Developments of 3D Printing Microfluidics and Applications in Chemistry and Biology: a Review

Three‐dimensional (3D) printing, also called additive manufacturing (AM) or rapid prototyping (RP), is a layer by layer manufacturing method and now has been widely used in many areas such as organ printing, aerospace and industrial design. Now 3D printed microfluidics attract more and more interest...

Full description

Saved in:
Bibliographic Details
Published inElectroanalysis (New York, N.Y.) Vol. 28; no. 8; pp. 1658 - 1678
Main Authors He, Yong, Wu, Yan, Fu, Jian-zhong, Gao, Qing, Qiu, Jing-jiang
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 01.08.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Three‐dimensional (3D) printing, also called additive manufacturing (AM) or rapid prototyping (RP), is a layer by layer manufacturing method and now has been widely used in many areas such as organ printing, aerospace and industrial design. Now 3D printed microfluidics attract more and more interests for its rapid printing in the lab. In this review, we focused on the advances of 3D printed microfluidic chips especially the use in the chemistry and biology (vascularization and organs on chips). Based on the brief review of different 3D printing methods, we discussed how to choose the suitable 3D printing methods to print the desired microfluidics. We predict that microfluidics will be evolved from 2D chips to 3D cubes, printed hydrogel‐based microfluidics will be reported and widely used, sensors & actuators could be integrated in the microfluidics during printing, and rapid assembling chips with printed microfluidic modules will be popular in the near future.
AbstractList Three‐dimensional (3D) printing, also called additive manufacturing (AM) or rapid prototyping (RP), is a layer by layer manufacturing method and now has been widely used in many areas such as organ printing, aerospace and industrial design. Now 3D printed microfluidics attract more and more interests for its rapid printing in the lab. In this review, we focused on the advances of 3D printed microfluidic chips especially the use in the chemistry and biology (vascularization and organs on chips). Based on the brief review of different 3D printing methods, we discussed how to choose the suitable 3D printing methods to print the desired microfluidics. We predict that microfluidics will be evolved from 2D chips to 3D cubes, printed hydrogel‐based microfluidics will be reported and widely used, sensors & actuators could be integrated in the microfluidics during printing, and rapid assembling chips with printed microfluidic modules will be popular in the near future.
Author Qiu, Jing-jiang
He, Yong
Wu, Yan
Gao, Qing
Fu, Jian-zhong
Author_xml – sequence: 1
  givenname: Yong
  surname: He
  fullname: He, Yong
  email: yongqin@zju.edu.cn
  organization: State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, 310027, Hangzhou, China
– sequence: 2
  givenname: Yan
  surname: Wu
  fullname: Wu, Yan
  organization: State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, 310027, Hangzhou, China
– sequence: 3
  givenname: Jian-zhong
  surname: Fu
  fullname: Fu, Jian-zhong
  organization: State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, 310027, Hangzhou, China
– sequence: 4
  givenname: Qing
  surname: Gao
  fullname: Gao, Qing
  organization: State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, 310027, Hangzhou, China
– sequence: 5
  givenname: Jing-jiang
  surname: Qiu
  fullname: Qiu, Jing-jiang
  organization: State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, 310027, Hangzhou, China
BookMark eNqFkEFPGzEQRi0EUiH02rOPXDbY6911zC0kgSKlAaFWSJUqy_GOwa1jL_aGNP8eQypUIVU9zUjzvdHMO0L7PnhA6BMlQ0pIeQpO-WFJaEMIqdgeOqR1SYuKErGfe1KRgjDBP6CjlH7miGgqcYh-TOEJXOhW4PuEg8Fsim-i9b319_iL1TEYt7at1Qkr3-Jx1zmrVW-DT9h6PHmAlU193L5Oz21w4X57hhW-hScLm2N0YJRL8PFPHaBvF7Ovk8_F_PryajKeFzpfxApKOdeUtVAJ2o5aU2oQRhBiasXrpQLNmaKaNUtStrw0SulRbRjRVcmWjdElG6CT3d4uhsc1pF7mqzS4bATCOkk6YnXdMMabHK120fxaShGM1LZ_faiPyjpJiXyxKV9syjebGRu-w7poVypu_w2IHbCxDrb_ScvZfLz4my12bFYLv99YFX_JhjNey7vFpVzcjsTN9Py7vGPPl52Z3Q
CitedBy_id crossref_primary_10_1039_D1RA04764G
crossref_primary_10_1107_S2052252519016865
crossref_primary_10_1021_acsbiomaterials_7b00542
crossref_primary_10_1021_acs_analchem_0c03299
crossref_primary_10_1039_C6AN01055E
crossref_primary_10_1016_j_elecom_2018_12_006
crossref_primary_10_1109_JLT_2021_3082620
crossref_primary_10_1016_j_optlastec_2024_111713
crossref_primary_10_1108_RPJ_05_2018_0115
crossref_primary_10_1088_1758_5090_abd9d8
crossref_primary_10_1080_21655979_2023_2236842
crossref_primary_10_1080_19475411_2021_1948457
crossref_primary_10_1016_j_molliq_2022_119760
crossref_primary_10_1007_s42242_024_00298_y
crossref_primary_10_1007_s00216_020_02513_y
crossref_primary_10_1016_j_snb_2023_134360
crossref_primary_10_1039_C7RA08611C
crossref_primary_10_1177_2472630319877374
crossref_primary_10_1039_C9LC00046A
crossref_primary_10_3390_mi12020138
crossref_primary_10_1039_C8LC00004B
crossref_primary_10_1016_j_prosdent_2020_06_041
crossref_primary_10_1016_j_electacta_2023_142166
crossref_primary_10_3390_nano11020373
crossref_primary_10_1007_s10854_018_0056_3
crossref_primary_10_1080_10739149_2022_2129677
crossref_primary_10_1016_j_pmatsci_2024_101377
crossref_primary_10_3390_bios11090316
crossref_primary_10_1002_adfm_201700655
crossref_primary_10_1038_s41570_019_0097_z
crossref_primary_10_1007_s10853_021_06362_7
crossref_primary_10_1016_j_trac_2022_116570
crossref_primary_10_1063_5_0163970
crossref_primary_10_1016_j_snb_2019_04_126
crossref_primary_10_1016_j_trac_2018_08_007
crossref_primary_10_1016_j_snb_2019_127621
crossref_primary_10_1108_RPJ_11_2020_0274
crossref_primary_10_1002_admt_202100221
crossref_primary_10_1007_s42452_024_05981_4
crossref_primary_10_3390_nano10112113
crossref_primary_10_1007_s13206_025_00200_7
crossref_primary_10_1016_j_heliyon_2022_e12637
crossref_primary_10_3390_mi9020071
crossref_primary_10_3390_jmmp6010017
crossref_primary_10_1016_j_mtbio_2019_100024
crossref_primary_10_1007_s13233_020_8134_9
crossref_primary_10_1021_acsbiomaterials_9b00953
crossref_primary_10_1002_smll_202100817
crossref_primary_10_1063_5_0122771
crossref_primary_10_3390_pr8091138
crossref_primary_10_3390_s17051166
crossref_primary_10_1007_s00216_020_02647_z
crossref_primary_10_1039_C8LC00636A
crossref_primary_10_1002_admt_202001218
crossref_primary_10_1109_JSEN_2018_2881916
crossref_primary_10_1016_j_arabjc_2020_09_020
crossref_primary_10_1002_adma_202208852
crossref_primary_10_1007_s00604_022_05200_0
crossref_primary_10_1108_RPJ_05_2024_0215
crossref_primary_10_1039_D3AN01295F
crossref_primary_10_1016_j_electacta_2020_135688
crossref_primary_10_1016_j_apsusc_2022_155149
crossref_primary_10_1016_j_aca_2021_339377
crossref_primary_10_1016_j_addma_2024_104443
crossref_primary_10_3390_mi13010073
crossref_primary_10_1002_smll_201805530
crossref_primary_10_1016_j_carbon_2022_03_042
crossref_primary_10_37188_lam_2022_026
crossref_primary_10_1007_s11665_022_07188_3
crossref_primary_10_1002_admt_201800515
crossref_primary_10_1002_admt_202101615
crossref_primary_10_3390_mi10100678
crossref_primary_10_3390_chemosensors9050099
crossref_primary_10_1002_adem_201701086
crossref_primary_10_1002_aps3_11562
crossref_primary_10_1016_j_aca_2021_338677
crossref_primary_10_1002_adma_202005672
crossref_primary_10_1016_j_aca_2021_338796
crossref_primary_10_3390_mi9100502
crossref_primary_10_1016_j_actbio_2020_12_044
crossref_primary_10_1016_j_chroma_2024_464671
crossref_primary_10_1016_j_trac_2018_06_013
crossref_primary_10_3390_ma15186478
crossref_primary_10_1016_j_seppur_2022_122992
crossref_primary_10_1089_3dp_2023_0261
crossref_primary_10_3390_mi14020237
crossref_primary_10_1021_acsami_9b17071
crossref_primary_10_1021_acsphotonics_2c00125
crossref_primary_10_1002_cae_22738
crossref_primary_10_1016_j_cdc_2022_100884
crossref_primary_10_1039_C7LC00644F
crossref_primary_10_3390_mi15101250
crossref_primary_10_1007_s00170_023_12838_4
crossref_primary_10_3390_bios13100948
crossref_primary_10_3389_frlct_2022_1074009
crossref_primary_10_1088_1742_6596_2119_1_012070
crossref_primary_10_1088_1757_899X_1268_1_012006
crossref_primary_10_1002_cite_201800035
crossref_primary_10_3390_chemistry6060088
crossref_primary_10_1021_acs_analchem_9b04986
crossref_primary_10_1177_25165984241286651
crossref_primary_10_3390_mi12050531
crossref_primary_10_1016_j_aca_2019_10_075
crossref_primary_10_1039_C8RE00278A
crossref_primary_10_1039_D3AY01064C
crossref_primary_10_1039_C8LC00367J
crossref_primary_10_1021_acs_jchemed_9b00744
crossref_primary_10_1016_j_microc_2020_104664
crossref_primary_10_1016_j_sna_2019_111706
crossref_primary_10_1088_2399_1984_ace9a3
crossref_primary_10_1186_s12951_023_02258_7
crossref_primary_10_1002_cite_202200013
crossref_primary_10_1016_j_matpr_2020_10_352
crossref_primary_10_3390_catal10010109
crossref_primary_10_1002_adfm_202420369
crossref_primary_10_3390_s25010122
crossref_primary_10_1038_s41378_020_00200_7
crossref_primary_10_3390_inventions3030060
crossref_primary_10_1016_j_matt_2021_11_021
crossref_primary_10_3390_cells11050905
crossref_primary_10_3390_mi15091137
crossref_primary_10_1007_s00542_016_3242_3
crossref_primary_10_1149_2754_2726_ac5c7a
crossref_primary_10_1115_1_4055323
crossref_primary_10_3390_mi13081363
crossref_primary_10_1039_D2GC02214A
crossref_primary_10_3390_mi12050514
crossref_primary_10_1088_1758_5090_ad8966
crossref_primary_10_1007_s00170_017_0400_4
crossref_primary_10_1039_D1RA04060J
crossref_primary_10_1016_j_bprint_2024_e00347
crossref_primary_10_1016_j_matpr_2021_12_148
crossref_primary_10_1021_acs_jchemed_0c00427
crossref_primary_10_1016_j_addlet_2022_100107
crossref_primary_10_1038_s41467_022_29432_z
crossref_primary_10_1021_acsomega_3c02933
crossref_primary_10_1039_C8AY01934G
crossref_primary_10_1002_adbi_202000024
crossref_primary_10_1088_1758_5090_ab57d8
crossref_primary_10_1109_MIM_2021_9448264
crossref_primary_10_1002_elsc_202100081
crossref_primary_10_1021_acs_analchem_9b05188
crossref_primary_10_2139_ssrn_4177569
crossref_primary_10_1007_s11094_022_02630_1
crossref_primary_10_1016_j_biomaterials_2024_122681
crossref_primary_10_3390_mi12030339
crossref_primary_10_3390_polym14102119
crossref_primary_10_1021_acs_jchemed_1c00098
crossref_primary_10_1146_annurev_anchem_091619_102649
crossref_primary_10_3390_jmmp4020049
crossref_primary_10_1080_10408347_2024_2305275
crossref_primary_10_1016_j_expneurol_2024_114942
crossref_primary_10_1016_j_addma_2019_01_001
crossref_primary_10_3390_mi12080861
crossref_primary_10_3390_mi13010049
crossref_primary_10_1093_jb_mvab048
crossref_primary_10_1016_j_jmrt_2022_05_009
crossref_primary_10_1016_j_mio_2016_08_001
crossref_primary_10_1021_acs_analchem_7b01764
crossref_primary_10_1089_3dp_2019_0166
crossref_primary_10_1089_3dp_2021_0245
crossref_primary_10_3390_molecules26092817
crossref_primary_10_1021_acs_analchem_9b01284
crossref_primary_10_1016_j_matpr_2022_09_363
crossref_primary_10_1007_s11517_024_03062_7
crossref_primary_10_1016_j_ijbiomac_2023_125502
crossref_primary_10_1093_femsec_fiab003
crossref_primary_10_3390_mi11030243
crossref_primary_10_3390_s23084039
crossref_primary_10_1021_acsabm_1c01180
crossref_primary_10_1016_j_prosdent_2020_01_039
crossref_primary_10_1016_j_tox_2022_153100
crossref_primary_10_1007_s42242_019_00053_8
crossref_primary_10_1590_0104_6632_20180354s20170433
crossref_primary_10_1016_j_apmt_2018_03_005
crossref_primary_10_1016_j_ijbiomac_2024_133031
crossref_primary_10_1016_j_aca_2018_06_021
crossref_primary_10_3390_mi10110754
crossref_primary_10_1002_slct_202402463
crossref_primary_10_1016_j_aca_2021_339252
crossref_primary_10_1007_s10544_019_0444_3
crossref_primary_10_3390_s24061797
crossref_primary_10_1039_D1RE00004G
crossref_primary_10_1108_RPJ_07_2019_0184
crossref_primary_10_1039_C9AN01275C
crossref_primary_10_1016_j_matpr_2021_12_078
crossref_primary_10_1016_j_prostr_2018_11_102
crossref_primary_10_1038_s41598_022_17841_5
crossref_primary_10_3390_coatings13071252
crossref_primary_10_3390_bios15040211
crossref_primary_10_1063_5_0009443
crossref_primary_10_1007_s13346_020_00737_0
crossref_primary_10_3390_ijms22042011
crossref_primary_10_1007_s40964_022_00266_x
crossref_primary_10_1039_C6RA24884E
crossref_primary_10_1007_s42242_021_00165_0
crossref_primary_10_1021_acs_energyfuels_2c01943
crossref_primary_10_4047_jap_2022_14_4_262
crossref_primary_10_1016_j_ohx_2024_e00527
crossref_primary_10_1021_acs_analchem_8b01198
crossref_primary_10_3390_mi9070326
crossref_primary_10_1049_mnl_2018_5169
crossref_primary_10_3390_mi9070327
crossref_primary_10_1371_journal_pone_0245206
crossref_primary_10_1007_s13206_022_00048_1
crossref_primary_10_1016_j_snb_2017_10_041
crossref_primary_10_1371_journal_pone_0182000
crossref_primary_10_3390_biomedicines9070702
crossref_primary_10_1016_j_cep_2018_10_001
crossref_primary_10_1039_C7CY00615B
crossref_primary_10_1021_acsami_9b15852
crossref_primary_10_12677_HJBM_2023_131008
crossref_primary_10_1002_advs_201700187
crossref_primary_10_1016_j_chroma_2019_460790
crossref_primary_10_1364_OME_477708
crossref_primary_10_1016_j_heliyon_2019_e02002
crossref_primary_10_1016_j_procir_2017_04_008
crossref_primary_10_3390_micro2010008
crossref_primary_10_1016_j_addma_2018_02_013
crossref_primary_10_1016_j_ccr_2022_214520
crossref_primary_10_3390_ma13010178
crossref_primary_10_1016_j_snb_2019_03_132
crossref_primary_10_1016_j_cej_2021_132266
crossref_primary_10_1002_ppsc_202400173
crossref_primary_10_1093_nsr_nwab205
crossref_primary_10_3390_mi9080374
crossref_primary_10_1007_s41779_024_01076_w
crossref_primary_10_1038_s41570_018_0058_y
crossref_primary_10_1021_acsami_0c14831
crossref_primary_10_1016_j_snb_2018_06_054
crossref_primary_10_1016_j_bprint_2024_e00360
crossref_primary_10_3390_mi11070658
crossref_primary_10_1016_j_aca_2020_05_014
crossref_primary_10_4155_bio_2016_0293
crossref_primary_10_1016_j_biomaterials_2020_119980
crossref_primary_10_3390_mi15020288
crossref_primary_10_1016_j_compscitech_2019_05_028
crossref_primary_10_1021_acs_analchem_8b05454
crossref_primary_10_1016_j_jelechem_2016_10_030
crossref_primary_10_1007_s12200_020_1009_z
crossref_primary_10_3390_mi7070108
crossref_primary_10_1016_j_chemosphere_2022_134915
crossref_primary_10_1016_j_bprint_2022_e00211
crossref_primary_10_1038_s41598_018_22756_1
crossref_primary_10_1016_j_addma_2020_101094
crossref_primary_10_1016_j_chroma_2019_460537
Cites_doi 10.1039/C4JA00291A
10.1016/j.biomaterials.2015.05.031
10.1002/adma.201305506
10.1063/1.4917508
10.1016/S0890-6955(97)00137-5
10.1039/c1lc20101h
10.1016/S0921-5093(00)01810-4
10.1039/C5LC00685F
10.1108/01445150310698652
10.1115/1.2823079
10.1016/j.biomaterials.2008.12.084
10.1021/ja203981w
10.1038/nchem.1313
10.1039/c003994b
10.1016/0010-4485(95)00035-6
10.1021/ac4041857
10.1039/C3SC51253C
10.1016/j.biomaterials.2014.05.083
10.1021/acsami.5b03969
10.1016/j.sna.2013.11.005
10.1038/nature13118
10.1007/s10404-009-0421-x
10.1016/S0261-3069(01)00079-6
10.1038/35089130
10.1038/srep13522
10.1038/srep07717
10.1088/0960-1317/25/3/035013
10.1088/0960-1317/25/8/085013
10.1364/OL.30.001867
10.1039/b902159k
10.1021/acs.analchem.5b00903
10.1039/C5RA09188H
10.1179/095066001771048727
10.1016/j.cbpa.2012.03.022
10.1038/srep21704
10.1039/C4LC00548A
10.1021/ac3031543
10.1016/j.jmatprotec.2009.05.004
10.1016/j.copbio.2011.02.006
10.1007/s10404-015-1571-7
10.3762/bjoc.9.109
10.1108/13552540010337047
10.1021/ac502785j
10.1039/C4LC01392A
10.1016/j.tibtech.2011.07.001
10.1088/0960-1317/23/2/025016
10.1088/0960-1317/17/12/005
10.1039/B308452C
10.3390/mi6040437
10.1038/srep07974
10.1088/1758-5090/7/3/035010
10.1039/C4RA12165A
10.1016/j.aca.2014.06.037
10.1021/acs.analchem.5b01353
10.1002/pssa.201532053
10.1002/bit.22613
10.1039/C4LC00171K
10.1016/j.tcb.2011.09.005
10.1016/j.memsci.2014.12.040
10.1108/13552540110395538
10.1039/C4AN01476F
10.1063/1.4905840
10.1108/AA-06-2013-055
10.1039/c3lc50844g
10.1039/C4EE01426J
10.1371/journal.pone.0137631
10.1039/C5LC01374G
10.1039/C4LC00992D
10.1073/pnas.1414764111
10.1021/ac010938q
10.1038/srep06973
10.1021/ac4009594
10.1016/j.aca.2015.04.014
10.1039/C4LC00394B
10.1116/1.586023
10.1021/ac201539h
10.1039/c2lc40761b
10.1108/13552541011034889
10.1007/978-0-387-92904-0_1
10.1063/1.4898632
10.1038/nmat863
10.1039/c2lc21204h
10.1002/anie.201402654
10.1088/0957-4484/18/34/345202
10.1039/C5LC00126A
10.1016/j.snb.2013.10.008
10.1039/C3LC50956G
10.1039/c2lc40089h
10.1038/4601080a
10.1039/C4LC00030G
10.1007/s10544-015-9928-y
10.1557/PROC-624-157
10.1063/1.4902929
10.1088/1758-5082/5/2/025004
10.3762/bjnano.4.31
10.1039/B314962E
10.1038/nrd3799
10.1002/bit.25579
10.1364/OPEX.14.000810
10.1016/S0142-9612(01)00232-0
10.1016/j.ceb.2006.12.002
10.1021/ac403397r
10.1007/s10404-014-1542-4
10.1108/13552540010337029
10.1016/j.nantod.2010.08.007
10.1115/1.1355029
10.1002/jbm.a.30601
10.1108/13552540510573365
10.1016/j.sna.2015.02.028
10.1039/c2lc21015k
10.1016/j.matdes.2009.04.030
10.1039/C4RA05072J
10.1016/j.biomaterials.2012.04.004
10.1021/ac501436d
10.1002/mas.20240
10.1016/j.biomaterials.2010.04.050
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1002/elan.201600043
DatabaseName Istex
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1521-4109
EndPage 1678
ExternalDocumentID 10_1002_elan_201600043
ELAN201600043
ark_67375_WNG_NR89PDBZ_W
Genre reviewArticle
GrantInformation_xml – fundername: Public Technology Research Program of Zhejiang Province
  funderid: 2015C31062
– fundername: Science Fund for Creative Research Groups of the National Natural Science Foundation of China
  funderid: 51521064
– fundername: National Natural Science Foundation of China
  funderid: 51375440
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
186
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AQPKS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH5
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
V8K
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WRJ
WXSBR
WYISQ
XG1
XV2
Y6R
ZY4
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
L7M
ID FETCH-LOGICAL-c3973-1177c13de491d8df2ce9f900f5a75baec73a1c36b02d72faac85f30c423b6fc23
IEDL.DBID DR2
ISSN 1040-0397
IngestDate Fri Jul 11 01:45:50 EDT 2025
Tue Jul 01 02:31:57 EDT 2025
Thu Apr 24 23:06:12 EDT 2025
Wed Jan 22 16:18:37 EST 2025
Wed Oct 30 09:56:52 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3973-1177c13de491d8df2ce9f900f5a75baec73a1c36b02d72faac85f30c423b6fc23
Notes National Natural Science Foundation of China - No. 51375440
istex:0A880543E8A0720932E5A88B6F17BDD9A7C2B9F1
Science Fund for Creative Research Groups of the National Natural Science Foundation of China - No. 51521064
Public Technology Research Program of Zhejiang Province - No. 2015C31062
ark:/67375/WNG-NR89PDBZ-W
ArticleID:ELAN201600043
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1835563376
PQPubID 23500
PageCount 21
ParticipantIDs proquest_miscellaneous_1835563376
crossref_citationtrail_10_1002_elan_201600043
crossref_primary_10_1002_elan_201600043
wiley_primary_10_1002_elan_201600043_ELAN201600043
istex_primary_ark_67375_WNG_NR89PDBZ_W
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2016
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: August 2016
PublicationDecade 2010
PublicationTitle Electroanalysis (New York, N.Y.)
PublicationTitleAlternate Electroanalysis
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References D. B. Kolesky, R. L. Truby, A. S. Gladman, T. A. Busbee, K. A. Homan, J. A. Lewis, Adv. Mater. 2014, 26, 3124-3130.
J-P. Kruth, P. Mercelis, J. V. Vaerenbergh, L. Froyen, M. Rombouts, Rapid Prototyping Journal, 2005, 11, 26-36.
C. Neils, Z. Tyree, B. Finlayson, A. Folch, Lab Chip, 2004, 4, 342-350.
H. Asano, Y. Shiraishi, Analytica Chimica Acta, 2015, 883, 55-60.
C. I. Rogers, J. V. Pagaduan, G. P. Nordin, A. T. Woolley, Anal. Chem., 2011, 83, 6418-6425.
Y. He, J. Qiu, J. Fu et al. Microfluidics and Nanofluidics, 2015, 19 (2), 447-456.
Q. L. Chen, Z. Liu, H. C. Shum, Biomicrofluidics, 2014, 8, 064112.
L. Zhao, V. K. Lee, S.-S. Yoo, G. Dai, X. Intes, Biomaterials, 2012, 33, 5325-5332.
D. Dutta, F. B. Prinz, D. Rosen, L. Weiss, Journal of Computing and Information Science in Engineering, 2001, 1, 60-71.
J. W. Choi, R. Wicker, S. H. Lee, K. H. Choi, C. S. Ha, I. Chung, Journal of Materials Processing Technology, 2009, 209, 5494-5503.
P. J. Kitson, M. H. Rosnes, V. Sans, V. Dragone, L. Cronin, Lab Chip, 2012, 12, 3267-3271.
I. Zein, D. W. Hutmacher, K. C. Tan, S. H. Teoh, Biomaterials, 2002, 23, 1169-1185.
L. H. Han, G. Mapili, S. Chen, K. Roy, Journal of Manufacturing Science and Engineering, 2008, 130, 021005.
B. S. Ferguson, S. F. Buchsbaum, T. T. Wu et al. Journal of the American Chemical Society, 2011, 133(23), 9129-9135.
D. Therriault, S. R. White, J. A. Lewis, Nature Materials, 2002, 2, 265-271.
An Liu, G.-huai Xue, Miao Sun, Hui-feng Shao, Chi-yuan Ma, Qing Gao, Zhong-ru Gou, Shi-gui Yan, Yan-ming Liu, Yong He, Scientific Reports, 2016, 6, 21704.
R. Walczak, K. Adamski, J. Micromech. Microeng., 2015, 25, 085013.
U. M. Attia, S. Marson, J. R. Alcock, Microfluidics and Nanofluidics, 2009, 7(1), 1-28.
C. I. Rogers, K. Qaderi, A. T. Woolley, G. P. Nordin, Biomicrofluidics, 2015, 9, 016501.
Y. He, X. Xiao, Y. Wu, et al. Scientific Reports, 2015, 5, 13522.
Y. He, J. Z. Fu, Z. C. Chen, J. Micromech. Microeng. 2007, 17(12), 2420.
A. Cohen, R. Chen, U. Frodis, M-T. Wu, C. Folk, Rapid Prototyping Journal, 2010, 16, 209-215.
V. Dragone, V. Sans, M. H. Rosnes, P. J. Kitson, L. Cronin, Beilstein Journal of Nanotechnnology, 2013, 9, 951-959.
G. Wu, N. A. Langrana, R. Sadanji, S. Danforth, Materials and Design, 2002, 23, 97-105.
W. Zhong, F. Li, Z. Zhang, L. Song, Z. Li, Materials Science and Engineering A, 2001, 125-130.
Shao H, Yang X, He Y, et al. Biofabrication, 2015, 7(3): 035010.
Y. Liao, J-X. Song, E. Li, Y. Luo, Y-L. Shen, D-P. Chen, Y. Cheng, Z-Z. Xu, K. Sugioka, K. Midorikawa, Lab Chip, 2012, 12, 746-749.
J. S. Mathieson, M. H. Rosnes, V. Sans, P. J. Kitson, L. Cronin, Beilstein Journal of Nanotechnology, 2013, 4, 285-291.
D. M. Longo, R. Hull, MRS Proceedings, 2000, 624, 157-160.
Y. Lu, G. Mapili, G. Suhali, S. Chen, K. Roy, Journal of Biomedical Materials Research Part A, 2006, 77, 396-405.
Q. Gao, Y. He, J. Fu, A. Liu, L. Ma, Biomaterials, 2015, 61, 203-215.
A. K. Sood, R. K. Ohdar, S. S. Mahapatra, Materials and Design, 2009, 30, 4243-4252.
V. Mironov, R. P. Visconti, V. Kasyanov, G. Forgacs, C. J. Drake, R. R. Markwald, Biomaterials, 2009, 30, 2164-2174.
R. Guo, S-Z. Xiao, X-M. Zhai, J-W. Li, A-D. Xia, W-H. Huang, Optics Express, 2006, 14, 810-816.
P. J. Kitson, R. J. Marshall, D. Long, R. S. Forgan, L. Cronin, Angew. Chem. Int. Ed., 2014, 53, 12723-12728.
K. G. Lee, K. J. Park, S. Seok, S. Shin, D. H. Kim, J. Y. Part, Y. S. Heo, S. J. Lee, T. J. Lee, RSC Adv., 2014, 4, 32876-32880.
G. Comina, A. Suska, D. Filippini, Lab Chip, 2014, 14, 424-430.
A. J. Capel, S. Edmondson, S. D. R. Christie, R. D. Goodridge, R. J. Bibb, M. Thuistans, Lab Chip, 2013, 13, 4583-4590.
N. Xiang, H. Yi, K. Chen et al. J. Micromech. Microeng. 2013, 23(2), 025016.
Y. Hwang, O. H. Paydar, R. N. Candler, Sensors and Actuators A: Physical, 2015, 226, 137-142.
C. M. B. Ho, S. H. Ng, K. H. H. Li, Y. J. Yoon, Lab Chip, 2015, 15, 3627-3637.
N. K. Tolochko, T. Laoui, Y. V. Khlopkov, S. E. Mozzharov, V. I. Titiv, M. B. Ignatiev, Rapid Prototyping Journal, 2000, 6, 155-161.
L. Donvito, L. Galluccio, A. Lombardo, G. Morabito, A. Nicolosi, M. Reno, J. Micromech. Microeng., 2015, 25, 035013.
C. Duty, D. Jean, W. J. Lackey, International Materials Reviews, 2001, 46, 271-287.
J. L. Erkal, A. Selimovic, B. C. Gross, S. Y. Lockwood, E. L. Walton, S. McNamara, R. S. Martin, D. M. Spence, Lab Chip, 2014, 14, 2023-2032.
He Y, Xue G, J. Fu Scientific Reports, 2014, 4, 6973.
K. C. Bhargava, B. Thompson, N. Malmstadt, PNAS, 2014, 111, 15013-15018.
D. Lim, Y. Kamotani, B. Cho, J. Mazumder, S. Takayama, Lab Chip, 2003, 3, 318-323.
J. C. Mcdonald, M. L. Chabinyc, S. J. Metallo, J. R. Anderson, A. D. Stroock, G. M. Whitesides, Anal. Chem., 2002, 74, 1537-1545.
C. Martino, S. Berger, R. C. R. Wootton, A. J. deMello, Lab Chip, 2014, 14, 4178-4182.
H. M. Chan, Y. Chen, Y. Shu, Y. Chen, Q. Tian, H. Wu, Microfluid Nanofluid, 2015, 19, 9-18.
K. B. Anderson, S. Y. Lockwood, R. S. Martin, D. M. Spence, Anal. Chem., 2013, 85, 5622-5626.
K. Kamei, Y. Mashimo, Y. Koyama, C. Fockenberg, M. Nakashima, M. Nakajima, J. Li, Y. Chen, Biomed Microdevices, 2015, 17, 36.
S. Sun, M. Yang, Y. Kostov, A. Rasooly, Lab Chip, 2010, 10, 2093-2100.
P. J. Kitson, M. D. Symes, V. Dragone, L. Cronin, Chem. Sci., 2013, 4, 3099-3103.
Y. Xu, X. Wang, Biotechnology and bioengineering, 2015, 112, 1683-1695.
Kawata S, Sun HB, Tanaka T, Takada K, Nature, 2001, 412, 697-698.
J. A. Kim, H. N. Kim, S. K. Im, S. Chung, J. Y. Kang, N. Choi, Biomicrofluidics, 2015, 9, 024115.
T. Femmer, A. J. C. Kuehne, J. T. Rendon, A. Walther, M. Wessling, Journal of Membrane Science, 2015, 478, 12-18.
S. A. N. Gowers, V. F. Curto, C. A. Seneci, C. Wang, S. Anastasova, P. Vadgama, G. Yang, M. G. Boutelle, Anal. Chem., 2015, 87, 7763-7770.
L. E. Bertassoni, M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A. L. Cristino, G. Barabaschi, D. Demarchi, M. R. Dokmeci, Y. Yang, A. Khademhosseini, Lab Chip, 2014, 14, 2202-2211.
M. A. Jafari, W. Han, F. Mohammadi, A. Safari, S. C. Danforth, N. Langrana, Rapid Prototyping Journal, 2000, 6, 161-175.
G. Chisholm, P. J. Kitson, N. D. Kirkaldy, L. G. Bloor, L. Cronin, Energy Environ. Sci., 2014, 7, 3026-3032.
M. D. Brennan, M. L. Rexius-Hall, D. T. Eddington, PLoS ONE, 2015, 10, e0137631.
Y. Hanada, K. Sugioka, I. Shihira-Ishikama, H. Kawano, A. Miyawaki, K. Midorikama, Lab Chip, 2011, 11, 2109-2115.
V. Mironov, V. Kasyanov, R. R. Markwald, Current Opinion in Biotechnology, 2011, 22, 667-673.
W. Lee, D. Kwon, B. Chung, G. Y. Jung, A. K. Au, A. Folch, S. Jeon, Anal. Chem., 2014, 86, 6683-6688.
C. I. Rogers, J. B. Oxborrow, R. R. Anderson, L. F. Tsai, G. P. Nordin, A. T. Woolley, Sensors and Actuators B: Chemical, 2014, 191, 438-444.
Y-L. Zhang, Q-D. Chen, H. Xia, H-B. Sun, Nano Today, 2010, 5, 435-448.
J. Serbin, B. N. Chichkov, Proc. of SPIE, 2003, 5222.
P. Neuži, S. Giselbrecht, K. Länge et al. Nature Reviews Drug Discovery, 2012, 11(8), 620-632.
Y. Zhang, Y. Yu, H. Chen, I. T. Ozbolat, Biofabrication, 2013, 5, 025004.
M. D. Symes, P. J. Kitson, J. Yan et al. Nature Chemistry, 2012, 4(5), 349-354.
C. W. Ziemian, P. M. Crawn, Rapid Prototyping Journal, 2001, 7, 138-147.
D. F. Thompson, J. Anal. At. Spectrom., 2014, 29, 2262-2266.
N. P. Macdonald, F. Zhu, C. J. Hall, J. Reboud, P. S. Crosier, E. E. Patton, D. Wlodkowic, J. M. Cooper, Lab Chip, 2016, 16, 291-297.
A. I. Shallan, P. Smejkal, M. Corban, R. M. Guijt, M. C. Breadmore, Anal. Chem., 2014, 86, 3124-3130.
L. Horváth, Y. Umehara, C. Jud, F. Blank, A. P. Fink, B. R. Rutishauser, Scientific Reports, 2015, 5, 07974.
T. Femmer, A. Jans, R. Eswein, N. Anwar, M. Moeller, M. Wessling, A. J. C. Kuehne, Appl. Mater. Interfaces, 2015, 7, 12635-12638.
C. K. Su, Y. C. Sun, S. F. Tzeng, C. S. Yang, C. Y. Wang, M. H. Yang, Mass Spectrometry Reviews, 2010, 29, 392-424.
G. J. Salentijn, H. P. Permentier, E. Verpoorte, Anal. Chem., 2014, 86, 11657-11665.
G. W. Bishop, J. E. Satterwhite, S. Bhakta, K. Kadimisetty, K. M. Gillette, E. Chen, J. F. Rusling, Anal. Chem., 2015, 87, 5437-5443.
F. P. W. Melchels, J. Feijen, D. W. Grijpma, Biomaterials, 2010, 31, 6121-6130.
S. Takenaga, B. Schneider, E. Erbay, M. Biselli, Th. Schnitzler, M. J. Schöning, T. Wagner, Phys. Status Solidi A, 2015, 212, 1347-1352.
W. Lee, D. Kwon, W. Choi, G. Y. Jung, A. K. Au, A. Folch, S. Jeon, Scientific Reports, 2015, 5, 07717.
D. Huh, Y. Torisawa, G. A. Hamilton et al. Lab on a Chip, 2012, 12(12), 2156-2164.
S. Sandron, B. Heery, V. Gupta, D. A. Collins, E. P. Nesterenko, P. N. Nesterenko, M. Talebi, S. Beirne, F. Thompson, G. G. Wallace, D. Brabazon, F. Regan, B. Paull, Analyst, 2014, 139, 6343-6347.
K. E. Kasza, A. C. Rowat, J. Liu, T. E. Angelini, C. P. Brangwynne, G. H. Koenderink, D. A. Weitz, Current Opinion in Cell Biology, 2007, 19, 101-107.
B. C. Gross, J. L. Erkal, S. Y. Lockwood, C. Chen, D. M. Spence, Anal. Chem., 2014, 86, 3240-3253.
E. K. Sackmann, A. L. Fulton, D. J. Beebe, Nature, 2014, 507, 181-189.
S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Frechet, D. Poulikakos, Nanotechnology, 2007, 18, 345202.
R. Bogue, Assembly Automation, 2013, 33, 307-311.
D. T. Pham, R. S. Gault, International Journal of Machine Tools & Manufacture, 1998, 38, 1257-1287.
P. F. O'Neill, A. B. Azouz, M. Vázquez, J. Liu, S. Marczak, Z. Slouka, H. C. Chang, D. Diamond, D. Brabazon, Biomicrofluidics, 2014, 8, 052112.
W. Lee, V. Lee, S. Polio, P. Keegan, J. H. Lee, K. Fischer, J. K. Park, S. S. Yoo, Biotechnology and Bioengineering, 2010, 105, 1178-1186.
Y. He, W. Wu, J. Fu, RSC Adv., 2015, 5, 2694-2701.
C. K. Su, S. C. Hsia, Y. C. Sun, Analytica Chimica Acta, 2014, 838, 58-63.
He Y, Wu Y, Fu J Z, et al. RSC Advances, 2015, 5(95), 78109-78127.
Wu D, Chen Q D, Niu L G, et al. Lab on a Chip, 2009, 9(16), 2391-2394.
O. H. Paydar, C. N. Paredes, Y. Hwang, J. Paz, N. B. Shah, R. N. Candler, Sensors and Actuators A: Physical, 2014, 205, 199-203.
T. Hartung, C. Rovide, Nature, 2009, 460, 1080-1081.
X. Yan, P. Gu, Computer-Aided Design, 1996, 28, 307-318.
C. D. Chin, V. Linder, S. K. Sia, Lab on a Chip, 2012, 12(12), 2118-2134.
G. Comina, A. Suska, D. Filippini, Lab C
2007; 17(12)
2012; 85(2)
2010; 10
2014; 139
2015; 5(95)
2015; 19 (2)
2010; 16
2013; 4
2000; 6
2015; 226
2010; 105
2006; 77
2011; 133(23)
2004; 4
2014; 26
2011; 11
2014; 29
2012; 12(12)
1992; 10
2001; 46
2012; 12
2013; 5
2013; 23(2
2013; 9
2009; 9(16)
2014; 205
2014; 4
1996; 28
2001
2010; 29
2013; 13
2012; 4(5)
2015; 212
2012; 16(3)
2015; 87
2003; 3
2005; 30
2014; 14
2011; 22
2011; 21
2014; 8
2010; 5
2014; 7
2009; 209
2011; 29
2001; 412
2014; 53
2007; 18
2015; 15
2007; 19
2010; 31
2015; 6
2015; 17
2015; 5
2014; 838
2015; 19
2009; 7(1)
2002; 74
2015; 883
2006; 14
2015; 10
2011; 83
2013; 85
2014; 191
2002; 2
2003
2014; 111
2015; 9
2016; 16
2015; 7
2012; 33
2014; 86
1998; 38
2016; 6
2015; 25
2009; 30
2014; 507
2001; 7
2013; 33
2015; 478
2015; 61
2002; 23
2012; 11(8)
2000; 624
2015; 112
2014; 35
2015; 7(3)
2001; 1
2009; 460
2008; 130
2005; 11
2003; 23
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_107_1
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_111_1
e_1_2_9_115_1
e_1_2_9_26_1
e_1_2_9_49_1
Kovarik M. L. (e_1_2_9_1_1) 2012; 85
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_106_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
Serbin J. (e_1_2_9_43_1) 2003
e_1_2_9_114_1
e_1_2_9_118_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
Neuži P. (e_1_2_9_5_1) 2012; 11
e_1_2_9_105_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
Y He (e_1_2_9_122_1) 2015; 5
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_113_1
e_1_2_9_117_1
e_1_2_9_28_1
e_1_2_9_47_1
D Wu (e_1_2_9_120_1) 2009; 9
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_104_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
H Shao (e_1_2_9_22_1) 2015; 7
e_1_2_9_112_1
e_1_2_9_116_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – reference: K. B. Anderson, S. Y. Lockwood, R. S. Martin, D. M. Spence, Anal. Chem., 2013, 85, 5622-5626.
– reference: W. Lee, V. Lee, S. Polio, P. Keegan, J. H. Lee, K. Fischer, J. K. Park, S. S. Yoo, Biotechnology and Bioengineering, 2010, 105, 1178-1186.
– reference: N. Xiang, H. Yi, K. Chen et al. J. Micromech. Microeng. 2013, 23(2), 025016.
– reference: H. M. Chan, Y. Chen, Y. Shu, Y. Chen, Q. Tian, H. Wu, Microfluid Nanofluid, 2015, 19, 9-18.
– reference: K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. Wang, Y. Cheng, K. Midorikawa, Lab Chip, 2014, 14, 3447-3458.
– reference: Y. He, J. Z. Fu, Z. C. Chen, J. Micromech. Microeng. 2007, 17(12), 2420.
– reference: S. Sun, M. Yang, Y. Kostov, A. Rasooly, Lab Chip, 2010, 10, 2093-2100.
– reference: Q. Gao, Y. He, J. Fu, A. Liu, L. Ma, Biomaterials, 2015, 61, 203-215.
– reference: Y. Hwang, O. H. Paydar, R. N. Candler, Sensors and Actuators A: Physical, 2015, 226, 137-142.
– reference: S. Takenaga, B. Schneider, E. Erbay, M. Biselli, Th. Schnitzler, M. J. Schöning, T. Wagner, Phys. Status Solidi A, 2015, 212, 1347-1352.
– reference: S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Frechet, D. Poulikakos, Nanotechnology, 2007, 18, 345202.
– reference: L. H. Han, G. Mapili, S. Chen, K. Roy, Journal of Manufacturing Science and Engineering, 2008, 130, 021005.
– reference: C. Duty, D. Jean, W. J. Lackey, International Materials Reviews, 2001, 46, 271-287.
– reference: G. J. Salentijn, H. P. Permentier, E. Verpoorte, Anal. Chem., 2014, 86, 11657-11665.
– reference: P. J. Kitson, M. H. Rosnes, V. Sans, V. Dragone, L. Cronin, Lab Chip, 2012, 12, 3267-3271.
– reference: S. Sandron, B. Heery, V. Gupta, D. A. Collins, E. P. Nesterenko, P. N. Nesterenko, M. Talebi, S. Beirne, F. Thompson, G. G. Wallace, D. Brabazon, F. Regan, B. Paull, Analyst, 2014, 139, 6343-6347.
– reference: J. L. Erkal, A. Selimovic, B. C. Gross, S. Y. Lockwood, E. L. Walton, S. McNamara, R. S. Martin, D. M. Spence, Lab Chip, 2014, 14, 2023-2032.
– reference: X. Yan, P. Gu, Computer-Aided Design, 1996, 28, 307-318.
– reference: L. Donvito, L. Galluccio, A. Lombardo, G. Morabito, A. Nicolosi, M. Reno, J. Micromech. Microeng., 2015, 25, 035013.
– reference: C. M. B. Ho, S. H. Ng, K. H. H. Li, Y. J. Yoon, Lab Chip, 2015, 15, 3627-3637.
– reference: M. D. Brennan, M. L. Rexius-Hall, D. T. Eddington, PLoS ONE, 2015, 10, e0137631.
– reference: C. I. Rogers, J. B. Oxborrow, R. R. Anderson, L. F. Tsai, G. P. Nordin, A. T. Woolley, Sensors and Actuators B: Chemical, 2014, 191, 438-444.
– reference: K. E. Kasza, A. C. Rowat, J. Liu, T. E. Angelini, C. P. Brangwynne, G. H. Koenderink, D. A. Weitz, Current Opinion in Cell Biology, 2007, 19, 101-107.
– reference: L. E. Bertassoni, M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A. L. Cristino, G. Barabaschi, D. Demarchi, M. R. Dokmeci, Y. Yang, A. Khademhosseini, Lab Chip, 2014, 14, 2202-2211.
– reference: T. M. Bloomstein, D. J. Ehrlich, Journal of Vacuum Science & Technology B, 1992, 10, 2671-2674.
– reference: V. K. Lee, D. Y. Kim, H. Ngo, Y. Lee, L. Seo, S.-S. Yoo, P. A. Vincent, G. Dai, Biomaterials, 2014, 35, 8092-8102.
– reference: D. Lim, Y. Kamotani, B. Cho, J. Mazumder, S. Takayama, Lab Chip, 2003, 3, 318-323.
– reference: C. K. Su, Y. C. Sun, S. F. Tzeng, C. S. Yang, C. Y. Wang, M. H. Yang, Mass Spectrometry Reviews, 2010, 29, 392-424.
– reference: D. Huh, Y. Torisawa, G. A. Hamilton et al. Lab on a Chip, 2012, 12(12), 2156-2164.
– reference: D. Dutta, F. B. Prinz, D. Rosen, L. Weiss, Journal of Computing and Information Science in Engineering, 2001, 1, 60-71.
– reference: N. P. Macdonald, F. Zhu, C. J. Hall, J. Reboud, P. S. Crosier, E. E. Patton, D. Wlodkowic, J. M. Cooper, Lab Chip, 2016, 16, 291-297.
– reference: C. Neils, Z. Tyree, B. Finlayson, A. Folch, Lab Chip, 2004, 4, 342-350.
– reference: A. J. Capel, S. Edmondson, S. D. R. Christie, R. D. Goodridge, R. J. Bibb, M. Thuistans, Lab Chip, 2013, 13, 4583-4590.
– reference: C. I. Rogers, J. V. Pagaduan, G. P. Nordin, A. T. Woolley, Anal. Chem., 2011, 83, 6418-6425.
– reference: D. T. Pham, R. S. Gault, International Journal of Machine Tools & Manufacture, 1998, 38, 1257-1287.
– reference: He Y, Wu Y, Fu J Z, et al. RSC Advances, 2015, 5(95), 78109-78127.
– reference: J. C. Mcdonald, M. L. Chabinyc, S. J. Metallo, J. R. Anderson, A. D. Stroock, G. M. Whitesides, Anal. Chem., 2002, 74, 1537-1545.
– reference: A. K. Au, N. Bhattacharjee, L. F. Horowitz, T. C. Chang, A. Folch, Lab Chip, 2015, 15, 1934-1941.
– reference: P. J. Kitson, R. J. Marshall, D. Long, R. S. Forgan, L. Cronin, Angew. Chem. Int. Ed., 2014, 53, 12723-12728.
– reference: N. E. Fedorovich, J. Alblas, W. E. Hennink, F. C. Oner, W. J. A. Dhert, Trends in Biotechnology, 2011, 29, 601-606.
– reference: W. Lee, D. Kwon, B. Chung, G. Y. Jung, A. K. Au, A. Folch, S. Jeon, Anal. Chem., 2014, 86, 6683-6688.
– reference: C. I. Rogers, K. Qaderi, A. T. Woolley, G. P. Nordin, Biomicrofluidics, 2015, 9, 016501.
– reference: O. H. Paydar, C. N. Paredes, Y. Hwang, J. Paz, N. B. Shah, R. N. Candler, Sensors and Actuators A: Physical, 2014, 205, 199-203.
– reference: C. D. Chin, V. Linder, S. K. Sia, Lab on a Chip, 2012, 12(12), 2118-2134.
– reference: Y. Zhang, Y. Yu, H. Chen, I. T. Ozbolat, Biofabrication, 2013, 5, 025004.
– reference: J. S. Mathieson, M. H. Rosnes, V. Sans, P. J. Kitson, L. Cronin, Beilstein Journal of Nanotechnology, 2013, 4, 285-291.
– reference: A. I. Shallan, P. Smejkal, M. Corban, R. M. Guijt, M. C. Breadmore, Anal. Chem., 2014, 86, 3124-3130.
– reference: Y. He, W. Wu, J. Fu, RSC Adv., 2015, 5, 2694-2701.
– reference: Y. Liao, J-X. Song, E. Li, Y. Luo, Y-L. Shen, D-P. Chen, Y. Cheng, Z-Z. Xu, K. Sugioka, K. Midorikawa, Lab Chip, 2012, 12, 746-749.
– reference: R. Guo, S-Z. Xiao, X-M. Zhai, J-W. Li, A-D. Xia, W-H. Huang, Optics Express, 2006, 14, 810-816.
– reference: G. Comina, A. Suska, D. Filippini, Lab Chip, 2014, 14, 2978-2982.
– reference: M. A. Jafari, W. Han, F. Mohammadi, A. Safari, S. C. Danforth, N. Langrana, Rapid Prototyping Journal, 2000, 6, 161-175.
– reference: Wu D, Chen Q D, Niu L G, et al. Lab on a Chip, 2009, 9(16), 2391-2394.
– reference: B. C. Gross, J. L. Erkal, S. Y. Lockwood, C. Chen, D. M. Spence, Anal. Chem., 2014, 86, 3240-3253.
– reference: P. Neuži, S. Giselbrecht, K. Länge et al. Nature Reviews Drug Discovery, 2012, 11(8), 620-632.
– reference: D. Huh, G. A. Hamilton, D. E. Ingber, Trends in Cell Biology, 2011, 21, 745-754.
– reference: C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, P. B. Corkum, Optics Letters, 2005, 30, 1867-1869.
– reference: V. Mironov, V. Kasyanov, R. R. Markwald, Current Opinion in Biotechnology, 2011, 22, 667-673.
– reference: J-P. Kruth, P. Mercelis, J. V. Vaerenbergh, L. Froyen, M. Rombouts, Rapid Prototyping Journal, 2005, 11, 26-36.
– reference: J. P. Kruth, X. Wang, T. Laoui, L. Froyen, Assembly Automation, 2003, 23, 357-371.
– reference: Y. Xu, X. Wang, Biotechnology and bioengineering, 2015, 112, 1683-1695.
– reference: An Liu, G.-huai Xue, Miao Sun, Hui-feng Shao, Chi-yuan Ma, Qing Gao, Zhong-ru Gou, Shi-gui Yan, Yan-ming Liu, Yong He, Scientific Reports, 2016, 6, 21704.
– reference: E. K. Sackmann, A. L. Fulton, D. J. Beebe, Nature, 2014, 507, 181-189.
– reference: R. Bogue, Assembly Automation, 2013, 33, 307-311.
– reference: K. Kamei, Y. Mashimo, Y. Koyama, C. Fockenberg, M. Nakashima, M. Nakajima, J. Li, Y. Chen, Biomed Microdevices, 2015, 17, 36.
– reference: W. Zhong, F. Li, Z. Zhang, L. Song, Z. Li, Materials Science and Engineering A, 2001, 125-130.
– reference: L. Zhao, V. K. Lee, S.-S. Yoo, G. Dai, X. Intes, Biomaterials, 2012, 33, 5325-5332.
– reference: T. Femmer, A. J. C. Kuehne, J. T. Rendon, A. Walther, M. Wessling, Journal of Membrane Science, 2015, 478, 12-18.
– reference: N. K. Tolochko, T. Laoui, Y. V. Khlopkov, S. E. Mozzharov, V. I. Titiv, M. B. Ignatiev, Rapid Prototyping Journal, 2000, 6, 155-161.
– reference: T. Hartung, C. Rovide, Nature, 2009, 460, 1080-1081.
– reference: U. M. Attia, S. Marson, J. R. Alcock, Microfluidics and Nanofluidics, 2009, 7(1), 1-28.
– reference: Kawata S, Sun HB, Tanaka T, Takada K, Nature, 2001, 412, 697-698.
– reference: L. Horváth, Y. Umehara, C. Jud, F. Blank, A. P. Fink, B. R. Rutishauser, Scientific Reports, 2015, 5, 07974.
– reference: F. P. W. Melchels, J. Feijen, D. W. Grijpma, Biomaterials, 2010, 31, 6121-6130.
– reference: S. A. N. Gowers, V. F. Curto, C. A. Seneci, C. Wang, S. Anastasova, P. Vadgama, G. Yang, M. G. Boutelle, Anal. Chem., 2015, 87, 7763-7770.
– reference: G. Comina, A. Suska, D. Filippini, Lab Chip, 2014, 14, 424-430.
– reference: C. Martino, S. Berger, R. C. R. Wootton, A. J. deMello, Lab Chip, 2014, 14, 4178-4182.
– reference: G. Comina, A. Suska, D. Filippini, Micromachines, 2015, 6, 437-451.
– reference: H. Asano, Y. Shiraishi, Analytica Chimica Acta, 2015, 883, 55-60.
– reference: V. Dragone, V. Sans, M. H. Rosnes, P. J. Kitson, L. Cronin, Beilstein Journal of Nanotechnnology, 2013, 9, 951-959.
– reference: Q. L. Chen, Z. Liu, H. C. Shum, Biomicrofluidics, 2014, 8, 064112.
– reference: K. C. Bhargava, B. Thompson, N. Malmstadt, PNAS, 2014, 111, 15013-15018.
– reference: Y. He, J. Qiu, J. Fu et al. Microfluidics and Nanofluidics, 2015, 19 (2), 447-456.
– reference: I. Zein, D. W. Hutmacher, K. C. Tan, S. H. Teoh, Biomaterials, 2002, 23, 1169-1185.
– reference: G. W. Bishop, J. E. Satterwhite, S. Bhakta, K. Kadimisetty, K. M. Gillette, E. Chen, J. F. Rusling, Anal. Chem., 2015, 87, 5437-5443.
– reference: T. Femmer, A. Jans, R. Eswein, N. Anwar, M. Moeller, M. Wessling, A. J. C. Kuehne, Appl. Mater. Interfaces, 2015, 7, 12635-12638.
– reference: V. Lecault, A. K. White, A. Singhal et al. Current Opinion in Chemical Biology, 2012, 16(3), 381-390.
– reference: A. Cohen, R. Chen, U. Frodis, M-T. Wu, C. Folk, Rapid Prototyping Journal, 2010, 16, 209-215.
– reference: W. Lee, D. Kwon, W. Choi, G. Y. Jung, A. K. Au, A. Folch, S. Jeon, Scientific Reports, 2015, 5, 07717.
– reference: M. K. Gelber, R. Bhargava, Lab Chip, 2015, 15, 1736-1741.
– reference: Shao H, Yang X, He Y, et al. Biofabrication, 2015, 7(3): 035010.
– reference: C. W. Ziemian, P. M. Crawn, Rapid Prototyping Journal, 2001, 7, 138-147.
– reference: P. F. O'Neill, A. B. Azouz, M. Vázquez, J. Liu, S. Marczak, Z. Slouka, H. C. Chang, D. Diamond, D. Brabazon, Biomicrofluidics, 2014, 8, 052112.
– reference: R. Walczak, K. Adamski, J. Micromech. Microeng., 2015, 25, 085013.
– reference: J. W. Choi, R. Wicker, S. H. Lee, K. H. Choi, C. S. Ha, I. Chung, Journal of Materials Processing Technology, 2009, 209, 5494-5503.
– reference: J. Serbin, B. N. Chichkov, Proc. of SPIE, 2003, 5222.
– reference: G. Chisholm, P. J. Kitson, N. D. Kirkaldy, L. G. Bloor, L. Cronin, Energy Environ. Sci., 2014, 7, 3026-3032.
– reference: D. Therriault, S. R. White, J. A. Lewis, Nature Materials, 2002, 2, 265-271.
– reference: P. J. Kitson, M. D. Symes, V. Dragone, L. Cronin, Chem. Sci., 2013, 4, 3099-3103.
– reference: Y. He, X. Xiao, Y. Wu, et al. Scientific Reports, 2015, 5, 13522.
– reference: V. Mironov, R. P. Visconti, V. Kasyanov, G. Forgacs, C. J. Drake, R. R. Markwald, Biomaterials, 2009, 30, 2164-2174.
– reference: Y-L. Zhang, Q-D. Chen, H. Xia, H-B. Sun, Nano Today, 2010, 5, 435-448.
– reference: K. G. Lee, K. J. Park, S. Seok, S. Shin, D. H. Kim, J. Y. Part, Y. S. Heo, S. J. Lee, T. J. Lee, RSC Adv., 2014, 4, 32876-32880.
– reference: M. L. Kovarik, D. M. Ornoff, A. T. Melvin et al. Analytical Chemistry, 2012, 85(2), 451-472.
– reference: G. Wu, N. A. Langrana, R. Sadanji, S. Danforth, Materials and Design, 2002, 23, 97-105.
– reference: J. A. Kim, H. N. Kim, S. K. Im, S. Chung, J. Y. Kang, N. Choi, Biomicrofluidics, 2015, 9, 024115.
– reference: Y. Hanada, K. Sugioka, I. Shihira-Ishikama, H. Kawano, A. Miyawaki, K. Midorikama, Lab Chip, 2011, 11, 2109-2115.
– reference: D. F. Thompson, J. Anal. At. Spectrom., 2014, 29, 2262-2266.
– reference: M. D. Symes, P. J. Kitson, J. Yan et al. Nature Chemistry, 2012, 4(5), 349-354.
– reference: D. B. Kolesky, R. L. Truby, A. S. Gladman, T. A. Busbee, K. A. Homan, J. A. Lewis, Adv. Mater. 2014, 26, 3124-3130.
– reference: Y. Lu, G. Mapili, G. Suhali, S. Chen, K. Roy, Journal of Biomedical Materials Research Part A, 2006, 77, 396-405.
– reference: C. K. Su, S. C. Hsia, Y. C. Sun, Analytica Chimica Acta, 2014, 838, 58-63.
– reference: D. M. Longo, R. Hull, MRS Proceedings, 2000, 624, 157-160.
– reference: A. K. Sood, R. K. Ohdar, S. S. Mahapatra, Materials and Design, 2009, 30, 4243-4252.
– reference: B. S. Ferguson, S. F. Buchsbaum, T. T. Wu et al. Journal of the American Chemical Society, 2011, 133(23), 9129-9135.
– reference: He Y, Xue G, J. Fu Scientific Reports, 2014, 4, 6973.
– volume: 31
  start-page: 6121
  year: 2010
  end-page: 6130
  publication-title: Biomaterials
– volume: 74
  start-page: 1537
  year: 2002
  end-page: 1545
  publication-title: Anal. Chem.
– volume: 18
  start-page: 345202
  year: 2007
  publication-title: Nanotechnology
– volume: 33
  start-page: 5325
  year: 2012
  end-page: 5332
  publication-title: Biomaterials
– volume: 5
  start-page: 2694
  year: 2015
  end-page: 2701
  publication-title: RSC Adv.
– volume: 19 (2)
  start-page: 447
  year: 2015
  end-page: 456
  publication-title: Microfluidics and Nanofluidics
– volume: 15
  start-page: 1934
  year: 2015
  end-page: 1941
  publication-title: Lab Chip
– volume: 5
  start-page: 07974
  year: 2015
  publication-title: Scientific Reports
– volume: 11
  start-page: 2109
  year: 2011
  end-page: 2115
  publication-title: Lab Chip
– volume: 4
  start-page: 32876
  year: 2014
  end-page: 32880
  publication-title: RSC Adv.
– volume: 14
  start-page: 2978
  year: 2014
  end-page: 2982
  publication-title: Lab Chip
– volume: 4
  start-page: 6973
  year: 2014
  publication-title: Scientific Reports
– volume: 23
  start-page: 357
  year: 2003
  end-page: 371
  publication-title: Assembly Automation
– volume: 7
  start-page: 12635
  year: 2015
  end-page: 12638
  publication-title: Appl. Mater. Interfaces
– volume: 9
  start-page: 024115
  year: 2015
  publication-title: Biomicrofluidics
– volume: 14
  start-page: 424
  year: 2014
  end-page: 430
  publication-title: Lab Chip
– volume: 111
  start-page: 15013
  year: 2014
  end-page: 15018
  publication-title: PNAS
– volume: 86
  start-page: 3240
  year: 2014
  end-page: 3253
  publication-title: Anal. Chem.
– volume: 86
  start-page: 3124
  year: 2014
  end-page: 3130
  publication-title: Anal. Chem.
– volume: 17(12)
  start-page: 2420
  year: 2007
  publication-title: J. Micromech. Microeng.
– volume: 85
  start-page: 5622
  year: 2013
  end-page: 5626
  publication-title: Anal. Chem.
– start-page: 5222
  year: 2003
  publication-title: Proc. of SPIE
– volume: 30
  start-page: 1867
  year: 2005
  end-page: 1869
  publication-title: Optics Letters
– volume: 35
  start-page: 8092
  year: 2014
  end-page: 8102
  publication-title: Biomaterial
– volume: 12
  start-page: 746
  year: 2012
  end-page: 749
  publication-title: Lab Chip
– volume: 3
  start-page: 318
  year: 2003
  end-page: 323
  publication-title: Lab Chip
– volume: 11
  start-page: 26
  year: 2005
  end-page: 36
  publication-title: Rapid Prototyping Journal
– volume: 13
  start-page: 4583
  year: 2013
  end-page: 4590
  publication-title: Lab Chip
– volume: 6
  start-page: 155
  year: 2000
  end-page: 161
  publication-title: Rapid Prototyping Journal
– volume: 28
  start-page: 307
  year: 1996
  end-page: 318
  publication-title: Computer-Aided Design
– volume: 16
  start-page: 291
  year: 2016
  end-page: 297
  publication-title: Lab Chip
– volume: 77
  start-page: 396
  year: 2006
  end-page: 405
  publication-title: Journal of Biomedical Materials Research Part A
– volume: 9(16)
  start-page: 2391
  year: 2009
  end-page: 2394
  publication-title: Lab on a Chip
– volume: 624
  start-page: 157
  year: 2000
  end-page: 160
  publication-title: MRS Proceedings
– volume: 61
  start-page: 203
  year: 2015
  end-page: 215
  publication-title: Biomaterials
– volume: 478
  start-page: 12
  year: 2015
  end-page: 18
  publication-title: Journal of Membrane Science
– volume: 5
  start-page: 435
  year: 2010
  end-page: 448
  publication-title: Nano Today
– volume: 7(1)
  start-page: 1
  year: 2009
  end-page: 28
  publication-title: Microfluidics and Nanofluidics
– volume: 105
  start-page: 1178
  year: 2010
  end-page: 1186
  publication-title: Biotechnology and Bioengineering
– volume: 29
  start-page: 392
  year: 2010
  end-page: 424
  publication-title: Mass Spectrometry Reviews
– volume: 29
  start-page: 601
  year: 2011
  end-page: 606
  publication-title: Trends in Biotechnology
– volume: 507
  start-page: 181
  year: 2014
  end-page: 189
  publication-title: Nature
– volume: 87
  start-page: 7763
  year: 2015
  end-page: 7770
  publication-title: Anal. Chem.
– volume: 460
  start-page: 1080
  year: 2009
  end-page: 1081
  publication-title: Nature
– volume: 14
  start-page: 810
  year: 2006
  end-page: 816
  publication-title: Optics Express
– volume: 6
  start-page: 21704
  year: 2016
  publication-title: Scientific Reports
– volume: 4
  start-page: 285
  year: 2013
  end-page: 291
  publication-title: Beilstein Journal of Nanotechnology
– volume: 14
  start-page: 2023
  year: 2014
  end-page: 2032
  publication-title: Lab Chip
– start-page: 125
  year: 2001
  end-page: 130
  publication-title: Materials Science and Engineering A
– volume: 838
  start-page: 58
  year: 2014
  end-page: 63
  publication-title: Analytica Chimica Acta
– volume: 139
  start-page: 6343
  year: 2014
  end-page: 6347
  publication-title: Analyst
– volume: 29
  start-page: 2262
  year: 2014
  end-page: 2266
  publication-title: J. Anal. At. Spectrom.
– volume: 883
  start-page: 55
  year: 2015
  end-page: 60
  publication-title: Analytica Chimica Acta
– volume: 30
  start-page: 4243
  year: 2009
  end-page: 4252
  publication-title: Materials and Design
– volume: 6
  start-page: 161
  year: 2000
  end-page: 175
  publication-title: Rapid Prototyping Journal
– volume: 5
  start-page: 07717
  year: 2015
  publication-title: Scientific Reports
– volume: 30
  start-page: 2164
  year: 2009
  end-page: 2174
  publication-title: Biomaterials
– volume: 7
  start-page: 138
  year: 2001
  end-page: 147
  publication-title: Rapid Prototyping Journal
– volume: 19
  start-page: 101
  year: 2007
  end-page: 107
  publication-title: Current Opinion in Cell Biology
– volume: 25
  start-page: 035013
  year: 2015
  publication-title: J. Micromech. Microeng.
– volume: 21
  start-page: 745
  year: 2011
  end-page: 754
  publication-title: Trends in Cell Biology
– volume: 212
  start-page: 1347
  year: 2015
  end-page: 1352
  publication-title: Phys. Status Solidi A
– volume: 53
  start-page: 12723
  year: 2014
  end-page: 12728
  publication-title: Angew. Chem. Int. Ed.
– volume: 33
  start-page: 307
  year: 2013
  end-page: 311
  publication-title: Assembly Automation
– volume: 85(2)
  start-page: 451
  year: 2012
  end-page: 472
  publication-title: Analytical Chemistry
– volume: 10
  start-page: 0137631
  year: 2015
  publication-title: PLoS ONE
– volume: 19
  start-page: 9
  year: 2015
  end-page: 18
  publication-title: Microfluid Nanofluid
– volume: 17
  start-page: 36
  year: 2015
  publication-title: Biomed Microdevices
– volume: 10
  start-page: 2093
  year: 2010
  end-page: 2100
  publication-title: Lab Chip
– volume: 16(3)
  start-page: 381
  year: 2012
  end-page: 390
  publication-title: Current Opinion in Chemical Biology
– volume: 4
  start-page: 3099
  year: 2013
  end-page: 3103
  publication-title: L. Cronin, Chem. Sci.
– volume: 23(2
  start-page: 025016
  year: 2013
  publication-title: J. Micromech. Microeng.
– volume: 15
  start-page: 1736
  year: 2015
  end-page: 1741
  publication-title: Lab Chip
– volume: 26
  start-page: 3124
  year: 2014
  end-page: 3130
  publication-title: Adv. Mater.
– volume: 86
  start-page: 6683
  year: 2014
  end-page: 6688
  publication-title: Anal. Chem.
– volume: 23
  start-page: 97
  year: 2002
  end-page: 105
  publication-title: Materials and Design
– volume: 9
  start-page: 951
  year: 2013
  end-page: 959
  publication-title: Beilstein Journal of Nanotechnnology
– volume: 83
  start-page: 6418
  year: 2011
  end-page: 6425
  publication-title: Anal. Chem.
– volume: 14
  start-page: 2202
  year: 2014
  end-page: 2211
  publication-title: Lab Chip
– volume: 38
  start-page: 1257
  year: 1998
  end-page: 1287
  publication-title: International Journal of Machine Tools & Manufacture
– volume: 4
  start-page: 342
  year: 2004
  end-page: 350
  publication-title: Lab Chip
– volume: 12
  start-page: 3267
  year: 2012
  end-page: 3271
  publication-title: Lab Chip
– volume: 23
  start-page: 1169
  year: 2002
  end-page: 1185
  publication-title: Biomaterials
– volume: 226
  start-page: 137
  year: 2015
  end-page: 142
  publication-title: Sensors and Actuators A: Physical
– volume: 5(95)
  start-page: 78109
  year: 2015
  end-page: 78127
  publication-title: RSC Advances
– volume: 14
  start-page: 4178
  year: 2014
  end-page: 4182
  publication-title: Lab Chip
– volume: 1
  start-page: 60
  year: 2001
  end-page: 71
  publication-title: Journal of Computing and Information Science in Engineering
– volume: 191
  start-page: 438
  year: 2014
  end-page: 444
  publication-title: Sensors and Actuators B: Chemical
– volume: 205
  start-page: 199
  year: 2014
  end-page: 203
  publication-title: Sensors and Actuators A: Physical
– volume: 46
  start-page: 271
  year: 2001
  end-page: 287
  publication-title: International Materials Reviews
– volume: 12(12)
  start-page: 2118
  year: 2012
  end-page: 2134
  publication-title: Lab on a Chip
– volume: 25
  start-page: 085013
  year: 2015
  publication-title: J. Micromech. Microeng.
– volume: 14
  start-page: 3447
  year: 2014
  end-page: 3458
  publication-title: Lab Chip
– volume: 133(23)
  start-page: 9129
  year: 2011
  end-page: 9135
  publication-title: Journal of the American Chemical Society
– volume: 5
  start-page: 13522
  year: 2015
  publication-title: Scientific Reports
– volume: 16
  start-page: 209
  year: 2010
  end-page: 215
  publication-title: Rapid Prototyping Journal
– volume: 112
  start-page: 1683
  year: 2015
  end-page: 1695
  publication-title: Biotechnology and bioengineering
– volume: 209
  start-page: 5494
  year: 2009
  end-page: 5503
  publication-title: Journal of Materials Processing Technology
– volume: 8
  start-page: 064112
  year: 2014
  publication-title: Biomicrofluidics
– volume: 412
  start-page: 697
  year: 2001
  end-page: 698
  publication-title: Nature
– volume: 86
  start-page: 11657
  year: 2014
  end-page: 11665
  publication-title: Anal. Chem.
– volume: 7
  start-page: 3026
  year: 2014
  end-page: 3032
  publication-title: Energy Environ. Sci.
– volume: 12(12)
  start-page: 2156
  year: 2012
  end-page: 2164
  publication-title: Lab on a Chip
– volume: 6
  start-page: 437
  year: 2015
  end-page: 451
  publication-title: Micromachines
– volume: 9
  start-page: 016501
  year: 2015
  publication-title: Biomicrofluidics
– volume: 11(8)
  start-page: 620
  year: 2012
  end-page: 632
  publication-title: Nature Reviews Drug Discovery
– volume: 8
  start-page: 052112
  year: 2014
  publication-title: Biomicrofluidics
– volume: 10
  start-page: 2671
  year: 1992
  end-page: 2674
  publication-title: Journal of Vacuum Science & Technology B
– volume: 15
  start-page: 3627
  year: 2015
  end-page: 3637
  publication-title: Lab Chip
– volume: 87
  start-page: 5437
  year: 2015
  end-page: 5443
  publication-title: Anal. Chem.
– volume: 5
  start-page: 025004
  year: 2013
  publication-title: Biofabrication
– volume: 7(3)
  start-page: 035010
  year: 2015
  publication-title: Biofabrication
– volume: 22
  start-page: 667
  year: 2011
  end-page: 673
  publication-title: Current Opinion in Biotechnology
– volume: 2
  start-page: 265
  year: 2002
  end-page: 271
  publication-title: Nature Materials
– volume: 4(5)
  start-page: 349
  year: 2012
  end-page: 354
  publication-title: Nature Chemistry
– volume: 130
  start-page: 021005
  year: 2008
  publication-title: Journal of Manufacturing Science and Engineering
– ident: e_1_2_9_56_1
  doi: 10.1039/C4JA00291A
– ident: e_1_2_9_111_1
  doi: 10.1016/j.biomaterials.2015.05.031
– ident: e_1_2_9_112_1
  doi: 10.1002/adma.201305506
– ident: e_1_2_9_113_1
  doi: 10.1063/1.4917508
– ident: e_1_2_9_15_1
  doi: 10.1016/S0890-6955(97)00137-5
– ident: e_1_2_9_95_1
  doi: 10.1039/c1lc20101h
– ident: e_1_2_9_18_1
  doi: 10.1016/S0921-5093(00)01810-4
– ident: e_1_2_9_99_1
  doi: 10.1039/C5LC00685F
– ident: e_1_2_9_37_1
  doi: 10.1108/01445150310698652
– ident: e_1_2_9_31_1
  doi: 10.1115/1.2823079
– ident: e_1_2_9_105_1
  doi: 10.1016/j.biomaterials.2008.12.084
– ident: e_1_2_9_3_1
  doi: 10.1021/ja203981w
– ident: e_1_2_9_2_1
  doi: 10.1038/nchem.1313
– ident: e_1_2_9_90_1
  doi: 10.1039/c003994b
– ident: e_1_2_9_34_1
  doi: 10.1016/0010-4485(95)00035-6
– ident: e_1_2_9_62_1
  doi: 10.1021/ac4041857
– ident: e_1_2_9_52_1
  doi: 10.1039/C3SC51253C
– ident: e_1_2_9_116_1
  doi: 10.1016/j.biomaterials.2014.05.083
– ident: e_1_2_9_79_1
  doi: 10.1021/acsami.5b03969
– ident: e_1_2_9_84_1
  doi: 10.1016/j.sna.2013.11.005
– ident: e_1_2_9_100_1
  doi: 10.1038/nature13118
– ident: e_1_2_9_10_1
  doi: 10.1007/s10404-009-0421-x
– ident: e_1_2_9_19_1
  doi: 10.1016/S0261-3069(01)00079-6
– ident: e_1_2_9_41_1
  doi: 10.1038/35089130
– ident: e_1_2_9_11_1
  doi: 10.1038/srep13522
– ident: e_1_2_9_69_1
  doi: 10.1038/srep07717
– ident: e_1_2_9_58_1
  doi: 10.1088/0960-1317/25/3/035013
– ident: e_1_2_9_83_1
  doi: 10.1088/0960-1317/25/8/085013
– ident: e_1_2_9_93_1
  doi: 10.1364/OL.30.001867
– volume: 9
  start-page: 2391
  year: 2009
  ident: e_1_2_9_120_1
  publication-title: Lab on a Chip
  doi: 10.1039/b902159k
– ident: e_1_2_9_57_1
  doi: 10.1021/acs.analchem.5b00903
– volume: 5
  start-page: 78109
  year: 2015
  ident: e_1_2_9_122_1
  publication-title: RSC Advances
  doi: 10.1039/C5RA09188H
– ident: e_1_2_9_44_1
  doi: 10.1179/095066001771048727
– ident: e_1_2_9_4_1
  doi: 10.1016/j.cbpa.2012.03.022
– ident: e_1_2_9_13_1
  doi: 10.1038/srep21704
– ident: e_1_2_9_96_1
  doi: 10.1039/C4LC00548A
– volume: 85
  start-page: 451
  year: 2012
  ident: e_1_2_9_1_1
  publication-title: Analytical Chemistry
  doi: 10.1021/ac3031543
– ident: e_1_2_9_30_1
  doi: 10.1016/j.jmatprotec.2009.05.004
– ident: e_1_2_9_103_1
  doi: 10.1016/j.copbio.2011.02.006
– ident: e_1_2_9_12_1
  doi: 10.1007/s10404-015-1571-7
– ident: e_1_2_9_51_1
  doi: 10.3762/bjoc.9.109
– ident: e_1_2_9_20_1
  doi: 10.1108/13552540010337047
– ident: e_1_2_9_55_1
  doi: 10.1021/ac502785j
– ident: e_1_2_9_48_1
  doi: 10.1039/C4LC01392A
– ident: e_1_2_9_106_1
  doi: 10.1016/j.tibtech.2011.07.001
– ident: e_1_2_9_8_1
  doi: 10.1088/0960-1317/23/2/025016
– ident: e_1_2_9_9_1
  doi: 10.1088/0960-1317/17/12/005
– ident: e_1_2_9_92_1
  doi: 10.1039/B308452C
– ident: e_1_2_9_60_1
  doi: 10.3390/mi6040437
– ident: e_1_2_9_98_1
  doi: 10.1038/srep07974
– volume: 7
  start-page: 035010
  year: 2015
  ident: e_1_2_9_22_1
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/7/3/035010
– ident: e_1_2_9_65_1
  doi: 10.1039/C4RA12165A
– ident: e_1_2_9_75_1
  doi: 10.1016/j.aca.2014.06.037
– ident: e_1_2_9_88_1
  doi: 10.1021/acs.analchem.5b01353
– ident: e_1_2_9_107_1
  doi: 10.1002/pssa.201532053
– ident: e_1_2_9_118_1
  doi: 10.1002/bit.22613
– ident: e_1_2_9_85_1
  doi: 10.1039/C4LC00171K
– ident: e_1_2_9_102_1
  doi: 10.1016/j.tcb.2011.09.005
– ident: e_1_2_9_78_1
  doi: 10.1016/j.memsci.2014.12.040
– ident: e_1_2_9_16_1
  doi: 10.1108/13552540110395538
– ident: e_1_2_9_81_1
  doi: 10.1039/C4AN01476F
– ident: e_1_2_9_73_1
  doi: 10.1063/1.4905840
– ident: e_1_2_9_28_1
  doi: 10.1108/AA-06-2013-055
– ident: e_1_2_9_80_1
  doi: 10.1039/c3lc50844g
– ident: e_1_2_9_54_1
  doi: 10.1039/C4EE01426J
– ident: e_1_2_9_68_1
  doi: 10.1371/journal.pone.0137631
– ident: e_1_2_9_109_1
  doi: 10.1039/C5LC01374G
– ident: e_1_2_9_76_1
  doi: 10.1039/C4LC00992D
– ident: e_1_2_9_64_1
  doi: 10.1073/pnas.1414764111
– ident: e_1_2_9_47_1
  doi: 10.1021/ac010938q
– ident: e_1_2_9_23_1
  doi: 10.1038/srep06973
– ident: e_1_2_9_82_1
  doi: 10.1021/ac4009594
– ident: e_1_2_9_66_1
  doi: 10.1016/j.aca.2015.04.014
– ident: e_1_2_9_61_1
  doi: 10.1039/C4LC00394B
– ident: e_1_2_9_91_1
  doi: 10.1116/1.586023
– ident: e_1_2_9_71_1
  doi: 10.1021/ac201539h
– ident: e_1_2_9_49_1
  doi: 10.1039/c2lc40761b
– ident: e_1_2_9_46_1
  doi: 10.1108/13552541011034889
– ident: e_1_2_9_25_1
  doi: 10.1007/978-0-387-92904-0_1
– ident: e_1_2_9_101_1
  doi: 10.1063/1.4898632
– ident: e_1_2_9_24_1
– ident: e_1_2_9_38_1
– ident: e_1_2_9_117_1
  doi: 10.1038/nmat863
– ident: e_1_2_9_6_1
  doi: 10.1039/c2lc21204h
– ident: e_1_2_9_53_1
  doi: 10.1002/anie.201402654
– ident: e_1_2_9_33_1
  doi: 10.1088/0957-4484/18/34/345202
– ident: e_1_2_9_67_1
  doi: 10.1039/C5LC00126A
– ident: e_1_2_9_72_1
  doi: 10.1016/j.snb.2013.10.008
– ident: e_1_2_9_59_1
  doi: 10.1039/C3LC50956G
– ident: e_1_2_9_7_1
  doi: 10.1039/c2lc40089h
– ident: e_1_2_9_97_1
  doi: 10.1038/4601080a
– ident: e_1_2_9_14_1
– start-page: 5222
  year: 2003
  ident: e_1_2_9_43_1
  publication-title: Proc. of SPIE
– ident: e_1_2_9_114_1
  doi: 10.1039/C4LC00030G
– ident: e_1_2_9_119_1
  doi: 10.1007/s10544-015-9928-y
– ident: e_1_2_9_45_1
  doi: 10.1557/PROC-624-157
– ident: e_1_2_9_87_1
  doi: 10.1063/1.4902929
– ident: e_1_2_9_110_1
  doi: 10.1088/1758-5082/5/2/025004
– ident: e_1_2_9_50_1
  doi: 10.3762/bjnano.4.31
– ident: e_1_2_9_89_1
  doi: 10.1039/B314962E
– ident: e_1_2_9_32_1
– ident: e_1_2_9_121_1
– volume: 11
  start-page: 620
  year: 2012
  ident: e_1_2_9_5_1
  publication-title: Nature Reviews Drug Discovery
  doi: 10.1038/nrd3799
– ident: e_1_2_9_108_1
  doi: 10.1002/bit.25579
– ident: e_1_2_9_42_1
  doi: 10.1364/OPEX.14.000810
– ident: e_1_2_9_21_1
  doi: 10.1016/S0142-9612(01)00232-0
– ident: e_1_2_9_104_1
  doi: 10.1016/j.ceb.2006.12.002
– ident: e_1_2_9_27_1
  doi: 10.1021/ac403397r
– ident: e_1_2_9_77_1
  doi: 10.1007/s10404-014-1542-4
– ident: e_1_2_9_35_1
  doi: 10.1108/13552540010337029
– ident: e_1_2_9_40_1
  doi: 10.1016/j.nantod.2010.08.007
– ident: e_1_2_9_39_1
  doi: 10.1115/1.1355029
– ident: e_1_2_9_29_1
  doi: 10.1002/jbm.a.30601
– ident: e_1_2_9_36_1
  doi: 10.1108/13552540510573365
– ident: e_1_2_9_86_1
  doi: 10.1016/j.sna.2015.02.028
– ident: e_1_2_9_94_1
  doi: 10.1039/c2lc21015k
– ident: e_1_2_9_17_1
  doi: 10.1016/j.matdes.2009.04.030
– ident: e_1_2_9_63_1
  doi: 10.1039/C4RA05072J
– ident: e_1_2_9_115_1
  doi: 10.1016/j.biomaterials.2012.04.004
– ident: e_1_2_9_70_1
  doi: 10.1021/ac501436d
– ident: e_1_2_9_74_1
  doi: 10.1002/mas.20240
– ident: e_1_2_9_26_1
  doi: 10.1016/j.biomaterials.2010.04.050
SSID ssj0009649
Score 2.5892367
SecondaryResourceType review_article
Snippet Three‐dimensional (3D) printing, also called additive manufacturing (AM) or rapid prototyping (RP), is a layer by layer manufacturing method and now has been...
Three-dimensional (3D) printing, also called additive manufacturing (AM) or rapid prototyping (RP), is a layer by layer manufacturing method and now has been...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1658
SubjectTerms 3D bioprinting
3D printing
Additive manufacturing
Assembling
Biology
BioMEMS
Biomicrofluidics
Chips
Lab on a chip
Micro total analysis systems
Microfluidic chips
Microfluidics
Organs
Organs on chips
Printing
Rapid prototyping (RP)
Three dimensional printing
Title Developments of 3D Printing Microfluidics and Applications in Chemistry and Biology: a Review
URI https://api.istex.fr/ark:/67375/WNG-NR89PDBZ-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Felan.201600043
https://www.proquest.com/docview/1835563376
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEA6iD_riLa4XEUSfqr3SpL55i-CyLC4rgoR0msLi0pU9QP31ZtJt3RVE0LeWJj1mJjND58s3hBxwAQJ8pL6MdOqEJqI7ItHaYUEIANxLkxA3J9_Xo9tWePfIHid28Rf8ENUPN1wZ1l_jAlfJ4OSLNFR3FfKXepGtZhknjIAtzIqaX_xRcWTzXw9hc66JvCVro-ufTE-fikpzKOC3qZRzMnG1ked6iajynQvAycvxaJgcw8c3Osf_fNQyWRynpfSssKMVMqPzVTJ_UXaDWyPPE-iiAe1lNLikjX7H9pmg94jqy7qjTtqBAVV5Ss8m6uK0k9PqTvZq0QDz_ZQqWtQm1knr-urh4tYZt2ZwwIjRaNbjHLwg1WHspSLNfNBxFrtuxhRnidLAA-VBECWun3I_UwoEywIXTPKGu4v8YIPM5r1cbxIqIq2MgpgWxjW4jAkByhhWFCtwBYesRpxSNRLGvOXYPqMrC8ZlX6LQZCW0Gjmqxr8WjB0_jjy0mq6Gqf4L4tw4k-36jaw3Rdy4PH-S7RrZL01BGmFhSUXlujcaSOMQkWHNeOka8a1if3mmxEYo1dnWXyZtkwU8LlCIO2R22B_pXZMZDZM9a_2fPCoE3Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5V7aFcoOUhFlowEo9T2sSJEweJQ-lStrS7qqpWrZCQcSaOtOoqW-1DUP5V_wq_CI-zSXeREBJSDxyTOLHjedoz_gbgZSJRIifoy9jkXmQtuiczYzwRRoiYBHkW0eHkbi_unEafzsX5ElzXZ2EqfIhmw40kw-lrEnDakN6-QQ01A00ApkHswlmzvMoDc_XNrtrG7_bblsSvON_7cLLb8WaFBTy05teOK0gSDMLcRGmQy7zgaNIi9f1C6ERk2mAS6gDDOPN5nvBCa5SiCH20rgedjSGsA6v1V6iMOMH1t49vEKvS2HncASXq-bazGifS59uL412wgytE0u8LTu68q-xs3d49-FnPUpXicrE1nWRb-OM3AMn_ahrX4O7M82Y7laisw5Ip78Pqbl3w7gF8mUugGrNhwcI2Oxr1XSkN1qXExWIw7ed9HDNd5mxnLvTP-iVrvuSeVjU-r94yzarwy0M4vZW_ewTL5bA0j4HJ2GjLEcJIq_18IaREbWUnTjX6MsGiBV7NCwpn0OxUIWSgKlBprohIqiFSC9407S8rUJI_tnztWKtppkcXlMqXCHXW-6h6xzI9ar__rM5a8KLmPWUni6JGujTD6VhZnU8gctYQtYA7TvpLn4pqvTRXT_7lpeew2jnpHqrD_d7BU7hD96ukyw1YnoymZtM6gpPsmRM9Bl9vm0l_AaB3ZDM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Za9wwEB5CAm1fepduTxV6PDmRZcuSC3lI426TplmW0JAQKKqsA5Ys3rAHbfqr8lf6jyrJa2e3UAqFPPTR9tiSNac9o28AXjKuuCIe-jIzOkqdR494aUxEk1QpxWJdpn5z8n4v2zlMPx7T4xW4aPbC1PgQ7Q83rxnBXnsFP9N24xI01Aylxy-Ns5DNmpdV7pnzb-6jbbK5WzgOvyKk-_7z9k407ysQKed93bRixlScaJPmsebaEmVym2NsqWS0lEaxRMYqyUpMNCNWSsWpTbBykYffGuOhDpzRX0sznPtmEcXBJWBVnoWAO_Z1etgN1sBEYrKxPN8lN7jmOfp9KcZdjJSDq-vegp_NItUVLqfrs2m5rn78hh_5P63ibbg5j7vRVq0od2DFVHfh-nbT7u4efFkon5qgkUVJgfrjQWikgfZ92aIdzgZ6oCZIVhptLST-0aBC7ZPC1brD5_lbJFGdfLkPh1fydg9gtRpV5iEgnhnpBIIa7mwfppRzJZ3mZLlUmDNlOxA1oiDUHJjd9wcZihpSmgjPJNEyqQNvWvqzGpLkj5Svg2S1ZHJ86gv5GBVHvQ-id8DzfvHuRBx14EUjesItls8ZycqMZhPhLL6HkHNuqAMkCNJfxhS-00t79OhfbnoO1_pFV3za7e09hhv-dF1x-QRWp-OZeeqiwGn5LCgegq9XLaO_APLnYuI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developments+of+3D+Printing+Microfluidics+and+Applications+in+Chemistry+and+Biology%3A+a+Review&rft.jtitle=Electroanalysis+%28New+York%2C+N.Y.%29&rft.au=He%2C+Yong&rft.au=Wu%2C+Yan&rft.au=Fu%2C+Jian-zhong&rft.au=Gao%2C+Qing&rft.date=2016-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1040-0397&rft.eissn=1521-4109&rft.volume=28&rft.issue=8&rft.spage=1658&rft.epage=1678&rft_id=info:doi/10.1002%2Felan.201600043&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_NR89PDBZ_W
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-0397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-0397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-0397&client=summon