Physiochemical and bactericidal activity evaluation: Silver‐augmented 3D‐printed scaffolds—An in vitro study

Hypothesis Injuries requiring resection of tissue followed by autogenous bone transfer may be prone to infection by Staphylococcus aureus, impeding recovery and increasing medical costs. For critical sized defects, the common approach to reconstruction is a tissue transfer procedure but is subject t...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical materials research. Part B, Applied biomaterials Vol. 110; no. 1; pp. 195 - 209
Main Authors Nayak, Vasudev Vivekanand, Tovar, Nick, Hacquebord, Jacques Henri, Duarte, Simone, Panariello, Beatriz H. D., Tonon, Caroline, Atria, Pablo J., Coelho, Paulo G., Witek, Lukasz
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.01.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hypothesis Injuries requiring resection of tissue followed by autogenous bone transfer may be prone to infection by Staphylococcus aureus, impeding recovery and increasing medical costs. For critical sized defects, the common approach to reconstruction is a tissue transfer procedure but is subject to limitations (e.g., donor site morbidity, cost, operating time). Utilizing beta tricalcium phosphate (β‐TCP) as bone grafting material augmented with silver (Ag), a custom graft may be 3D printed to overcome limitations and minimize potential infections. Experiments Scaffolds were 3D printed and augmented with Ag by external attack on the surface by silver nitrate (AgNO3) at varying concentrations (0.1, 1.0, 10% wt/wt of scaffold). The augmented scaffolds were evaluated utilizing X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and inductively coupled plasma mass spectroscopy (ICP‐MS) to verify the presence of Ag and phosphate (PO4) groups followed by electron microscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) to gather information of chemical and physical properties. Preliminary biocompatibility and bactericidal capacity of the scaffolds were tested using human osteoprogenitor (hOP) cells and methicillin‐sensitive S. aureus strain, respectively. Results XRD, FTIR, ICP‐MS, TGA, and DSC confirmed presence of Ag and PO4 groups, whereas electron microscopy showed a decrease in Ca and an increase in Ag ions, decreasing Ca/P ratio with increasing surfactant concentrations. PrestoBlue assays yielded an increase in fluorescence cell counts among experimental groups with lower concentrations of Ag characterized by their characteristic trapezoidal shape whereas cytotoxicity was observed at higher concentrations. Similar observations were made with alkaline phosphatase assays. Antimicrobial evaluation showed reduced colony‐forming units (CFU) among all experimental groups when compared to 100% β‐TCP. β‐TCP scaffolds augmented with Ag ions facilitate antibacterial effects while promoting osteoblast adhesion and proliferation.
AbstractList Injuries requiring resection of tissue followed by autogenous bone transfer may be prone to infection by Staphylococcus aureus, impeding recovery and increasing medical costs. For critical sized defects, the common approach to reconstruction is a tissue transfer procedure but is subject to limitations (e.g., donor site morbidity, cost, operating time). Utilizing beta tricalcium phosphate (β-TCP) as bone grafting material augmented with silver (Ag), a custom graft may be 3D printed to overcome limitations and minimize potential infections.HYPOTHESISInjuries requiring resection of tissue followed by autogenous bone transfer may be prone to infection by Staphylococcus aureus, impeding recovery and increasing medical costs. For critical sized defects, the common approach to reconstruction is a tissue transfer procedure but is subject to limitations (e.g., donor site morbidity, cost, operating time). Utilizing beta tricalcium phosphate (β-TCP) as bone grafting material augmented with silver (Ag), a custom graft may be 3D printed to overcome limitations and minimize potential infections.Scaffolds were 3D printed and augmented with Ag by external attack on the surface by silver nitrate (AgNO3 ) at varying concentrations (0.1, 1.0, 10% wt/wt of scaffold). The augmented scaffolds were evaluated utilizing X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and inductively coupled plasma mass spectroscopy (ICP-MS) to verify the presence of Ag and phosphate (PO4 ) groups followed by electron microscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) to gather information of chemical and physical properties. Preliminary biocompatibility and bactericidal capacity of the scaffolds were tested using human osteoprogenitor (hOP) cells and methicillin-sensitive S. aureus strain, respectively.EXPERIMENTSScaffolds were 3D printed and augmented with Ag by external attack on the surface by silver nitrate (AgNO3 ) at varying concentrations (0.1, 1.0, 10% wt/wt of scaffold). The augmented scaffolds were evaluated utilizing X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and inductively coupled plasma mass spectroscopy (ICP-MS) to verify the presence of Ag and phosphate (PO4 ) groups followed by electron microscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) to gather information of chemical and physical properties. Preliminary biocompatibility and bactericidal capacity of the scaffolds were tested using human osteoprogenitor (hOP) cells and methicillin-sensitive S. aureus strain, respectively.XRD, FTIR, ICP-MS, TGA, and DSC confirmed presence of Ag and PO4 groups, whereas electron microscopy showed a decrease in Ca and an increase in Ag ions, decreasing Ca/P ratio with increasing surfactant concentrations. PrestoBlue assays yielded an increase in fluorescence cell counts among experimental groups with lower concentrations of Ag characterized by their characteristic trapezoidal shape whereas cytotoxicity was observed at higher concentrations. Similar observations were made with alkaline phosphatase assays. Antimicrobial evaluation showed reduced colony-forming units (CFU) among all experimental groups when compared to 100% β-TCP. β-TCP scaffolds augmented with Ag ions facilitate antibacterial effects while promoting osteoblast adhesion and proliferation.RESULTSXRD, FTIR, ICP-MS, TGA, and DSC confirmed presence of Ag and PO4 groups, whereas electron microscopy showed a decrease in Ca and an increase in Ag ions, decreasing Ca/P ratio with increasing surfactant concentrations. PrestoBlue assays yielded an increase in fluorescence cell counts among experimental groups with lower concentrations of Ag characterized by their characteristic trapezoidal shape whereas cytotoxicity was observed at higher concentrations. Similar observations were made with alkaline phosphatase assays. Antimicrobial evaluation showed reduced colony-forming units (CFU) among all experimental groups when compared to 100% β-TCP. β-TCP scaffolds augmented with Ag ions facilitate antibacterial effects while promoting osteoblast adhesion and proliferation.
Injuries requiring resection of tissue followed by autogenous bone transfer may be prone to infection by Staphylococcus aureus, impeding recovery and increasing medical costs. For critical sized defects, the common approach to reconstruction is a tissue transfer procedure but is subject to limitations (e.g., donor site morbidity, cost, operating time). Utilizing beta tricalcium phosphate (β-TCP) as bone grafting material augmented with silver (Ag), a custom graft may be 3D printed to overcome limitations and minimize potential infections. Scaffolds were 3D printed and augmented with Ag by external attack on the surface by silver nitrate (AgNO ) at varying concentrations (0.1, 1.0, 10% wt/wt of scaffold). The augmented scaffolds were evaluated utilizing X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and inductively coupled plasma mass spectroscopy (ICP-MS) to verify the presence of Ag and phosphate (PO ) groups followed by electron microscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) to gather information of chemical and physical properties. Preliminary biocompatibility and bactericidal capacity of the scaffolds were tested using human osteoprogenitor (hOP) cells and methicillin-sensitive S. aureus strain, respectively. XRD, FTIR, ICP-MS, TGA, and DSC confirmed presence of Ag and PO groups, whereas electron microscopy showed a decrease in Ca and an increase in Ag ions, decreasing Ca/P ratio with increasing surfactant concentrations. PrestoBlue assays yielded an increase in fluorescence cell counts among experimental groups with lower concentrations of Ag characterized by their characteristic trapezoidal shape whereas cytotoxicity was observed at higher concentrations. Similar observations were made with alkaline phosphatase assays. Antimicrobial evaluation showed reduced colony-forming units (CFU) among all experimental groups when compared to 100% β-TCP. β-TCP scaffolds augmented with Ag ions facilitate antibacterial effects while promoting osteoblast adhesion and proliferation.
HypothesisInjuries requiring resection of tissue followed by autogenous bone transfer may be prone to infection by Staphylococcus aureus, impeding recovery and increasing medical costs. For critical sized defects, the common approach to reconstruction is a tissue transfer procedure but is subject to limitations (e.g., donor site morbidity, cost, operating time). Utilizing beta tricalcium phosphate (β‐TCP) as bone grafting material augmented with silver (Ag), a custom graft may be 3D printed to overcome limitations and minimize potential infections.ExperimentsScaffolds were 3D printed and augmented with Ag by external attack on the surface by silver nitrate (AgNO3) at varying concentrations (0.1, 1.0, 10% wt/wt of scaffold). The augmented scaffolds were evaluated utilizing X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and inductively coupled plasma mass spectroscopy (ICP‐MS) to verify the presence of Ag and phosphate (PO4) groups followed by electron microscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) to gather information of chemical and physical properties. Preliminary biocompatibility and bactericidal capacity of the scaffolds were tested using human osteoprogenitor (hOP) cells and methicillin‐sensitive S. aureus strain, respectively.ResultsXRD, FTIR, ICP‐MS, TGA, and DSC confirmed presence of Ag and PO4 groups, whereas electron microscopy showed a decrease in Ca and an increase in Ag ions, decreasing Ca/P ratio with increasing surfactant concentrations. PrestoBlue assays yielded an increase in fluorescence cell counts among experimental groups with lower concentrations of Ag characterized by their characteristic trapezoidal shape whereas cytotoxicity was observed at higher concentrations. Similar observations were made with alkaline phosphatase assays. Antimicrobial evaluation showed reduced colony‐forming units (CFU) among all experimental groups when compared to 100% β‐TCP. β‐TCP scaffolds augmented with Ag ions facilitate antibacterial effects while promoting osteoblast adhesion and proliferation.
Hypothesis Injuries requiring resection of tissue followed by autogenous bone transfer may be prone to infection by Staphylococcus aureus, impeding recovery and increasing medical costs. For critical sized defects, the common approach to reconstruction is a tissue transfer procedure but is subject to limitations (e.g., donor site morbidity, cost, operating time). Utilizing beta tricalcium phosphate (β‐TCP) as bone grafting material augmented with silver (Ag), a custom graft may be 3D printed to overcome limitations and minimize potential infections. Experiments Scaffolds were 3D printed and augmented with Ag by external attack on the surface by silver nitrate (AgNO3) at varying concentrations (0.1, 1.0, 10% wt/wt of scaffold). The augmented scaffolds were evaluated utilizing X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and inductively coupled plasma mass spectroscopy (ICP‐MS) to verify the presence of Ag and phosphate (PO4) groups followed by electron microscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) to gather information of chemical and physical properties. Preliminary biocompatibility and bactericidal capacity of the scaffolds were tested using human osteoprogenitor (hOP) cells and methicillin‐sensitive S. aureus strain, respectively. Results XRD, FTIR, ICP‐MS, TGA, and DSC confirmed presence of Ag and PO4 groups, whereas electron microscopy showed a decrease in Ca and an increase in Ag ions, decreasing Ca/P ratio with increasing surfactant concentrations. PrestoBlue assays yielded an increase in fluorescence cell counts among experimental groups with lower concentrations of Ag characterized by their characteristic trapezoidal shape whereas cytotoxicity was observed at higher concentrations. Similar observations were made with alkaline phosphatase assays. Antimicrobial evaluation showed reduced colony‐forming units (CFU) among all experimental groups when compared to 100% β‐TCP. β‐TCP scaffolds augmented with Ag ions facilitate antibacterial effects while promoting osteoblast adhesion and proliferation.
Author Tovar, Nick
Atria, Pablo J.
Coelho, Paulo G.
Duarte, Simone
Tonon, Caroline
Witek, Lukasz
Hacquebord, Jacques Henri
Nayak, Vasudev Vivekanand
Panariello, Beatriz H. D.
Author_xml – sequence: 1
  givenname: Vasudev Vivekanand
  surname: Nayak
  fullname: Nayak, Vasudev Vivekanand
  organization: New York University Tandon School of Engineering
– sequence: 2
  givenname: Nick
  surname: Tovar
  fullname: Tovar, Nick
  organization: NYU Langone Medical Center and Bellevue Hospital Center
– sequence: 3
  givenname: Jacques Henri
  orcidid: 0000-0003-1829-1195
  surname: Hacquebord
  fullname: Hacquebord, Jacques Henri
  organization: New York University Grossman School of Medicine
– sequence: 4
  givenname: Simone
  orcidid: 0000-0002-4744-4026
  surname: Duarte
  fullname: Duarte, Simone
  organization: Indiana University School of Dentistry
– sequence: 5
  givenname: Beatriz H. D.
  orcidid: 0000-0002-2138-1223
  surname: Panariello
  fullname: Panariello, Beatriz H. D.
  organization: Indiana University School of Dentistry
– sequence: 6
  givenname: Caroline
  orcidid: 0000-0003-0058-9970
  surname: Tonon
  fullname: Tonon, Caroline
  organization: Indiana University School of Dentistry
– sequence: 7
  givenname: Pablo J.
  orcidid: 0000-0001-6298-9756
  surname: Atria
  fullname: Atria, Pablo J.
  email: pja288@nyu.edu
  organization: Universidad de los Andes
– sequence: 8
  givenname: Paulo G.
  surname: Coelho
  fullname: Coelho, Paulo G.
  organization: New York University Grossman School of Medicine
– sequence: 9
  givenname: Lukasz
  orcidid: 0000-0003-1458-6527
  surname: Witek
  fullname: Witek, Lukasz
  organization: New York University Tandon School of Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34196107$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhS1URB-wYo8isUGqZvAjjmN2bSkvFYEErC3HvqEeOU6xnUHZ9Sew4Bf2l-CZaVlUiJV9re8cXZ9ziPbCGAChpwQvCcb05aoblt2S1RLTB-iAcE4XtWzJ3t-7YPvoMKVVgRvM2SO0z2oiG4LFAYqfL-fkRnMJgzPaVzrYqtMmQ3TG2c2DyW7t8lzBWvtJZzeGV9UX59cQb65_6en7ACGDrdjrMl5Ftx2S0X0_epturn-fhMqFqljEsUp5svNj9LDXPsGT2_MIfXtz_vXs3eLi09v3ZycXC8OkoAtpBXBBG0qF1LZuO4wxkwDSCMm5sNAISsvAG91hLm3LuOitwL3hnHUtZkfoxc73Ko4_JkhZDS4Z8F4HGKekKK8Fr3FLWUGf30NX4xRD2U6VyDAlgrUb6tktNXUDWFV-O-g4q7s0C0B2gIljShF6ZVzeRpajdl4RrDaNqdKY6tS2saI5vqe5s_03TXf0T-dh_h-qPpx-PN2J_gAye6m4
CitedBy_id crossref_primary_10_3390_bioengineering10030354
crossref_primary_10_3390_biomimetics9030154
crossref_primary_10_1016_j_bprint_2024_e00334
crossref_primary_10_1002_jbm_b_35402
crossref_primary_10_1590_1980_5373_mr_2023_0137
crossref_primary_10_1021_acsbiomaterials_4c01279
crossref_primary_10_3390_ijms23169493
crossref_primary_10_1039_D3MA01088K
crossref_primary_10_1007_s10006_024_01301_7
crossref_primary_10_1016_j_tiv_2022_105407
crossref_primary_10_3233_BME_240079
crossref_primary_10_1016_j_stlm_2022_100078
Cites_doi 10.1016/j.mattod.2015.10.008
10.1111/ijac.13316
10.1016/j.actbio.2013.06.043
10.1021/bp050297a
10.1016/j.actbio.2008.02.025
10.1016/j.actbio.2015.05.014
10.1016/j.injury.2005.07.029
10.1016/j.surfcoat.2016.03.017
10.1002/term.2733
10.1038/s41598-019-54726-6
10.1007/978-3-319-66730-0
10.1039/b800522b
10.1590/0103-6440201600689
10.1016/j.biomaterials.2010.05.005
10.1016/j.biotechadv.2008.09.002
10.1039/C4RA04764H
10.1586/17434440.3.1.49
10.1016/j.actbio.2011.02.034
10.1016/j.biomaterials.2003.10.078
10.1089/ten.teb.2018.0056
10.1016/S0272-8842(96)00016-8
10.1080/07853890802337045
10.1016/j.ceramint.2015.04.116
10.1002/jor.22114
10.1007/s12668-016-0386-7
10.5021/ad.2009.21.3.308
10.1093/jac/47.6.885
10.1002/jor.24431
10.1007/s005860100282
10.1097/PRS.0000000000005531
10.2138/am-2004-1009
10.1016/S0142-9612(01)00232-0
10.1002/jor.24424
10.1002/9781118406748.ch3
10.1016/j.actbio.2012.04.004
10.1016/j.cej.2007.07.083
10.1007/s40145-013-0072-y
10.1007/s007740050081
ContentType Journal Article
Copyright 2021 Wiley Periodicals LLC.
2022 Wiley Periodicals LLC.
Copyright_xml – notice: 2021 Wiley Periodicals LLC.
– notice: 2022 Wiley Periodicals LLC.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1002/jbm.b.34902
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1552-4981
EndPage 209
ExternalDocumentID 34196107
10_1002_jbm_b_34902
JBMB34902
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH HHS
  grantid: S10 OD026989
GroupedDBID -~X
.GA
.Y3
05W
0R~
10A
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
702
7PT
8-1
8-4
8-5
8UM
930
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BRXPI
BY8
CO8
CS3
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
GNP
GODZA
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
IX1
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
NF~
NNB
O66
P2W
P4D
PQQKQ
QB0
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W99
WBKPD
WFSAM
WIH
WJL
WOHZO
WRC
WYISQ
XG1
XV2
ZZTAW
AAYXX
ABJNI
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c3972-9d7e57262279ad48b00039ee9c79557de67229c756ab059d8357fd70fc553b803
IEDL.DBID DR2
ISSN 1552-4973
1552-4981
IngestDate Fri Jul 11 05:09:29 EDT 2025
Fri Jul 25 10:24:16 EDT 2025
Mon Jul 21 06:01:12 EDT 2025
Tue Jul 01 02:42:17 EDT 2025
Thu Apr 24 22:54:46 EDT 2025
Wed Jan 22 16:26:50 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords metathesis reaction
bioceramic
antibacterial
human osteoblast precursor
3D printing
Staphylococcus aureus
Language English
License 2021 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3972-9d7e57262279ad48b00039ee9c79557de67229c756ab059d8357fd70fc553b803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1458-6527
0000-0003-1829-1195
0000-0001-6298-9756
0000-0002-4744-4026
0000-0002-2138-1223
0000-0003-0058-9970
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/11310573
PMID 34196107
PQID 2600217383
PQPubID 2034571
PageCount 15
ParticipantIDs proquest_miscellaneous_2547540823
proquest_journals_2600217383
pubmed_primary_34196107
crossref_citationtrail_10_1002_jbm_b_34902
crossref_primary_10_1002_jbm_b_34902
wiley_primary_10_1002_jbm_b_34902_JBMB34902
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Mount Laurel
PublicationTitle Journal of biomedical materials research. Part B, Applied biomaterials
PublicationTitleAlternate J Biomed Mater Res B Appl Biomater
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 7
2019; 9
2010; 31
2009; 41
2009; 21
2016; 19
2013; 2
2004; 25
2008; 18
2019; 37
2004; 89
1997; 23
2020; 17
2006; 3
2008; 4
2001; 47
2009; 27
2011; 7
2013; 9
2012; 30
2019; 143
2018; 24
2015; 23
2014; 4
2006; 22
2002; 23
1999; 17
2015; 41
2017; 79
2018
2008; 137
2014
2016; 292
2018; 12
2016; 27
2012; 8
2005; 36
2001; 10
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
Hoover S (e_1_2_9_15_1) 2017; 79
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 7
  start-page: 2615
  issue: 6
  year: 2011
  end-page: 2622
  article-title: Cell culture medium as an alternative to conventional simulated body fluid
  publication-title: Acta Biomater
– volume: 30
  start-page: 1634
  issue: 10
  year: 2012
  end-page: 1639
  article-title: Bacterial adherence to separated modular components in joint prosthesis: a clinical study
  publication-title: J Orthop Res
– volume: 19
  start-page: 69
  issue: 2
  year: 2016
  end-page: 87
  article-title: Calcium phosphates in biomedical applications: materials for the future?
  publication-title: Mater Today
– volume: 18
  start-page: 2679
  issue: 23
  year: 2008
  end-page: 2684
  article-title: Flexible, silver containing nanocomposites for the repair of bone defects: antimicrobial effect against infection and comparison to tetracycline containing scaffolds
  publication-title: J Mater Chem
– volume: 9
  issue: 1
  year: 2019
  article-title: Dipyridamole‐loaded 3D‐printed bioceramic scaffolds stimulate pediatric bone regeneration in vivo without disruption of craniofacial growth through facial maturity
  publication-title: Sci Rep
– volume: 292
  start-page: 99
  year: 2016
  end-page: 109
  article-title: Electrochemical corrosion behavior of silver doped tricalcium phosphate coatings on magnesium for biomedical application
  publication-title: Surf Coat Technol
– volume: 24
  start-page: 359
  issue: 5
  year: 2018
  end-page: 372
  article-title: The evolution of polystyrene as a cell culture material
  publication-title: Tissue Eng Part B Rev
– start-page: 23
  year: 2014
  end-page: 71
– volume: 9
  start-page: 8790
  issue: 11
  year: 2013
  end-page: 8801
  article-title: Shape‐memory‐actuated change in scaffold fiber alignment directs stem cell morphology
  publication-title: Acta Biomater
– volume: 41
  start-page: 10152
  year: 2015
  end-page: 10159
  article-title: Silver‐containing calcium phosphate materials of marine origin with antibacterial activity
  publication-title: Ceram Int
– volume: 47
  start-page: 885
  issue: 6
  year: 2001
  end-page: 891
  article-title: Biomaterial‐associated infection of gentamicin‐loaded PMMA beads in orthopaedic revision surgery
  publication-title: J Antimicrob Chemother
– volume: 23
  start-page: 329
  year: 2015
  end-page: 337
  article-title: First‐principles calculations of divalent substitution of Ca(2+) in tricalcium phosphates
  publication-title: Acta Biomater
– volume: 23
  start-page: 1169
  issue: 4
  year: 2002
  end-page: 1185
  article-title: Fused deposition modeling of novel scaffold architectures for tissue engineering applications
  publication-title: Biomaterials
– volume: 41
  start-page: 109
  issue: 2
  year: 2009
  end-page: 119
  article-title: Foreign body infections due to
  publication-title: Ann Med
– volume: 22
  start-page: 394
  issue: 2
  year: 2006
  end-page: 400
  article-title: Effects of conditioned medium factors and passage number on Sf9 cell physiology and productivity
  publication-title: Biotechnol Prog
– volume: 7
  start-page: 434
  year: 2017
  end-page: 438
  article-title: Tricalcium phosphate ceramics doped with silver, copper, zinc, and iron (III) ions in concentrations of less than 0.5 wt.% for bone tissue regeneration
  publication-title: BioNanoScience
– volume: 17
  start-page: 333
  issue: 1
  year: 2020
  end-page: 341
  article-title: Synthesizing the strontium carbonate and silver doped bioceramic bone graft: structure‐properties and cell viability
  publication-title: Int J Appl Ceramic Technol
– volume: 27
  start-page: 76
  issue: 1
  year: 2009
  end-page: 83
  article-title: Silver nanoparticles as a new generation of antimicrobials
  publication-title: Biotechnol Adv
– volume: 4
  start-page: 35290
  issue: 67
  year: 2014
  end-page: 35297
  article-title: The predominant species of ionic silver in biological media is colloidally dispersed nanoparticulate silver chloride
  publication-title: RSC Adv
– volume: 79
  start-page: 763
  year: 2017
  end-page: 769
  article-title: Silver doped resorbable tricalcium phosphate scaffolds for bone graft applications
  publication-title: Korean J Couns Psychother
– year: 2018
– volume: 137
  start-page: 129
  issue: 1
  year: 2008
  end-page: 136
  article-title: 3D‐glass–ceramic scaffolds with antibacterial properties for bone grafting
  publication-title: Chem Eng J
– volume: 89
  start-page: 1422
  year: 2004
  end-page: 1432
  article-title: Accommodation of the carbonate ion in apatite: an FTIR and X‐ray structure study of crystals synthesized at R 4 GPa
  publication-title: Am Mineral
– volume: 21
  start-page: 308
  issue: 3
  year: 2009
  end-page: 310
  article-title: A case of argyria following colloidal silver ingestion
  publication-title: Ann Dermatol
– volume: 3
  start-page: 49
  issue: 1
  year: 2006
  end-page: 57
  article-title: Bone graft substitutes
  publication-title: Expert Rev Med Devices
– volume: 8
  start-page: 3144
  issue: 8
  year: 2012
  end-page: 3152
  article-title: Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings
  publication-title: Acta Biomater
– volume: 17
  start-page: 171
  issue: 3
  year: 1999
  end-page: 177
  article-title: Number of osteoprogenitor cells in human bone marrow markedly decreases after skeletal maturation
  publication-title: J Bone Miner Metab
– volume: 27
  start-page: 508
  year: 2016
  end-page: 514
  article-title: Effect of silver nanoparticles on physicochemical and antibacterial properties of calcium silicate cements
  publication-title: Braz Dent J
– volume: 12
  start-page: 1986
  issue: 9
  year: 2018
  end-page: 1999
  article-title: Form and functional repair of long bone using 3D‐printed bioactive scaffolds
  publication-title: J Tissue Eng Regen Med
– volume: 23
  start-page: 297
  issue: 4
  year: 1997
  end-page: 304
  article-title: The FTIR spectroscopy and QXRD studies of calcium phosphate based materials produced from the powder precursors with different CaP ratios
  publication-title: Ceram Int
– volume: 10
  start-page: S96
  issue: Suppl 2
  year: 2001
  end-page: S101
  article-title: Osteoinduction, osteoconduction and osseointegration
  publication-title: Eur Spine J
– volume: 25
  start-page: 4383
  issue: 18
  year: 2004
  end-page: 4391
  article-title: An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement
  publication-title: Biomaterials
– volume: 2
  start-page: 274
  issue: 3
  year: 2013
  end-page: 284
  article-title: Sintering effects on chemical and physical properties of bioactive ceramics
  publication-title: J Adv Ceramics
– volume: 37
  start-page: 2655
  issue: 12
  year: 2019
  end-page: 2660
  article-title: Antibacterial activity of ag‐hydroxyapatite coating against hematogenous infection by methicillin‐resistant in the rat femur
  publication-title: J Orthop Res
– volume: 31
  start-page: 6363
  issue: 25
  year: 2010
  end-page: 6377
  article-title: Antibiotic‐loaded biomaterials and the risks for the spread of antibiotic resistance following their prophylactic and therapeutic clinical use
  publication-title: Biomaterials
– volume: 143
  start-page: 1408
  issue: 5
  year: 2019
  end-page: 1419
  article-title: Dipyridamole augments three‐dimensionally printed bioactive ceramic scaffolds to regenerate craniofacial bone
  publication-title: Plast Reconstr Surg
– volume: 4
  start-page: 1472
  issue: 5
  year: 2008
  end-page: 1479
  article-title: An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano‐to‐micron particulate calcium phosphates for bone regeneration
  publication-title: Acta Biomater
– volume: 37
  start-page: 2499
  issue: 12
  year: 2019
  end-page: 2507
  article-title: Repair of critical‐sized long bone defects using dipyridamole‐augmented 3D‐printed bioactive ceramic scaffolds
  publication-title: J Orthop Res
– volume: 36
  start-page: S20
  issue: Suppl 3
  year: 2005
  end-page: S27
  article-title: Bone substitutes: an update
  publication-title: Injury
– ident: e_1_2_9_8_1
  doi: 10.1016/j.mattod.2015.10.008
– ident: e_1_2_9_26_1
  doi: 10.1111/ijac.13316
– ident: e_1_2_9_10_1
  doi: 10.1016/j.actbio.2013.06.043
– ident: e_1_2_9_41_1
  doi: 10.1021/bp050297a
– ident: e_1_2_9_38_1
  doi: 10.1016/j.actbio.2008.02.025
– ident: e_1_2_9_34_1
  doi: 10.1016/j.actbio.2015.05.014
– ident: e_1_2_9_4_1
  doi: 10.1016/j.injury.2005.07.029
– ident: e_1_2_9_2_1
  doi: 10.1016/j.surfcoat.2016.03.017
– ident: e_1_2_9_6_1
  doi: 10.1002/term.2733
– ident: e_1_2_9_13_1
  doi: 10.1038/s41598-019-54726-6
– volume: 79
  start-page: 763
  year: 2017
  ident: e_1_2_9_15_1
  article-title: Silver doped resorbable tricalcium phosphate scaffolds for bone graft applications
  publication-title: Korean J Couns Psychother
– ident: e_1_2_9_20_1
  doi: 10.1007/978-3-319-66730-0
– ident: e_1_2_9_30_1
  doi: 10.1039/b800522b
– ident: e_1_2_9_32_1
  doi: 10.1590/0103-6440201600689
– ident: e_1_2_9_22_1
  doi: 10.1016/j.biomaterials.2010.05.005
– ident: e_1_2_9_27_1
  doi: 10.1016/j.biotechadv.2008.09.002
– ident: e_1_2_9_36_1
  doi: 10.1039/C4RA04764H
– ident: e_1_2_9_3_1
  doi: 10.1586/17434440.3.1.49
– ident: e_1_2_9_31_1
  doi: 10.1016/j.actbio.2011.02.034
– ident: e_1_2_9_21_1
  doi: 10.1016/j.biomaterials.2003.10.078
– ident: e_1_2_9_16_1
– ident: e_1_2_9_39_1
  doi: 10.1089/ten.teb.2018.0056
– ident: e_1_2_9_37_1
  doi: 10.1016/S0272-8842(96)00016-8
– ident: e_1_2_9_19_1
  doi: 10.1080/07853890802337045
– ident: e_1_2_9_14_1
  doi: 10.1016/j.ceramint.2015.04.116
– ident: e_1_2_9_18_1
  doi: 10.1002/jor.22114
– ident: e_1_2_9_25_1
  doi: 10.1007/s12668-016-0386-7
– ident: e_1_2_9_33_1
  doi: 10.5021/ad.2009.21.3.308
– ident: e_1_2_9_23_1
  doi: 10.1093/jac/47.6.885
– ident: e_1_2_9_17_1
  doi: 10.1002/jor.24431
– ident: e_1_2_9_5_1
  doi: 10.1007/s005860100282
– ident: e_1_2_9_12_1
  doi: 10.1097/PRS.0000000000005531
– ident: e_1_2_9_35_1
  doi: 10.2138/am-2004-1009
– ident: e_1_2_9_29_1
  doi: 10.1016/S0142-9612(01)00232-0
– ident: e_1_2_9_11_1
  doi: 10.1002/jor.24424
– ident: e_1_2_9_7_1
  doi: 10.1002/9781118406748.ch3
– ident: e_1_2_9_24_1
  doi: 10.1016/j.actbio.2012.04.004
– ident: e_1_2_9_28_1
  doi: 10.1016/j.cej.2007.07.083
– ident: e_1_2_9_9_1
  doi: 10.1007/s40145-013-0072-y
– ident: e_1_2_9_40_1
  doi: 10.1007/s007740050081
SSID ssj0026053
Score 2.388122
Snippet Hypothesis Injuries requiring resection of tissue followed by autogenous bone transfer may be prone to infection by Staphylococcus aureus, impeding recovery...
Injuries requiring resection of tissue followed by autogenous bone transfer may be prone to infection by Staphylococcus aureus, impeding recovery and...
HypothesisInjuries requiring resection of tissue followed by autogenous bone transfer may be prone to infection by Staphylococcus aureus, impeding recovery and...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 195
SubjectTerms 3D printing
Alkaline phosphatase
Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
antibacterial
Antibacterial activity
Antiinfectives and antibacterials
Bactericidal activity
bioceramic
Biocompatibility
Biomedical materials
Bone and Bones
Bone grafts
Calcium phosphates
Calorimetry
Cytotoxicity
Differential scanning calorimetry
Electron microscopy
Fluorescence
Fourier analysis
Fourier transforms
human osteoblast precursor
Humans
Inductively coupled plasma mass spectrometry
Infrared spectroscopy
Ions
Mass spectroscopy
Materials research
Materials science
metathesis reaction
Methicillin
Microscopy
Morbidity
Osteoblasts
Osteoprogenitor cells
Physical properties
Physiochemistry
Printing, Three-Dimensional
Scaffolds
Silver
Silver nitrate
Spectrum analysis
Staphylococcus aureus
Substitute bone
Thermogravimetric analysis
Three dimensional printing
Tissue Scaffolds - chemistry
Toxicity
Tricalcium phosphate
X-ray diffraction
Title Physiochemical and bactericidal activity evaluation: Silver‐augmented 3D‐printed scaffolds—An in vitro study
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.b.34902
https://www.ncbi.nlm.nih.gov/pubmed/34196107
https://www.proquest.com/docview/2600217383
https://www.proquest.com/docview/2547540823
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9NAEMdXqCc4QCkUAqVapJ6onEb7tHtLgKiKVA7QSL1Z-0QpxUFxcumpH4FDP2E_CTNr12kpQoKb1x4_1-P973r2N4TsqVwZxq3MBhY-gSI4k-VgmXEpXBGFVspgR_H4kzqaismpPG1jc3AuTMOH6Abc0DPS9xod3Nj6YA0NPbPf-7bPRZFQkhithZLocwePQqGewuulZJhHjbez82DLwa1977ZH90TmXc2aGp3xkyazap1YhRhr8q2_Wtq-u_iN5Pjf97NJHrdylA6b9-cpeRCqLfLoFqTwGVmkIFFMrJXIAtRUntqG8exmHle4JgMFXZPDD-mXGYZcX1_-NKuvifvpKf8ARRxHxELtTIzzc19fX14NKzqrKBxiMacJd_ucTMcfT94fZW2mhsyBnmFZ4XWQminEERov8tTVKkIonC6k1D4ozRgUpDIW9JwH2aej14PopOQ2H_BtslHNq_CS0OjAQusoIhwoCGcjj0JwCzUovWJ5j7y7qa_StRhzzKZxXjYAZlbCgyxtmR5kj-x1xj8aesefzXZuKr5sXbgukdwP_TXowffI224zOB_-UTFVmK_ARgotMWU32LxoXpjuPAjKA22qe2Q_VfvfLqCcjI5HaenVP1m_Jg8ZTsdIQ0I7ZGO5WIU3IJKWdjf5wi8DnBAL
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9NAEMdXqByAA-9HaIFF6gnkNNqnza2lrUJpeoBW6m21TxQoDsrjwqkfoQc-YT8JM2vHbQEhwc1rjx3b67H_M9n9DSHrqlSWcSeLgYNXoIjeFiVYFlwKXyWhlbIYKI4O1PBI7B3L4zbhhnNhGj5El3BDz8jva3RwTEhvXFBDP7uvfdfnokKW5HWs6Z1Dqg8dPgqleh5gLyXDSmq8nZ8HWzYu7Xz1i_SbzLyqWvNnZ_cOMcsTbkabfOkv5q7vv__Ccvz_K7pLbreKlG42j9A9ci3W98mtS5zCB2Sax4liba0MF6C2DtQ1mGc_DrjCN0Uo6AU8_A39OMZR1-enZ3bxKaM_A-Xb0MRUIjZm3qY0OQmz89MfmzUd1xQOMZ3QTLx9SI52dw7fDou2WEPhQdKwogo6Ss0UEgltEGWOtqoYK68rKXWISjMGDamsA0kXQPnpFPQgeSm5Kwf8EVmpJ3V8QmjyYKF1EgkOFIV3iSchuIMulEGxskdeLTvM-JZkjgU1TkzDYGYGbqRxJt_IHlnvjL81AI8_m60te960XjwzCO-HkA2C-B552W0G_8M_VWwdJwuwkUJLrNoNNo-bJ6b7HWTlgTzVPfI69_vfTsDsbY228tLTf7J-QW4MD0f7Zv_dwftVcpPh7IycIVojK_PpIj4DzTR3z7Nj_ATnbBQm
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEMct1EoIDrwpSwsYqSdQtis_E24ty6oUWiGgUm-Wn2ihZKt9XHrqR-iBT9hPwoyTpi0gJLjFyeRpT_K3M_4NIeuqVJZxJ4uBg1egiN4WJVgWXApfJaGVsthR3N1T2_ti50AetLE5OBem4UN0A27oGfl9jQ5-FNLGBTT0q_ved30uKkRJLgs1KLFRDz929ChU6jm-XkqGidR4Oz0Ptmxc2vnqB-k3lXlVtOavzuh2k1p1lmGFGGzyrb-Yu74__gXl-N83dIfcavUo3Wwa0F1yLdb3yM1LlML7ZJqjRDGzVkYLUFsH6hrIsx8HXOGbFBT0Ah3-in4aY8z12cmpXXzJ4M9A-RCKOJCIhZm3KU0Ow-zs5MdmTcc1hUNMJzTzbh-Q_dGbz6-3izZVQ-FB0LCiCjpKzRTyCG0QZe5rVTFWXldS6hCVZgwKUlkHgi6A7tMp6EHyUnJXDvhDslRP6viI0OTBQuskEhwoCu8ST0JwBzUog2Jlj7w4ry_jW445ptM4NA2BmRl4kMaZ_CB7ZL0zPmrwHX82WzuveNP68Mwguh86bNCF75Hn3WbwPvylYus4WYCNFFpizm6wWWkaTHceJOWBONU98jJX-98uwOxs7W7lpcf_ZP2MXP8wHJn3b_ferZIbDKdm5OGhNbI0ny7iExBMc_c0u8VPxFUS3g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physiochemical+and+bactericidal+activity+evaluation%3A+Silver-augmented+3D-printed+scaffolds-An+in+vitro+study&rft.jtitle=Journal+of+biomedical+materials+research.+Part+B%2C+Applied+biomaterials&rft.au=Nayak%2C+Vasudev+Vivekanand&rft.au=Tovar%2C+Nick&rft.au=Hacquebord%2C+Jacques+Henri&rft.au=Duarte%2C+Simone&rft.date=2022-01-01&rft.eissn=1552-4981&rft.volume=110&rft.issue=1&rft.spage=195&rft_id=info:doi/10.1002%2Fjbm.b.34902&rft_id=info%3Apmid%2F34196107&rft.externalDocID=34196107
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4973&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4973&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4973&client=summon