Developments of 3D Printing Microfluidics and Applications in Chemistry and Biology: a Review
Three‐dimensional (3D) printing, also called additive manufacturing (AM) or rapid prototyping (RP), is a layer by layer manufacturing method and now has been widely used in many areas such as organ printing, aerospace and industrial design. Now 3D printed microfluidics attract more and more interest...
Saved in:
Published in | Electroanalysis (New York, N.Y.) Vol. 28; no. 8; pp. 1658 - 1678 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
01.08.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Three‐dimensional (3D) printing, also called additive manufacturing (AM) or rapid prototyping (RP), is a layer by layer manufacturing method and now has been widely used in many areas such as organ printing, aerospace and industrial design. Now 3D printed microfluidics attract more and more interests for its rapid printing in the lab. In this review, we focused on the advances of 3D printed microfluidic chips especially the use in the chemistry and biology (vascularization and organs on chips). Based on the brief review of different 3D printing methods, we discussed how to choose the suitable 3D printing methods to print the desired microfluidics. We predict that microfluidics will be evolved from 2D chips to 3D cubes, printed hydrogel‐based microfluidics will be reported and widely used, sensors & actuators could be integrated in the microfluidics during printing, and rapid assembling chips with printed microfluidic modules will be popular in the near future. |
---|---|
AbstractList | Three‐dimensional (3D) printing, also called additive manufacturing (AM) or rapid prototyping (RP), is a layer by layer manufacturing method and now has been widely used in many areas such as organ printing, aerospace and industrial design. Now 3D printed microfluidics attract more and more interests for its rapid printing in the lab. In this review, we focused on the advances of 3D printed microfluidic chips especially the use in the chemistry and biology (vascularization and organs on chips). Based on the brief review of different 3D printing methods, we discussed how to choose the suitable 3D printing methods to print the desired microfluidics. We predict that microfluidics will be evolved from 2D chips to 3D cubes, printed hydrogel‐based microfluidics will be reported and widely used, sensors & actuators could be integrated in the microfluidics during printing, and rapid assembling chips with printed microfluidic modules will be popular in the near future. |
Author | Qiu, Jing-jiang He, Yong Wu, Yan Gao, Qing Fu, Jian-zhong |
Author_xml | – sequence: 1 givenname: Yong surname: He fullname: He, Yong email: yongqin@zju.edu.cn organization: State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, 310027, Hangzhou, China – sequence: 2 givenname: Yan surname: Wu fullname: Wu, Yan organization: State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, 310027, Hangzhou, China – sequence: 3 givenname: Jian-zhong surname: Fu fullname: Fu, Jian-zhong organization: State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, 310027, Hangzhou, China – sequence: 4 givenname: Qing surname: Gao fullname: Gao, Qing organization: State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, 310027, Hangzhou, China – sequence: 5 givenname: Jing-jiang surname: Qiu fullname: Qiu, Jing-jiang organization: State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, 310027, Hangzhou, China |
BookMark | eNqFkEFPGzEQRi0EUiH02rOPXDbY6911zC0kgSKlAaFWSJUqy_GOwa1jL_aGNP8eQypUIVU9zUjzvdHMO0L7PnhA6BMlQ0pIeQpO-WFJaEMIqdgeOqR1SYuKErGfe1KRgjDBP6CjlH7miGgqcYh-TOEJXOhW4PuEg8Fsim-i9b319_iL1TEYt7at1Qkr3-Jx1zmrVW-DT9h6PHmAlU193L5Oz21w4X57hhW-hScLm2N0YJRL8PFPHaBvF7Ovk8_F_PryajKeFzpfxApKOdeUtVAJ2o5aU2oQRhBiasXrpQLNmaKaNUtStrw0SulRbRjRVcmWjdElG6CT3d4uhsc1pF7mqzS4bATCOkk6YnXdMMabHK120fxaShGM1LZ_faiPyjpJiXyxKV9syjebGRu-w7poVypu_w2IHbCxDrb_ScvZfLz4my12bFYLv99YFX_JhjNey7vFpVzcjsTN9Py7vGPPl52Z3Q |
CitedBy_id | crossref_primary_10_1039_D1RA04764G crossref_primary_10_1107_S2052252519016865 crossref_primary_10_1021_acsbiomaterials_7b00542 crossref_primary_10_1021_acs_analchem_0c03299 crossref_primary_10_1039_C6AN01055E crossref_primary_10_1016_j_elecom_2018_12_006 crossref_primary_10_1109_JLT_2021_3082620 crossref_primary_10_1016_j_optlastec_2024_111713 crossref_primary_10_1108_RPJ_05_2018_0115 crossref_primary_10_1088_1758_5090_abd9d8 crossref_primary_10_1080_21655979_2023_2236842 crossref_primary_10_1080_19475411_2021_1948457 crossref_primary_10_1016_j_molliq_2022_119760 crossref_primary_10_1007_s42242_024_00298_y crossref_primary_10_1007_s00216_020_02513_y crossref_primary_10_1016_j_snb_2023_134360 crossref_primary_10_1039_C7RA08611C crossref_primary_10_1177_2472630319877374 crossref_primary_10_1039_C9LC00046A crossref_primary_10_3390_mi12020138 crossref_primary_10_1039_C8LC00004B crossref_primary_10_1016_j_prosdent_2020_06_041 crossref_primary_10_1016_j_electacta_2023_142166 crossref_primary_10_3390_nano11020373 crossref_primary_10_1007_s10854_018_0056_3 crossref_primary_10_1080_10739149_2022_2129677 crossref_primary_10_1016_j_pmatsci_2024_101377 crossref_primary_10_3390_bios11090316 crossref_primary_10_1002_adfm_201700655 crossref_primary_10_1038_s41570_019_0097_z crossref_primary_10_1007_s10853_021_06362_7 crossref_primary_10_1016_j_trac_2022_116570 crossref_primary_10_1063_5_0163970 crossref_primary_10_1016_j_snb_2019_04_126 crossref_primary_10_1016_j_trac_2018_08_007 crossref_primary_10_1016_j_snb_2019_127621 crossref_primary_10_1108_RPJ_11_2020_0274 crossref_primary_10_1002_admt_202100221 crossref_primary_10_1007_s42452_024_05981_4 crossref_primary_10_3390_nano10112113 crossref_primary_10_1007_s13206_025_00200_7 crossref_primary_10_1016_j_heliyon_2022_e12637 crossref_primary_10_3390_mi9020071 crossref_primary_10_3390_jmmp6010017 crossref_primary_10_1016_j_mtbio_2019_100024 crossref_primary_10_1007_s13233_020_8134_9 crossref_primary_10_1021_acsbiomaterials_9b00953 crossref_primary_10_1002_smll_202100817 crossref_primary_10_1063_5_0122771 crossref_primary_10_3390_pr8091138 crossref_primary_10_3390_s17051166 crossref_primary_10_1007_s00216_020_02647_z crossref_primary_10_1039_C8LC00636A crossref_primary_10_1002_admt_202001218 crossref_primary_10_1109_JSEN_2018_2881916 crossref_primary_10_1016_j_arabjc_2020_09_020 crossref_primary_10_1002_adma_202208852 crossref_primary_10_1007_s00604_022_05200_0 crossref_primary_10_1108_RPJ_05_2024_0215 crossref_primary_10_1039_D3AN01295F crossref_primary_10_1016_j_electacta_2020_135688 crossref_primary_10_1016_j_apsusc_2022_155149 crossref_primary_10_1016_j_aca_2021_339377 crossref_primary_10_1016_j_addma_2024_104443 crossref_primary_10_3390_mi13010073 crossref_primary_10_1002_smll_201805530 crossref_primary_10_1016_j_carbon_2022_03_042 crossref_primary_10_37188_lam_2022_026 crossref_primary_10_1007_s11665_022_07188_3 crossref_primary_10_1002_admt_201800515 crossref_primary_10_1002_admt_202101615 crossref_primary_10_3390_mi10100678 crossref_primary_10_3390_chemosensors9050099 crossref_primary_10_1002_adem_201701086 crossref_primary_10_1002_aps3_11562 crossref_primary_10_1016_j_aca_2021_338677 crossref_primary_10_1002_adma_202005672 crossref_primary_10_1016_j_aca_2021_338796 crossref_primary_10_3390_mi9100502 crossref_primary_10_1016_j_actbio_2020_12_044 crossref_primary_10_1016_j_chroma_2024_464671 crossref_primary_10_1016_j_trac_2018_06_013 crossref_primary_10_3390_ma15186478 crossref_primary_10_1016_j_seppur_2022_122992 crossref_primary_10_1089_3dp_2023_0261 crossref_primary_10_3390_mi14020237 crossref_primary_10_1021_acsami_9b17071 crossref_primary_10_1021_acsphotonics_2c00125 crossref_primary_10_1002_cae_22738 crossref_primary_10_1016_j_cdc_2022_100884 crossref_primary_10_1039_C7LC00644F crossref_primary_10_3390_mi15101250 crossref_primary_10_1007_s00170_023_12838_4 crossref_primary_10_3390_bios13100948 crossref_primary_10_3389_frlct_2022_1074009 crossref_primary_10_1088_1742_6596_2119_1_012070 crossref_primary_10_1088_1757_899X_1268_1_012006 crossref_primary_10_1002_cite_201800035 crossref_primary_10_3390_chemistry6060088 crossref_primary_10_1021_acs_analchem_9b04986 crossref_primary_10_1177_25165984241286651 crossref_primary_10_3390_mi12050531 crossref_primary_10_1016_j_aca_2019_10_075 crossref_primary_10_1039_C8RE00278A crossref_primary_10_1039_D3AY01064C crossref_primary_10_1039_C8LC00367J crossref_primary_10_1021_acs_jchemed_9b00744 crossref_primary_10_1016_j_microc_2020_104664 crossref_primary_10_1016_j_sna_2019_111706 crossref_primary_10_1088_2399_1984_ace9a3 crossref_primary_10_1186_s12951_023_02258_7 crossref_primary_10_1002_cite_202200013 crossref_primary_10_1016_j_matpr_2020_10_352 crossref_primary_10_3390_catal10010109 crossref_primary_10_1002_adfm_202420369 crossref_primary_10_3390_s25010122 crossref_primary_10_1038_s41378_020_00200_7 crossref_primary_10_3390_inventions3030060 crossref_primary_10_1016_j_matt_2021_11_021 crossref_primary_10_3390_cells11050905 crossref_primary_10_3390_mi15091137 crossref_primary_10_1007_s00542_016_3242_3 crossref_primary_10_1149_2754_2726_ac5c7a crossref_primary_10_1115_1_4055323 crossref_primary_10_3390_mi13081363 crossref_primary_10_1039_D2GC02214A crossref_primary_10_3390_mi12050514 crossref_primary_10_1088_1758_5090_ad8966 crossref_primary_10_1007_s00170_017_0400_4 crossref_primary_10_1039_D1RA04060J crossref_primary_10_1016_j_bprint_2024_e00347 crossref_primary_10_1016_j_matpr_2021_12_148 crossref_primary_10_1021_acs_jchemed_0c00427 crossref_primary_10_1016_j_addlet_2022_100107 crossref_primary_10_1038_s41467_022_29432_z crossref_primary_10_1021_acsomega_3c02933 crossref_primary_10_1039_C8AY01934G crossref_primary_10_1002_adbi_202000024 crossref_primary_10_1088_1758_5090_ab57d8 crossref_primary_10_1109_MIM_2021_9448264 crossref_primary_10_1002_elsc_202100081 crossref_primary_10_1021_acs_analchem_9b05188 crossref_primary_10_2139_ssrn_4177569 crossref_primary_10_1007_s11094_022_02630_1 crossref_primary_10_1016_j_biomaterials_2024_122681 crossref_primary_10_3390_mi12030339 crossref_primary_10_3390_polym14102119 crossref_primary_10_1021_acs_jchemed_1c00098 crossref_primary_10_1146_annurev_anchem_091619_102649 crossref_primary_10_3390_jmmp4020049 crossref_primary_10_1080_10408347_2024_2305275 crossref_primary_10_1016_j_expneurol_2024_114942 crossref_primary_10_1016_j_addma_2019_01_001 crossref_primary_10_3390_mi12080861 crossref_primary_10_3390_mi13010049 crossref_primary_10_1093_jb_mvab048 crossref_primary_10_1016_j_jmrt_2022_05_009 crossref_primary_10_1016_j_mio_2016_08_001 crossref_primary_10_1021_acs_analchem_7b01764 crossref_primary_10_1089_3dp_2019_0166 crossref_primary_10_1089_3dp_2021_0245 crossref_primary_10_3390_molecules26092817 crossref_primary_10_1021_acs_analchem_9b01284 crossref_primary_10_1016_j_matpr_2022_09_363 crossref_primary_10_1007_s11517_024_03062_7 crossref_primary_10_1016_j_ijbiomac_2023_125502 crossref_primary_10_1093_femsec_fiab003 crossref_primary_10_3390_mi11030243 crossref_primary_10_3390_s23084039 crossref_primary_10_1021_acsabm_1c01180 crossref_primary_10_1016_j_prosdent_2020_01_039 crossref_primary_10_1016_j_tox_2022_153100 crossref_primary_10_1007_s42242_019_00053_8 crossref_primary_10_1590_0104_6632_20180354s20170433 crossref_primary_10_1016_j_apmt_2018_03_005 crossref_primary_10_1016_j_ijbiomac_2024_133031 crossref_primary_10_1016_j_aca_2018_06_021 crossref_primary_10_3390_mi10110754 crossref_primary_10_1002_slct_202402463 crossref_primary_10_1016_j_aca_2021_339252 crossref_primary_10_1007_s10544_019_0444_3 crossref_primary_10_3390_s24061797 crossref_primary_10_1039_D1RE00004G crossref_primary_10_1108_RPJ_07_2019_0184 crossref_primary_10_1039_C9AN01275C crossref_primary_10_1016_j_matpr_2021_12_078 crossref_primary_10_1016_j_prostr_2018_11_102 crossref_primary_10_1038_s41598_022_17841_5 crossref_primary_10_3390_coatings13071252 crossref_primary_10_3390_bios15040211 crossref_primary_10_1063_5_0009443 crossref_primary_10_1007_s13346_020_00737_0 crossref_primary_10_3390_ijms22042011 crossref_primary_10_1007_s40964_022_00266_x crossref_primary_10_1039_C6RA24884E crossref_primary_10_1007_s42242_021_00165_0 crossref_primary_10_1021_acs_energyfuels_2c01943 crossref_primary_10_4047_jap_2022_14_4_262 crossref_primary_10_1016_j_ohx_2024_e00527 crossref_primary_10_1021_acs_analchem_8b01198 crossref_primary_10_3390_mi9070326 crossref_primary_10_1049_mnl_2018_5169 crossref_primary_10_3390_mi9070327 crossref_primary_10_1371_journal_pone_0245206 crossref_primary_10_1007_s13206_022_00048_1 crossref_primary_10_1016_j_snb_2017_10_041 crossref_primary_10_1371_journal_pone_0182000 crossref_primary_10_3390_biomedicines9070702 crossref_primary_10_1016_j_cep_2018_10_001 crossref_primary_10_1039_C7CY00615B crossref_primary_10_1021_acsami_9b15852 crossref_primary_10_12677_HJBM_2023_131008 crossref_primary_10_1002_advs_201700187 crossref_primary_10_1016_j_chroma_2019_460790 crossref_primary_10_1364_OME_477708 crossref_primary_10_1016_j_heliyon_2019_e02002 crossref_primary_10_1016_j_procir_2017_04_008 crossref_primary_10_3390_micro2010008 crossref_primary_10_1016_j_addma_2018_02_013 crossref_primary_10_1016_j_ccr_2022_214520 crossref_primary_10_3390_ma13010178 crossref_primary_10_1016_j_snb_2019_03_132 crossref_primary_10_1016_j_cej_2021_132266 crossref_primary_10_1002_ppsc_202400173 crossref_primary_10_1093_nsr_nwab205 crossref_primary_10_3390_mi9080374 crossref_primary_10_1007_s41779_024_01076_w crossref_primary_10_1038_s41570_018_0058_y crossref_primary_10_1021_acsami_0c14831 crossref_primary_10_1016_j_snb_2018_06_054 crossref_primary_10_1016_j_bprint_2024_e00360 crossref_primary_10_3390_mi11070658 crossref_primary_10_1016_j_aca_2020_05_014 crossref_primary_10_4155_bio_2016_0293 crossref_primary_10_1016_j_biomaterials_2020_119980 crossref_primary_10_3390_mi15020288 crossref_primary_10_1016_j_compscitech_2019_05_028 crossref_primary_10_1021_acs_analchem_8b05454 crossref_primary_10_1016_j_jelechem_2016_10_030 crossref_primary_10_1007_s12200_020_1009_z crossref_primary_10_3390_mi7070108 crossref_primary_10_1016_j_chemosphere_2022_134915 crossref_primary_10_1016_j_bprint_2022_e00211 crossref_primary_10_1038_s41598_018_22756_1 crossref_primary_10_1016_j_addma_2020_101094 crossref_primary_10_1016_j_chroma_2019_460537 |
Cites_doi | 10.1039/C4JA00291A 10.1016/j.biomaterials.2015.05.031 10.1002/adma.201305506 10.1063/1.4917508 10.1016/S0890-6955(97)00137-5 10.1039/c1lc20101h 10.1016/S0921-5093(00)01810-4 10.1039/C5LC00685F 10.1108/01445150310698652 10.1115/1.2823079 10.1016/j.biomaterials.2008.12.084 10.1021/ja203981w 10.1038/nchem.1313 10.1039/c003994b 10.1016/0010-4485(95)00035-6 10.1021/ac4041857 10.1039/C3SC51253C 10.1016/j.biomaterials.2014.05.083 10.1021/acsami.5b03969 10.1016/j.sna.2013.11.005 10.1038/nature13118 10.1007/s10404-009-0421-x 10.1016/S0261-3069(01)00079-6 10.1038/35089130 10.1038/srep13522 10.1038/srep07717 10.1088/0960-1317/25/3/035013 10.1088/0960-1317/25/8/085013 10.1364/OL.30.001867 10.1039/b902159k 10.1021/acs.analchem.5b00903 10.1039/C5RA09188H 10.1179/095066001771048727 10.1016/j.cbpa.2012.03.022 10.1038/srep21704 10.1039/C4LC00548A 10.1021/ac3031543 10.1016/j.jmatprotec.2009.05.004 10.1016/j.copbio.2011.02.006 10.1007/s10404-015-1571-7 10.3762/bjoc.9.109 10.1108/13552540010337047 10.1021/ac502785j 10.1039/C4LC01392A 10.1016/j.tibtech.2011.07.001 10.1088/0960-1317/23/2/025016 10.1088/0960-1317/17/12/005 10.1039/B308452C 10.3390/mi6040437 10.1038/srep07974 10.1088/1758-5090/7/3/035010 10.1039/C4RA12165A 10.1016/j.aca.2014.06.037 10.1021/acs.analchem.5b01353 10.1002/pssa.201532053 10.1002/bit.22613 10.1039/C4LC00171K 10.1016/j.tcb.2011.09.005 10.1016/j.memsci.2014.12.040 10.1108/13552540110395538 10.1039/C4AN01476F 10.1063/1.4905840 10.1108/AA-06-2013-055 10.1039/c3lc50844g 10.1039/C4EE01426J 10.1371/journal.pone.0137631 10.1039/C5LC01374G 10.1039/C4LC00992D 10.1073/pnas.1414764111 10.1021/ac010938q 10.1038/srep06973 10.1021/ac4009594 10.1016/j.aca.2015.04.014 10.1039/C4LC00394B 10.1116/1.586023 10.1021/ac201539h 10.1039/c2lc40761b 10.1108/13552541011034889 10.1007/978-0-387-92904-0_1 10.1063/1.4898632 10.1038/nmat863 10.1039/c2lc21204h 10.1002/anie.201402654 10.1088/0957-4484/18/34/345202 10.1039/C5LC00126A 10.1016/j.snb.2013.10.008 10.1039/C3LC50956G 10.1039/c2lc40089h 10.1038/4601080a 10.1039/C4LC00030G 10.1007/s10544-015-9928-y 10.1557/PROC-624-157 10.1063/1.4902929 10.1088/1758-5082/5/2/025004 10.3762/bjnano.4.31 10.1039/B314962E 10.1038/nrd3799 10.1002/bit.25579 10.1364/OPEX.14.000810 10.1016/S0142-9612(01)00232-0 10.1016/j.ceb.2006.12.002 10.1021/ac403397r 10.1007/s10404-014-1542-4 10.1108/13552540010337029 10.1016/j.nantod.2010.08.007 10.1115/1.1355029 10.1002/jbm.a.30601 10.1108/13552540510573365 10.1016/j.sna.2015.02.028 10.1039/c2lc21015k 10.1016/j.matdes.2009.04.030 10.1039/C4RA05072J 10.1016/j.biomaterials.2012.04.004 10.1021/ac501436d 10.1002/mas.20240 10.1016/j.biomaterials.2010.04.050 |
ContentType | Journal Article |
Copyright | 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1002/elan.201600043 |
DatabaseName | Istex CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1521-4109 |
EndPage | 1678 |
ExternalDocumentID | 10_1002_elan_201600043 ELAN201600043 ark_67375_WNG_NR89PDBZ_W |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Public Technology Research Program of Zhejiang Province funderid: 2015C31062 – fundername: Science Fund for Creative Research Groups of the National Natural Science Foundation of China funderid: 51521064 – fundername: National Natural Science Foundation of China funderid: 51375440 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 186 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AQPKS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F5P FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH5 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E V8K W8V W99 WBFHL WBKPD WIB WIH WIK WOHZO WQJ WRJ WXSBR WYISQ XG1 XV2 Y6R ZY4 ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY L7M |
ID | FETCH-LOGICAL-c3973-1177c13de491d8df2ce9f900f5a75baec73a1c36b02d72faac85f30c423b6fc23 |
IEDL.DBID | DR2 |
ISSN | 1040-0397 |
IngestDate | Fri Jul 11 01:45:50 EDT 2025 Tue Jul 01 02:31:57 EDT 2025 Thu Apr 24 23:06:12 EDT 2025 Wed Jan 22 16:18:37 EST 2025 Wed Oct 30 09:56:52 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3973-1177c13de491d8df2ce9f900f5a75baec73a1c36b02d72faac85f30c423b6fc23 |
Notes | National Natural Science Foundation of China - No. 51375440 istex:0A880543E8A0720932E5A88B6F17BDD9A7C2B9F1 Science Fund for Creative Research Groups of the National Natural Science Foundation of China - No. 51521064 Public Technology Research Program of Zhejiang Province - No. 2015C31062 ark:/67375/WNG-NR89PDBZ-W ArticleID:ELAN201600043 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1835563376 |
PQPubID | 23500 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_1835563376 crossref_citationtrail_10_1002_elan_201600043 crossref_primary_10_1002_elan_201600043 wiley_primary_10_1002_elan_201600043_ELAN201600043 istex_primary_ark_67375_WNG_NR89PDBZ_W |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2016 |
PublicationDateYYYYMMDD | 2016-08-01 |
PublicationDate_xml | – month: 08 year: 2016 text: August 2016 |
PublicationDecade | 2010 |
PublicationTitle | Electroanalysis (New York, N.Y.) |
PublicationTitleAlternate | Electroanalysis |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | D. B. Kolesky, R. L. Truby, A. S. Gladman, T. A. Busbee, K. A. Homan, J. A. Lewis, Adv. Mater. 2014, 26, 3124-3130. J-P. Kruth, P. Mercelis, J. V. Vaerenbergh, L. Froyen, M. Rombouts, Rapid Prototyping Journal, 2005, 11, 26-36. C. Neils, Z. Tyree, B. Finlayson, A. Folch, Lab Chip, 2004, 4, 342-350. H. Asano, Y. Shiraishi, Analytica Chimica Acta, 2015, 883, 55-60. C. I. Rogers, J. V. Pagaduan, G. P. Nordin, A. T. Woolley, Anal. Chem., 2011, 83, 6418-6425. Y. He, J. Qiu, J. Fu et al. Microfluidics and Nanofluidics, 2015, 19 (2), 447-456. Q. L. Chen, Z. Liu, H. C. Shum, Biomicrofluidics, 2014, 8, 064112. L. Zhao, V. K. Lee, S.-S. Yoo, G. Dai, X. Intes, Biomaterials, 2012, 33, 5325-5332. D. Dutta, F. B. Prinz, D. Rosen, L. Weiss, Journal of Computing and Information Science in Engineering, 2001, 1, 60-71. J. W. Choi, R. Wicker, S. H. Lee, K. H. Choi, C. S. Ha, I. Chung, Journal of Materials Processing Technology, 2009, 209, 5494-5503. P. J. Kitson, M. H. Rosnes, V. Sans, V. Dragone, L. Cronin, Lab Chip, 2012, 12, 3267-3271. I. Zein, D. W. Hutmacher, K. C. Tan, S. H. Teoh, Biomaterials, 2002, 23, 1169-1185. L. H. Han, G. Mapili, S. Chen, K. Roy, Journal of Manufacturing Science and Engineering, 2008, 130, 021005. B. S. Ferguson, S. F. Buchsbaum, T. T. Wu et al. Journal of the American Chemical Society, 2011, 133(23), 9129-9135. D. Therriault, S. R. White, J. A. Lewis, Nature Materials, 2002, 2, 265-271. An Liu, G.-huai Xue, Miao Sun, Hui-feng Shao, Chi-yuan Ma, Qing Gao, Zhong-ru Gou, Shi-gui Yan, Yan-ming Liu, Yong He, Scientific Reports, 2016, 6, 21704. R. Walczak, K. Adamski, J. Micromech. Microeng., 2015, 25, 085013. U. M. Attia, S. Marson, J. R. Alcock, Microfluidics and Nanofluidics, 2009, 7(1), 1-28. C. I. Rogers, K. Qaderi, A. T. Woolley, G. P. Nordin, Biomicrofluidics, 2015, 9, 016501. Y. He, X. Xiao, Y. Wu, et al. Scientific Reports, 2015, 5, 13522. Y. He, J. Z. Fu, Z. C. Chen, J. Micromech. Microeng. 2007, 17(12), 2420. A. Cohen, R. Chen, U. Frodis, M-T. Wu, C. Folk, Rapid Prototyping Journal, 2010, 16, 209-215. V. Dragone, V. Sans, M. H. Rosnes, P. J. Kitson, L. Cronin, Beilstein Journal of Nanotechnnology, 2013, 9, 951-959. G. Wu, N. A. Langrana, R. Sadanji, S. Danforth, Materials and Design, 2002, 23, 97-105. W. Zhong, F. Li, Z. Zhang, L. Song, Z. Li, Materials Science and Engineering A, 2001, 125-130. Shao H, Yang X, He Y, et al. Biofabrication, 2015, 7(3): 035010. Y. Liao, J-X. Song, E. Li, Y. Luo, Y-L. Shen, D-P. Chen, Y. Cheng, Z-Z. Xu, K. Sugioka, K. Midorikawa, Lab Chip, 2012, 12, 746-749. J. S. Mathieson, M. H. Rosnes, V. Sans, P. J. Kitson, L. Cronin, Beilstein Journal of Nanotechnology, 2013, 4, 285-291. D. M. Longo, R. Hull, MRS Proceedings, 2000, 624, 157-160. Y. Lu, G. Mapili, G. Suhali, S. Chen, K. Roy, Journal of Biomedical Materials Research Part A, 2006, 77, 396-405. Q. Gao, Y. He, J. Fu, A. Liu, L. Ma, Biomaterials, 2015, 61, 203-215. A. K. Sood, R. K. Ohdar, S. S. Mahapatra, Materials and Design, 2009, 30, 4243-4252. V. Mironov, R. P. Visconti, V. Kasyanov, G. Forgacs, C. J. Drake, R. R. Markwald, Biomaterials, 2009, 30, 2164-2174. R. Guo, S-Z. Xiao, X-M. Zhai, J-W. Li, A-D. Xia, W-H. Huang, Optics Express, 2006, 14, 810-816. P. J. Kitson, R. J. Marshall, D. Long, R. S. Forgan, L. Cronin, Angew. Chem. Int. Ed., 2014, 53, 12723-12728. K. G. Lee, K. J. Park, S. Seok, S. Shin, D. H. Kim, J. Y. Part, Y. S. Heo, S. J. Lee, T. J. Lee, RSC Adv., 2014, 4, 32876-32880. G. Comina, A. Suska, D. Filippini, Lab Chip, 2014, 14, 424-430. A. J. Capel, S. Edmondson, S. D. R. Christie, R. D. Goodridge, R. J. Bibb, M. Thuistans, Lab Chip, 2013, 13, 4583-4590. N. Xiang, H. Yi, K. Chen et al. J. Micromech. Microeng. 2013, 23(2), 025016. Y. Hwang, O. H. Paydar, R. N. Candler, Sensors and Actuators A: Physical, 2015, 226, 137-142. C. M. B. Ho, S. H. Ng, K. H. H. Li, Y. J. Yoon, Lab Chip, 2015, 15, 3627-3637. N. K. Tolochko, T. Laoui, Y. V. Khlopkov, S. E. Mozzharov, V. I. Titiv, M. B. Ignatiev, Rapid Prototyping Journal, 2000, 6, 155-161. L. Donvito, L. Galluccio, A. Lombardo, G. Morabito, A. Nicolosi, M. Reno, J. Micromech. Microeng., 2015, 25, 035013. C. Duty, D. Jean, W. J. Lackey, International Materials Reviews, 2001, 46, 271-287. J. L. Erkal, A. Selimovic, B. C. Gross, S. Y. Lockwood, E. L. Walton, S. McNamara, R. S. Martin, D. M. Spence, Lab Chip, 2014, 14, 2023-2032. He Y, Xue G, J. Fu Scientific Reports, 2014, 4, 6973. K. C. Bhargava, B. Thompson, N. Malmstadt, PNAS, 2014, 111, 15013-15018. D. Lim, Y. Kamotani, B. Cho, J. Mazumder, S. Takayama, Lab Chip, 2003, 3, 318-323. J. C. Mcdonald, M. L. Chabinyc, S. J. Metallo, J. R. Anderson, A. D. Stroock, G. M. Whitesides, Anal. Chem., 2002, 74, 1537-1545. C. Martino, S. Berger, R. C. R. Wootton, A. J. deMello, Lab Chip, 2014, 14, 4178-4182. H. M. Chan, Y. Chen, Y. Shu, Y. Chen, Q. Tian, H. Wu, Microfluid Nanofluid, 2015, 19, 9-18. K. B. Anderson, S. Y. Lockwood, R. S. Martin, D. M. Spence, Anal. Chem., 2013, 85, 5622-5626. K. Kamei, Y. Mashimo, Y. Koyama, C. Fockenberg, M. Nakashima, M. Nakajima, J. Li, Y. Chen, Biomed Microdevices, 2015, 17, 36. S. Sun, M. Yang, Y. Kostov, A. Rasooly, Lab Chip, 2010, 10, 2093-2100. P. J. Kitson, M. D. Symes, V. Dragone, L. Cronin, Chem. Sci., 2013, 4, 3099-3103. Y. Xu, X. Wang, Biotechnology and bioengineering, 2015, 112, 1683-1695. Kawata S, Sun HB, Tanaka T, Takada K, Nature, 2001, 412, 697-698. J. A. Kim, H. N. Kim, S. K. Im, S. Chung, J. Y. Kang, N. Choi, Biomicrofluidics, 2015, 9, 024115. T. Femmer, A. J. C. Kuehne, J. T. Rendon, A. Walther, M. Wessling, Journal of Membrane Science, 2015, 478, 12-18. S. A. N. Gowers, V. F. Curto, C. A. Seneci, C. Wang, S. Anastasova, P. Vadgama, G. Yang, M. G. Boutelle, Anal. Chem., 2015, 87, 7763-7770. L. E. Bertassoni, M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A. L. Cristino, G. Barabaschi, D. Demarchi, M. R. Dokmeci, Y. Yang, A. Khademhosseini, Lab Chip, 2014, 14, 2202-2211. M. A. Jafari, W. Han, F. Mohammadi, A. Safari, S. C. Danforth, N. Langrana, Rapid Prototyping Journal, 2000, 6, 161-175. G. Chisholm, P. J. Kitson, N. D. Kirkaldy, L. G. Bloor, L. Cronin, Energy Environ. Sci., 2014, 7, 3026-3032. M. D. Brennan, M. L. Rexius-Hall, D. T. Eddington, PLoS ONE, 2015, 10, e0137631. Y. Hanada, K. Sugioka, I. Shihira-Ishikama, H. Kawano, A. Miyawaki, K. Midorikama, Lab Chip, 2011, 11, 2109-2115. V. Mironov, V. Kasyanov, R. R. Markwald, Current Opinion in Biotechnology, 2011, 22, 667-673. W. Lee, D. Kwon, B. Chung, G. Y. Jung, A. K. Au, A. Folch, S. Jeon, Anal. Chem., 2014, 86, 6683-6688. C. I. Rogers, J. B. Oxborrow, R. R. Anderson, L. F. Tsai, G. P. Nordin, A. T. Woolley, Sensors and Actuators B: Chemical, 2014, 191, 438-444. Y-L. Zhang, Q-D. Chen, H. Xia, H-B. Sun, Nano Today, 2010, 5, 435-448. J. Serbin, B. N. Chichkov, Proc. of SPIE, 2003, 5222. P. Neuži, S. Giselbrecht, K. Länge et al. Nature Reviews Drug Discovery, 2012, 11(8), 620-632. Y. Zhang, Y. Yu, H. Chen, I. T. Ozbolat, Biofabrication, 2013, 5, 025004. M. D. Symes, P. J. Kitson, J. Yan et al. Nature Chemistry, 2012, 4(5), 349-354. C. W. Ziemian, P. M. Crawn, Rapid Prototyping Journal, 2001, 7, 138-147. D. F. Thompson, J. Anal. At. Spectrom., 2014, 29, 2262-2266. N. P. Macdonald, F. Zhu, C. J. Hall, J. Reboud, P. S. Crosier, E. E. Patton, D. Wlodkowic, J. M. Cooper, Lab Chip, 2016, 16, 291-297. A. I. Shallan, P. Smejkal, M. Corban, R. M. Guijt, M. C. Breadmore, Anal. Chem., 2014, 86, 3124-3130. L. Horváth, Y. Umehara, C. Jud, F. Blank, A. P. Fink, B. R. Rutishauser, Scientific Reports, 2015, 5, 07974. T. Femmer, A. Jans, R. Eswein, N. Anwar, M. Moeller, M. Wessling, A. J. C. Kuehne, Appl. Mater. Interfaces, 2015, 7, 12635-12638. C. K. Su, Y. C. Sun, S. F. Tzeng, C. S. Yang, C. Y. Wang, M. H. Yang, Mass Spectrometry Reviews, 2010, 29, 392-424. G. J. Salentijn, H. P. Permentier, E. Verpoorte, Anal. Chem., 2014, 86, 11657-11665. G. W. Bishop, J. E. Satterwhite, S. Bhakta, K. Kadimisetty, K. M. Gillette, E. Chen, J. F. Rusling, Anal. Chem., 2015, 87, 5437-5443. F. P. W. Melchels, J. Feijen, D. W. Grijpma, Biomaterials, 2010, 31, 6121-6130. S. Takenaga, B. Schneider, E. Erbay, M. Biselli, Th. Schnitzler, M. J. Schöning, T. Wagner, Phys. Status Solidi A, 2015, 212, 1347-1352. W. Lee, D. Kwon, W. Choi, G. Y. Jung, A. K. Au, A. Folch, S. Jeon, Scientific Reports, 2015, 5, 07717. D. Huh, Y. Torisawa, G. A. Hamilton et al. Lab on a Chip, 2012, 12(12), 2156-2164. S. Sandron, B. Heery, V. Gupta, D. A. Collins, E. P. Nesterenko, P. N. Nesterenko, M. Talebi, S. Beirne, F. Thompson, G. G. Wallace, D. Brabazon, F. Regan, B. Paull, Analyst, 2014, 139, 6343-6347. K. E. Kasza, A. C. Rowat, J. Liu, T. E. Angelini, C. P. Brangwynne, G. H. Koenderink, D. A. Weitz, Current Opinion in Cell Biology, 2007, 19, 101-107. B. C. Gross, J. L. Erkal, S. Y. Lockwood, C. Chen, D. M. Spence, Anal. Chem., 2014, 86, 3240-3253. E. K. Sackmann, A. L. Fulton, D. J. Beebe, Nature, 2014, 507, 181-189. S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Frechet, D. Poulikakos, Nanotechnology, 2007, 18, 345202. R. Bogue, Assembly Automation, 2013, 33, 307-311. D. T. Pham, R. S. Gault, International Journal of Machine Tools & Manufacture, 1998, 38, 1257-1287. P. F. O'Neill, A. B. Azouz, M. Vázquez, J. Liu, S. Marczak, Z. Slouka, H. C. Chang, D. Diamond, D. Brabazon, Biomicrofluidics, 2014, 8, 052112. W. Lee, V. Lee, S. Polio, P. Keegan, J. H. Lee, K. Fischer, J. K. Park, S. S. Yoo, Biotechnology and Bioengineering, 2010, 105, 1178-1186. Y. He, W. Wu, J. Fu, RSC Adv., 2015, 5, 2694-2701. C. K. Su, S. C. Hsia, Y. C. Sun, Analytica Chimica Acta, 2014, 838, 58-63. He Y, Wu Y, Fu J Z, et al. RSC Advances, 2015, 5(95), 78109-78127. Wu D, Chen Q D, Niu L G, et al. Lab on a Chip, 2009, 9(16), 2391-2394. O. H. Paydar, C. N. Paredes, Y. Hwang, J. Paz, N. B. Shah, R. N. Candler, Sensors and Actuators A: Physical, 2014, 205, 199-203. T. Hartung, C. Rovide, Nature, 2009, 460, 1080-1081. X. Yan, P. Gu, Computer-Aided Design, 1996, 28, 307-318. C. D. Chin, V. Linder, S. K. Sia, Lab on a Chip, 2012, 12(12), 2118-2134. G. Comina, A. Suska, D. Filippini, Lab C 2007; 17(12) 2012; 85(2) 2010; 10 2014; 139 2015; 5(95) 2015; 19 (2) 2010; 16 2013; 4 2000; 6 2015; 226 2010; 105 2006; 77 2011; 133(23) 2004; 4 2014; 26 2011; 11 2014; 29 2012; 12(12) 1992; 10 2001; 46 2012; 12 2013; 5 2013; 23(2 2013; 9 2009; 9(16) 2014; 205 2014; 4 1996; 28 2001 2010; 29 2013; 13 2012; 4(5) 2015; 212 2012; 16(3) 2015; 87 2003; 3 2005; 30 2014; 14 2011; 22 2011; 21 2014; 8 2010; 5 2014; 7 2009; 209 2011; 29 2001; 412 2014; 53 2007; 18 2015; 15 2007; 19 2010; 31 2015; 6 2015; 17 2015; 5 2014; 838 2015; 19 2009; 7(1) 2002; 74 2015; 883 2006; 14 2015; 10 2011; 83 2013; 85 2014; 191 2002; 2 2003 2014; 111 2015; 9 2016; 16 2015; 7 2012; 33 2014; 86 1998; 38 2016; 6 2015; 25 2009; 30 2014; 507 2001; 7 2013; 33 2015; 478 2015; 61 2002; 23 2012; 11(8) 2000; 624 2015; 112 2014; 35 2015; 7(3) 2001; 1 2009; 460 2008; 130 2005; 11 2003; 23 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_107_1 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_111_1 e_1_2_9_115_1 e_1_2_9_26_1 e_1_2_9_49_1 Kovarik M. L. (e_1_2_9_1_1) 2012; 85 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_106_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 Serbin J. (e_1_2_9_43_1) 2003 e_1_2_9_114_1 e_1_2_9_118_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 Neuži P. (e_1_2_9_5_1) 2012; 11 e_1_2_9_105_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 Y He (e_1_2_9_122_1) 2015; 5 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_117_1 e_1_2_9_28_1 e_1_2_9_47_1 D Wu (e_1_2_9_120_1) 2009; 9 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_104_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 H Shao (e_1_2_9_22_1) 2015; 7 e_1_2_9_112_1 e_1_2_9_116_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – reference: K. B. Anderson, S. Y. Lockwood, R. S. Martin, D. M. Spence, Anal. Chem., 2013, 85, 5622-5626. – reference: W. Lee, V. Lee, S. Polio, P. Keegan, J. H. Lee, K. Fischer, J. K. Park, S. S. Yoo, Biotechnology and Bioengineering, 2010, 105, 1178-1186. – reference: N. Xiang, H. Yi, K. Chen et al. J. Micromech. Microeng. 2013, 23(2), 025016. – reference: H. M. Chan, Y. Chen, Y. Shu, Y. Chen, Q. Tian, H. Wu, Microfluid Nanofluid, 2015, 19, 9-18. – reference: K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. Wang, Y. Cheng, K. Midorikawa, Lab Chip, 2014, 14, 3447-3458. – reference: Y. He, J. Z. Fu, Z. C. Chen, J. Micromech. Microeng. 2007, 17(12), 2420. – reference: S. Sun, M. Yang, Y. Kostov, A. Rasooly, Lab Chip, 2010, 10, 2093-2100. – reference: Q. Gao, Y. He, J. Fu, A. Liu, L. Ma, Biomaterials, 2015, 61, 203-215. – reference: Y. Hwang, O. H. Paydar, R. N. Candler, Sensors and Actuators A: Physical, 2015, 226, 137-142. – reference: S. Takenaga, B. Schneider, E. Erbay, M. Biselli, Th. Schnitzler, M. J. Schöning, T. Wagner, Phys. Status Solidi A, 2015, 212, 1347-1352. – reference: S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Frechet, D. Poulikakos, Nanotechnology, 2007, 18, 345202. – reference: L. H. Han, G. Mapili, S. Chen, K. Roy, Journal of Manufacturing Science and Engineering, 2008, 130, 021005. – reference: C. Duty, D. Jean, W. J. Lackey, International Materials Reviews, 2001, 46, 271-287. – reference: G. J. Salentijn, H. P. Permentier, E. Verpoorte, Anal. Chem., 2014, 86, 11657-11665. – reference: P. J. Kitson, M. H. Rosnes, V. Sans, V. Dragone, L. Cronin, Lab Chip, 2012, 12, 3267-3271. – reference: S. Sandron, B. Heery, V. Gupta, D. A. Collins, E. P. Nesterenko, P. N. Nesterenko, M. Talebi, S. Beirne, F. Thompson, G. G. Wallace, D. Brabazon, F. Regan, B. Paull, Analyst, 2014, 139, 6343-6347. – reference: J. L. Erkal, A. Selimovic, B. C. Gross, S. Y. Lockwood, E. L. Walton, S. McNamara, R. S. Martin, D. M. Spence, Lab Chip, 2014, 14, 2023-2032. – reference: X. Yan, P. Gu, Computer-Aided Design, 1996, 28, 307-318. – reference: L. Donvito, L. Galluccio, A. Lombardo, G. Morabito, A. Nicolosi, M. Reno, J. Micromech. Microeng., 2015, 25, 035013. – reference: C. M. B. Ho, S. H. Ng, K. H. H. Li, Y. J. Yoon, Lab Chip, 2015, 15, 3627-3637. – reference: M. D. Brennan, M. L. Rexius-Hall, D. T. Eddington, PLoS ONE, 2015, 10, e0137631. – reference: C. I. Rogers, J. B. Oxborrow, R. R. Anderson, L. F. Tsai, G. P. Nordin, A. T. Woolley, Sensors and Actuators B: Chemical, 2014, 191, 438-444. – reference: K. E. Kasza, A. C. Rowat, J. Liu, T. E. Angelini, C. P. Brangwynne, G. H. Koenderink, D. A. Weitz, Current Opinion in Cell Biology, 2007, 19, 101-107. – reference: L. E. Bertassoni, M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A. L. Cristino, G. Barabaschi, D. Demarchi, M. R. Dokmeci, Y. Yang, A. Khademhosseini, Lab Chip, 2014, 14, 2202-2211. – reference: T. M. Bloomstein, D. J. Ehrlich, Journal of Vacuum Science & Technology B, 1992, 10, 2671-2674. – reference: V. K. Lee, D. Y. Kim, H. Ngo, Y. Lee, L. Seo, S.-S. Yoo, P. A. Vincent, G. Dai, Biomaterials, 2014, 35, 8092-8102. – reference: D. Lim, Y. Kamotani, B. Cho, J. Mazumder, S. Takayama, Lab Chip, 2003, 3, 318-323. – reference: C. K. Su, Y. C. Sun, S. F. Tzeng, C. S. Yang, C. Y. Wang, M. H. Yang, Mass Spectrometry Reviews, 2010, 29, 392-424. – reference: D. Huh, Y. Torisawa, G. A. Hamilton et al. Lab on a Chip, 2012, 12(12), 2156-2164. – reference: D. Dutta, F. B. Prinz, D. Rosen, L. Weiss, Journal of Computing and Information Science in Engineering, 2001, 1, 60-71. – reference: N. P. Macdonald, F. Zhu, C. J. Hall, J. Reboud, P. S. Crosier, E. E. Patton, D. Wlodkowic, J. M. Cooper, Lab Chip, 2016, 16, 291-297. – reference: C. Neils, Z. Tyree, B. Finlayson, A. Folch, Lab Chip, 2004, 4, 342-350. – reference: A. J. Capel, S. Edmondson, S. D. R. Christie, R. D. Goodridge, R. J. Bibb, M. Thuistans, Lab Chip, 2013, 13, 4583-4590. – reference: C. I. Rogers, J. V. Pagaduan, G. P. Nordin, A. T. Woolley, Anal. Chem., 2011, 83, 6418-6425. – reference: D. T. Pham, R. S. Gault, International Journal of Machine Tools & Manufacture, 1998, 38, 1257-1287. – reference: He Y, Wu Y, Fu J Z, et al. RSC Advances, 2015, 5(95), 78109-78127. – reference: J. C. Mcdonald, M. L. Chabinyc, S. J. Metallo, J. R. Anderson, A. D. Stroock, G. M. Whitesides, Anal. Chem., 2002, 74, 1537-1545. – reference: A. K. Au, N. Bhattacharjee, L. F. Horowitz, T. C. Chang, A. Folch, Lab Chip, 2015, 15, 1934-1941. – reference: P. J. Kitson, R. J. Marshall, D. Long, R. S. Forgan, L. Cronin, Angew. Chem. Int. Ed., 2014, 53, 12723-12728. – reference: N. E. Fedorovich, J. Alblas, W. E. Hennink, F. C. Oner, W. J. A. Dhert, Trends in Biotechnology, 2011, 29, 601-606. – reference: W. Lee, D. Kwon, B. Chung, G. Y. Jung, A. K. Au, A. Folch, S. Jeon, Anal. Chem., 2014, 86, 6683-6688. – reference: C. I. Rogers, K. Qaderi, A. T. Woolley, G. P. Nordin, Biomicrofluidics, 2015, 9, 016501. – reference: O. H. Paydar, C. N. Paredes, Y. Hwang, J. Paz, N. B. Shah, R. N. Candler, Sensors and Actuators A: Physical, 2014, 205, 199-203. – reference: C. D. Chin, V. Linder, S. K. Sia, Lab on a Chip, 2012, 12(12), 2118-2134. – reference: Y. Zhang, Y. Yu, H. Chen, I. T. Ozbolat, Biofabrication, 2013, 5, 025004. – reference: J. S. Mathieson, M. H. Rosnes, V. Sans, P. J. Kitson, L. Cronin, Beilstein Journal of Nanotechnology, 2013, 4, 285-291. – reference: A. I. Shallan, P. Smejkal, M. Corban, R. M. Guijt, M. C. Breadmore, Anal. Chem., 2014, 86, 3124-3130. – reference: Y. He, W. Wu, J. Fu, RSC Adv., 2015, 5, 2694-2701. – reference: Y. Liao, J-X. Song, E. Li, Y. Luo, Y-L. Shen, D-P. Chen, Y. Cheng, Z-Z. Xu, K. Sugioka, K. Midorikawa, Lab Chip, 2012, 12, 746-749. – reference: R. Guo, S-Z. Xiao, X-M. Zhai, J-W. Li, A-D. Xia, W-H. Huang, Optics Express, 2006, 14, 810-816. – reference: G. Comina, A. Suska, D. Filippini, Lab Chip, 2014, 14, 2978-2982. – reference: M. A. Jafari, W. Han, F. Mohammadi, A. Safari, S. C. Danforth, N. Langrana, Rapid Prototyping Journal, 2000, 6, 161-175. – reference: Wu D, Chen Q D, Niu L G, et al. Lab on a Chip, 2009, 9(16), 2391-2394. – reference: B. C. Gross, J. L. Erkal, S. Y. Lockwood, C. Chen, D. M. Spence, Anal. Chem., 2014, 86, 3240-3253. – reference: P. Neuži, S. Giselbrecht, K. Länge et al. Nature Reviews Drug Discovery, 2012, 11(8), 620-632. – reference: D. Huh, G. A. Hamilton, D. E. Ingber, Trends in Cell Biology, 2011, 21, 745-754. – reference: C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, P. B. Corkum, Optics Letters, 2005, 30, 1867-1869. – reference: V. Mironov, V. Kasyanov, R. R. Markwald, Current Opinion in Biotechnology, 2011, 22, 667-673. – reference: J-P. Kruth, P. Mercelis, J. V. Vaerenbergh, L. Froyen, M. Rombouts, Rapid Prototyping Journal, 2005, 11, 26-36. – reference: J. P. Kruth, X. Wang, T. Laoui, L. Froyen, Assembly Automation, 2003, 23, 357-371. – reference: Y. Xu, X. Wang, Biotechnology and bioengineering, 2015, 112, 1683-1695. – reference: An Liu, G.-huai Xue, Miao Sun, Hui-feng Shao, Chi-yuan Ma, Qing Gao, Zhong-ru Gou, Shi-gui Yan, Yan-ming Liu, Yong He, Scientific Reports, 2016, 6, 21704. – reference: E. K. Sackmann, A. L. Fulton, D. J. Beebe, Nature, 2014, 507, 181-189. – reference: R. Bogue, Assembly Automation, 2013, 33, 307-311. – reference: K. Kamei, Y. Mashimo, Y. Koyama, C. Fockenberg, M. Nakashima, M. Nakajima, J. Li, Y. Chen, Biomed Microdevices, 2015, 17, 36. – reference: W. Zhong, F. Li, Z. Zhang, L. Song, Z. Li, Materials Science and Engineering A, 2001, 125-130. – reference: L. Zhao, V. K. Lee, S.-S. Yoo, G. Dai, X. Intes, Biomaterials, 2012, 33, 5325-5332. – reference: T. Femmer, A. J. C. Kuehne, J. T. Rendon, A. Walther, M. Wessling, Journal of Membrane Science, 2015, 478, 12-18. – reference: N. K. Tolochko, T. Laoui, Y. V. Khlopkov, S. E. Mozzharov, V. I. Titiv, M. B. Ignatiev, Rapid Prototyping Journal, 2000, 6, 155-161. – reference: T. Hartung, C. Rovide, Nature, 2009, 460, 1080-1081. – reference: U. M. Attia, S. Marson, J. R. Alcock, Microfluidics and Nanofluidics, 2009, 7(1), 1-28. – reference: Kawata S, Sun HB, Tanaka T, Takada K, Nature, 2001, 412, 697-698. – reference: L. Horváth, Y. Umehara, C. Jud, F. Blank, A. P. Fink, B. R. Rutishauser, Scientific Reports, 2015, 5, 07974. – reference: F. P. W. Melchels, J. Feijen, D. W. Grijpma, Biomaterials, 2010, 31, 6121-6130. – reference: S. A. N. Gowers, V. F. Curto, C. A. Seneci, C. Wang, S. Anastasova, P. Vadgama, G. Yang, M. G. Boutelle, Anal. Chem., 2015, 87, 7763-7770. – reference: G. Comina, A. Suska, D. Filippini, Lab Chip, 2014, 14, 424-430. – reference: C. Martino, S. Berger, R. C. R. Wootton, A. J. deMello, Lab Chip, 2014, 14, 4178-4182. – reference: G. Comina, A. Suska, D. Filippini, Micromachines, 2015, 6, 437-451. – reference: H. Asano, Y. Shiraishi, Analytica Chimica Acta, 2015, 883, 55-60. – reference: V. Dragone, V. Sans, M. H. Rosnes, P. J. Kitson, L. Cronin, Beilstein Journal of Nanotechnnology, 2013, 9, 951-959. – reference: Q. L. Chen, Z. Liu, H. C. Shum, Biomicrofluidics, 2014, 8, 064112. – reference: K. C. Bhargava, B. Thompson, N. Malmstadt, PNAS, 2014, 111, 15013-15018. – reference: Y. He, J. Qiu, J. Fu et al. Microfluidics and Nanofluidics, 2015, 19 (2), 447-456. – reference: I. Zein, D. W. Hutmacher, K. C. Tan, S. H. Teoh, Biomaterials, 2002, 23, 1169-1185. – reference: G. W. Bishop, J. E. Satterwhite, S. Bhakta, K. Kadimisetty, K. M. Gillette, E. Chen, J. F. Rusling, Anal. Chem., 2015, 87, 5437-5443. – reference: T. Femmer, A. Jans, R. Eswein, N. Anwar, M. Moeller, M. Wessling, A. J. C. Kuehne, Appl. Mater. Interfaces, 2015, 7, 12635-12638. – reference: V. Lecault, A. K. White, A. Singhal et al. Current Opinion in Chemical Biology, 2012, 16(3), 381-390. – reference: A. Cohen, R. Chen, U. Frodis, M-T. Wu, C. Folk, Rapid Prototyping Journal, 2010, 16, 209-215. – reference: W. Lee, D. Kwon, W. Choi, G. Y. Jung, A. K. Au, A. Folch, S. Jeon, Scientific Reports, 2015, 5, 07717. – reference: M. K. Gelber, R. Bhargava, Lab Chip, 2015, 15, 1736-1741. – reference: Shao H, Yang X, He Y, et al. Biofabrication, 2015, 7(3): 035010. – reference: C. W. Ziemian, P. M. Crawn, Rapid Prototyping Journal, 2001, 7, 138-147. – reference: P. F. O'Neill, A. B. Azouz, M. Vázquez, J. Liu, S. Marczak, Z. Slouka, H. C. Chang, D. Diamond, D. Brabazon, Biomicrofluidics, 2014, 8, 052112. – reference: R. Walczak, K. Adamski, J. Micromech. Microeng., 2015, 25, 085013. – reference: J. W. Choi, R. Wicker, S. H. Lee, K. H. Choi, C. S. Ha, I. Chung, Journal of Materials Processing Technology, 2009, 209, 5494-5503. – reference: J. Serbin, B. N. Chichkov, Proc. of SPIE, 2003, 5222. – reference: G. Chisholm, P. J. Kitson, N. D. Kirkaldy, L. G. Bloor, L. Cronin, Energy Environ. Sci., 2014, 7, 3026-3032. – reference: D. Therriault, S. R. White, J. A. Lewis, Nature Materials, 2002, 2, 265-271. – reference: P. J. Kitson, M. D. Symes, V. Dragone, L. Cronin, Chem. Sci., 2013, 4, 3099-3103. – reference: Y. He, X. Xiao, Y. Wu, et al. Scientific Reports, 2015, 5, 13522. – reference: V. Mironov, R. P. Visconti, V. Kasyanov, G. Forgacs, C. J. Drake, R. R. Markwald, Biomaterials, 2009, 30, 2164-2174. – reference: Y-L. Zhang, Q-D. Chen, H. Xia, H-B. Sun, Nano Today, 2010, 5, 435-448. – reference: K. G. Lee, K. J. Park, S. Seok, S. Shin, D. H. Kim, J. Y. Part, Y. S. Heo, S. J. Lee, T. J. Lee, RSC Adv., 2014, 4, 32876-32880. – reference: M. L. Kovarik, D. M. Ornoff, A. T. Melvin et al. Analytical Chemistry, 2012, 85(2), 451-472. – reference: G. Wu, N. A. Langrana, R. Sadanji, S. Danforth, Materials and Design, 2002, 23, 97-105. – reference: J. A. Kim, H. N. Kim, S. K. Im, S. Chung, J. Y. Kang, N. Choi, Biomicrofluidics, 2015, 9, 024115. – reference: Y. Hanada, K. Sugioka, I. Shihira-Ishikama, H. Kawano, A. Miyawaki, K. Midorikama, Lab Chip, 2011, 11, 2109-2115. – reference: D. F. Thompson, J. Anal. At. Spectrom., 2014, 29, 2262-2266. – reference: M. D. Symes, P. J. Kitson, J. Yan et al. Nature Chemistry, 2012, 4(5), 349-354. – reference: D. B. Kolesky, R. L. Truby, A. S. Gladman, T. A. Busbee, K. A. Homan, J. A. Lewis, Adv. Mater. 2014, 26, 3124-3130. – reference: Y. Lu, G. Mapili, G. Suhali, S. Chen, K. Roy, Journal of Biomedical Materials Research Part A, 2006, 77, 396-405. – reference: C. K. Su, S. C. Hsia, Y. C. Sun, Analytica Chimica Acta, 2014, 838, 58-63. – reference: D. M. Longo, R. Hull, MRS Proceedings, 2000, 624, 157-160. – reference: A. K. Sood, R. K. Ohdar, S. S. Mahapatra, Materials and Design, 2009, 30, 4243-4252. – reference: B. S. Ferguson, S. F. Buchsbaum, T. T. Wu et al. Journal of the American Chemical Society, 2011, 133(23), 9129-9135. – reference: He Y, Xue G, J. Fu Scientific Reports, 2014, 4, 6973. – volume: 31 start-page: 6121 year: 2010 end-page: 6130 publication-title: Biomaterials – volume: 74 start-page: 1537 year: 2002 end-page: 1545 publication-title: Anal. Chem. – volume: 18 start-page: 345202 year: 2007 publication-title: Nanotechnology – volume: 33 start-page: 5325 year: 2012 end-page: 5332 publication-title: Biomaterials – volume: 5 start-page: 2694 year: 2015 end-page: 2701 publication-title: RSC Adv. – volume: 19 (2) start-page: 447 year: 2015 end-page: 456 publication-title: Microfluidics and Nanofluidics – volume: 15 start-page: 1934 year: 2015 end-page: 1941 publication-title: Lab Chip – volume: 5 start-page: 07974 year: 2015 publication-title: Scientific Reports – volume: 11 start-page: 2109 year: 2011 end-page: 2115 publication-title: Lab Chip – volume: 4 start-page: 32876 year: 2014 end-page: 32880 publication-title: RSC Adv. – volume: 14 start-page: 2978 year: 2014 end-page: 2982 publication-title: Lab Chip – volume: 4 start-page: 6973 year: 2014 publication-title: Scientific Reports – volume: 23 start-page: 357 year: 2003 end-page: 371 publication-title: Assembly Automation – volume: 7 start-page: 12635 year: 2015 end-page: 12638 publication-title: Appl. Mater. Interfaces – volume: 9 start-page: 024115 year: 2015 publication-title: Biomicrofluidics – volume: 14 start-page: 424 year: 2014 end-page: 430 publication-title: Lab Chip – volume: 111 start-page: 15013 year: 2014 end-page: 15018 publication-title: PNAS – volume: 86 start-page: 3240 year: 2014 end-page: 3253 publication-title: Anal. Chem. – volume: 86 start-page: 3124 year: 2014 end-page: 3130 publication-title: Anal. Chem. – volume: 17(12) start-page: 2420 year: 2007 publication-title: J. Micromech. Microeng. – volume: 85 start-page: 5622 year: 2013 end-page: 5626 publication-title: Anal. Chem. – start-page: 5222 year: 2003 publication-title: Proc. of SPIE – volume: 30 start-page: 1867 year: 2005 end-page: 1869 publication-title: Optics Letters – volume: 35 start-page: 8092 year: 2014 end-page: 8102 publication-title: Biomaterial – volume: 12 start-page: 746 year: 2012 end-page: 749 publication-title: Lab Chip – volume: 3 start-page: 318 year: 2003 end-page: 323 publication-title: Lab Chip – volume: 11 start-page: 26 year: 2005 end-page: 36 publication-title: Rapid Prototyping Journal – volume: 13 start-page: 4583 year: 2013 end-page: 4590 publication-title: Lab Chip – volume: 6 start-page: 155 year: 2000 end-page: 161 publication-title: Rapid Prototyping Journal – volume: 28 start-page: 307 year: 1996 end-page: 318 publication-title: Computer-Aided Design – volume: 16 start-page: 291 year: 2016 end-page: 297 publication-title: Lab Chip – volume: 77 start-page: 396 year: 2006 end-page: 405 publication-title: Journal of Biomedical Materials Research Part A – volume: 9(16) start-page: 2391 year: 2009 end-page: 2394 publication-title: Lab on a Chip – volume: 624 start-page: 157 year: 2000 end-page: 160 publication-title: MRS Proceedings – volume: 61 start-page: 203 year: 2015 end-page: 215 publication-title: Biomaterials – volume: 478 start-page: 12 year: 2015 end-page: 18 publication-title: Journal of Membrane Science – volume: 5 start-page: 435 year: 2010 end-page: 448 publication-title: Nano Today – volume: 7(1) start-page: 1 year: 2009 end-page: 28 publication-title: Microfluidics and Nanofluidics – volume: 105 start-page: 1178 year: 2010 end-page: 1186 publication-title: Biotechnology and Bioengineering – volume: 29 start-page: 392 year: 2010 end-page: 424 publication-title: Mass Spectrometry Reviews – volume: 29 start-page: 601 year: 2011 end-page: 606 publication-title: Trends in Biotechnology – volume: 507 start-page: 181 year: 2014 end-page: 189 publication-title: Nature – volume: 87 start-page: 7763 year: 2015 end-page: 7770 publication-title: Anal. Chem. – volume: 460 start-page: 1080 year: 2009 end-page: 1081 publication-title: Nature – volume: 14 start-page: 810 year: 2006 end-page: 816 publication-title: Optics Express – volume: 6 start-page: 21704 year: 2016 publication-title: Scientific Reports – volume: 4 start-page: 285 year: 2013 end-page: 291 publication-title: Beilstein Journal of Nanotechnology – volume: 14 start-page: 2023 year: 2014 end-page: 2032 publication-title: Lab Chip – start-page: 125 year: 2001 end-page: 130 publication-title: Materials Science and Engineering A – volume: 838 start-page: 58 year: 2014 end-page: 63 publication-title: Analytica Chimica Acta – volume: 139 start-page: 6343 year: 2014 end-page: 6347 publication-title: Analyst – volume: 29 start-page: 2262 year: 2014 end-page: 2266 publication-title: J. Anal. At. Spectrom. – volume: 883 start-page: 55 year: 2015 end-page: 60 publication-title: Analytica Chimica Acta – volume: 30 start-page: 4243 year: 2009 end-page: 4252 publication-title: Materials and Design – volume: 6 start-page: 161 year: 2000 end-page: 175 publication-title: Rapid Prototyping Journal – volume: 5 start-page: 07717 year: 2015 publication-title: Scientific Reports – volume: 30 start-page: 2164 year: 2009 end-page: 2174 publication-title: Biomaterials – volume: 7 start-page: 138 year: 2001 end-page: 147 publication-title: Rapid Prototyping Journal – volume: 19 start-page: 101 year: 2007 end-page: 107 publication-title: Current Opinion in Cell Biology – volume: 25 start-page: 035013 year: 2015 publication-title: J. Micromech. Microeng. – volume: 21 start-page: 745 year: 2011 end-page: 754 publication-title: Trends in Cell Biology – volume: 212 start-page: 1347 year: 2015 end-page: 1352 publication-title: Phys. Status Solidi A – volume: 53 start-page: 12723 year: 2014 end-page: 12728 publication-title: Angew. Chem. Int. Ed. – volume: 33 start-page: 307 year: 2013 end-page: 311 publication-title: Assembly Automation – volume: 85(2) start-page: 451 year: 2012 end-page: 472 publication-title: Analytical Chemistry – volume: 10 start-page: 0137631 year: 2015 publication-title: PLoS ONE – volume: 19 start-page: 9 year: 2015 end-page: 18 publication-title: Microfluid Nanofluid – volume: 17 start-page: 36 year: 2015 publication-title: Biomed Microdevices – volume: 10 start-page: 2093 year: 2010 end-page: 2100 publication-title: Lab Chip – volume: 16(3) start-page: 381 year: 2012 end-page: 390 publication-title: Current Opinion in Chemical Biology – volume: 4 start-page: 3099 year: 2013 end-page: 3103 publication-title: L. Cronin, Chem. Sci. – volume: 23(2 start-page: 025016 year: 2013 publication-title: J. Micromech. Microeng. – volume: 15 start-page: 1736 year: 2015 end-page: 1741 publication-title: Lab Chip – volume: 26 start-page: 3124 year: 2014 end-page: 3130 publication-title: Adv. Mater. – volume: 86 start-page: 6683 year: 2014 end-page: 6688 publication-title: Anal. Chem. – volume: 23 start-page: 97 year: 2002 end-page: 105 publication-title: Materials and Design – volume: 9 start-page: 951 year: 2013 end-page: 959 publication-title: Beilstein Journal of Nanotechnnology – volume: 83 start-page: 6418 year: 2011 end-page: 6425 publication-title: Anal. Chem. – volume: 14 start-page: 2202 year: 2014 end-page: 2211 publication-title: Lab Chip – volume: 38 start-page: 1257 year: 1998 end-page: 1287 publication-title: International Journal of Machine Tools & Manufacture – volume: 4 start-page: 342 year: 2004 end-page: 350 publication-title: Lab Chip – volume: 12 start-page: 3267 year: 2012 end-page: 3271 publication-title: Lab Chip – volume: 23 start-page: 1169 year: 2002 end-page: 1185 publication-title: Biomaterials – volume: 226 start-page: 137 year: 2015 end-page: 142 publication-title: Sensors and Actuators A: Physical – volume: 5(95) start-page: 78109 year: 2015 end-page: 78127 publication-title: RSC Advances – volume: 14 start-page: 4178 year: 2014 end-page: 4182 publication-title: Lab Chip – volume: 1 start-page: 60 year: 2001 end-page: 71 publication-title: Journal of Computing and Information Science in Engineering – volume: 191 start-page: 438 year: 2014 end-page: 444 publication-title: Sensors and Actuators B: Chemical – volume: 205 start-page: 199 year: 2014 end-page: 203 publication-title: Sensors and Actuators A: Physical – volume: 46 start-page: 271 year: 2001 end-page: 287 publication-title: International Materials Reviews – volume: 12(12) start-page: 2118 year: 2012 end-page: 2134 publication-title: Lab on a Chip – volume: 25 start-page: 085013 year: 2015 publication-title: J. Micromech. Microeng. – volume: 14 start-page: 3447 year: 2014 end-page: 3458 publication-title: Lab Chip – volume: 133(23) start-page: 9129 year: 2011 end-page: 9135 publication-title: Journal of the American Chemical Society – volume: 5 start-page: 13522 year: 2015 publication-title: Scientific Reports – volume: 16 start-page: 209 year: 2010 end-page: 215 publication-title: Rapid Prototyping Journal – volume: 112 start-page: 1683 year: 2015 end-page: 1695 publication-title: Biotechnology and bioengineering – volume: 209 start-page: 5494 year: 2009 end-page: 5503 publication-title: Journal of Materials Processing Technology – volume: 8 start-page: 064112 year: 2014 publication-title: Biomicrofluidics – volume: 412 start-page: 697 year: 2001 end-page: 698 publication-title: Nature – volume: 86 start-page: 11657 year: 2014 end-page: 11665 publication-title: Anal. Chem. – volume: 7 start-page: 3026 year: 2014 end-page: 3032 publication-title: Energy Environ. Sci. – volume: 12(12) start-page: 2156 year: 2012 end-page: 2164 publication-title: Lab on a Chip – volume: 6 start-page: 437 year: 2015 end-page: 451 publication-title: Micromachines – volume: 9 start-page: 016501 year: 2015 publication-title: Biomicrofluidics – volume: 11(8) start-page: 620 year: 2012 end-page: 632 publication-title: Nature Reviews Drug Discovery – volume: 8 start-page: 052112 year: 2014 publication-title: Biomicrofluidics – volume: 10 start-page: 2671 year: 1992 end-page: 2674 publication-title: Journal of Vacuum Science & Technology B – volume: 15 start-page: 3627 year: 2015 end-page: 3637 publication-title: Lab Chip – volume: 87 start-page: 5437 year: 2015 end-page: 5443 publication-title: Anal. Chem. – volume: 5 start-page: 025004 year: 2013 publication-title: Biofabrication – volume: 7(3) start-page: 035010 year: 2015 publication-title: Biofabrication – volume: 22 start-page: 667 year: 2011 end-page: 673 publication-title: Current Opinion in Biotechnology – volume: 2 start-page: 265 year: 2002 end-page: 271 publication-title: Nature Materials – volume: 4(5) start-page: 349 year: 2012 end-page: 354 publication-title: Nature Chemistry – volume: 130 start-page: 021005 year: 2008 publication-title: Journal of Manufacturing Science and Engineering – ident: e_1_2_9_56_1 doi: 10.1039/C4JA00291A – ident: e_1_2_9_111_1 doi: 10.1016/j.biomaterials.2015.05.031 – ident: e_1_2_9_112_1 doi: 10.1002/adma.201305506 – ident: e_1_2_9_113_1 doi: 10.1063/1.4917508 – ident: e_1_2_9_15_1 doi: 10.1016/S0890-6955(97)00137-5 – ident: e_1_2_9_95_1 doi: 10.1039/c1lc20101h – ident: e_1_2_9_18_1 doi: 10.1016/S0921-5093(00)01810-4 – ident: e_1_2_9_99_1 doi: 10.1039/C5LC00685F – ident: e_1_2_9_37_1 doi: 10.1108/01445150310698652 – ident: e_1_2_9_31_1 doi: 10.1115/1.2823079 – ident: e_1_2_9_105_1 doi: 10.1016/j.biomaterials.2008.12.084 – ident: e_1_2_9_3_1 doi: 10.1021/ja203981w – ident: e_1_2_9_2_1 doi: 10.1038/nchem.1313 – ident: e_1_2_9_90_1 doi: 10.1039/c003994b – ident: e_1_2_9_34_1 doi: 10.1016/0010-4485(95)00035-6 – ident: e_1_2_9_62_1 doi: 10.1021/ac4041857 – ident: e_1_2_9_52_1 doi: 10.1039/C3SC51253C – ident: e_1_2_9_116_1 doi: 10.1016/j.biomaterials.2014.05.083 – ident: e_1_2_9_79_1 doi: 10.1021/acsami.5b03969 – ident: e_1_2_9_84_1 doi: 10.1016/j.sna.2013.11.005 – ident: e_1_2_9_100_1 doi: 10.1038/nature13118 – ident: e_1_2_9_10_1 doi: 10.1007/s10404-009-0421-x – ident: e_1_2_9_19_1 doi: 10.1016/S0261-3069(01)00079-6 – ident: e_1_2_9_41_1 doi: 10.1038/35089130 – ident: e_1_2_9_11_1 doi: 10.1038/srep13522 – ident: e_1_2_9_69_1 doi: 10.1038/srep07717 – ident: e_1_2_9_58_1 doi: 10.1088/0960-1317/25/3/035013 – ident: e_1_2_9_83_1 doi: 10.1088/0960-1317/25/8/085013 – ident: e_1_2_9_93_1 doi: 10.1364/OL.30.001867 – volume: 9 start-page: 2391 year: 2009 ident: e_1_2_9_120_1 publication-title: Lab on a Chip doi: 10.1039/b902159k – ident: e_1_2_9_57_1 doi: 10.1021/acs.analchem.5b00903 – volume: 5 start-page: 78109 year: 2015 ident: e_1_2_9_122_1 publication-title: RSC Advances doi: 10.1039/C5RA09188H – ident: e_1_2_9_44_1 doi: 10.1179/095066001771048727 – ident: e_1_2_9_4_1 doi: 10.1016/j.cbpa.2012.03.022 – ident: e_1_2_9_13_1 doi: 10.1038/srep21704 – ident: e_1_2_9_96_1 doi: 10.1039/C4LC00548A – volume: 85 start-page: 451 year: 2012 ident: e_1_2_9_1_1 publication-title: Analytical Chemistry doi: 10.1021/ac3031543 – ident: e_1_2_9_30_1 doi: 10.1016/j.jmatprotec.2009.05.004 – ident: e_1_2_9_103_1 doi: 10.1016/j.copbio.2011.02.006 – ident: e_1_2_9_12_1 doi: 10.1007/s10404-015-1571-7 – ident: e_1_2_9_51_1 doi: 10.3762/bjoc.9.109 – ident: e_1_2_9_20_1 doi: 10.1108/13552540010337047 – ident: e_1_2_9_55_1 doi: 10.1021/ac502785j – ident: e_1_2_9_48_1 doi: 10.1039/C4LC01392A – ident: e_1_2_9_106_1 doi: 10.1016/j.tibtech.2011.07.001 – ident: e_1_2_9_8_1 doi: 10.1088/0960-1317/23/2/025016 – ident: e_1_2_9_9_1 doi: 10.1088/0960-1317/17/12/005 – ident: e_1_2_9_92_1 doi: 10.1039/B308452C – ident: e_1_2_9_60_1 doi: 10.3390/mi6040437 – ident: e_1_2_9_98_1 doi: 10.1038/srep07974 – volume: 7 start-page: 035010 year: 2015 ident: e_1_2_9_22_1 publication-title: Biofabrication doi: 10.1088/1758-5090/7/3/035010 – ident: e_1_2_9_65_1 doi: 10.1039/C4RA12165A – ident: e_1_2_9_75_1 doi: 10.1016/j.aca.2014.06.037 – ident: e_1_2_9_88_1 doi: 10.1021/acs.analchem.5b01353 – ident: e_1_2_9_107_1 doi: 10.1002/pssa.201532053 – ident: e_1_2_9_118_1 doi: 10.1002/bit.22613 – ident: e_1_2_9_85_1 doi: 10.1039/C4LC00171K – ident: e_1_2_9_102_1 doi: 10.1016/j.tcb.2011.09.005 – ident: e_1_2_9_78_1 doi: 10.1016/j.memsci.2014.12.040 – ident: e_1_2_9_16_1 doi: 10.1108/13552540110395538 – ident: e_1_2_9_81_1 doi: 10.1039/C4AN01476F – ident: e_1_2_9_73_1 doi: 10.1063/1.4905840 – ident: e_1_2_9_28_1 doi: 10.1108/AA-06-2013-055 – ident: e_1_2_9_80_1 doi: 10.1039/c3lc50844g – ident: e_1_2_9_54_1 doi: 10.1039/C4EE01426J – ident: e_1_2_9_68_1 doi: 10.1371/journal.pone.0137631 – ident: e_1_2_9_109_1 doi: 10.1039/C5LC01374G – ident: e_1_2_9_76_1 doi: 10.1039/C4LC00992D – ident: e_1_2_9_64_1 doi: 10.1073/pnas.1414764111 – ident: e_1_2_9_47_1 doi: 10.1021/ac010938q – ident: e_1_2_9_23_1 doi: 10.1038/srep06973 – ident: e_1_2_9_82_1 doi: 10.1021/ac4009594 – ident: e_1_2_9_66_1 doi: 10.1016/j.aca.2015.04.014 – ident: e_1_2_9_61_1 doi: 10.1039/C4LC00394B – ident: e_1_2_9_91_1 doi: 10.1116/1.586023 – ident: e_1_2_9_71_1 doi: 10.1021/ac201539h – ident: e_1_2_9_49_1 doi: 10.1039/c2lc40761b – ident: e_1_2_9_46_1 doi: 10.1108/13552541011034889 – ident: e_1_2_9_25_1 doi: 10.1007/978-0-387-92904-0_1 – ident: e_1_2_9_101_1 doi: 10.1063/1.4898632 – ident: e_1_2_9_24_1 – ident: e_1_2_9_38_1 – ident: e_1_2_9_117_1 doi: 10.1038/nmat863 – ident: e_1_2_9_6_1 doi: 10.1039/c2lc21204h – ident: e_1_2_9_53_1 doi: 10.1002/anie.201402654 – ident: e_1_2_9_33_1 doi: 10.1088/0957-4484/18/34/345202 – ident: e_1_2_9_67_1 doi: 10.1039/C5LC00126A – ident: e_1_2_9_72_1 doi: 10.1016/j.snb.2013.10.008 – ident: e_1_2_9_59_1 doi: 10.1039/C3LC50956G – ident: e_1_2_9_7_1 doi: 10.1039/c2lc40089h – ident: e_1_2_9_97_1 doi: 10.1038/4601080a – ident: e_1_2_9_14_1 – start-page: 5222 year: 2003 ident: e_1_2_9_43_1 publication-title: Proc. of SPIE – ident: e_1_2_9_114_1 doi: 10.1039/C4LC00030G – ident: e_1_2_9_119_1 doi: 10.1007/s10544-015-9928-y – ident: e_1_2_9_45_1 doi: 10.1557/PROC-624-157 – ident: e_1_2_9_87_1 doi: 10.1063/1.4902929 – ident: e_1_2_9_110_1 doi: 10.1088/1758-5082/5/2/025004 – ident: e_1_2_9_50_1 doi: 10.3762/bjnano.4.31 – ident: e_1_2_9_89_1 doi: 10.1039/B314962E – ident: e_1_2_9_32_1 – ident: e_1_2_9_121_1 – volume: 11 start-page: 620 year: 2012 ident: e_1_2_9_5_1 publication-title: Nature Reviews Drug Discovery doi: 10.1038/nrd3799 – ident: e_1_2_9_108_1 doi: 10.1002/bit.25579 – ident: e_1_2_9_42_1 doi: 10.1364/OPEX.14.000810 – ident: e_1_2_9_21_1 doi: 10.1016/S0142-9612(01)00232-0 – ident: e_1_2_9_104_1 doi: 10.1016/j.ceb.2006.12.002 – ident: e_1_2_9_27_1 doi: 10.1021/ac403397r – ident: e_1_2_9_77_1 doi: 10.1007/s10404-014-1542-4 – ident: e_1_2_9_35_1 doi: 10.1108/13552540010337029 – ident: e_1_2_9_40_1 doi: 10.1016/j.nantod.2010.08.007 – ident: e_1_2_9_39_1 doi: 10.1115/1.1355029 – ident: e_1_2_9_29_1 doi: 10.1002/jbm.a.30601 – ident: e_1_2_9_36_1 doi: 10.1108/13552540510573365 – ident: e_1_2_9_86_1 doi: 10.1016/j.sna.2015.02.028 – ident: e_1_2_9_94_1 doi: 10.1039/c2lc21015k – ident: e_1_2_9_17_1 doi: 10.1016/j.matdes.2009.04.030 – ident: e_1_2_9_63_1 doi: 10.1039/C4RA05072J – ident: e_1_2_9_115_1 doi: 10.1016/j.biomaterials.2012.04.004 – ident: e_1_2_9_70_1 doi: 10.1021/ac501436d – ident: e_1_2_9_74_1 doi: 10.1002/mas.20240 – ident: e_1_2_9_26_1 doi: 10.1016/j.biomaterials.2010.04.050 |
SSID | ssj0009649 |
Score | 2.5892367 |
SecondaryResourceType | review_article |
Snippet | Three‐dimensional (3D) printing, also called additive manufacturing (AM) or rapid prototyping (RP), is a layer by layer manufacturing method and now has been... Three-dimensional (3D) printing, also called additive manufacturing (AM) or rapid prototyping (RP), is a layer by layer manufacturing method and now has been... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1658 |
SubjectTerms | 3D bioprinting 3D printing Additive manufacturing Assembling Biology BioMEMS Biomicrofluidics Chips Lab on a chip Micro total analysis systems Microfluidic chips Microfluidics Organs Organs on chips Printing Rapid prototyping (RP) Three dimensional printing |
Title | Developments of 3D Printing Microfluidics and Applications in Chemistry and Biology: a Review |
URI | https://api.istex.fr/ark:/67375/WNG-NR89PDBZ-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Felan.201600043 https://www.proquest.com/docview/1835563376 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEA6iD_riLa4XEUSfqr3SpL55i-CyLC4rgoR0msLi0pU9QP31ZtJt3RVE0LeWJj1mJjND58s3hBxwAQJ8pL6MdOqEJqI7ItHaYUEIANxLkxA3J9_Xo9tWePfIHid28Rf8ENUPN1wZ1l_jAlfJ4OSLNFR3FfKXepGtZhknjIAtzIqaX_xRcWTzXw9hc66JvCVro-ufTE-fikpzKOC3qZRzMnG1ked6iajynQvAycvxaJgcw8c3Osf_fNQyWRynpfSssKMVMqPzVTJ_UXaDWyPPE-iiAe1lNLikjX7H9pmg94jqy7qjTtqBAVV5Ss8m6uK0k9PqTvZq0QDz_ZQqWtQm1knr-urh4tYZt2ZwwIjRaNbjHLwg1WHspSLNfNBxFrtuxhRnidLAA-VBECWun3I_UwoEywIXTPKGu4v8YIPM5r1cbxIqIq2MgpgWxjW4jAkByhhWFCtwBYesRpxSNRLGvOXYPqMrC8ZlX6LQZCW0Gjmqxr8WjB0_jjy0mq6Gqf4L4tw4k-36jaw3Rdy4PH-S7RrZL01BGmFhSUXlujcaSOMQkWHNeOka8a1if3mmxEYo1dnWXyZtkwU8LlCIO2R22B_pXZMZDZM9a_2fPCoE3Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5V7aFcoOUhFlowEo9T2sSJEweJQ-lStrS7qqpWrZCQcSaOtOoqW-1DUP5V_wq_CI-zSXeREBJSDxyTOLHjedoz_gbgZSJRIifoy9jkXmQtuiczYzwRRoiYBHkW0eHkbi_unEafzsX5ElzXZ2EqfIhmw40kw-lrEnDakN6-QQ01A00ApkHswlmzvMoDc_XNrtrG7_bblsSvON_7cLLb8WaFBTy05teOK0gSDMLcRGmQy7zgaNIi9f1C6ERk2mAS6gDDOPN5nvBCa5SiCH20rgedjSGsA6v1V6iMOMH1t49vEKvS2HncASXq-bazGifS59uL412wgytE0u8LTu68q-xs3d49-FnPUpXicrE1nWRb-OM3AMn_ahrX4O7M82Y7laisw5Ip78Pqbl3w7gF8mUugGrNhwcI2Oxr1XSkN1qXExWIw7ed9HDNd5mxnLvTP-iVrvuSeVjU-r94yzarwy0M4vZW_ewTL5bA0j4HJ2GjLEcJIq_18IaREbWUnTjX6MsGiBV7NCwpn0OxUIWSgKlBprohIqiFSC9407S8rUJI_tnztWKtppkcXlMqXCHXW-6h6xzI9ar__rM5a8KLmPWUni6JGujTD6VhZnU8gctYQtYA7TvpLn4pqvTRXT_7lpeew2jnpHqrD_d7BU7hD96ukyw1YnoymZtM6gpPsmRM9Bl9vm0l_AaB3ZDM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Za9wwEB5CAm1fepduTxV6PDmRZcuSC3lI426TplmW0JAQKKqsA5Ys3rAHbfqr8lf6jyrJa2e3UAqFPPTR9tiSNac9o28AXjKuuCIe-jIzOkqdR494aUxEk1QpxWJdpn5z8n4v2zlMPx7T4xW4aPbC1PgQ7Q83rxnBXnsFP9N24xI01Aylxy-Ns5DNmpdV7pnzb-6jbbK5WzgOvyKk-_7z9k407ysQKed93bRixlScaJPmsebaEmVym2NsqWS0lEaxRMYqyUpMNCNWSsWpTbBykYffGuOhDpzRX0sznPtmEcXBJWBVnoWAO_Z1etgN1sBEYrKxPN8lN7jmOfp9KcZdjJSDq-vegp_NItUVLqfrs2m5rn78hh_5P63ibbg5j7vRVq0od2DFVHfh-nbT7u4efFkon5qgkUVJgfrjQWikgfZ92aIdzgZ6oCZIVhptLST-0aBC7ZPC1brD5_lbJFGdfLkPh1fydg9gtRpV5iEgnhnpBIIa7mwfppRzJZ3mZLlUmDNlOxA1oiDUHJjd9wcZihpSmgjPJNEyqQNvWvqzGpLkj5Svg2S1ZHJ86gv5GBVHvQ-id8DzfvHuRBx14EUjesItls8ZycqMZhPhLL6HkHNuqAMkCNJfxhS-00t79OhfbnoO1_pFV3za7e09hhv-dF1x-QRWp-OZeeqiwGn5LCgegq9XLaO_APLnYuI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developments+of+3D+Printing+Microfluidics+and+Applications+in+Chemistry+and+Biology%3A+a+Review&rft.jtitle=Electroanalysis+%28New+York%2C+N.Y.%29&rft.au=He%2C+Yong&rft.au=Wu%2C+Yan&rft.au=Fu%2C+Jian-zhong&rft.au=Gao%2C+Qing&rft.date=2016-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1040-0397&rft.eissn=1521-4109&rft.volume=28&rft.issue=8&rft.spage=1658&rft.epage=1678&rft_id=info:doi/10.1002%2Felan.201600043&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_NR89PDBZ_W |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-0397&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-0397&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-0397&client=summon |