Advances in cardiac tissue engineering and heart‐on‐a‐chip

Recent advances in both cardiac tissue engineering and hearts‐on‐a‐chip are grounded in new biomaterial development as well as the employment of innovative fabrication techniques that enable precise control of the mechanical, electrical, and structural properties of the cardiac tissues being modelle...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical materials research. Part A Vol. 112; no. 4; pp. 492 - 511
Main Authors Kieda, Jennifer, Shakeri, Amid, Landau, Shira, Wang, Erika Yan, Zhao, Yimu, Lai, Benjamin Fook, Okhovatian, Sargol, Wang, Ying, Jiang, Richard, Radisic, Milica
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.04.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent advances in both cardiac tissue engineering and hearts‐on‐a‐chip are grounded in new biomaterial development as well as the employment of innovative fabrication techniques that enable precise control of the mechanical, electrical, and structural properties of the cardiac tissues being modelled. The elongated structure of cardiomyocytes requires tuning of substrate properties and application of biophysical stimuli to drive its mature phenotype. Landmark advances have already been achieved with induced pluripotent stem cell‐derived cardiac patches that advanced to human testing. Heart‐on‐a‐chip platforms are now commonly used by a number of pharmaceutical and biotechnology companies. Here, we provide an overview of cardiac physiology in order to better define the requirements for functional tissue recapitulation. We then discuss the biomaterials most commonly used in both cardiac tissue engineering and heart‐on‐a‐chip, followed by the discussion of recent representative studies in both fields. We outline significant challenges common to both fields, specifically: scalable tissue fabrication and platform standardization, improving cellular fidelity through effective tissue vascularization, achieving adult tissue maturation, and ultimately developing cryopreservation protocols so that the tissues are available off the shelf.
AbstractList Recent advances in both cardiac tissue engineering and hearts‐on‐a‐chip are grounded in new biomaterial development as well as the employment of innovative fabrication techniques that enable precise control of the mechanical, electrical, and structural properties of the cardiac tissues being modelled. The elongated structure of cardiomyocytes requires tuning of substrate properties and application of biophysical stimuli to drive its mature phenotype. Landmark advances have already been achieved with induced pluripotent stem cell‐derived cardiac patches that advanced to human testing. Heart‐on‐a‐chip platforms are now commonly used by a number of pharmaceutical and biotechnology companies. Here, we provide an overview of cardiac physiology in order to better define the requirements for functional tissue recapitulation. We then discuss the biomaterials most commonly used in both cardiac tissue engineering and heart‐on‐a‐chip, followed by the discussion of recent representative studies in both fields. We outline significant challenges common to both fields, specifically: scalable tissue fabrication and platform standardization, improving cellular fidelity through effective tissue vascularization, achieving adult tissue maturation, and ultimately developing cryopreservation protocols so that the tissues are available off the shelf.
Abstract Recent advances in both cardiac tissue engineering and hearts‐on‐a‐chip are grounded in new biomaterial development as well as the employment of innovative fabrication techniques that enable precise control of the mechanical, electrical, and structural properties of the cardiac tissues being modelled. The elongated structure of cardiomyocytes requires tuning of substrate properties and application of biophysical stimuli to drive its mature phenotype. Landmark advances have already been achieved with induced pluripotent stem cell‐derived cardiac patches that advanced to human testing. Heart‐on‐a‐chip platforms are now commonly used by a number of pharmaceutical and biotechnology companies. Here, we provide an overview of cardiac physiology in order to better define the requirements for functional tissue recapitulation. We then discuss the biomaterials most commonly used in both cardiac tissue engineering and heart‐on‐a‐chip, followed by the discussion of recent representative studies in both fields. We outline significant challenges common to both fields, specifically: scalable tissue fabrication and platform standardization, improving cellular fidelity through effective tissue vascularization, achieving adult tissue maturation, and ultimately developing cryopreservation protocols so that the tissues are available off the shelf.
Recent advances in both cardiac tissue engineering and hearts-on-a-chip are grounded in new biomaterial development as well as the employment of innovative fabrication techniques that enable precise control of the mechanical, electrical, and structural properties of the cardiac tissues being modelled. The elongated structure of cardiomyocytes requires tuning of substrate properties and application of biophysical stimuli to drive its mature phenotype. Landmark advances have already been achieved with induced pluripotent stem cell-derived cardiac patches that advanced to human testing. Heart-on-a-chip platforms are now commonly used by a number of pharmaceutical and biotechnology companies. Here, we provide an overview of cardiac physiology in order to better define the requirements for functional tissue recapitulation. We then discuss the biomaterials most commonly used in both cardiac tissue engineering and heart-on-a-chip, followed by the discussion of recent representative studies in both fields. We outline significant challenges common to both fields, specifically: scalable tissue fabrication and platform standardization, improving cellular fidelity through effective tissue vascularization, achieving adult tissue maturation, and ultimately developing cryopreservation protocols so that the tissues are available off the shelf.Recent advances in both cardiac tissue engineering and hearts-on-a-chip are grounded in new biomaterial development as well as the employment of innovative fabrication techniques that enable precise control of the mechanical, electrical, and structural properties of the cardiac tissues being modelled. The elongated structure of cardiomyocytes requires tuning of substrate properties and application of biophysical stimuli to drive its mature phenotype. Landmark advances have already been achieved with induced pluripotent stem cell-derived cardiac patches that advanced to human testing. Heart-on-a-chip platforms are now commonly used by a number of pharmaceutical and biotechnology companies. Here, we provide an overview of cardiac physiology in order to better define the requirements for functional tissue recapitulation. We then discuss the biomaterials most commonly used in both cardiac tissue engineering and heart-on-a-chip, followed by the discussion of recent representative studies in both fields. We outline significant challenges common to both fields, specifically: scalable tissue fabrication and platform standardization, improving cellular fidelity through effective tissue vascularization, achieving adult tissue maturation, and ultimately developing cryopreservation protocols so that the tissues are available off the shelf.
Author Wang, Erika Yan
Landau, Shira
Shakeri, Amid
Kieda, Jennifer
Wang, Ying
Jiang, Richard
Lai, Benjamin Fook
Zhao, Yimu
Radisic, Milica
Okhovatian, Sargol
Author_xml – sequence: 1
  givenname: Jennifer
  orcidid: 0000-0003-4748-3460
  surname: Kieda
  fullname: Kieda, Jennifer
  email: jennifer.kieda@mail.utoronto.ca
  organization: University of Toronto
– sequence: 2
  givenname: Amid
  orcidid: 0000-0002-4534-382X
  surname: Shakeri
  fullname: Shakeri, Amid
  organization: University of Toronto
– sequence: 3
  givenname: Shira
  surname: Landau
  fullname: Landau, Shira
  organization: University of Toronto
– sequence: 4
  givenname: Erika Yan
  surname: Wang
  fullname: Wang, Erika Yan
  organization: Massachusetts Institute of Technology
– sequence: 5
  givenname: Yimu
  orcidid: 0000-0001-8265-8647
  surname: Zhao
  fullname: Zhao, Yimu
  email: yimu.zhao@mail.utoronto.ca
  organization: University Health Network
– sequence: 6
  givenname: Benjamin Fook
  surname: Lai
  fullname: Lai, Benjamin Fook
  organization: University of Toronto
– sequence: 7
  givenname: Sargol
  orcidid: 0000-0002-2565-7397
  surname: Okhovatian
  fullname: Okhovatian, Sargol
  organization: University of Toronto
– sequence: 8
  givenname: Ying
  orcidid: 0000-0001-6749-3848
  surname: Wang
  fullname: Wang, Ying
  organization: University of Toronto
– sequence: 9
  givenname: Richard
  surname: Jiang
  fullname: Jiang, Richard
  organization: University of Toronto
– sequence: 10
  givenname: Milica
  orcidid: 0000-0003-1249-4135
  surname: Radisic
  fullname: Radisic, Milica
  email: m.radisic@utoronto.ca
  organization: University of Toronto
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37909362$$D View this record in MEDLINE/PubMed
BookMark eNp9kLtOwzAUhi1UBOUysaNILEgoxTmOnXijVFwFYoHZcpwTcNU6xW5A3XgEnpEnwaXAwMBwLsOnT-f8W6TnWoeE7GV0kFEKx-NqOtADVgjG1kg_4xzSXAreW-65TBlIsUm2QhhHWFAOG2STFZJKJqBPTob1i3YGQ2JdYrSvrTbJ3IbQYYLu0TpEb91jol2dPKH284-399bFpmOZJzvbIeuNngTc_Z7b5OH87H50md7cXVyNhjepYbJgaYaQZ6XBHGgjuGA8xwa0KXmpDRSQ16aSAEJKWkota5S1hqaWssqqpqTxt21yuPLOfPvcYZirqQ0GJxPtsO2CgrLkQEVR0oge_EHHbeddvE6BBMEhL7Kl8GhFGd-G4LFRM2-n2i9URtUyWBWDVVp9BRvp_W9nV02x_mV_kowArIBXO8HFfy51fXo7XFk_AbBHhjw
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2024_133515
crossref_primary_10_3390_biomedicines12061190
crossref_primary_10_3389_fbioe_2024_1385124
Cites_doi 10.1038/s41467-017-01946-x
10.1021/acscentsci.9b00052
10.1002/mabi.202100022
10.1080/10426914.2020.1832691
10.1038/nbt1287
10.1016/j.cell.2018.11.042
10.1152/physrev.00017.2002
10.1152/ajpheart.00171.2003
10.1016/j.compscitech.2012.10.014
10.1161/01.CIR.71.5.994
10.1161/hh0202.103644
10.1039/C7CC01988B
10.1002/mabi.200800041
10.1021/acsapm.1c00017
10.1093/nar/gkr218
10.1021/acsbiomaterials.5b00525
10.1016/j.jddst.2020.101554
10.1016/j.stem.2023.04.010
10.1056/NEJMoa0908679
10.1073/pnas.0407817101
10.3390/ma15186478
10.3389/fphys.2023.1060666
10.1038/s41598-020-76062-w
10.1038/s41598-017-05600-w
10.1002/adhm.201500725
10.1021/nl502227a
10.1161/01.RES.0000257776.05673.ff
10.1021/acscentsci.9b01097
10.1007/s00216-018-1106-7
10.1039/c001605e
10.1002/advs.201900344
10.1039/c3lc50350j
10.1007/s42242-020-00109-0
10.1089/ten.2006.12.2077
10.1038/s41598-020-62955-3
10.3390/ma12172808
10.1002/adhm.201801187
10.1126/science.aal2379
10.1016/j.msec.2016.03.035
10.1039/D0TB00768D
10.1172/JCI40435
10.1016/j.mee.2010.12.108
10.1039/c1lc20557a
10.1039/D0LC00316F
10.1002/jbm.a.30607
10.1002/adma.200306264
10.3390/polym13091527
10.1016/j.snb.2017.01.161
10.1016/j.biomaterials.2005.11.037
10.1002/adfm.201203319
10.1073/pnas.1311120110
10.1002/admt.202000726
10.1016/j.ijbiomac.2019.08.046
10.1016/j.bbrc.2016.11.062
10.1038/s41586-020-2797-4
10.1016/j.yjmcc.2014.05.009
10.1113/JP274787
10.1016/j.stemcr.2017.09.008
10.1111/bph.13577
10.1089/ten.tec.2019.0248
10.1038/s42003-021-02650-9
10.1021/acsbiomaterials.9b00515
10.1038/nrd.2015.34
10.1002/adma.202200217
10.1093/cvr/cvp164
10.1016/j.progpolymsci.2011.06.003
10.1016/j.jcmg.2019.12.022
10.1089/ten.tea.2011.0468
10.1002/adhm.202201346
10.1038/nmat4956
10.1038/s41587-019-0016-3
10.1016/j.biomaterials.2007.12.029
10.1038/nnano.2011.160
10.1016/j.aca.2021.339283
10.1038/nature09855
10.1016/j.biomaterials.2013.12.052
10.1002/jbm.a.33200
10.1002/jemt.23282
10.1161/CIRCRESAHA.116.308139
10.1016/j.bioadv.2022.212916
10.1021/acsbiomaterials.9b00676
10.1126/science.aaa5458
10.17219/pim/139585
10.1016/j.progpolymsci.2012.02.001
10.1016/j.bioadv.2022.212808
10.1038/nmat4782
10.1021/acsbiomaterials.7b01017
10.1038/s41551-020-0585-y
10.1016/j.stem.2017.07.003
10.1021/acsbiomaterials.2c00162
10.1016/j.stem.2020.06.001
10.1038/s41586-018-0016-3
10.1038/s41551-018-0280-4
10.1177/2168479018795117
10.1016/j.actbio.2016.11.009
10.1038/nmat2316
10.1096/fasebj.11.8.9240969
10.1002/adhm.201970019
10.1016/j.bios.2018.12.054
10.1016/j.matbio.2019.04.001
10.1016/j.eurpolymj.2019.01.031
10.1002/admi.201900940
10.1016/B978-0-12-420145-3.00018-3
10.1073/pnas.0908381106
10.1016/j.actbio.2011.08.015
10.1161/CIRCRESAHA.113.300890
10.1016/j.jacc.2004.08.053
10.1152/ajpheart.1999.277.2.H433
10.1161/CIRCRESAHA.111.253955
10.1039/D1LC00288K
10.1016/j.cell.2017.03.050
10.1039/D1LC00535A
10.1007/s12038-018-9748-3
10.1038/s41598-018-31912-6
10.1038/srep11817
10.1016/j.snb.2017.07.138
10.1016/j.bbadis.2016.11.006
10.1126/science.abl6395
10.1038/nm1394
10.1039/D1LC00817J
10.2147/IJN.S189587
10.1021/acsbiomaterials.0c00640
10.1038/nm.3545
10.1016/j.msec.2020.111614
10.1016/j.isci.2020.101140
10.1016/j.ydbio.2009.06.033
10.1021/acsomega.8b03411
10.1038/srep26744
10.1021/acs.biomac.2c00737
10.1002/bit.22647
10.1016/j.biomaterials.2015.03.055
10.3390/cells12040576
10.1002/adma.202302229
10.1246/cl.2006.234
10.1039/D0LC01078B
10.1002/app.48958
10.1136/heartjnl-2019-315481
10.1016/j.biomaterials.2019.119741
10.1002/jbm.a.31578
10.1021/acs.nanolett.0c00076
10.1080/10667857.2018.1456616
10.1016/j.actbio.2019.03.026
10.3389/fbioe.2022.897575
10.1126/science.aav9051
10.1038/nrcardio.2017.57
10.1002/adma.200902322
10.1126/science.ade4961
10.1002/jbm.a.32014
10.1126/scitranslmed.3003552
10.1016/j.biomaterials.2021.121008
10.1038/s41551-021-00796-9
10.3390/polym3020740
10.1002/pi.5834
10.1016/j.ijbiomac.2021.03.001
10.1038/micronano.2016.91
10.1002/jbm.a.34305
10.1038/nature13233
10.1161/CIRCRESAHA.108.192237
10.1161/CIR.0000000000001123
10.1089/ten.tea.2011.0341
10.1088/1758-5082/4/3/035002
10.1073/pnas.0812242106
10.1016/j.actbio.2015.02.005
10.1038/nmeth.2524
10.1161/CIRCRESAHA.119.316155
10.1089/ten.tea.2009.0130
10.1002/adfm.201703524
10.1021/acsomega.2c00271
10.1161/CIRCRESAHA.110.237206
10.1073/pnas.1913651116
10.1002/bip.22035
10.1155/2012/508294
10.1161/CIRCULATIONAHA.105.001560
10.1016/j.cell.2006.07.024
10.1038/s41551-022-00884-4
10.1038/s41596-020-00490-1
10.1038/nmat4570
10.1002/bit.20722
10.1016/j.tibtech.2022.12.018
10.1038/nature05383
10.3109/10408444.2016.1149452
10.3389/fcell.2017.00050
10.1002/smll.201600178
10.1007/s11431-022-2104-5
10.1016/j.celrep.2023.112322
10.1002/adhm.201900245
10.1039/C9LC00921C
10.1016/j.yrtph.2020.104756
10.1016/j.molmed.2015.12.006
10.1039/D2LC00857B
10.3390/bioengineering8030039
10.1002/adfm.202110716
10.1038/nature09005
10.1007/BF00174084
10.1016/j.yjmcc.2021.06.012
10.1016/j.biomaterials.2015.12.011
10.1152/ajpheart.00007.2012
10.1038/s41596-018-0015-8
10.1016/j.jbiomech.2011.11.024
10.1002/jbm.b.34564
10.1080/17458080.2021.1912319
10.1002/adbi.202101165
10.1161/01.RES.0000089258.40661.0C
10.1016/j.biomaterials.2011.08.050
10.1111/aor.14232
10.1371/journal.pone.0026397
10.1088/1748-6041/10/3/034002
10.1021/acsami.8b18844
10.1016/j.eurpolymj.2014.12.008
10.1016/j.yjmcc.2005.07.008
10.1002/adbi.202000046
10.1002/(SICI)1097-0290(20000405)68:1<106::AID-BIT13>3.0.CO;2-3
10.1016/j.snb.2021.131342
10.1038/s41551-022-00882-6
10.1126/sciadv.1500758
10.1016/j.actbio.2016.05.027
10.1038/nmat2203
10.1016/j.ijbiomac.2019.12.264
10.1089/ten.tea.2008.0151
10.1016/j.actbio.2016.12.009
10.1088/1758-5090/acd8f4
ContentType Journal Article
Copyright 2023 The Authors. published by Wiley Periodicals LLC.
2023 The Authors. Journal of Biomedical Materials Research Part A published by Wiley Periodicals LLC.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by Wiley Periodicals LLC.
– notice: 2023 The Authors. Journal of Biomedical Materials Research Part A published by Wiley Periodicals LLC.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1002/jbm.a.37633
DatabaseName Wiley Online Library Open Access
Wiley Online Library
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1552-4965
EndPage 511
ExternalDocumentID 10_1002_jbm_a_37633
37909362
JBMA37633
Genre reviewArticle
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Canada Foundation for Innovation/Ontario Research
  funderid: 36442
– fundername: National Institutes of Health
  funderid: 2R01 HL076485
– fundername: Canadian Institutes of Health Research
  funderid: FDN‐167274
– fundername: NSERC Strategic
  funderid: STPGP 506689‐17
– fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: RGPIN 326982‐10
– fundername: NIH HHS
  grantid: 2R01 HL076485
– fundername: NHLBI NIH HHS
  grantid: R01 HL076485
GroupedDBID ---
-~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
1ZS
24P
31~
33P
4.4
4ZD
50Z
51W
51X
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
BAFTC
BDRZF
BFHJK
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
J0M
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
QB0
QRW
R.K
RNS
ROL
RWI
RYL
SUPJJ
SV3
UB1
V2E
W8V
W99
WIH
WIK
WIN
WJL
WQJ
WRC
WXSBR
XG1
XV2
ZZTAW
~IA
~WT
1OB
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c3973-1e2418ce420f656354ef2ac858ac2724dcb922699089a9de9da2fd99b1bf80763
IEDL.DBID DR2
ISSN 1549-3296
1552-4965
IngestDate Sat Aug 17 04:39:32 EDT 2024
Fri Sep 13 04:26:49 EDT 2024
Thu Sep 26 17:27:35 EDT 2024
Wed Oct 02 05:25:02 EDT 2024
Sat Aug 24 00:53:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords cardiac tissue engineering
myocardium
biomaterials
heart-on-a-chip
cardiomyocyte
iPSC
Language English
License Attribution
2023 The Authors. Journal of Biomedical Materials Research Part A published by Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3973-1e2418ce420f656354ef2ac858ac2724dcb922699089a9de9da2fd99b1bf80763
Notes Jennifer Kieda and Amid Shakeri: Equal contribution.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-4748-3460
0000-0002-2565-7397
0000-0001-8265-8647
0000-0001-6749-3848
0000-0002-4534-382X
0000-0003-1249-4135
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.a.37633
PMID 37909362
PQID 2926524716
PQPubID 2034572
PageCount 20
ParticipantIDs proquest_miscellaneous_2885206780
proquest_journals_2926524716
crossref_primary_10_1002_jbm_a_37633
pubmed_primary_37909362
wiley_primary_10_1002_jbm_a_37633_JBMA37633
PublicationCentury 2000
PublicationDate April 2024
2024-04-00
20240401
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Mount Laurel
PublicationTitle Journal of biomedical materials research. Part A
PublicationTitleAlternate J Biomed Mater Res A
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2009; 89
2020; 20
2009; 83
2019; 12
2019; 14
2012; 18
2020; 10
2011; 471
2017; 70
2008; 29
2013; 112
2016; 41
2013; 110
2002; 90
2017; 169
2010; 6
2016; 46
2004; 44
2019; 37
2013; 101
2012; 37
2020; 147
2011; 3
2011; 6
2021; 51
2016; 15
2016; 12
2006; 114
2016; 5
2016; 6
2017; 53
2017; 52
2016; 2
2020; 30
2022; 6
2022; 7
2022; 8
2013; 74
2020; 27
2020; 26
2020; 23
1985; 71
2012; 45
2016; 22
2019; 176
2023; 30
2023; 35
2017; 1863
2017; 48
2019; 53
2013; 23
2020; 127
2008; 7
2011; 99
2008; 8
2020; 56
2017; 595
2003; 93
2017; 357
2020; 8
2020; 7
2020; 6
2020; 4
2013; 10
2013; 13
2016; 118
2019; 68
2018; 410
2002; 724:N11.1
2021; 119
2020; 137
2017; 482
2003; 83
2006; 126
2017; 245
2007; 25
2021; 8
2015; 1
2023; 10
2021; 6
2021; 5
2023; 14
2021; 4
2015; 5
2021; 3
2023; 12
2006; 12
1992; 185
2023; 15
2017; 27
2017; 21
2010; 363
2020; 588
2007
2020; 106
2010; 120
2012; 303
2014; 510
2020; 108
2019; 82
2011; 109
2018; 556
2017; 14
2022
2017; 16
2019; 89
2018
2020; 117
2016
2020; 233
2014
1999; 277
2008; 86
2014; 74
2004; 286
2010; 16
2020; 85‐86
2008; 86A
2006; 35
2007; 100
2010; 465
2022; 23
2021; 160
2022; 22
2018; 43
2012; 97
2014; 20
2010; 22
2018; 8
2018; 2
2018; 4
2006; 27
2022; 34
2021; 276
2022; 32
2018; 33
2019; 2021
2009; 15
2019; 8
2007; 445
2019; 4
2019; 6
2019; 5
2000; 68
2009; 333
2022; 356
2023; 42
2023; 41
2015; 60
2015; 64
2011; 88
2014; 35
2022; 15
2022; 10
2022; 11
2018; 10
2009; 104
2009; 106
2018; 13
2017; 5
2017; 7
2017; 8
2021; 21
2012; 2012
2017; 3
2022; 1209
2023; 381
2006; 77
2011; 11
2023; 147
2022; 65
2015; 349
2019; 129
2017; 9
2022; 138
2019; 365
2022; 377
2021; 36
1997; 11
2018; 255
2019; 116
2019; 113
2005; 39
2004; 101
2006; 93
2015; 15
2015; 18
2015; 10
2022; 46
2011; 32
2017; 174
2019; 140
2011; 39
2021; 180
2021; 14
2021; 13
2021; 16
2004; 16
105
2012; 4
2012; 8
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_200_1
e_1_2_11_223_1
e_1_2_11_186_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_29_1
Dwyer KD (e_1_2_11_204_1) 2023; 10
e_1_2_11_125_1
e_1_2_11_4_1
e_1_2_11_148_1
e_1_2_11_102_1
e_1_2_11_163_1
e_1_2_11_211_1
Kang Y (e_1_2_11_58_1) 2006; 77
e_1_2_11_81_1
e_1_2_11_197_1
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_89_1
e_1_2_11_43_1
e_1_2_11_17_1
e_1_2_11_136_1
e_1_2_11_159_1
Schmidleithner C (e_1_2_11_140_1) 2018
e_1_2_11_113_1
e_1_2_11_208_1
e_1_2_11_174_1
e_1_2_11_151_1
e_1_2_11_201_1
e_1_2_11_92_1
e_1_2_11_224_1
e_1_2_11_187_1
e_1_2_11_31_1
e_1_2_11_77_1
e_1_2_11_54_1
e_1_2_11_126_1
e_1_2_11_149_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_141_1
e_1_2_11_164_1
e_1_2_11_190_1
e_1_2_11_212_1
e_1_2_11_80_1
Vidya S (e_1_2_11_132_1) 2019; 2021
e_1_2_11_198_1
e_1_2_11_88_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_114_1
e_1_2_11_16_1
e_1_2_11_137_1
e_1_2_11_39_1
e_1_2_11_152_1
e_1_2_11_175_1
e_1_2_11_209_1
e_1_2_11_180_1
e_1_2_11_72_1
e_1_2_11_202_1
e_1_2_11_225_1
e_1_2_11_188_1
e_1_2_11_57_1
Sundnes J (e_1_2_11_41_1) 2007
e_1_2_11_34_1
e_1_2_11_95_1
e_1_2_11_11_1
e_1_2_11_104_1
e_1_2_11_127_1
e_1_2_11_2_1
e_1_2_11_165_1
e_1_2_11_142_1
e_1_2_11_83_1
e_1_2_11_191_1
e_1_2_11_60_1
e_1_2_11_213_1
e_1_2_11_45_1
e_1_2_11_199_1
e_1_2_11_68_1
e_1_2_11_22_1
e_1_2_11_115_1
e_1_2_11_138_1
e_1_2_11_19_1
e_1_2_11_176_1
e_1_2_11_153_1
e_1_2_11_130_1
e_1_2_11_94_1
e_1_2_11_181_1
e_1_2_11_71_1
e_1_2_11_226_1
e_1_2_11_203_1
e_1_2_11_10_1
e_1_2_11_189_1
e_1_2_11_79_1
e_1_2_11_33_1
e_1_2_11_105_1
e_1_2_11_128_1
e_1_2_11_3_1
e_1_2_11_143_1
e_1_2_11_166_1
e_1_2_11_120_1
e_1_2_11_82_1
e_1_2_11_192_1
e_1_2_11_214_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_18_1
e_1_2_11_139_1
e_1_2_11_116_1
e_1_2_11_154_1
e_1_2_11_177_1
e_1_2_11_131_1
e_1_2_11_182_1
e_1_2_11_227_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_97_1
e_1_2_11_13_1
e_1_2_11_118_1
Lai Benjamin FL (e_1_2_11_103_1) 2020; 30
e_1_2_11_106_1
e_1_2_11_48_1
e_1_2_11_121_1
e_1_2_11_167_1
e_1_2_11_144_1
e_1_2_11_193_1
e_1_2_11_215_1
e_1_2_11_47_1
e_1_2_11_230_1
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_129_1
e_1_2_11_8_1
e_1_2_11_85_1
e_1_2_11_117_1
e_1_2_11_59_1
e_1_2_11_178_1
e_1_2_11_155_1
e_1_2_11_170_1
Wang Y (e_1_2_11_56_1) 2002; 724
e_1_2_11_50_1
e_1_2_11_220_1
e_1_2_11_183_1
e_1_2_11_205_1
e_1_2_11_119_1
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_96_1
e_1_2_11_122_1
e_1_2_11_145_1
e_1_2_11_168_1
e_1_2_11_217_1
e_1_2_11_160_1
e_1_2_11_61_1
e_1_2_11_194_1
e_1_2_11_216_1
e_1_2_11_231_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_107_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_84_1
e_1_2_11_156_1
e_1_2_11_179_1
e_1_2_11_110_1
e_1_2_11_133_1
e_1_2_11_228_1
e_1_2_11_171_1
e_1_2_11_91_1
e_1_2_11_221_1
e_1_2_11_184_1
e_1_2_11_30_1
e_1_2_11_99_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_169_1
e_1_2_11_100_1
e_1_2_11_146_1
e_1_2_11_123_1
e_1_2_11_218_1
e_1_2_11_161_1
e_1_2_11_195_1
e_1_2_11_232_1
e_1_2_11_87_1
e_1_2_11_108_1
e_1_2_11_64_1
e_1_2_11_15_1
e_1_2_11_111_1
e_1_2_11_134_1
e_1_2_11_38_1
e_1_2_11_157_1
e_1_2_11_206_1
e_1_2_11_229_1
e_1_2_11_172_1
e_1_2_11_222_1
e_1_2_11_90_1
e_1_2_11_185_1
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_98_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_147_1
e_1_2_11_26_1
e_1_2_11_49_1
e_1_2_11_101_1
e_1_2_11_124_1
e_1_2_11_219_1
e_1_2_11_162_1
e_1_2_11_210_1
e_1_2_11_196_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
e_1_2_11_109_1
e_1_2_11_158_1
e_1_2_11_37_1
e_1_2_11_135_1
e_1_2_11_112_1
e_1_2_11_150_1
e_1_2_11_173_1
e_1_2_11_207_1
References_xml – volume: 445
  start-page: 177
  issue: 7124
  year: 2007
  end-page: 182
  article-title: Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization
  publication-title: Nature
– volume: 21
  start-page: 3053
  issue: 16
  year: 2021
  end-page: 3075
  article-title: Conventional and emerging strategies for the fabrication and functionalization of PDMS‐based microfluidic devices
  publication-title: Lab Chip
– volume: 286
  start-page: H507
  issue: 2
  year: 2004
  end-page: H516
  article-title: Medium perfusion enables engineering of compact and contractile cardiac tissue
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 118
  start-page: 368
  issue: 3
  year: 2016
  end-page: 370
  article-title: Recounting cardiac cellular composition
  publication-title: Circ Res
– volume: 39
  issue: 12
  year: 2011
  article-title: Efficient design and assembly of custom TALEN and other TAL effector‐based constructs for DNA targeting
  publication-title: Nucleic Acids Res
– volume: 14
  start-page: 1311
  year: 2019
  article-title: 3D printing approaches for cardiac tissue engineering and role of immune modulation in tissue regeneration
  publication-title: Int J Nanomed
– volume: 3
  issue: 1
  year: 2017
  article-title: Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition
  publication-title: Microsyst Nanoeng
– volume: 471
  start-page: 230
  issue: 7337
  year: 2011
  end-page: 234
  article-title: Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome
  publication-title: Nature
– volume: 116
  start-page: 22531
  issue: 45
  year: 2019
  end-page: 22539
  article-title: Living myofibroblast–silicon composites for probing electrical coupling in cardiac systems
  publication-title: Proc Natl Acad Sci
– volume: 64
  start-page: 79
  year: 2015
  end-page: 92
  article-title: Fabrication, mechanical properties and cytocompatibility of elastomeric nanofibrous mats of poly (glycerol sebacate)
  publication-title: Eur Polym J
– volume: 46
  start-page: 477
  issue: 6
  year: 2016
  end-page: 489
  article-title: Worldwide withdrawal of medicinal products because of adverse drug reactions: a systematic review and analysis
  publication-title: Crit Rev Toxicol
– volume: 104
  start-page: e30
  issue: 4
  year: 2009
  end-page: e41
  article-title: Functional cardiomyocytes derived from human induced pluripotent stem cells
  publication-title: Circ Res
– volume: 110
  start-page: E4698
  issue: 49
  year: 2013
  end-page: E4707
  article-title: Design and formulation of functional pluripotent stem cell‐derived cardiac microtissues
  publication-title: Proc Natl Acad Sci
– volume: 119
  year: 2021
  article-title: Graphene‐based materials enhance cardiomyogenic and angiogenic differentiation capacity of human mesenchymal stem cells in vitro–focus on cardiac tissue regeneration
  publication-title: Mater Sci Eng C
– volume: 169
  start-page: 510
  issue: 3
  year: 2017
  end-page: 522.e20
  article-title: Macrophages facilitate electrical conduction in the heart
  publication-title: Cell
– volume: 35
  start-page: 2798
  issue: 9
  year: 2014
  end-page: 2808
  article-title: The effect of cyclic stretch on maturation and 3D tissue formation of human embryonic stem cell‐derived cardiomyocytes
  publication-title: Biomaterials
– volume: 93
  start-page: 421
  issue: 5
  year: 2003
  end-page: 428
  article-title: Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin
  publication-title: Circ Res
– volume: 6
  issue: 10
  year: 2011
  article-title: Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology
  publication-title: PLoS One
– volume: 5
  start-page: 50
  year: 2017
  article-title: Naturally engineered maturation of cardiomyocytes
  publication-title: Front Cell Dev Biol
– volume: 15
  start-page: 2765
  issue: 5
  year: 2015
  end-page: 2772
  article-title: Silicon nanowire‐induced maturation of cardiomyocytes derived from human induced pluripotent stem cells
  publication-title: Nano Lett
– volume: 233
  year: 2020
  article-title: Human cardiac fibrosis‐on‐a‐chip model recapitulates disease hallmarks and can serve as a platform for drug testing
  publication-title: Biomaterials
– volume: 52
  start-page: 81
  year: 2017
  end-page: 91
  article-title: Moldable elastomeric polyester‐carbon nanotube scaffolds for cardiac tissue engineering
  publication-title: Acta Biomater
– volume: 74
  start-page: 151
  year: 2014
  end-page: 161
  article-title: Functional improvement and maturation of rat and human engineered heart tissue by chronic electrical stimulation
  publication-title: J Mol Cell Cardiol
– volume: 25
  start-page: 317
  issue: 3
  year: 2007
  end-page: 318
  article-title: Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo
  publication-title: Nat Biotechnol
– volume: 11
  issue: 23
  year: 2022
  article-title: High throughput omnidirectional printing of tubular microstructures from elastomeric polymers
  publication-title: Adv Healthc Mater
– volume: 13
  start-page: 3599
  issue: 18
  year: 2013
  end-page: 3608
  article-title: Microfluidic heart on a chip for higher throughput pharmacological studies
  publication-title: Lab Chip
– volume: 8
  start-page: 803
  issue: 9
  year: 2008
  end-page: 806
  article-title: Poly (glycerol sebacate) nanofiber scaffolds by core/shell electrospinning
  publication-title: Macromol Biosci
– volume: 26
  start-page: 44
  issue: 1
  year: 2020
  end-page: 55
  article-title: Human induced pluripotent stem‐cardiac‐endothelial‐tumor‐on‐a‐chip to assess anticancer efficacy and cardiotoxicity
  publication-title: Tissue Eng C Methods
– volume: 16
  start-page: 303
  issue: 3
  year: 2017
  end-page: 308
  article-title: Instrumented cardiac microphysiological devices via multimaterial three‐dimensional printing
  publication-title: Nat Mater
– volume: 410
  start-page: 6141
  issue: 24
  year: 2018
  end-page: 6154
  article-title: Mussel‐inspired 3D fiber scaffolds for heart‐on‐a‐chip toxicity studies of engineered nanomaterials
  publication-title: Anal Bioanal Chem
– volume: 37
  start-page: 252
  issue: 3
  year: 2019
  end-page: 258
  article-title: Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients
  publication-title: Nat Biotechnol
– volume: 140
  start-page: 278
  year: 2019
  end-page: 287
  article-title: Chitosan‐PVA‐CNT nanofibers as electrically conductive scaffolds for cardiovascular tissue engineering
  publication-title: Int J Biol Macromol
– volume: 108
  start-page: 2276
  issue: 5
  year: 2020
  end-page: 2293
  article-title: Fabrication, characterization, and in vitro evaluation of electrospun polyurethane‐gelatin‐carbon nanotube scaffolds for cardiovascular tissue engineering applications
  publication-title: J Biomed Mater Res B Appl Biomater
– volume: 20
  start-page: 2585
  issue: 4
  year: 2020
  end-page: 2593
  article-title: Heart‐on‐a‐chip model with integrated extra‐ and intracellular bioelectronics for monitoring cardiac electrophysiology under acute hypoxia
  publication-title: Nano Lett
– year: 2007
– volume: 8
  start-page: 218
  issue: 1
  year: 2012
  end-page: 224
  article-title: Mechanical testing of electrospun PCL fibers
  publication-title: Acta Biomater
– year: 2022
  article-title: Electrospun piezoelectric scaffolds for cardiac tissue engineering
  publication-title: Biomater Adv
– volume: 482
  start-page: 323
  issue: 2
  year: 2017
  end-page: 328
  article-title: Small molecule absorption by PDMS in the context of drug response bioassays
  publication-title: Biochem Biophys Res Commun
– volume: 363
  start-page: 1397
  issue: 15
  year: 2010
  end-page: 1409
  article-title: Patient‐specific induced pluripotent stem‐cell models for long‐QT syndrome
  publication-title: N Engl J Med
– volume: 129
  start-page: 147
  year: 2019
  end-page: 154
  article-title: Impedimetric array in polymer microfluidic cartridge for low cost point‐of‐care diagnostics
  publication-title: Biosens Bioelectron
– volume: 23
  start-page: 3738
  issue: 30
  year: 2013
  end-page: 3746
  article-title: Micropatterning alginate substrates for in vitro cardiovascular muscle on a chip
  publication-title: Adv Funct Mater
– volume: 105
  start-page: 1148
  issue: 6
  end-page: 1160
  article-title: Influence of substrate stiffness on the phenotype of heart cells
  publication-title: Biotechnol Bioeng
– volume: 18
  start-page: 910
  issue: 9‐10
  year: 2012
  end-page: 919
  article-title: A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues
  publication-title: Tissue Eng A
– volume: 2021
  start-page: 939
  year: 2019
  end-page: 945
  article-title: CO2 Laser micromachining of polymethyl methacrylate (PMMA): a review
  publication-title: Adv Manuf Ind Eng: Select Proc ICAPIE
– volume: 18
  start-page: 1771
  issue: 17‐18
  year: 2012
  end-page: 1783
  article-title: Vascular endothelial growth factor secretion by nonmyocytes modulates Connexin‐43 levels in cardiac organoids
  publication-title: Tissue Eng Part A
– volume: 6
  start-page: 1333
  issue: 3
  year: 2020
  end-page: 1343
  article-title: 3D printing of vascular tubes using bioelastomer prepolymers by freeform reversible embedding
  publication-title: ACS Biomater Sci Eng
– volume: 27
  issue: 46
  year: 2017
  article-title: InVADE: integrated vasculature for assessing dynamic events
  publication-title: Adv Funct Mater
– volume: 20
  start-page: 2354
  issue: 13
  year: 2020
  end-page: 2363
  article-title: A simple method for production of hydrophilic, rigid, and sterilized multi‐layer 3D integrated polydimethylsiloxane microfluidic chips
  publication-title: Lab Chip
– volume: 48
  start-page: 68
  year: 2017
  end-page: 78
  article-title: I‐wire heart‐on‐a‐chip I: three‐dimensional cardiac tissue constructs for physiology and pharmacology
  publication-title: Acta Biomater
– volume: 8
  issue: 5
  year: 2019
  article-title: Rapid wire casting: a multimaterial microphysiological platform enabled by rapid casting of elastic microwires (Adv. Healthcare Mater. 5/2019)
  publication-title: Adv Healthc Mater
– volume: 68
  start-page: 1391
  issue: 8
  year: 2019
  end-page: 1401
  article-title: Laser ablation of polymers: a review
  publication-title: Polym Int
– volume: 34
  issue: 26
  year: 2022
  article-title: Programming cellular alignment in engineered cardiac tissue via bioprinting anisotropic organ building blocks
  publication-title: Adv Mater
– volume: 6
  start-page: 372
  issue: 4
  year: 2022
  end-page: 388
  article-title: Metabolically driven maturation of human‐induced‐pluripotent‐stem‐cell‐derived cardiac microtissues on microfluidic chips
  publication-title: Nat Biomed Eng
– volume: 2
  start-page: 780
  issue: 5
  year: 2016
  end-page: 788
  article-title: Highly elastic and moldable polyester biomaterial for cardiac tissue engineering applications
  publication-title: ACS Biomater Sci Eng
– volume: 8
  start-page: 2040
  issue: 5
  year: 2022
  end-page: 2052
  article-title: Optimization of a PDMS‐based cell culture substrate for high‐density human‐induced pluripotent stem cell adhesion and long‐term differentiation into cardiomyocytes under a Xeno‐Free condition
  publication-title: ACS Biomater Sci Eng
– volume: 86A
  year: 2008
  article-title: Pre‐treatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue
  publication-title: J Biomed Mater Res A
– volume: 8
  start-page: 7213
  issue: 32
  year: 2020
  end-page: 7224
  article-title: High‐aspect‐ratio water‐dispersed gold nanowires incorporated within gelatin methacrylate hydrogels for constructing cardiac tissues in vitro
  publication-title: J Mater Chem B
– volume: 20
  start-page: 616
  issue: 6
  year: 2014
  end-page: 623
  article-title: Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart‐on‐chip technologies
  publication-title: Nat Med
– volume: 83
  start-page: 59
  issue: 1
  year: 2003
  end-page: 115
  article-title: Cardiac endothelial‐myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity
  publication-title: Physiol Rev
– volume: 16
  start-page: 212
  issue: 1
  year: 2021
  end-page: 228
  article-title: Fabrication and investigation of cardiac patch embedded with gold nanowires for improved myocardial infarction therapeutics
  publication-title: J Exp Nanosci
– volume: 349
  start-page: 982
  issue: 6251
  year: 2015
  end-page: 986
  article-title: Heart disease. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy
  publication-title: Science
– volume: 22
  start-page: 4729
  issue: 23
  year: 2022
  end-page: 4734
  article-title: A reinforced PDMS mold for hot embossing of cyclic olefin polymer in the fabrication of microfluidic chips
  publication-title: Lab Chip
– volume: 377
  start-page: 180
  issue: 6602
  year: 2022
  end-page: 185
  article-title: Recreating the heart's helical structure‐function relationship with focused rotary jet spinning
  publication-title: Science
– volume: 27
  start-page: 2705
  issue: 13
  year: 2006
  end-page: 2715
  article-title: Electrospinning polyaniline‐contained gelatin nanofibers for tissue engineering applications
  publication-title: Biomaterials
– volume: 120
  start-page: 71
  issue: 1
  year: 2010
  end-page: 75
  article-title: The bioethics of stem cell research and therapy
  publication-title: J Clin Invest
– volume: 82
  start-page: 1316
  issue: 8
  year: 2019
  end-page: 1325
  article-title: Development of electrically conductive hybrid nanofibers based on CNT‐polyurethane nanocomposite for cardiac tissue engineering
  publication-title: Microsc Res Tech
– volume: 4
  issue: 8
  year: 2020
  article-title: Elastic biomaterial scaffold with spatially varying adhesive design
  publication-title: Adv Biosyst
– volume: 8
  start-page: 39
  issue: 3
  year: 2021
  article-title: Collagen‐based electrospun materials for tissue engineering: A systematic review
  publication-title: Bioengineering
– volume: 127
  start-page: 207
  issue: 2
  year: 2020
  end-page: 224
  article-title: In situ expansion, differentiation, and electromechanical coupling of human cardiac muscle in a 3D bioprinted, chambered organoid
  publication-title: Circ Res
– volume: 20
  start-page: 1124
  issue: 6
  year: 2020
  end-page: 1139
  article-title: An adaptable soft‐mold embossing process for fabricating optically‐accessible, microfeature‐based culture systems and application toward liver stage antimalarial compound testing
  publication-title: Lab Chip
– volume: 10
  year: 2022
  article-title: Electroconductive photo‐curable PEGDA‐gelatin/PEDOT: PSS hydrogels for prospective cardiac tissue engineering application
  publication-title: Front Bioeng Biotechnol
– volume: 51
  start-page: 43
  year: 2021
  end-page: 50
  article-title: Brief review on poly (glycerol sebacate) as an emerging polyester in biomedical application: structure, properties and modifications
  publication-title: Polym Med
– volume: 2
  start-page: 955
  issue: 12
  year: 2018
  end-page: 967
  article-title: Contractile deficits in engineered cardiac microtissues as a result of MYBPC3 deficiency and mechanical overload
  publication-title: Nat Biomed Eng
– volume: 74
  start-page: 99
  year: 2013
  end-page: 106
  article-title: Porous 3D modeled scaffolds of bioactive glass and photocrosslinkable poly (ε‐caprolactone) by stereolithography
  publication-title: Compos Sci Technol
– volume: 23
  issue: 6
  year: 2020
  article-title: A comprehensive integrated anatomical and molecular Atlas of rat intrinsic cardiac nervous system
  publication-title: iScience
– volume: 3
  start-page: 740
  issue: 2
  year: 2011
  end-page: 761
  article-title: Hydrogels for cardiac tissue engineering
  publication-title: Polymers
– volume: 90
  start-page: 223
  issue: 2
  year: 2002
  end-page: 230
  article-title: Tissue engineering of a differentiated cardiac muscle construct
  publication-title: Circ Res
– volume: 13
  start-page: 1793
  issue: 8
  year: 2018
  end-page: 1813
  article-title: Microfabrication of AngioChip, a biodegradable polymer scaffold with microfluidic vasculature
  publication-title: Nat Protoc
– volume: 595
  start-page: 5759
  issue: 17
  year: 2017
  end-page: 5760
  article-title: Extracellular matrix stiffness affects contractility in adult rat cardiomyocytes: implications for dynamic nitric oxide signalling and calcium handling
  publication-title: J Physiol
– volume: 32
  issue: 21
  year: 2022
  article-title: Spatially heterogeneous tubular scaffolds for in situ heart valve tissue engineering using melt electrowriting
  publication-title: Adv Funct Mater
– volume: 357
  issue: 6353
  year: 2017
  article-title: Organotypic vasculature: from descriptive heterogeneity to functional pathophysiology
  publication-title: Science
– volume: 21
  start-page: 1724
  issue: 9
  year: 2021
  end-page: 1737
  article-title: Direct laser writing for cardiac tissue engineering: a microfluidic heart on a chip with integrated transducers
  publication-title: Lab Chip
– volume: 106
  start-page: 16568
  issue: 39
  year: 2009
  end-page: 16573
  article-title: Physiological function and transplantation of scaffold‐free and vascularized human cardiac muscle tissue
  publication-title: Proc Natl Acad Sci U S A
– volume: 39
  start-page: 699
  issue: 4
  year: 2005
  end-page: 707
  article-title: Altered fibroblast function following myocardial infarction
  publication-title: J Mol Cell Cardiol
– volume: 12
  start-page: 452
  issue: 4
  year: 2006
  end-page: 458
  article-title: Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts
  publication-title: Nat Med
– volume: 65
  start-page: 2068
  issue: 9
  year: 2022
  end-page: 2078
  article-title: Laser cutting of thermoplastic film: mechanism and processing technology
  publication-title: Sci China Technol Sci
– volume: 5
  start-page: 1157
  issue: 10
  year: 2021
  end-page: 1173
  article-title: Injectable and conductive cardiac patches repair infarcted myocardium in rats and minipigs
  publication-title: Nat Biomed Eng
– volume: 1209
  year: 2022
  article-title: Bio‐functionalization of microfluidic platforms made of thermoplastic materials: a review
  publication-title: Anal Chim Acta
– volume: 15
  start-page: 6478
  issue: 18
  year: 2022
  article-title: The fabrication and bonding of thermoplastic microfluidics: a review
  publication-title: Materials (Basel)
– volume: 180
  start-page: 590
  year: 2021
  end-page: 598
  article-title: Preparation and characterization of polyurethane/chitosan/CNT nanofibrous scaffold for cardiac tissue engineering
  publication-title: Int J Biol Macromol
– volume: 35
  start-page: 234
  issue: 2
  year: 2006
  end-page: 235
  article-title: Oxygen permeability of surface‐modified poly (dimethylsiloxane) characterized by scanning electrochemical microscopy
  publication-title: Chem Lett
– volume: 33
  start-page: 433
  issue: 6
  year: 2018
  end-page: 442
  article-title: 3D printing for cardiovascular tissue engineering: a review
  publication-title: Mater Technol
– volume: 14
  year: 2023
  article-title: Autonomic nervous system and cardiac neuro‐signaling pathway modulation in cardiovascular disorders and Alzheimer's disease
  publication-title: Front Physiol
– volume: 53
  start-page: 519
  issue: 4
  year: 2019
  end-page: 525
  article-title: Comprehensive in vitro proarrhythmia assay (CiPA) Update from a Cardiac Safety Research Consortium/Health and Environmental Sciences Institute/FDA Meeting
  publication-title: Ther Innov Regul Sci
– volume: 138
  year: 2022
  article-title: Tissue‐engineered heart chambers as a platform technology for drug discovery and disease modeling
  publication-title: Biomater Adv
– volume: 4
  start-page: 1118
  issue: 1
  year: 2021
  article-title: Isochoric supercooled preservation and revival of human cardiac microtissues
  publication-title: Commun Biol
– volume: 68
  start-page: 106
  year: 2000
  end-page: 114
  article-title: Three‐dimensional engineered heart tissue from neonatal rat cardiac myocytes
  publication-title: Biotechnol Bioeng
– volume: 4
  start-page: 344
  issue: 2
  year: 2021
  end-page: 378
  article-title: 3D printing of tissue engineering scaffolds: a focus on vascular regeneration
  publication-title: Bio‐Design Manuf
– volume: 106
  start-page: 14990
  issue: 35
  year: 2009
  end-page: 14995
  article-title: Prevascularization of cardiac patch on the omentum improves its therapeutic outcome
  publication-title: Proc Natl Acad Sci U S A
– volume: 110
  start-page: E4698
  issue: 49
  year: 2013
  end-page: E4707
  article-title: Design and formulation of functional pluripotent stem cell‐derived cardiac microtissues
  publication-title: Proc Natl Acad Sci U S A
– volume: 12
  start-page: 2077
  issue: 8
  year: 2006
  end-page: 2091
  article-title: Biomimetic approach to cardiac tissue engineering: oxygen carriers and channeled scaffolds
  publication-title: Tissue Eng
– volume: 176
  start-page: 913
  issue: 4
  year: 2019
  end-page: 927
  article-title: A platform for generation of chamber‐specific cardiac tissues and disease modeling
  publication-title: Cell
– volume: 16
  start-page: 511
  issue: 6
  year: 2004
  end-page: 516
  article-title: Novel citric acid‐based biodegradable elastomers for tissue engineering
  publication-title: Adv Mater
– volume: 11
  start-page: 4165
  issue: 24
  year: 2011
  end-page: 4173
  article-title: Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip
  publication-title: Lab Chip
– volume: 41
  start-page: 133
  year: 2016
  end-page: 146
  article-title: Gold nanorod‐incorporated gelatin‐based conductive hydrogels for engineering cardiac tissue constructs
  publication-title: Acta Biomater
– volume: 5
  start-page: 3022
  issue: 6
  year: 2019
  end-page: 3031
  article-title: Easy applied gelatin‐based hydrogel system for long‐term functional cardiomyocyte culture and myocardium formation
  publication-title: ACS Biomater Sci Eng
– volume: 8
  start-page: 1825
  issue: 1
  year: 2017
  article-title: Cardiopatch platform enables maturation and scale‐up of human pluripotent stem cell‐derived engineered heart tissues
  publication-title: Nat Commun
– volume: 100
  start-page: 263
  issue: 2
  year: 2007
  end-page: 272
  article-title: Tissue engineering of vascularized cardiac muscle from human embryonic stem cells
  publication-title: Circ Res
– volume: 45
  start-page: 832
  issue: 5
  year: 2012
  end-page: 841
  article-title: Modeling of cardiac muscle thin films: pre‐stretch, passive and active behavior
  publication-title: J Biomech
– volume: 724:N11.1
  year: 2002
  article-title: Poly (glycerol sebacate)—a novel biodegradable elastomer for tissue engineering
  publication-title: MRS Online Proc Library (OPL)
– volume: 10
  start-page: 781
  issue: 8
  year: 2013
  end-page: 787
  article-title: Biowire: a platform for maturation of human pluripotent stem cell‐derived cardiomyocytes
  publication-title: Nat Methods
– volume: 5
  issue: 1
  year: 2015
  article-title: Machine learning plus optical flow: a simple and sensitive method to detect cardioactive drugs
  publication-title: Sci Rep
– volume: 106
  start-page: 342
  issue: 5
  year: 2020
  end-page: 349
  article-title: Identification of novel pheno‐groups in heart failure with preserved ejection fraction using machine learning
  publication-title: Heart
– volume: 15
  issue: 3
  year: 2023
  article-title: Flexible 3D printed microwires and 3D microelectrodes for heart‐on‐a‐chip engineering
  publication-title: Biofabrication
– volume: 113
  start-page: 47
  year: 2019
  end-page: 51
  article-title: Guided assembly, nanostructuring and functionalization with brushes of microscale polymer cubes for tailored 3‐D cell microenvironments
  publication-title: Eur Polym J
– volume: 465
  start-page: 808
  issue: 7299
  year: 2010
  end-page: 812
  article-title: Patient‐specific induced pluripotent stem‐cell‐derived models of LEOPARD syndrome
  publication-title: Nature
– volume: 93
  start-page: 332
  issue: 2
  year: 2006
  end-page: 343
  article-title: Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue
  publication-title: Biotechnol Bioeng
– start-page: 627
  year: 2014
  end-page: 683
– volume: 16
  start-page: 115
  issue: 1
  year: 2010
  end-page: 125
  article-title: Transplantation of a tissue‐engineered human vascularized cardiac muscle
  publication-title: Tissue Eng Part A
– volume: 36
  start-page: 501
  issue: 5
  year: 2021
  end-page: 543
  article-title: Recent developments in hot embossing—a review
  publication-title: Mater Manuf Process
– volume: 71
  start-page: 994
  issue: 5
  year: 1985
  end-page: 1009
  article-title: Linearity of the Frank‐Starling relationship in the intact heart: the concept of preload recruitable stroke work
  publication-title: Circulation
– volume: 32
  start-page: 9180
  issue: 35
  year: 2011
  end-page: 9187
  article-title: Pluripotent stem cell‐derived cardiac tissue patch with advanced structure and function
  publication-title: Biomaterials
– volume: 14
  start-page: 484
  issue: 8
  year: 2017
  end-page: 491
  article-title: Redefining the identity of cardiac fibroblasts
  publication-title: Nat Rev Cardiol
– volume: 14
  start-page: 41
  issue: 1
  year: 2021
  end-page: 60
  article-title: 3D printing, computational modeling, and artificial intelligence for structural heart disease
  publication-title: JACC Cardiovasc Imaging
– volume: 112
  start-page: 1624
  issue: 12
  year: 2013
  end-page: 1633
  article-title: Monocyte and macrophage heterogeneity in the heart
  publication-title: Circ Res
– start-page: :383
  year: 2016
  end-page: 395
  article-title: Direct hydrogel encapsulation of pluripotent stem cells enables ontomimetic differentiation and growth of engineered human heart tissues
  publication-title: Biomaterials
– volume: 185
  start-page: 461
  issue: 5
  year: 1992
  end-page: 473
  article-title: The development of the myocardium and endocardium in mouse embryos. Fusion of two heart tubes?
  publication-title: Anat Embryol (Berl)
– volume: 6
  start-page: 903
  issue: 6
  year: 2020
  end-page: 912
  article-title: h‐FIBER: microfluidic topographical hollow fiber for studies of glomerular filtration barrier
  publication-title: ACS Cent Sci
– volume: 101
  start-page: 104
  issue: 1
  year: 2013
  end-page: 114
  article-title: Laser microfabricated poly (glycerol sebacate) scaffolds for heart valve tissue engineering
  publication-title: J Biomed Mater Res A
– volume: 109
  start-page: 47
  issue: 1
  year: 2011
  end-page: 59
  article-title: Growth of engineered human myocardium with mechanical loading and vascular coculture
  publication-title: Circ Res
– volume: 126
  start-page: 663
  issue: 4
  year: 2006
  end-page: 676
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
– volume: 7
  start-page: 2880
  issue: 7
  year: 2020
  end-page: 2899
  article-title: Beyond polydimethylsiloxane: alternative materials for fabrication of organ‐on‐a‐chip devices and microphysiological systems
  publication-title: ACS Biomater Sci Eng
– volume: 8
  issue: 5
  year: 2019
  article-title: A multimaterial microphysiological platform enabled by rapid casting of elastic microwires
  publication-title: Adv Healthc Mater
– volume: 1
  issue: 9
  year: 2015
  article-title: Three‐dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels
  publication-title: Sci Adv
– volume: 88
  start-page: 1982
  issue: 8
  year: 2011
  end-page: 1985
  article-title: Measurement of nonlinear mechanical properties of PDMS elastomer
  publication-title: Microelectron Eng
– volume: 10
  issue: 3
  year: 2015
  article-title: Current progress in 3D printing for cardiovascular tissue engineering
  publication-title: Biomed Mater
– volume: 15
  start-page: 457
  issue: 7
  year: 2016
  end-page: 471
  article-title: Evolution of strategies to improve preclinical cardiac safety testing
  publication-title: Nat Rev Drug Discov
– volume: 56
  year: 2020
  article-title: The effect of molecular weight and content of PEG on in vitro drug release of electrospun curcumin loaded PLA/PEG nanofibers
  publication-title: J Drug Deliv Sci Technol
– volume: 109
  start-page: 1055
  issue: 9
  year: 2011
  end-page: 1066
  article-title: Human atrial action potential and Ca model: sinus rhythm and chronic atrial fibrillation
  publication-title: Circ Res
– volume: 42
  issue: 5
  year: 2023
  article-title: Vascular cells improve functionality of human cardiac organoids
  publication-title: Cell Rep
– volume: 147
  start-page: e93
  issue: 8
  year: 2023
  end-page: e621
  article-title: Heart Disease and Stroke Statistics‐2023 Update: a report from the American Heart Association
  publication-title: Circulation
– volume: 147
  start-page: 160
  year: 2020
  end-page: 169
  article-title: Tissue engineering with electrospun electro‐responsive chitosan‐aniline oligomer/polyvinyl alcohol
  publication-title: Int J Biol Macromol
– volume: 101
  start-page: 18129
  issue: 52
  year: 2004
  end-page: 18134
  article-title: Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds
  publication-title: Proc Natl Acad Sci U S A
– volume: 2012
  year: 2012
  article-title: Effects of substrate mechanics on contractility of cardiomyocytes generated from human pluripotent stem cells
  publication-title: Int J Cell Biol
– volume: 5
  start-page: 319
  issue: 3
  year: 2016
  end-page: 325
  article-title: 3D‐printed biodegradable polymeric vascular grafts
  publication-title: Adv Healthc Mater
– volume: 30
  issue: 48
  year: 2020
  article-title: Recapitulating pancreatic tumor microenvironment through synergistic use of patient organoids and organ‐on‐a‐chip vasculature
  publication-title: Adv Funct Mater
– volume: 255
  start-page: 100
  year: 2018
  end-page: 109
  article-title: Rapid prototyping of whole‐thermoplastic microfluidics with built‐in microvalves using laser ablation and thermal fusion bonding
  publication-title: Sensors Actuators B Chem
– volume: 6
  start-page: 2449
  issue: 11
  year: 2010
  end-page: 2461
  article-title: Synthesis and characterization of a biodegradable elastomer featuring a dual crosslinking mechanism
  publication-title: Soft Matter
– volume: 277
  start-page: H433
  issue: 2
  year: 1999
  end-page: H444
  article-title: Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies
  publication-title: American Journal of Physiology‐Heart and Circulatory Physiology
– volume: 4
  start-page: 3691
  issue: 11
  year: 2018
  end-page: 3703
  article-title: Method for the fabrication of elastomeric polyester scaffolds for tissue engineering and minimally invasive delivery
  publication-title: ACS Biomater Sci Eng
– volume: 22
  start-page: 651
  issue: 5
  year: 2010
  end-page: 655
  article-title: Organic thin‐film transistors fabricated on resorbable biomaterial substrates
  publication-title: Adv Mater
– volume: 556
  start-page: 239
  issue: 7700
  year: 2018
  end-page: 243
  article-title: Advanced maturation of human cardiac tissue grown from pluripotent stem cells
  publication-title: Nature
– volume: 16
  start-page: 2158
  issue: 4
  year: 2021
  end-page: 2189
  article-title: A well plate–based multiplexed platform for incorporation of organoids into an organ‐on‐a‐chip system with a perfusable vasculature
  publication-title: Nat Protoc
– volume: 6
  issue: 2
  year: 2021
  article-title: Heart‐on‐a‐chip platform for assessing toxicity of air pollution related nanoparticles
  publication-title: Adv Mater Technol
– volume: 99
  start-page: 376
  issue: 3
  year: 2011
  end-page: 385
  article-title: Polypyrrole‐contained electrospun conductive nanofibrous membranes for cardiac tissue engineering
  publication-title: J Biomed Mater Res A
– volume: 43
  start-page: 307
  year: 2018
  end-page: 319
  article-title: Effect of PEDOT: PSS in tissue engineering composite scaffold on improvement and maintenance of endothelial cell function
  publication-title: J Biosci
– volume: 30
  start-page: 741
  issue: 5
  year: 2023
  article-title: Gene editing to prevent ventricular arrhythmias associated with cardiomyocyte cell therapy
  publication-title: Cell Stem Cell
– volume: 4
  issue: 130
  year: 2012
  article-title: Patient‐specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy
  publication-title: Sci Transl Med
– volume: 70
  start-page: 1089
  year: 2017
  end-page: 1094
  article-title: Electrospinning of poly (glycerol sebacate)‐based nanofibers for nerve tissue engineering
  publication-title: Mater Sci Eng C
– volume: 4
  start-page: 889
  issue: 9
  year: 2020
  end-page: 900
  article-title: Mapping signalling perturbations in myocardial fibrosis via the integrative phosphoproteomic profiling of tissue from diverse sources
  publication-title: Nat Biomed Eng
– volume: 12
  start-page: 576
  issue: 4
  year: 2023
  article-title: A three‐dimensional engineered cardiac in vitro model: controlled alignment of cardiomyocytes in 3D microphysiological systems
  publication-title: Cells
– volume: 12
  start-page: 3677
  issue: 27
  year: 2016
  end-page: 3689
  article-title: Reduced graphene oxide‐gelMA hybrid hydrogels as scaffolds for cardiac tissue engineering
  publication-title: Small
– volume: 97
  start-page: 529
  issue: 7
  year: 2012
  end-page: 538
  article-title: Electrospun composite scaffolds containing poly (octanediol‐co‐citrate) for cardiac tissue engineering
  publication-title: Biopolymers
– volume: 6
  issue: 11
  year: 2019
  article-title: 3D printing of personalized thick and perfusable cardiac patches and hearts
  publication-title: Adv Sci (Weinh)
– volume: 60
  start-page: 82
  year: 2015
  end-page: 91
  article-title: Physiologic force‐frequency response in engineered heart muscle by electromechanical stimulation
  publication-title: Biomaterials
– year: 2018
– volume: 85‐86
  year: 2020
  article-title: Engineering microenvironment for human cardiac tissue assembly in heart‐on‐a‐chip platform
  publication-title: Matrix Biol
– volume: 8
  issue: 16
  year: 2019
  article-title: One‐pot synthesis of unsaturated polyester bioelastomer with controllable material curing for microscale designs
  publication-title: Adv Healthc Mater
– volume: 44
  start-page: 2117
  issue: 11
  year: 2004
  end-page: 2124
  article-title: Drug‐induced atrial fibrillation
  publication-title: J Am Coll Cardiol
– volume: 114
  start-page: I72
  issue: 1 Suppl
  year: 2006
  end-page: I78
  article-title: Optimizing engineered heart tissue for therapeutic applications as surrogate heart muscle
  publication-title: Circulation
– volume: 7
  start-page: 5464
  issue: 1
  year: 2017
  article-title: Human iPSC‐derived cardiomyocytes cultured in 3D engineered heart tissue show physiological upstroke velocity and sodium current density
  publication-title: Sci Rep
– volume: 46
  start-page: E211
  issue: 7
  year: 2022
  end-page: E243
  article-title: Advances in microfabrication technologies in tissue engineering and regenerative medicine
  publication-title: Artif Organs
– volume: 4
  issue: 3
  year: 2012
  article-title: Biofabrication enables efficient interrogation and optimization of sequential culture of endothelial cells, fibroblasts and cardiomyocytes for formation of vascular cords in cardiac tissue engineering
  publication-title: Biofabrication
– volume: 18
  start-page: 30
  year: 2015
  end-page: 39
  article-title: Highly elastic and suturable electrospun poly (glycerol sebacate) fibrous scaffolds
  publication-title: Acta Biomater
– volume: 11
  start-page: 683
  issue: 8
  year: 1997
  end-page: 694
  article-title: Three‐dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system
  publication-title: FASEB J
– volume: 365
  start-page: 482
  issue: 6452
  year: 2019
  end-page: 487
  article-title: 3D bioprinting of collagen to rebuild components of the human heart
  publication-title: Science
– volume: 22
  start-page: 99
  issue: 2
  year: 2016
  end-page: 114
  article-title: The living scar—cardiac fibroblasts and the injured heart
  publication-title: Trends Mol Med
– volume: 10
  start-page: 44668
  issue: 51
  year: 2018
  end-page: 44677
  article-title: Nanoengineered electroconductive collagen‐based cardiac patch for infarcted myocardium repair
  publication-title: ACS Appl Mater Interfaces
– volume: 510
  start-page: 273
  issue: 7504
  year: 2014
  end-page: 277
  article-title: Human embryonic‐stem‐cell‐derived cardiomyocytes regenerate non‐human primate hearts
  publication-title: Nature
– volume: 21
  start-page: 179.e4
  issue: 2
  year: 2017
  end-page: 194.e4
  article-title: Human pluripotent stem cell‐derived atrial and ventricular cardiomyocytes develop from distinct mesoderm populations
  publication-title: Cell Stem Cell
– volume: 245
  start-page: 414
  year: 2017
  end-page: 422
  article-title: A microfluidic chip based on surfactant‐doped polydimethylsiloxane (PDMS) in a sandwich configuration for low‐cost and robust digital PCR
  publication-title: Sensors Actuators B Chem
– volume: 333
  start-page: 78
  issue: 1
  year: 2009
  end-page: 89
  article-title: Endocardial cells are a distinct endothelial lineage derived from Flk1+ multipotent cardiovascular progenitors
  publication-title: Dev Biol
– volume: 7
  start-page: 13894
  issue: 16
  year: 2022
  end-page: 13905
  article-title: Development and characterization of furfuryl‐gelatin electrospun scaffolds for cardiac tissue engineering
  publication-title: ACS Omega
– volume: 174
  start-page: 3749
  issue: 21
  year: 2017
  end-page: 3765
  article-title: Integrating cardiomyocytes from human pluripotent stem cells in safety pharmacology: has the time come?
  publication-title: Br J Pharmacol
– volume: 10
  issue: 5
  year: 2023
  article-title: One billion hiPSC‐cardiomyocytes: upscaling engineered cardiac tissues to create high cell density therapies for clinical translation in heart regeneration
  publication-title: Bioengineering (Basel)
– volume: 10
  start-page: 6919
  issue: 1
  year: 2020
  article-title: Functional arrays of human pluripotent stem cell‐derived cardiac microtissues
  publication-title: Sci Rep
– volume: 83
  start-page: 688
  issue: 4
  year: 2009
  end-page: 697
  article-title: Cardiac fibroblast paracrine factors alter impulse conduction and ion channel expression of neonatal rat cardiomyocytes
  publication-title: Cardiovasc Res
– volume: 35
  year: 2023
  article-title: Post‐maturation reinforcement of 3d‐printed vascularized cardiac tissues
  publication-title: Adv Mater
– volume: 37
  start-page: 106
  issue: 1
  year: 2012
  end-page: 126
  article-title: Alginate: properties and biomedical applications
  publication-title: Prog Polym Sci
– volume: 4
  start-page: 3660
  issue: 2
  year: 2019
  end-page: 3672
  article-title: Electrospun conducting and biocompatible uniaxial and core–shell fibers having poly (lactic acid), poly (ethylene glycol), and polyaniline for cardiac tissue engineering
  publication-title: ACS Omega
– volume: 8
  issue: 1
  year: 2018
  article-title: Microfabricated tuneable and transferable porous PDMS membranes for organs‐on‐chips
  publication-title: Sci Rep
– volume: 18
  year: 2012
  article-title: Vascular Endothelial Growth Factor secretion by non‐myocytes modulates connexin‐43 levels in cardiac organoids
  publication-title: Tissue Eng Part A
– volume: 15
  start-page: 1211
  issue: 6
  year: 2009
  end-page: 1222
  article-title: Scaffold‐free human cardiac tissue patch created from embryonic stem cells
  publication-title: Tissue Eng Part A
– volume: 23
  start-page: 4268
  issue: 10
  year: 2022
  end-page: 4281
  article-title: Bulk erosion degradation mechanism for poly(1, 8‐octanediol‐co‐citrate) elastomer: an in vivo and in vitro investigation
  publication-title: Biomacromolecules
– volume: 12
  start-page: 2808
  issue: 17
  year: 2019
  article-title: Electrospinning of fish gelatin solution containing citric acid: An environmentally friendly approach to prepare crosslinked gelatin fibers
  publication-title: Materials
– volume: 41
  year: 2023
  article-title: Organs‐on‐a‐chip: a union of tissue engineering and microfabrication
  publication-title: Trends Biotechnol
– volume: 77
  start-page: 331
  issue: 2
  year: 2006
  end-page: 339
  article-title: A new biodegradable polyester elastomer for cartilage tissue engineering
  publication-title: J Biomed Mater Res A: Off J Soc Biomater, Jpn Soc Biomater, Aust Soc Biomater Kor Soc Biomater
– volume: 6
  issue: 11
  year: 2022
  article-title: Toward hierarchical assembly of aligned cell sheets into a conical cardiac ventricle using microfabricated elastomers
  publication-title: Adv Biol (Weinh)
– volume: 3
  start-page: 1943
  issue: 4
  year: 2021
  end-page: 1955
  article-title: Toward renewable and functional biomedical polymers with tunable degradation rates based on itaconic acid and 1, 8‐octanediol
  publication-title: ACS Appl Polym Mater
– volume: 13
  start-page: 1527
  issue: 9
  year: 2021
  article-title: Synthesis, characterization, and electrospinning of a functionalizable, polycaprolactone‐based polyurethane for soft tissue engineering
  publication-title: Polymers
– volume: 6
  start-page: 351
  issue: 4
  year: 2022
  end-page: 371
  article-title: A multi‐organ chip with matured tissue niches linked by vascular flow
  publication-title: Nat Biomed Eng
– volume: 9
  start-page: 1560
  issue: 5
  year: 2017
  end-page: 1572
  article-title: Machine learning of human pluripotent stem cell‐derived engineered cardiac tissue contractility for automated drug classification
  publication-title: Stem Cell Rep
– volume: 89
  start-page: 616
  issue: 3
  year: 2009
  end-page: 631
  article-title: Microfabricated poly(ethylene glycol) templates enable rapid screening of triculture conditions for cardiac tissue engineering
  publication-title: J Biomed Mater Res A
– volume: 7
  start-page: 636
  issue: 8
  year: 2008
  end-page: 640
  article-title: In situ collagen assembly for integrating microfabricated three‐dimensional cell‐seeded matrices
  publication-title: Nat Mater
– volume: 6
  issue: 19
  year: 2019
  article-title: Biofunctionalization of glass‐ and paper‐based microfluidic devices: a review
  publication-title: Adv Mater Interfaces
– volume: 22
  start-page: 1615
  issue: 8
  year: 2022
  end-page: 1629
  article-title: Engineering neurovascular organoids with 3D printed microfluidic chips
  publication-title: Lab Chip
– volume: 1863
  start-page: 298
  issue: 1
  year: 2017
  end-page: 309
  article-title: The role of alpha‐smooth muscle actin in fibroblast‐mediated matrix contraction and remodeling
  publication-title: Biochim Biophys Acta Mol basis Dis
– volume: 7
  start-page: 1003
  issue: 12
  year: 2008
  end-page: 1010
  article-title: Accordion‐like honeycombs for tissue engineering of cardiac anisotropy
  publication-title: Nat Mater
– volume: 53
  start-page: 7412
  issue: 53
  year: 2017
  end-page: 7415
  article-title: Micro‐and nano‐patterned conductive graphene–PEG hybrid scaffolds for cardiac tissue engineering
  publication-title: Chem Commun
– volume: 21
  issue: 9
  year: 2021
  article-title: A review: optimization for poly(glycerol sebacate) and fabrication techniques for its centered scaffolds
  publication-title: Macromol Biosci
– volume: 117
  year: 2020
  article-title: Repolarization studies using human stem cell‐derived cardiomyocytes: validation studies and best practice recommendations
  publication-title: Regul Toxicol Pharmacol
– volume: 27
  start-page: 50
  issue: 1
  year: 2020
  end-page: 63 e5
  article-title: Wnt activation and reduced cell‐cell contact synergistically induce massive expansion of functional human iPSC‐derived cardiomyocytes
  publication-title: Cell Stem Cell
– volume: 16
  start-page: 1038
  issue: 10
  year: 2017
  end-page: 1046
  article-title: Flexible shape‐memory scaffold for minimally invasive delivery of functional tissues
  publication-title: Nat Mater
– volume: 276
  year: 2021
  article-title: Conductive polypyrrole‐encapsulated silk fibroin fibers for cardiac tissue engineering
  publication-title: Biomaterials
– volume: 5
  start-page: 1146
  issue: 7
  year: 2019
  end-page: 1158
  article-title: Biowire model of interstitial and focal cardiac fibrosis
  publication-title: ACS Cent Sci
– volume: 160
  start-page: 97
  year: 2021
  end-page: 110
  article-title: An organ‐on‐a‐chip model for pre‐clinical drug evaluation in progressive non‐genetic cardiomyopathy
  publication-title: J Mol Cell Cardiol
– volume: 89
  start-page: 193
  year: 2019
  end-page: 205
  article-title: Non‐invasive functional molecular phenotyping of human smooth muscle cells utilized in cardiovascular tissue engineering
  publication-title: Acta Biomater
– volume: 6
  year: 2016
  article-title: Connexin43 contributes to electrotonic conduction across scar tissue in the intact heart
  publication-title: Sci Rep
– volume: 86
  start-page: 713
  issue: 3
  year: 2008
  end-page: 724
  article-title: Pre‐treatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue
  publication-title: J Biomed Mater Res A
– volume: 381
  start-page: 897
  issue: 6660
  year: 2023
  end-page: 906
  article-title: Aging impairs the neurovascular interface in the heart
  publication-title: Science
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  end-page: 12
  article-title: Establishment of a heart‐on‐a‐chip microdevice based on human iPS cells for the evaluation of human heart tissue function
  publication-title: Sci Rep
– volume: 303
  start-page: H133
  issue: 2
  year: 2012
  end-page: H143
  article-title: Physiological aspects of cardiac tissue engineering
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 137
  issue: 27
  year: 2020
  article-title: PDMS microfluidics: a mini review
  publication-title: J Appl Polym Sci
– volume: 37
  start-page: 1051
  issue: 8
  year: 2012
  end-page: 1078
  article-title: Synthesis, properties and biomedical applications of poly (glycerol sebacate) (PGS): A review
  publication-title: Prog Polym Sci
– volume: 22
  start-page: 1171
  issue: 6
  year: 2022
  end-page: 1186
  article-title: Vasculature‐on‐a‐chip platform with innate immunity enables identification of angiopoietin‐1 derived peptide as a therapeutic for SARS‐CoV‐2 induced inflammation
  publication-title: Lab Chip
– volume: 29
  start-page: 1872
  issue: 12
  year: 2008
  end-page: 1879
  article-title: The effect of gelatin incorporation into electrospun poly (l‐lactide‐co‐ɛ‐caprolactone) fibers on mechanical properties and cytocompatibility
  publication-title: Biomaterials
– volume: 15
  start-page: 669
  issue: 6
  year: 2016
  end-page: 678
  article-title: Biodegradable scaffold with built‐in vasculature for organ‐on‐a‐chip engineering and direct surgical anastomosis
  publication-title: Nat Mater
– volume: 356
  year: 2022
  article-title: Rapid assembly of PMMA microfluidic devices with PETE membranes for studying the endothelium
  publication-title: Sensors Actuators B Chem
– volume: 588
  start-page: 466
  issue: 7838
  year: 2020
  end-page: 472
  article-title: Cells of the adult human heart
  publication-title: Nature
– volume: 6
  start-page: 720
  issue: 11
  year: 2011
  end-page: 725
  article-title: Nanowired three‐dimensional cardiac patches
  publication-title: Nat Nanotechnol
– ident: e_1_2_11_175_1
  doi: 10.1038/s41467-017-01946-x
– ident: e_1_2_11_193_1
  doi: 10.1021/acscentsci.9b00052
– ident: e_1_2_11_104_1
  doi: 10.1002/mabi.202100022
– ident: e_1_2_11_121_1
  doi: 10.1080/10426914.2020.1832691
– ident: e_1_2_11_35_1
  doi: 10.1038/nbt1287
– ident: e_1_2_11_63_1
  doi: 10.1016/j.cell.2018.11.042
– ident: e_1_2_11_36_1
  doi: 10.1152/physrev.00017.2002
– ident: e_1_2_11_7_1
  doi: 10.1152/ajpheart.00171.2003
– ident: e_1_2_11_149_1
  doi: 10.1016/j.compscitech.2012.10.014
– ident: e_1_2_11_21_1
  doi: 10.1161/01.CIR.71.5.994
– ident: e_1_2_11_172_1
  doi: 10.1161/hh0202.103644
– ident: e_1_2_11_79_1
  doi: 10.1039/C7CC01988B
– ident: e_1_2_11_114_1
  doi: 10.1002/mabi.200800041
– ident: e_1_2_11_62_1
  doi: 10.1021/acsapm.1c00017
– ident: e_1_2_11_225_1
  doi: 10.1093/nar/gkr218
– ident: e_1_2_11_50_1
  doi: 10.1021/acsbiomaterials.5b00525
– ident: e_1_2_11_111_1
  doi: 10.1016/j.jddst.2020.101554
– ident: e_1_2_11_223_1
  doi: 10.1016/j.stem.2023.04.010
– ident: e_1_2_11_229_1
  doi: 10.1056/NEJMoa0908679
– ident: e_1_2_11_6_1
  doi: 10.1073/pnas.0407817101
– ident: e_1_2_11_92_1
  doi: 10.3390/ma15186478
– ident: e_1_2_11_18_1
  doi: 10.3389/fphys.2023.1060666
– ident: e_1_2_11_97_1
  doi: 10.1038/s41598-020-76062-w
– ident: e_1_2_11_214_1
  doi: 10.1038/s41598-017-05600-w
– ident: e_1_2_11_148_1
  doi: 10.1002/adhm.201500725
– ident: e_1_2_11_82_1
  doi: 10.1021/nl502227a
– ident: e_1_2_11_159_1
  doi: 10.1161/01.RES.0000257776.05673.ff
– ident: e_1_2_11_67_1
  doi: 10.1021/acscentsci.9b01097
– volume: 30
  issue: 48
  year: 2020
  ident: e_1_2_11_103_1
  article-title: Recapitulating pancreatic tumor microenvironment through synergistic use of patient organoids and organ‐on‐a‐chip vasculature
  publication-title: Adv Funct Mater
  contributor:
    fullname: Lai Benjamin FL
– ident: e_1_2_11_196_1
  doi: 10.1007/s00216-018-1106-7
– ident: e_1_2_11_52_1
  doi: 10.1039/c001605e
– ident: e_1_2_11_178_1
  doi: 10.1002/advs.201900344
– volume-title: Computing the Electrical Activity in the Heart
  year: 2007
  ident: e_1_2_11_41_1
  contributor:
    fullname: Sundnes J
– ident: e_1_2_11_197_1
  doi: 10.1039/c3lc50350j
– ident: e_1_2_11_145_1
  doi: 10.1007/s42242-020-00109-0
– ident: e_1_2_11_9_1
  doi: 10.1089/ten.2006.12.2077
– ident: e_1_2_11_188_1
  doi: 10.1038/s41598-020-62955-3
– ident: e_1_2_11_112_1
  doi: 10.3390/ma12172808
– ident: e_1_2_11_123_1
  doi: 10.1002/adhm.201801187
– ident: e_1_2_11_33_1
  doi: 10.1126/science.aal2379
– ident: e_1_2_11_110_1
  doi: 10.1016/j.msec.2016.03.035
– ident: e_1_2_11_71_1
  doi: 10.1039/D0TB00768D
– ident: e_1_2_11_152_1
  doi: 10.1172/JCI40435
– ident: e_1_2_11_43_1
  doi: 10.1016/j.mee.2010.12.108
– ident: e_1_2_11_200_1
  doi: 10.1039/c1lc20557a
– ident: e_1_2_11_44_1
  doi: 10.1039/D0LC00316F
– volume: 77
  start-page: 331
  issue: 2
  year: 2006
  ident: e_1_2_11_58_1
  article-title: A new biodegradable polyester elastomer for cartilage tissue engineering
  publication-title: J Biomed Mater Res A: Off J Soc Biomater, Jpn Soc Biomater, Aust Soc Biomater Kor Soc Biomater
  doi: 10.1002/jbm.a.30607
  contributor:
    fullname: Kang Y
– ident: e_1_2_11_60_1
  doi: 10.1002/adma.200306264
– ident: e_1_2_11_109_1
  doi: 10.3390/polym13091527
– ident: e_1_2_11_42_1
  doi: 10.1016/j.snb.2017.01.161
– ident: e_1_2_11_86_1
  doi: 10.1016/j.biomaterials.2005.11.037
– ident: e_1_2_11_68_1
  doi: 10.1002/adfm.201203319
– ident: e_1_2_11_47_1
  doi: 10.1073/pnas.1311120110
– ident: e_1_2_11_138_1
  doi: 10.1002/admt.202000726
– ident: e_1_2_11_75_1
  doi: 10.1016/j.ijbiomac.2019.08.046
– ident: e_1_2_11_49_1
  doi: 10.1016/j.bbrc.2016.11.062
– ident: e_1_2_11_24_1
  doi: 10.1038/s41586-020-2797-4
– ident: e_1_2_11_12_1
  doi: 10.1016/j.yjmcc.2014.05.009
– ident: e_1_2_11_22_1
  doi: 10.1113/JP274787
– ident: e_1_2_11_209_1
  doi: 10.1016/j.stemcr.2017.09.008
– ident: e_1_2_11_189_1
  doi: 10.1111/bph.13577
– ident: e_1_2_11_96_1
  doi: 10.1089/ten.tec.2019.0248
– ident: e_1_2_11_221_1
  doi: 10.1038/s42003-021-02650-9
– ident: e_1_2_11_78_1
  doi: 10.1021/acsbiomaterials.9b00515
– ident: e_1_2_11_190_1
  doi: 10.1038/nrd.2015.34
– volume: 2021
  start-page: 939
  year: 2019
  ident: e_1_2_11_132_1
  article-title: CO2 Laser micromachining of polymethyl methacrylate (PMMA): a review
  publication-title: Adv Manuf Ind Eng: Select Proc ICAPIE
  contributor:
    fullname: Vidya S
– ident: e_1_2_11_181_1
  doi: 10.1002/adma.202200217
– ident: e_1_2_11_32_1
  doi: 10.1093/cvr/cvp164
– ident: e_1_2_11_66_1
  doi: 10.1016/j.progpolymsci.2011.06.003
– ident: e_1_2_11_206_1
  doi: 10.1016/j.jcmg.2019.12.022
– ident: e_1_2_11_163_1
  doi: 10.1089/ten.tea.2011.0468
– ident: e_1_2_11_136_1
  doi: 10.1002/adhm.202201346
– ident: e_1_2_11_102_1
  doi: 10.1038/nmat4956
– ident: e_1_2_11_224_1
  doi: 10.1038/s41587-019-0016-3
– ident: e_1_2_11_54_1
  doi: 10.1016/j.biomaterials.2007.12.029
– ident: e_1_2_11_73_1
  doi: 10.1038/nnano.2011.160
– ident: e_1_2_11_118_1
  doi: 10.1016/j.aca.2021.339283
– ident: e_1_2_11_153_1
  doi: 10.1038/nature09855
– ident: e_1_2_11_40_1
  doi: 10.1016/j.biomaterials.2013.12.052
– ident: e_1_2_11_83_1
  doi: 10.1002/jbm.a.33200
– ident: e_1_2_11_76_1
  doi: 10.1002/jemt.23282
– ident: e_1_2_11_25_1
  doi: 10.1161/CIRCRESAHA.116.308139
– ident: e_1_2_11_128_1
  doi: 10.1016/j.bioadv.2022.212916
– ident: e_1_2_11_147_1
  doi: 10.1021/acsbiomaterials.9b00676
– ident: e_1_2_11_232_1
  doi: 10.1126/science.aaa5458
– ident: e_1_2_11_51_1
  doi: 10.17219/pim/139585
– ident: e_1_2_11_57_1
  doi: 10.1016/j.progpolymsci.2012.02.001
– ident: e_1_2_11_107_1
  doi: 10.1016/j.bioadv.2022.212808
– ident: e_1_2_11_185_1
  doi: 10.1038/nmat4782
– ident: e_1_2_11_106_1
  doi: 10.1021/acsbiomaterials.7b01017
– ident: e_1_2_11_195_1
  doi: 10.1038/s41551-020-0585-y
– ident: e_1_2_11_26_1
  doi: 10.1016/j.stem.2017.07.003
– ident: e_1_2_11_95_1
  doi: 10.1021/acsbiomaterials.2c00162
– ident: e_1_2_11_205_1
  doi: 10.1016/j.stem.2020.06.001
– ident: e_1_2_11_10_1
  doi: 10.1038/s41586-018-0016-3
– ident: e_1_2_11_201_1
  doi: 10.1038/s41551-018-0280-4
– ident: e_1_2_11_203_1
  doi: 10.1177/2168479018795117
– ident: e_1_2_11_48_1
  doi: 10.1016/j.actbio.2016.11.009
– ident: e_1_2_11_134_1
  doi: 10.1038/nmat2316
– ident: e_1_2_11_174_1
  doi: 10.1096/fasebj.11.8.9240969
– ident: e_1_2_11_127_1
  doi: 10.1002/adhm.201970019
– ident: e_1_2_11_120_1
  doi: 10.1016/j.bios.2018.12.054
– ident: e_1_2_11_166_1
  doi: 10.1016/j.matbio.2019.04.001
– ident: e_1_2_11_124_1
  doi: 10.1016/j.eurpolymj.2019.01.031
– ident: e_1_2_11_98_1
  doi: 10.1002/admi.201900940
– ident: e_1_2_11_168_1
  doi: 10.1089/ten.tea.2011.0468
– ident: e_1_2_11_55_1
  doi: 10.1016/B978-0-12-420145-3.00018-3
– ident: e_1_2_11_164_1
  doi: 10.1073/pnas.0908381106
– ident: e_1_2_11_53_1
  doi: 10.1016/j.actbio.2011.08.015
– ident: e_1_2_11_38_1
  doi: 10.1161/CIRCRESAHA.113.300890
– ident: e_1_2_11_219_1
  doi: 10.1016/j.jacc.2004.08.053
– ident: e_1_2_11_157_1
  doi: 10.1152/ajpheart.1999.277.2.H433
– ident: e_1_2_11_218_1
  doi: 10.1161/CIRCRESAHA.111.253955
– ident: e_1_2_11_46_1
  doi: 10.1039/D1LC00288K
– ident: e_1_2_11_37_1
  doi: 10.1016/j.cell.2017.03.050
– ident: e_1_2_11_144_1
  doi: 10.1039/D1LC00535A
– ident: e_1_2_11_87_1
  doi: 10.1007/s12038-018-9748-3
– ident: e_1_2_11_93_1
  doi: 10.1038/s41598-018-31912-6
– ident: e_1_2_11_208_1
  doi: 10.1038/srep11817
– ident: e_1_2_11_131_1
  doi: 10.1016/j.snb.2017.07.138
– ident: e_1_2_11_34_1
  doi: 10.1016/j.bbadis.2016.11.006
– ident: e_1_2_11_226_1
  doi: 10.1126/science.abl6395
– ident: e_1_2_11_173_1
  doi: 10.1038/nm1394
– ident: e_1_2_11_139_1
  doi: 10.1039/D1LC00817J
– ident: e_1_2_11_141_1
  doi: 10.2147/IJN.S189587
– ident: e_1_2_11_39_1
  doi: 10.1021/acsbiomaterials.0c00640
– ident: e_1_2_11_198_1
  doi: 10.1038/nm.3545
– ident: e_1_2_11_77_1
  doi: 10.1016/j.msec.2020.111614
– ident: e_1_2_11_19_1
  doi: 10.1016/j.isci.2020.101140
– ident: e_1_2_11_17_1
  doi: 10.1016/j.ydbio.2009.06.033
– ident: e_1_2_11_85_1
  doi: 10.1021/acsomega.8b03411
– ident: e_1_2_11_29_1
  doi: 10.1038/srep26744
– ident: e_1_2_11_59_1
  doi: 10.1021/acs.biomac.2c00737
– ident: e_1_2_11_169_1
  doi: 10.1002/bit.22647
– ident: e_1_2_11_202_1
– ident: e_1_2_11_11_1
  doi: 10.1016/j.biomaterials.2015.03.055
– ident: e_1_2_11_94_1
  doi: 10.3390/cells12040576
– ident: e_1_2_11_180_1
  doi: 10.1002/adma.202302229
– volume-title: Stereolithography
  year: 2018
  ident: e_1_2_11_140_1
  contributor:
    fullname: Schmidleithner C
– ident: e_1_2_11_45_1
  doi: 10.1246/cl.2006.234
– ident: e_1_2_11_183_1
  doi: 10.1039/D0LC01078B
– ident: e_1_2_11_100_1
  doi: 10.1002/app.48958
– ident: e_1_2_11_210_1
  doi: 10.1136/heartjnl-2019-315481
– ident: e_1_2_11_192_1
  doi: 10.1016/j.biomaterials.2019.119741
– ident: e_1_2_11_158_1
  doi: 10.1002/jbm.a.31578
– ident: e_1_2_11_184_1
  doi: 10.1021/acs.nanolett.0c00076
– ident: e_1_2_11_143_1
  doi: 10.1080/10667857.2018.1456616
– ident: e_1_2_11_207_1
  doi: 10.1016/j.actbio.2019.03.026
– ident: e_1_2_11_88_1
  doi: 10.3389/fbioe.2022.897575
– ident: e_1_2_11_179_1
  doi: 10.1126/science.aav9051
– ident: e_1_2_11_28_1
  doi: 10.1038/nrcardio.2017.57
– ident: e_1_2_11_167_1
  doi: 10.1002/jbm.a.31578
– ident: e_1_2_11_13_1
  doi: 10.1002/adma.200902322
– ident: e_1_2_11_20_1
  doi: 10.1126/science.ade4961
– ident: e_1_2_11_161_1
  doi: 10.1002/jbm.a.32014
– ident: e_1_2_11_231_1
  doi: 10.1126/scitranslmed.3003552
– ident: e_1_2_11_84_1
  doi: 10.1016/j.biomaterials.2021.121008
– ident: e_1_2_11_170_1
  doi: 10.1038/s41551-021-00796-9
– ident: e_1_2_11_65_1
  doi: 10.3390/polym3020740
– ident: e_1_2_11_133_1
  doi: 10.1002/pi.5834
– ident: e_1_2_11_74_1
  doi: 10.1016/j.ijbiomac.2021.03.001
– ident: e_1_2_11_99_1
  doi: 10.1038/micronano.2016.91
– ident: e_1_2_11_135_1
  doi: 10.1002/jbm.a.34305
– ident: e_1_2_11_222_1
  doi: 10.1038/nature13233
– ident: e_1_2_11_151_1
  doi: 10.1161/CIRCRESAHA.108.192237
– ident: e_1_2_11_2_1
  doi: 10.1161/CIR.0000000000001123
– ident: e_1_2_11_187_1
  doi: 10.1089/ten.tea.2011.0341
– ident: e_1_2_11_162_1
  doi: 10.1088/1758-5082/4/3/035002
– ident: e_1_2_11_3_1
  doi: 10.1073/pnas.0812242106
– ident: e_1_2_11_116_1
  doi: 10.1016/j.actbio.2015.02.005
– ident: e_1_2_11_186_1
  doi: 10.1038/nmeth.2524
– ident: e_1_2_11_70_1
  doi: 10.1161/CIRCRESAHA.119.316155
– ident: e_1_2_11_160_1
  doi: 10.1089/ten.tea.2009.0130
– ident: e_1_2_11_126_1
  doi: 10.1002/adfm.201703524
– ident: e_1_2_11_108_1
  doi: 10.1021/acsomega.2c00271
– ident: e_1_2_11_216_1
  doi: 10.1161/CIRCRESAHA.110.237206
– ident: e_1_2_11_81_1
  doi: 10.1073/pnas.1913651116
– ident: e_1_2_11_117_1
  doi: 10.1002/bip.22035
– ident: e_1_2_11_23_1
  doi: 10.1155/2012/508294
– ident: e_1_2_11_156_1
  doi: 10.1161/CIRCULATIONAHA.105.001560
– ident: e_1_2_11_154_1
  doi: 10.1016/j.cell.2006.07.024
– ident: e_1_2_11_211_1
  doi: 10.1038/s41551-022-00884-4
– ident: e_1_2_11_64_1
  doi: 10.1038/s41596-020-00490-1
– ident: e_1_2_11_137_1
  doi: 10.1038/nmat4570
– ident: e_1_2_11_8_1
  doi: 10.1002/bit.20722
– ident: e_1_2_11_90_1
  doi: 10.1016/j.tibtech.2022.12.018
– ident: e_1_2_11_16_1
  doi: 10.1038/nature05383
– ident: e_1_2_11_191_1
  doi: 10.3109/10408444.2016.1149452
– ident: e_1_2_11_150_1
  doi: 10.3389/fcell.2017.00050
– ident: e_1_2_11_69_1
  doi: 10.1002/smll.201600178
– ident: e_1_2_11_130_1
  doi: 10.1007/s11431-022-2104-5
– ident: e_1_2_11_220_1
  doi: 10.1016/j.celrep.2023.112322
– ident: e_1_2_11_61_1
  doi: 10.1002/adhm.201900245
– ident: e_1_2_11_125_1
  doi: 10.1039/C9LC00921C
– ident: e_1_2_11_213_1
  doi: 10.1016/j.yrtph.2020.104756
– ident: e_1_2_11_30_1
  doi: 10.1016/j.molmed.2015.12.006
– ident: e_1_2_11_122_1
  doi: 10.1039/D2LC00857B
– ident: e_1_2_11_113_1
  doi: 10.3390/bioengineering8030039
– ident: e_1_2_11_129_1
  doi: 10.1002/adfm.202110716
– ident: e_1_2_11_230_1
  doi: 10.1038/nature09005
– ident: e_1_2_11_15_1
  doi: 10.1007/BF00174084
– ident: e_1_2_11_194_1
  doi: 10.1016/j.yjmcc.2021.06.012
– ident: e_1_2_11_155_1
  doi: 10.1016/j.biomaterials.2015.12.011
– ident: e_1_2_11_217_1
  doi: 10.1152/ajpheart.00007.2012
– ident: e_1_2_11_91_1
  doi: 10.1038/s41596-018-0015-8
– ident: e_1_2_11_215_1
  doi: 10.1016/j.jbiomech.2011.11.024
– ident: e_1_2_11_228_1
  doi: 10.1002/jbm.b.34564
– volume: 724
  year: 2002
  ident: e_1_2_11_56_1
  article-title: Poly (glycerol sebacate)—a novel biodegradable elastomer for tissue engineering
  publication-title: MRS Online Proc Library (OPL)
  contributor:
    fullname: Wang Y
– ident: e_1_2_11_72_1
  doi: 10.1080/17458080.2021.1912319
– ident: e_1_2_11_101_1
  doi: 10.1002/adbi.202101165
– ident: e_1_2_11_31_1
  doi: 10.1161/01.RES.0000089258.40661.0C
– ident: e_1_2_11_4_1
  doi: 10.1016/j.biomaterials.2011.08.050
– ident: e_1_2_11_89_1
  doi: 10.1111/aor.14232
– ident: e_1_2_11_182_1
  doi: 10.1371/journal.pone.0026397
– volume: 10
  issue: 5
  year: 2023
  ident: e_1_2_11_204_1
  article-title: One billion hiPSC‐cardiomyocytes: upscaling engineered cardiac tissues to create high cell density therapies for clinical translation in heart regeneration
  publication-title: Bioengineering (Basel)
  contributor:
    fullname: Dwyer KD
– ident: e_1_2_11_165_1
  doi: 10.1073/pnas.1311120110
– ident: e_1_2_11_142_1
  doi: 10.1088/1748-6041/10/3/034002
– ident: e_1_2_11_177_1
  doi: 10.1021/acsami.8b18844
– ident: e_1_2_11_115_1
  doi: 10.1016/j.eurpolymj.2014.12.008
– ident: e_1_2_11_27_1
  doi: 10.1016/j.yjmcc.2005.07.008
– ident: e_1_2_11_105_1
  doi: 10.1002/adbi.202000046
– ident: e_1_2_11_171_1
  doi: 10.1002/(SICI)1097-0290(20000405)68:1<106::AID-BIT13>3.0.CO;2-3
– ident: e_1_2_11_119_1
  doi: 10.1016/j.snb.2021.131342
– ident: e_1_2_11_199_1
  doi: 10.1038/s41551-022-00882-6
– ident: e_1_2_11_146_1
  doi: 10.1126/sciadv.1500758
– ident: e_1_2_11_80_1
  doi: 10.1016/j.actbio.2016.05.027
– ident: e_1_2_11_14_1
  doi: 10.1038/nmat2203
– ident: e_1_2_11_227_1
  doi: 10.1016/j.ijbiomac.2019.12.264
– ident: e_1_2_11_5_1
  doi: 10.1089/ten.tea.2008.0151
– ident: e_1_2_11_176_1
  doi: 10.1016/j.actbio.2016.12.009
– ident: e_1_2_11_212_1
  doi: 10.1088/1758-5090/acd8f4
SSID ssj0026052
Score 2.4865131
SecondaryResourceType review_article
Snippet Recent advances in both cardiac tissue engineering and hearts‐on‐a‐chip are grounded in new biomaterial development as well as the employment of innovative...
Recent advances in both cardiac tissue engineering and hearts-on-a-chip are grounded in new biomaterial development as well as the employment of innovative...
Abstract Recent advances in both cardiac tissue engineering and hearts‐on‐a‐chip are grounded in new biomaterial development as well as the employment of...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 492
SubjectTerms Biocompatible Materials
Biomaterials
Biomedical materials
Biotechnology
cardiac tissue engineering
cardiomyocyte
Cardiomyocytes
Cryopreservation
Elongated structure
Fabrication
Heart
heart‐on‐a‐chip
Humans
Induced Pluripotent Stem Cells
iPSC
Lab-On-A-Chip Devices
Myocardium
Myocytes, Cardiac
Phenotypes
Pluripotency
Standardization
Stem cells
Substrates
Tissue engineering
Tissue Engineering - methods
Vascularization
Title Advances in cardiac tissue engineering and heart‐on‐a‐chip
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.a.37633
https://www.ncbi.nlm.nih.gov/pubmed/37909362
https://www.proquest.com/docview/2926524716/abstract/
https://www.proquest.com/docview/2885206780/abstract/
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA7qkz54v9QbFXyTdlvSdMmbUxQZTEQc-FZyxSl2w3UvPvkT_I3-Ek_SWqeCoA8thaS0OZeeL83JdxA6VO22JYaYyGqtowQ3VcQSayJqKKeMJNambu9w7zK96CfdW3pb5ea4vTAlP0T9w815hv9eOwcXctz4JA29l4-xiJ1_OK5PR6XnINF1TR7lgLpf64QZUEQwT6vdedDSmLr3azz6ATK_YlYfdM6XysqqY89V6HJNHuJJIWP1_I3J8d_jWUaLFRwNO6X9rKAZk6-ihSmSwjV03CnTBMbhIA-VNygVFl5fofnsGIpch648dvH28jrM4STgUHeD0Trqn5_dnF5EVd2FSAE6IVHLQFhnyoDmLMA9QhNjsVCMMqFwGydaSQ6ojbslQ8G14VpgqzmXLWlZEwawgebyYW62UGg1IBrFNJUkTVrGCMYtS5WUpGUpZjYAa6mkn41Keo2sJFLGGQgkE5kXSIB2PzSTVT42zjDHKcUQXNMAHdTN4B1uyUPkZjiBPoxRR1DPmgHaLDVaP4e0eZND_A7QkdfLby-QdU96HX-1_afeO2geAwoqU3120VzxNDF7gGIKuY9mcXK17032HVOY78s
link.rule.ids 315,786,790,1382,11589,27957,27958,46087,46329,46511,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4a2wPwwDZuC9tYkHhD6Vo7Tu23dYiplLYPaJP2ZvkqCiKtWPqyJ37CfuN-CcdO1gtISNtDokh2FPtccj772J8B3ptu11NHXeattVlO2ibjuXcZc0wwTnPvi7B3eDQu-hf54JJdNhNuYS9MzQ-xmHALnhH_18HBw4T08ZI19Lv-2VKt4CD0EWyhw7M4pPq6oI8KUD1mO3EMlFEiimZ_HpYcr7y8HpH-gZnrqDWGnbNtkHcNrleb_GjNK90y139xOT68RzvwrEGkaa82oV3YcOVzeLrCU_gCTnr1SoGrdFKmJtqUSauostQtK6aqtGk4Ibu6_X0zLfGm8DLfJrOXcHH26fxjP2uOXsgMAhSadRxGdm4cKs8j4qMsd54owxlXhnRJbo0WCNxEyBoqYZ2wingrhO5oz9vYgVewWU5LtweptwhqDLdM0yLvOKe48LwwWtOOZ4T7BA2mEb-c1QwbsuZSJhIFIpWMAkng4E41snGzK0kEKRjB-Fok8G5RjA4Ssh6qdNM51uGcBY563k7gda3SxXdoV7QFhvAEPkTF_K8BcnA66sWnN_eqfQSP--ejoRx-Hn_ZhycEQVG98ucANqtfc3eIoKbSb6Pl_gGzI_MW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTtswFD5iRULjgjFgLAy2IO0OpbR2nNp361YqxiiapiFxZ_lXA7S0ounNrvYIPOOeZMdOVugmIbGLRJHsKPH5yfkcH38H4K3p9Tx11GXeWpvlpGMynnuXMccE4zT3vgh7h0dnxfF5fnLBLprcnLAXpuaHmP9wC54Rv9fBwSfWH96Rhl7p723VDv5Bn8ByXlASjHrwZc4eFZB6XOzEKVCGrUWzPQ9bDu_dvBiQ_kGZi6A1Rp3hs7q06jSSFYZkk-v2rNJt8-MvKsf_HtA6rDV4NO3XBvQclly5Aav3WAo34V2_zhOYppdlaqJFmbSKCkvdXcdUlTYN9bGrXz9vxyWeFB7m2-VkC86HR18_HGdN4YXMIDyhWddhXOfGoeo84j3KcueJMpxxZUiP5NZogbBNhDVDJawTVhFvhdBd7XkHB_ACWuW4dC8h9RYhjeGWaVrkXecUF54XRmva9Yxwn6C5NNKXk5pfQ9ZMykSiQKSSUSAJ7P7RjGycbCqJIAUjGF2LBPbnzegeYc1DlW48wz6cs8BQzzsJbNcanT-H9kRHYABP4CDq5aEXkCfvR_14tfOo3m9g5fNgKE8_nn16BU8JIqI67WcXWtXNzO0hoqn062i3vwHujfHF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+cardiac+tissue+engineering+and+heart%E2%80%90on%E2%80%90a%E2%80%90chip&rft.jtitle=Journal+of+biomedical+materials+research.+Part+A&rft.au=Kieda%2C+Jennifer&rft.au=Shakeri%2C+Amid&rft.au=Landau%2C+Shira&rft.au=Wang%2C+Erika+Yan&rft.date=2024-04-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1549-3296&rft.eissn=1552-4965&rft.volume=112&rft.issue=4&rft.spage=492&rft.epage=511&rft_id=info:doi/10.1002%2Fjbm.a.37633&rft.externalDBID=10.1002%252Fjbm.a.37633&rft.externalDocID=JBMA37633
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-3296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-3296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-3296&client=summon