GN, Williams JL. 2007. Modelling blackwater: predicting water quality during flooding of lowland river forests. Ecological Modelling 203: 229-242. Sabo MJ, Bryan CF, Kelso WE, Rutherford DA. 1999a. Hydrology and aquatic habitat characteristics of a riverine swamp: I. influence of flow on water temperature and chemistry. Regulated Rivers: Research & Management 15(6): 505-523. Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD, Sparks RE, Stromberg JC. 1997. The Natural Flow Regime. BioScience 47(11): 769-784. Perna C, Burrows D. 2005. Improved dissolved oxygen status following removal of exotic weed mats in important fish habitat lagoons of the tropical Burdekin River floodplain, Australia. Marine Pollution Bulletin 51: 138-148. Farjalla VF. 2014. Are the mizing zones between aquatic ecosystems hot spots of bacterial production in the Amazon River system? Hydrobiologia 489: 197-205. Chapman LJ, Chapman CA, Nordlie FG, Rosenberger AE. 2002. Physiological refugia: swamps, hypoxia tolerance and maintenance of fish diversity in the Lake Victoria region. Comparative biochemistry and Physiology Part A 133: 421-437. Galat DL, Fredrickson LH, Humburg DD, Bataille KJ, Bodie JR, Dohrenwend J, Gelwicks GT, Havel JE, Helmers DL, Hooker JB, Jones JR, Knowlton MF, Kubisiak J, Mazourek J, McColpin AC, Renken RB, Semlitsch RD. 1998. Flooding to restore connectivity of regulated, large-river wetlands. BioScience 48:721-33. Tockner K, Schiemer F, Baumgartner C, Kum G, Weigand E, Zweimüller I, Ward JV. 1999. The Danube restoration project: species diversity patterns across connectivity gradients in the floodplain system Regulated Rivers. Research & Management 15(1-3): 245-258. DeLong ER, DeLong DM, Clarke-Pearson DL. 1988. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44: 837-845. King AJ, Humphries P, Lake PS. 2003. Fish recruitment on floodplains: The roles of patterns of flooding and life history characteristics. Canadian Journal of Fisheries and Aquatic Sciences 60: 773-786. Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM. 2009. Mixed effects models and extensions in ecology with R. Springer: New York, New York. Bonvillain CP, Rutherford DA, Kelso WE, Murphy CE. 2013. 2000; 418 1999b; 15 2013; 29 1998; 48 2012; 684 2000; 5 1997; 47 2000; 50 2013; 201 1999; 41 2011; 56 2003; 18 2012; 450–451 2012; 57 1989; 46 2013; 19 2002; 47 2010; 26 2001; 130 2000 1999; 15 2003; 8 1993; 74 1988; 44 1999; 56 2005; 308 1999; 50 1996; 333 2005; 39 2014; 489 1989 2012; 63 2007; 203 1966; 1 2004; 42 2011; 658 2002; 30 2006; 57 2002; 133 2008; 16 1995; 11 2000; 20 2009 2008 2007 2006 1995 1998; 379 2005 2004 2003 2007; 13 1991; 6 2007; 15 2009; 29 2012; 109 1987; 20 2000; 427 2005; 51 2009; 381 2014 2013 1999a; 15 2003; 60 2003; 63 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 Freeman MC (e_1_2_6_24_1) 2005 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_34_1 Colon‐Gaud JC (e_1_2_6_16_1) 2004; 42 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_41_1 e_1_2_6_60_1 Bonvillain CP (e_1_2_6_11_1) 2013; 19 e_1_2_6_9_1 Gordon ND (e_1_2_6_26_1) 2004 e_1_2_6_5_1 e_1_2_6_7_1 Faraway JJ (e_1_2_6_20_1) 2006 Junk W (e_1_2_6_35_1) 1989 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_45_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_12_1 e_1_2_6_33_1 Tockner K (e_1_2_6_62_1) 1999; 15 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_37_1 e_1_2_6_58_1 Hughes RM (e_1_2_6_30_1) 2005 e_1_2_6_63_1 e_1_2_6_42_1 Walley R (e_1_2_6_65_1) 2007 Hirst CN (e_1_2_6_28_1) 2007; 13 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – reference: Balcombe SR, Arthington AH, Foster ND, Thoms MC, Wilson GG, Bunn SE. 2006. Fish assemblages of a Australian dryland river: abundance, assemblage structure, and recruitment patterns in the Warrego River, Murray-Darling Basin. Marine and Freshwater Research 57: 619-633. – reference: Colon-Gaud JC, Kelso WE, Rutherford DA. 2004. Spatial distribution of macroinvertebrates inhabiting hydrilla and coontail beds in the Atchafalaya Basin, Louisiana. Journal of Aquatic Plant Management 42: 85-91. – reference: Nilsson C, Reidy CA, Dynesius M, Revenga C. 2005. Fragmentation and flow regulation of the world's large river systems. Science 308: 405-408. – reference: Ziv G, Baran E, Nam S, Rodriquez-Iturbe I, Levin SA. 2012. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proceedings of the National Academy of Sciences 109: 5609-5614. – reference: Sabo MJ, Bryan CF, Kelso WE, Rutherford DA. 1999b. Hydrology and aquatic habitat characteristics of a riverine swamp: II. hydrology and the occurrence of chronic hypoxia. Regulated Rivers: Research & Management 15(6): 525-544. – reference: Jackson DA. 1993. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74: 2204-2214. – reference: Alford JB, Walker MR. 2013. Managing the flood pulse for optimal fisheries production in the Atchafalaya River Basin, Louisiana (USA). River Research and Applications 29: 279-296. – reference: Schramm Jr. HL, Cox MS, Tietjen TE, Ezell AW. 2009. Nutrient dynamics in the lower Mississippi River floodplain: comparing present and historic hydrologic conditions. Wetlands 29: 476-489. – reference: Ward JV, Stanford JA. 1995. Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. Regulated Rivers: Research and Management 11: 105-19. – reference: Bonvillain CP, Rutherford DA, Kelso WE, Murphy CE. 2013. Biotic and abiotic influences on populatin characteristics of Procambarus clarkii in the Atchafalaya River Basin, Louisiana. Freshwater Crayfish 19: 125-136. – reference: Battle JM, Mihuc TB. 2000. Decomposition dynamics of aquatic macrophytes in the lower Atchafalaya, a large floodplain river. Hydrobiologia 418: 123-136. – reference: Howitt JA, Baldwin DS, Rees GN, Williams JL. 2007. Modelling blackwater: predicting water quality during flooding of lowland river forests. Ecological Modelling 203: 229-242. – reference: Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM. 2009. Mixed effects models and extensions in ecology with R. Springer: New York, New York. – reference: Humphries P, King AJ, Koehn JD. 1999. Fish, flows and flood plains: links between freshwater fishes and their environment in the Murray-Darling River system, Australia. Environmental Biology of Fishes 56: 129-151. – reference: Poff NL, Ward JV. 1989. Implications of streamflow variability and predictability for lotic community structure: a regional analysis of streamflow patterns. Canadian Journal of Fisheries and Aquatic Sciences 46(10): 1805-1818 – reference: Saint-Paul U, Soares GM. 1987. Diurnal distribution and behavioral responses of fishes to extreme hypoxia in an Amazon floodplain lake. Environmental Biology of Fishes 20: 91-104. – reference: Vanderploeg HA, Ludsin SA, Ruberg SA, Höök TO, Pothoven SA, Brandt SB, Land GA, Liebig JR, Cavaletto JF. 2009. Hypoxia affects spatial distributions and overlap of pelagic fish, zooplankton, and phytoplankton in Lake Erie. Journal of Experimental Marine Biology and Ecology 381: S92-S107. – reference: Tockner K, Schiemer F, Baumgartner C, Kum G, Weigand E, Zweimüller I, Ward JV. 1999. The Danube restoration project: species diversity patterns across connectivity gradients in the floodplain system Regulated Rivers. Research & Management 15(1-3): 245-258. – reference: Kelso WE, Rutherford DA, Davidson N. 2003. Diel vertical migration of cladocerans and copepods in the Atchafalaya River Basin Floodplain. Journal of Freshwater Ecology 18(2): 259-268 – reference: Bayley PB. 1991. The flood-pulse advantage and the restoration of river-floodplain systems. Regulated Rivers: Research and Management 6: 75-86. – reference: DeLong ER, DeLong DM, Clarke-Pearson DL. 1988. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44: 837-845. – reference: Hirst CN, Jackson DA. 2007. Reconstructing community relationships: the impact of sampling error, ordination approach, and gradient length. Biodiversity Research 13: 361-371. – reference: Townsend SA, Edwards CA. 2003. A fish kill event, hypoxia and other limnological impacts associated with early wet season flow into a lake on the Mary River floodplain, tropical northern Australia. Lakes and Reservoirs: Research and Management 8: 169-176. – reference: Sabo MJ, Bryan CF, Kelso WE, Rutherford DA. 1999a. Hydrology and aquatic habitat characteristics of a riverine swamp: I. influence of flow on water temperature and chemistry. Regulated Rivers: Research & Management 15(6): 505-523. – reference: Cattell RB. 1966. The scree test for the number of factors. Multivariate Behavioral Research 1: 629-637. – reference: Pollock MS, Clarke LMJ, Dube MG. 2007. The effects of hypoxia on fishes: from ecological relevance to physiological effects. Environmental Reviews 15: 1-14. – reference: Whitworth KL, Baldwin DS, Kerr JL. 2012. Drought, floods and water quality: drivers of a severe hypoxic blackwater event in a major river system (the southern Murray-Darling Basin, Australia). Journal of Hydrology 450-451: 190-198. – reference: Baldwin DS. 1999. Dissolved organic matter and phosphorus leached from fresh and 'terrestrially' aged river red gum leaves: implications for assessing river-floodplain interactions. Freshwater Biology 41: 675-685. – reference: Lepŝ J, Smilauer P. 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press: New York, New York. – reference: Amoros C, Bornette G. 2002. Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater Biology 47: 761-776. – reference: Farjalla VF. 2014. Are the mizing zones between aquatic ecosystems hot spots of bacterial production in the Amazon River system? Hydrobiologia 489: 197-205. – reference: Chapman LJ, Chapman CA, Nordlie FG, Rosenberger AE. 2002. Physiological refugia: swamps, hypoxia tolerance and maintenance of fish diversity in the Lake Victoria region. Comparative biochemistry and Physiology Part A 133: 421-437. – reference: Hupp CR, Demas CR, Kroes DE, Day RH, Doyle TW. 2008. Recent sedimentation patterns within the central Atchafalaya Basin, Louisiana. Wetlands 16: 125-140. – reference: Lewis WM. 2000. Basis for the protection and management of tropical lakes. Lakes and Reservoirs: Research and Management 5: 34-48. – reference: Fisher SJ, Willis DW. 2000. Seasonal dynamics of aquatic fauna and habitat parameters in a perched upper Missouri River wetland. Wetlands 20: 470-478. – reference: Galat DL, Fredrickson LH, Humburg DD, Bataille KJ, Bodie JR, Dohrenwend J, Gelwicks GT, Havel JE, Helmers DL, Hooker JB, Jones JR, Knowlton MF, Kubisiak J, Mazourek J, McColpin AC, Renken RB, Semlitsch RD. 1998. Flooding to restore connectivity of regulated, large-river wetlands. BioScience 48:721-33. – reference: Kaller MD, Kelso WE, Halloran B, Rutherford DA. 2011. Effects of spatial scale on assessment of dissolved oxygen dynamics in the Atchafalaya River Basin, Louisiana. Hydrobiologia 658(1): 7-15 – reference: Rejas D, Muylaert K, De Meester L. 2005. Nutrient limitation of bacteria and sources of nutrients supporting nutrient-limited bacterial growth in an Amazonian floodplain lake. Aquatic Microbial Ecology 39: 57-67. – reference: Bunn SE, Arthington AH. 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30: 492-507. – reference: Kroes DE, Kraemer TF. 2013. Human-induced stream channel abandonment/capture and filling of floodplain channels within the Atchafalaya River Basin, Louisiana. Geomorphology 201: 148-156. – reference: Davidson NL, Kelso WE, Rutherford DA. 1998. Relationship between environmental variables and the abundance of cladocerans and copepods in the Atchafalaya River Basin. Hydrobiologia 379: 175-181. – reference: Walley R. 2007. Community structure and habitat associations of native and introduced macrophytes in the Atchafalaya River Basin Louisiana, M. S Thesis, Louisiana State University. Baton Rouge, Louisiana. – reference: Pringle CM, Freeman MC, Freeman BJ. 2000. Regional effect of hydrologic alterations on riverine macrobiota in the new world: tropical-temperate comparisons. BioScience 50: 807-823 – reference: de Oliveira MD, Calheiros DF. 2000. Flood pulse influence on phytoplankton communities of the south Pantanal floodplain, Brazil. Hydrobiologia 427: 101-112. – reference: King AJ, Tonkin Z, Lieshcke J. 2012. Short-term effects of a prolonged blackwater event on aquatic fauna in the Murray River, Australia: considerations for future events. Marine and Freshwater Research 63: 576-586. – reference: Stallins JA, Nesius M, Smith M, Watson K. 2010. Biogeomorphic characterization of floodplain forest change in response to reduced flows along the Apalachicola River, Florida. River Research and Applications 26: 242-260. – reference: King AJ, Humphries P, Lake PS. 2003. Fish recruitment on floodplains: The roles of patterns of flooding and life history characteristics. Canadian Journal of Fisheries and Aquatic Sciences 60: 773-786. – reference: Bechara JA. 1996. The relative importance of water quality, sediment composition and floating vegetation in explaining the macrobenthic community structure of floodplain lakes (Paraná River, Argentina). Hydrobiologia 333: 95-109. – reference: Burgess OT, Pine WE, Walsh SJ. 2013. Importance of floodplain connectivity to fish populations in the Apalachicola River, Florida. River Research and Applications 29: 718-733. – reference: Perna C, Burrows D. 2005. Improved dissolved oxygen status following removal of exotic weed mats in important fish habitat lagoons of the tropical Burdekin River floodplain, Australia. Marine Pollution Bulletin 51: 138-148. – reference: Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD, Sparks RE, Stromberg JC. 1997. The Natural Flow Regime. BioScience 47(11): 769-784. – reference: Robertson AI, Bunn SE, Boon PI, Walker KF. 1999. Sources, sinks and transformations of organic carbon in Australian floodplain rivers. Marine and Freshwater Research 50: 813-829 – reference: Gorski K, De Leeuw JJ, Winter HV, Vekhov DA, Minin AE, Buije AD, Nagelkerke LAJ. 2011. Fish recruitment in a large, temperate floodplain: the importance of annual flooding, temperature, and habitat complexity. Freshwater Biology 56: 2210-2225. – reference: Petry P, Bayley PB, Markle DF. 2003. Relationships between fish assemblages, macrophytes, and environmental gradients in the Amazon River floodplains. Journal of Fish Biology 63: 547-579. – reference: Schultz R, Dibble E. 2012. Effects of invasive macrophytes on freshwater fish and macroinvertebrate communities: the role of invasive plant traits. Hydrobiologia 684: 1-14. – reference: Gordon ND, McMahon TA, Finlayson BL, Gippel CJ, Nathan RJ. 2004. Stream Hydrology: An Introduction for Ecologists, 2nd edition. John Wiley & Sons Ltd., West Sussex, England. – reference: Rutherford DA, Gelwicks KR, Kelso WE. 2001. Physicochemical effects of the flood pulse on fishes in the Atchafalaya River Basin, Louisiana. Transactions of the American Fisheries Society 130(2): 276-288. – reference: Beesley L, King AJ, Amstaetter F, Koehn JD, Gawne B, Price A, Nielsen DL, Vilizzi L, Meredith SN. 2012. Does flooding affect spatiotemporal variation of fish assemblages in temperate floodplain wetlands? Freshwater Biology 57: 2230-2246. – reference: Fontenot QC, Rutherford DA, Kelso WE. 2001. Effects of environmental hypoxia associated with the annual flood pulse on the distribution of larval sunfish and shad in the Atchafalaya River basin, Louisiana. Transactions of the American Fisheries Society 130: 107-116. – reference: Faraway JJ. 2006. Extending the Linear Model with R: Geneneralized Linear, Mixed Effect, and Nonparametric Regression Models. Chapman and Hall: Boca Raton, Florida. – start-page: 1 year: 2005 end-page: 12 – start-page: 91 year: 1995 end-page: 173 – year: 2009 – volume: 48 start-page: 721 year: 1998 end-page: 33 article-title: Flooding to restore connectivity of regulated, large‐river wetlands publication-title: BioScience – volume: 418 start-page: 123 year: 2000 end-page: 136 article-title: Decomposition dynamics of aquatic macrophytes in the lower Atchafalaya, a large floodplain river publication-title: Hydrobiologia – volume: 1 start-page: 629 year: 1966 end-page: 637 article-title: The scree test for the number of factors publication-title: Multivariate Behavioral Research – volume: 8 start-page: 169 year: 2003 end-page: 176 article-title: A fish kill event, hypoxia and other limnological impacts associated with early wet season flow into a lake on the Mary River floodplain, tropical northern Australia publication-title: Lakes and Reservoirs: Research and Management – volume: 379 start-page: 175 year: 1998 end-page: 181 article-title: Relationship between environmental variables and the abundance of cladocerans and copepods in the Atchafalaya River Basin publication-title: Hydrobiologia – volume: 18 start-page: 259 issue: 2 year: 2003 end-page: 268 article-title: Diel vertical migration of cladocerans and copepods in the Atchafalaya River Basin Floodplain publication-title: Journal of Freshwater Ecology – volume: 308 start-page: 405 year: 2005 end-page: 408 article-title: Fragmentation and flow regulation of the world's large river systems publication-title: Science – volume: 130 start-page: 276 issue: 2 year: 2001 end-page: 288 article-title: Physicochemical effects of the flood pulse on fishes in the Atchafalaya River Basin, Louisiana publication-title: Transactions of the American Fisheries Society – volume: 427 start-page: 101 year: 2000 end-page: 112 article-title: Flood pulse influence on phytoplankton communities of the south Pantanal floodplain, Brazil publication-title: Hydrobiologia – volume: 44 start-page: 837 year: 1988 end-page: 845 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics – volume: 658 start-page: 7 issue: 1 year: 2011 end-page: 15 article-title: Effects of spatial scale on assessment of dissolved oxygen dynamics in the Atchafalaya River Basin, Louisiana publication-title: Hydrobiologia – year: 2014 – volume: 20 start-page: 470 year: 2000 end-page: 478 article-title: Seasonal dynamics of aquatic fauna and habitat parameters in a perched upper Missouri River wetland publication-title: Wetlands – start-page: 242 year: 2000 end-page: 260 – start-page: 557 year: 2005 end-page: 585 – volume: 56 start-page: 2210 year: 2011 end-page: 2225 article-title: Fish recruitment in a large, temperate floodplain: the importance of annual flooding, temperature, and habitat complexity publication-title: Freshwater Biology – volume: 684 start-page: 1 year: 2012 end-page: 14 article-title: Effects of invasive macrophytes on freshwater fish and macroinvertebrate communities: the role of invasive plant traits publication-title: Hydrobiologia – volume: 333 start-page: 95 year: 1996 end-page: 109 article-title: The relative importance of water quality, sediment composition and floating vegetation in explaining the macrobenthic community structure of floodplain lakes (Paraná River, Argentina) publication-title: Hydrobiologia – volume: 39 start-page: 57 year: 2005 end-page: 67 article-title: Nutrient limitation of bacteria and sources of nutrients supporting nutrient‐limited bacterial growth in an Amazonian floodplain lake publication-title: Aquatic Microbial Ecology – volume: 29 start-page: 279 year: 2013 end-page: 296 article-title: Managing the flood pulse for optimal fisheries production in the Atchafalaya River Basin, Louisiana (USA) publication-title: River Research and Applications – volume: 41 start-page: 675 year: 1999 end-page: 685 article-title: Dissolved organic matter and phosphorus leached from fresh and ‘terrestrially’ aged river red gum leaves: implications for assessing river‐floodplain interactions publication-title: Freshwater Biology – volume: 203 start-page: 229 year: 2007 end-page: 242 article-title: Modelling blackwater: predicting water quality during flooding of lowland river forests publication-title: Ecological Modelling – volume: 63 start-page: 547 year: 2003 end-page: 579 article-title: Relationships between fish assemblages, macrophytes, and environmental gradients in the Amazon River floodplains publication-title: Journal of Fish Biology – volume: 46 start-page: 1805 issue: 10 year: 1989 end-page: 1818 article-title: Implications of streamflow variability and predictability for lotic community structure: a regional analysis of streamflow patterns publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 26 start-page: 242 year: 2010 end-page: 260 article-title: Biogeomorphic characterization of floodplain forest change in response to reduced flows along the Apalachicola River, Florida publication-title: River Research and Applications – volume: 6 start-page: 75 year: 1991 end-page: 86 article-title: The flood‐pulse advantage and the restoration of river‐floodplain systems publication-title: Regulated Rivers: Research and Management – volume: 133 start-page: 421 year: 2002 end-page: 437 article-title: Physiological refugia: swamps, hypoxia tolerance and maintenance of fish diversity in the Lake Victoria region publication-title: Comparative biochemistry and Physiology Part A – year: 2004 – volume: 19 start-page: 125 year: 2013 end-page: 136 article-title: Biotic and abiotic influences on populatin characteristics of Procambarus clarkii in the Atchafalaya River Basin, Louisiana publication-title: Freshwater Crayfish – volume: 57 start-page: 2230 year: 2012 end-page: 2246 article-title: Does flooding affect spatiotemporal variation of fish assemblages in temperate floodplain wetlands? publication-title: Freshwater Biology – volume: 201 start-page: 148 year: 2013 end-page: 156 article-title: Human‐induced stream channel abandonment/capture and filling of floodplain channels within the Atchafalaya River Basin, Louisiana publication-title: Geomorphology – volume: 15 start-page: 245 issue: 1–3 year: 1999 end-page: 258 article-title: The Danube restoration project: species diversity patterns across connectivity gradients in the floodplain system Regulated Rivers publication-title: Research & Management – volume: 15 start-page: 1 year: 2007 end-page: 14 article-title: The effects of hypoxia on fishes: from ecological relevance to physiological effects publication-title: Environmental Reviews – volume: 30 start-page: 492 year: 2002 end-page: 507 article-title: Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity publication-title: Environmental Management – volume: 57 start-page: 619 year: 2006 end-page: 633 article-title: Fish assemblages of a Australian dryland river: abundance, assemblage structure, and recruitment patterns in the Warrego River, Murray‐Darling Basin publication-title: Marine and Freshwater Research – volume: 56 start-page: 129 year: 1999 end-page: 151 article-title: Fish, flows and flood plains: links between freshwater fishes and their environment in the Murray‐Darling River system, Australia publication-title: Environmental Biology of Fishes – volume: 489 start-page: 197 year: 2014 end-page: 205 article-title: Are the mizing zones between aquatic ecosystems hot spots of bacterial production in the Amazon River system? publication-title: Hydrobiologia – volume: 11 start-page: 105 year: 1995 end-page: 19 article-title: Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation publication-title: Regulated Rivers: Research and Management – volume: 15 start-page: 505 issue: 6 year: 1999a end-page: 523 article-title: Hydrology and aquatic habitat characteristics of a riverine swamp: I. influence of flow on water temperature and chemistry publication-title: Regulated Rivers: Research & Management – start-page: 2008 year: 2008 end-page: 1320 – volume: 130 start-page: 107 year: 2001 end-page: 116 article-title: Effects of environmental hypoxia associated with the annual flood pulse on the distribution of larval sunfish and shad in the Atchafalaya River basin, Louisiana publication-title: Transactions of the American Fisheries Society – volume: 50 start-page: 807 year: 2000 end-page: 823 article-title: Regional effect of hydrologic alterations on riverine macrobiota in the new world: tropical‐temperate comparisons publication-title: BioScience – year: 2007 – year: 2003 – volume: 47 start-page: 761 year: 2002 end-page: 776 article-title: Connectivity and biocomplexity in waterbodies of riverine floodplains publication-title: Freshwater Biology – volume: 450–451 start-page: 190 year: 2012 end-page: 198 article-title: Drought, floods and water quality: drivers of a severe hypoxic blackwater event in a major river system (the southern Murray‐Darling Basin, Australia) publication-title: Journal of Hydrology – volume: 60 start-page: 773 year: 2003 end-page: 786 article-title: Fish recruitment on floodplains: The roles of patterns of flooding and life history characteristics publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 381 start-page: S92 year: 2009 end-page: S107 article-title: Hypoxia affects spatial distributions and overlap of pelagic fish, zooplankton, and phytoplankton in Lake Erie publication-title: Journal of Experimental Marine Biology and Ecology – volume: 13 start-page: 361 year: 2007 end-page: 371 article-title: Reconstructing community relationships: the impact of sampling error, ordination approach, and gradient length publication-title: Biodiversity Research – start-page: 110 year: 1989 end-page: 127 – volume: 5 start-page: 34 year: 2000 end-page: 48 article-title: Basis for the protection and management of tropical lakes publication-title: Lakes and Reservoirs: Research and Management – volume: 29 start-page: 718 year: 2013 end-page: 733 article-title: Importance of floodplain connectivity to fish populations in the Apalachicola River, Florida publication-title: River Research and Applications – volume: 20 start-page: 91 year: 1987 end-page: 104 article-title: Diurnal distribution and behavioral responses of fishes to extreme hypoxia in an Amazon floodplain lake publication-title: Environmental Biology of Fishes – volume: 47 start-page: 769 issue: 11 year: 1997 end-page: 784 article-title: The Natural Flow Regime publication-title: BioScience – volume: 109 start-page: 5609 year: 2012 end-page: 5614 article-title: Trading‐off fish biodiversity, food security, and hydropower in the Mekong River Basin publication-title: Proceedings of the National Academy of Sciences – year: 2006 – volume: 16 start-page: 125 year: 2008 end-page: 140 article-title: Recent sedimentation patterns within the central Atchafalaya Basin, Louisiana publication-title: Wetlands – volume: 51 start-page: 138 year: 2005 end-page: 148 article-title: Improved dissolved oxygen status following removal of exotic weed mats in important fish habitat lagoons of the tropical Burdekin River floodplain, Australia publication-title: Marine Pollution Bulletin – volume: 63 start-page: 576 year: 2012 end-page: 586 article-title: Short‐term effects of a prolonged blackwater event on aquatic fauna in the Murray River, Australia: considerations for future events publication-title: Marine and Freshwater Research – volume: 15 start-page: 525 issue: 6 year: 1999b end-page: 544 article-title: Hydrology and aquatic habitat characteristics of a riverine swamp: II. hydrology and the occurrence of chronic hypoxia publication-title: Regulated Rivers: Research & Management – volume: 74 start-page: 2204 year: 1993 end-page: 2214 article-title: Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches publication-title: Ecology – volume: 29 start-page: 476 year: 2009 end-page: 489 article-title: Nutrient dynamics in the lower Mississippi River floodplain: comparing present and historic hydrologic conditions publication-title: Wetlands – volume: 42 start-page: 85 year: 2004 end-page: 91 article-title: Spatial distribution of macroinvertebrates inhabiting hydrilla and coontail beds in the Atchafalaya Basin, Louisiana publication-title: Journal of Aquatic Plant Management – year: 2013 – volume: 50 start-page: 813 year: 1999 end-page: 829 article-title: Sources, sinks and transformations of organic carbon in Australian floodplain rivers publication-title: Marine and Freshwater Research – ident: e_1_2_6_8_1 doi: 10.1002/rrr.3450060203 – ident: e_1_2_6_23_1 doi: 10.1577/1548-8659(2001)130<0107:EOEHAW>2.0.CO;2 – ident: e_1_2_6_25_1 doi: 10.2307/1313335 – ident: e_1_2_6_56_1 doi: 10.1002/(SICI)1099-1646(199911/12)15:6<525::AID-RRR554>3.0.CO;2-Q – ident: e_1_2_6_58_1 doi: 10.1672/08-62.1 – ident: e_1_2_6_48_1 doi: 10.2307/1313099 – ident: e_1_2_6_49_1 doi: 10.1139/f89-228 – start-page: 110 volume-title: Proceedings of the International Large River Symposium year: 1989 ident: e_1_2_6_35_1 – ident: e_1_2_6_66_1 doi: 10.1002/rrr.3450110109 – ident: e_1_2_6_34_1 doi: 10.1002/9780470696026.ch17 – ident: e_1_2_6_69_1 doi: 10.1007/978-0-387-87458-6 – ident: e_1_2_6_47_1 doi: 10.1111/rec.12120 – ident: e_1_2_6_29_1 doi: 10.1016/j.ecolmodel.2006.11.017 – ident: e_1_2_6_43_1 doi: 10.1126/science.1107887 – volume: 13 start-page: 361 year: 2007 ident: e_1_2_6_28_1 article-title: Reconstructing community relationships: the impact of sampling error, ordination approach, and gradient length publication-title: Biodiversity Research – ident: e_1_2_6_42_1 doi: 10.1046/j.1440-1770.2000.00091.x – ident: e_1_2_6_37_1 doi: 10.1080/02705060.2003.9664492 – ident: e_1_2_6_68_1 doi: 10.1073/pnas.1201423109 – ident: e_1_2_6_18_1 doi: 10.1023/A:1003951930525 – ident: e_1_2_6_27_1 doi: 10.1111/j.1365-2427.2011.02647.x – ident: e_1_2_6_31_1 doi: 10.1023/A:1007536009916 – ident: e_1_2_6_46_1 doi: 10.1590/S1679-62252013005000008 – volume-title: Extending the Linear Model with R: Geneneralized Linear, Mixed Effect, and Nonparametric Regression Models year: 2006 ident: e_1_2_6_20_1 – volume: 42 start-page: 85 year: 2004 ident: e_1_2_6_16_1 article-title: Spatial distribution of macroinvertebrates inhabiting hydrilla and coontail beds in the Atchafalaya Basin, Louisiana publication-title: Journal of Aquatic Plant Management – ident: e_1_2_6_38_1 doi: 10.1139/f03-057 – ident: e_1_2_6_44_1 doi: 10.1016/j.marpolbul.2004.10.050 – ident: e_1_2_6_67_1 doi: 10.1016/j.jhydrol.2012.04.057 – volume: 15 start-page: 245 issue: 1 year: 1999 ident: e_1_2_6_62_1 article-title: The Danube restoration project: species diversity patterns across connectivity gradients in the floodplain system Regulated Rivers publication-title: Research & Management – ident: e_1_2_6_5_1 doi: 10.1071/MF06025 – volume: 19 start-page: 125 year: 2013 ident: e_1_2_6_11_1 article-title: Biotic and abiotic influences on populatin characteristics of Procambarus clarkii in the Atchafalaya River Basin, Louisiana publication-title: Freshwater Crayfish – ident: e_1_2_6_3_1 doi: 10.3133/ofr20081320 – ident: e_1_2_6_40_1 doi: 10.1016/j.geomorph.2013.06.016 – ident: e_1_2_6_6_1 doi: 10.1046/j.1365-2427.1999.00404.x – ident: e_1_2_6_12_1 doi: 10.1007/s00267-002-2737-0 – ident: e_1_2_6_63_1 doi: 10.1111/j.1440-1770.2003.00222.x – start-page: 557 volume-title: Historical Changees in Large River Fish Assemblages of the Americas year: 2005 ident: e_1_2_6_24_1 – ident: e_1_2_6_60_1 doi: 10.1002/rra.1251 – volume-title: Community structure and habitat associations of native and introduced macrophytes in the Atchafalaya River Basin Louisiana year: 2007 ident: e_1_2_6_65_1 – ident: e_1_2_6_21_1 doi: 10.1023/A:1023288922394 – ident: e_1_2_6_52_1 doi: 10.3354/ame039057 – ident: e_1_2_6_4_1 doi: 10.1046/j.1365-2427.2002.00905.x – ident: e_1_2_6_13_1 doi: 10.1002/rra.2567 – ident: e_1_2_6_45_1 doi: 10.1046/j.1095-8649.2003.00169.x – ident: e_1_2_6_32_1 doi: 10.1672/06-132.1 – start-page: 1 volume-title: Historical Changees in Large River Fish Assemblages of the Americas year: 2005 ident: e_1_2_6_30_1 – ident: e_1_2_6_53_1 doi: 10.1071/MF99112 – ident: e_1_2_6_55_1 doi: 10.1002/(SICI)1099-1646(199911/12)15:6<505::AID-RRR553>3.0.CO;2-V – ident: e_1_2_6_22_1 doi: 10.1672/0277-5212(2000)020<0470:SDOAFA>2.0.CO;2 – ident: e_1_2_6_9_1 doi: 10.1007/BF00017572 – ident: e_1_2_6_19_1 doi: 10.2307/2531595 – ident: e_1_2_6_2_1 doi: 10.1002/rra.1610 – ident: e_1_2_6_17_1 doi: 10.1023/A:1003488332055 – ident: e_1_2_6_7_1 doi: 10.1023/A:1003856103586 – ident: e_1_2_6_33_1 doi: 10.2307/1939574 – ident: e_1_2_6_54_1 doi: 10.1577/1548-8659(2001)130<0276:PEOTFP>2.0.CO;2 – ident: e_1_2_6_57_1 doi: 10.1007/BF00005289 – ident: e_1_2_6_10_1 doi: 10.1111/j.1365-2427.2012.02865.x – ident: e_1_2_6_15_1 doi: 10.1016/S1095-6433(02)00195-2 – ident: e_1_2_6_39_1 doi: 10.1071/MF11275 – ident: e_1_2_6_51_1 doi: 10.1641/0006-3568(2000)050[0807:REOHAO]2.0.CO;2 – volume-title: Stream Hydrology: An Introduction for Ecologists year: 2004 ident: e_1_2_6_26_1 – ident: e_1_2_6_50_1 doi: 10.1139/a06-006 – ident: e_1_2_6_59_1 doi: 10.1007/s10750-011-0978-8 – ident: e_1_2_6_61_1 doi: 10.1017/CBO9780511525575.007 – ident: e_1_2_6_36_1 doi: 10.1007/s10750-010-0470-x – ident: e_1_2_6_41_1 doi: 10.1017/CBO9780511615146 – ident: e_1_2_6_64_1 doi: 10.1016/j.jembe.2009.07.027 – ident: e_1_2_6_14_1 doi: 10.1207/s15327906mbr0102_10 |
SSID | ssj0017898 |
Score | 2.2173817 |
Snippet | The Atchafalaya River Basin Floodway (ARBF), a regulated river/floodplain distributary of the Mississippi River, experiences an annual flood pulse that... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 845 |
SubjectTerms | Atchafalaya River data collection engineering fisheries flood pulse floodplain Floodplains Floods Floodways Freshwater general additive model Geographic information systems Hypoxia linear models Louisiana Mississippi River Physicochemical properties prediction principal component analysis Principal components analysis probability regression analysis Remote sensing River basins River regulations Rivers spatial data Water management Water temperature watersheds |
Title | Predicting Floodplain Hypoxia in the Atchafalaya River, Louisiana, USA, a Large, Regulated Southern Floodplain River System |
URI | https://api.istex.fr/ark:/67375/WNG-1GZKQ5MF-7/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frra.2903 https://www.proquest.com/docview/1795961867 https://www.proquest.com/docview/1808704152 https://www.proquest.com/docview/1836675178 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQe4EDlJfYUpArIbhstnk5j-MKsV1BW0FgRQUHa-JMpFVX2VW6K7Xw55lxHmwRIMQpkTyOHHvG-Rx__kaIF16pfFSYOuwwThgV6KRJiI5f-ikagsAe8nnn07NoOgvfnqvzllXJZ2EafYj-hxtHhp2vOcAhvzz6KRpa1zDyUyv0yVQtxkNZrxzlxYlNg0vxrBwvVGmnO-v6R13FG1-iXe7Uqxswcxus2q_N5J742rWzIZlcjDbrfGS-_SLh-H8vsifutiBUjhuvuS9uYfVA3NmSJnwovr-veQuHSdFywuT21QLmlZxer5ZXc5B0S8hRjmnMoYQFXIPMmOExlCfLzZwPZsJQzj6OhxLkCZPNhzJrst5jIW3aPqyr7Qfb2rLRT38kZpM3n15PnTZRg2MIzgROoWIIMYkNJi4UvslTF5Ubhjmhn4KWLF5OMCNPg8R4AFhwbuCIcF5Ci09l0EDwWOxUywqfMNMqd0vE0gXCHWDiNALfzYFAlCqVCqKBeNUNmjatijkn01joRn_Z19SdmrtzIA57y1Wj3PEbm5d23HsDqC-Y6RYr_fnsWHvHX959UKcTHQ_EQecYug3yS-1xnnbON0DFh30xhSfvuUCFyw3ZJC7NiIyS_mYTRLRuI5-l9lhP-WODdZaN-br_r4ZPxW3q-6ghtx2InXW9wWcEo9b5cxswPwBWVBjA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELem7QF44BtRGOBJCF6aLl_Oh3iqgK6wtoKwimlCsi7ORapWpVVopQ3-ee6SJnQIEOIpkXyOHPvO_jk5_35CPHdy5aLC2GKHsfwgQyuOfLTc3I3REAR2kM87jyfBcOq_P1WnO-JVcxam5odoP7hxZFTzNQc4f5A-_MkaWpbQc2Nm-txjQW8mzn-TtNxRThhVQrgU0cpyfBU3zLO2e9jUvLIW7XG3XlwBmttwtVpvBrfEl6aldZrJeW-9Snvm2y8kjv_5KrfFzQ0Olf3ace6IHSzuihtb7IT3xPcPJf_F4bxoOeD89uUcZoUcXi4XFzOQdEvgUfZp2CGHOVyCTDjJoytHi_WMz2ZCV04_9bsS5IjzzbsyqYXvMZOVch-WxfaDq9qyplC_L6aDtyevh9ZGq8EyhGg8K1Mh-BiFBiMbMteksY3K9v2UAFBGuxYnJaSRxl5kHADMWB44IKgX0f5TGTTgPRC7xaLAh5xsldo5Ym4DQQ8wYRyAa6dAOErlSnlBR7xsRk2bDZE562nMdU3B7GrqTs3d2REHreWyJu_4jc2LauBbAyjPOdktVPrz5Eg7R2fHH9V4oMOO2G88Q2_i_Kt2WKqdJQeo-KAtpgjl3y5Q4GJNNpFNkyIDpb_ZeAFt3chpqT2Vq_yxwTpJ-nx99K-Gz8S14cl4pEfvJsePxXUah6DOddsXu6tyjU8IVa3Sp1X0_ADPRxzc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF2hVkLwwB0RKLCVELzEqW_ry2NEcQNNoxKIqOBhNV6PpaiRE5lEauHnmfGNFAFCPNmSx9Z6d8Y-a589R4gXTq5cVBhbnDCWH2RoxZGPlpu7MRqCwA7yeueTSTCa-e_O1FnDquS1MLU-RPfBjSujel5zga-y_OCnaGhZwsCNWehz1w_smG0bDqeddJQTRpUPLhW0shxfxa3wrO0etGdeeRXtcq9eXMGZ22i1et0kt8WXtqE1y-R8sFmnA_PtFw3H_7uTO-JWg0LlsE6bu-IaFvfEzS1twvvi-2nJ_3CYFS0TZrevFjAv5OhytbyYg6Rdgo5ySIMOOSzgEuSUKR59OV5u5rwyE_py9mHYlyDHzDbvy2lte4-ZrHz7sCy2L1ydLWsB9Qdilrz5-HpkNU4NliE841mZCsHHKDQY2ZC5Jo1tVLbvpwR_MpqzOCnhjDT2IuMAYMbmwAEBvYhmn8qgAe-h2CmWBT5iqlVq54i5DQQ8wIRxAK6dAqEolSvlBT3xqh00bRoZc3bTWOhagNnV1J2au7Mn9rvIVS3d8ZuYl9W4dwFQnjPVLVT60-RIO0efj9-rk0SHPbHXJoZuqvyrdtionQ0H6PB-d5jqk3-6QIHLDcVENj0SGSb9LcYLaOJGOUvtqTLljw3W0-mQt4__NfC5uH56mOjx28nxE3GDhiGoiW57YmddbvApQap1-qyqnR9llBuL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Floodplain+Hypoxia+in+the+Atchafalaya+River%2C+Louisiana%2C+USA%2C+a+Large%2C+Regulated+Southern+Floodplain+River+System&rft.jtitle=River+research+and+applications&rft.au=Pasco%2C+T.+E.&rft.au=Kaller%2C+M.+D.&rft.au=Harlan%2C+R.&rft.au=Kelso%2C+W.+E.&rft.date=2016-06-01&rft.issn=1535-1459&rft.eissn=1535-1467&rft.volume=32&rft.issue=5&rft.spage=845&rft.epage=855&rft_id=info:doi/10.1002%2Frra.2903&rft.externalDBID=10.1002%252Frra.2903&rft.externalDocID=RRA2903 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-1459&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-1459&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-1459&client=summon |