Resource allocation in orthogonal frequency division multiple access-based cognitive radio systems with minimum rate constraints

SUMMARYIn this paper, resource allocation problem in orthogonal frequency division multiple access‐based cognitive radio (CR) systems to maintain minimum transmission rate constraints of CR users (CRUs) with the specified interference thresholds is investigated. Firstly, a single primary user (PU) C...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of communication systems Vol. 27; no. 8; pp. 1147 - 1159
Main Authors Li, Li, Xu, Changqing, Fan, Pingzhi, He, Jian
Format Journal Article
LanguageEnglish
Published Chichester Blackwell Publishing Ltd 01.08.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract SUMMARYIn this paper, resource allocation problem in orthogonal frequency division multiple access‐based cognitive radio (CR) systems to maintain minimum transmission rate constraints of CR users (CRUs) with the specified interference thresholds is investigated. Firstly, a single primary user (PU) CR system is considered, and a suboptimal resource allocation algorithm to maximize the sum transmission rate of all CRUs is proposed. Secondly, the single‐PU scenario is extended to multiple‐PU case, and an asymptotically optimal resource allocation algorithm is proposed using dual methods subject to constraints on both interference thresholds of PUs and total transmit power of all CRUs. Analysis and numerical results show that, in contrast to classical resource allocation algorithms, the proposed algorithm can achieve higher transmission rate and guarantee each CRU's minimum transmission rate in both scenarios. Copyright © 2012 John Wiley & Sons, Ltd. In this paper, resource allocation in cognitive radio systems based on orthogonal frequency division multiple access with minimum rate constraints of cognitive radio users (CRUs) is investigated to maximize the sum transmission rate of all CRUs while limit the interference introduced to primary users (PUs) under specified thresholds. In single PU scenario, a suboptimal resource allocation algorithm with low complexity is proposed and extended to general case with multiple PUs, resulting an optimal resource allocation algorithm using dual methods.
AbstractList In this paper, resource allocation problem in orthogonal frequency division multiple access‐based cognitive radio (CR) systems to maintain minimum transmission rate constraints of CR users (CRUs) with the specified interference thresholds is investigated. Firstly, a single primary user (PU) CR system is considered, and a suboptimal resource allocation algorithm to maximize the sum transmission rate of all CRUs is proposed. Secondly, the single‐PU scenario is extended to multiple‐PU case, and an asymptotically optimal resource allocation algorithm is proposed using dual methods subject to constraints on both interference thresholds of PUs and total transmit power of all CRUs. Analysis and numerical results show that, in contrast to classical resource allocation algorithms, the proposed algorithm can achieve higher transmission rate and guarantee each CRU's minimum transmission rate in both scenarios. Copyright © 2012 John Wiley & Sons, Ltd.
In this paper, resource allocation problem in orthogonal frequency division multiple access-based cognitive radio (CR) systems to maintain minimum transmission rate constraints of CR users (CRUs) with the specified interference thresholds is investigated. Firstly, a single primary user (PU) CR system is considered, and a suboptimal resource allocation algorithm to maximize the sum transmission rate of all CRUs is proposed. Secondly, the single-PU scenario is extended to multiple-PU case, and an asymptotically optimal resource allocation algorithm is proposed using dual methods subject to constraints on both interference thresholds of PUs and total transmit power of all CRUs. Analysis and numerical results show that, in contrast to classical resource allocation algorithms, the proposed algorithm can achieve higher transmission rate and guarantee each CRU's minimum transmission rate in both scenarios. Copyright copyright 2012 John Wiley & Sons, Ltd. In this paper, resource allocation in cognitive radio systems based on orthogonal frequency division multiple access with minimum rate constraints of cognitive radio users (CRUs) is investigated to maximize the sum transmission rate of all CRUs while limit the interference introduced to primary users (PUs) under specified thresholds. In single PU scenario, a suboptimal resource allocation algorithm with low complexity is proposed and extended to general case with multiple PUs, resulting an optimal resource allocation algorithm using dual methods.
SUMMARY In this paper, resource allocation problem in orthogonal frequency division multiple access-based cognitive radio (CR) systems to maintain minimum transmission rate constraints of CR users (CRUs) with the specified interference thresholds is investigated. Firstly, a single primary user (PU) CR system is considered, and a suboptimal resource allocation algorithm to maximize the sum transmission rate of all CRUs is proposed. Secondly, the single-PU scenario is extended to multiple-PU case, and an asymptotically optimal resource allocation algorithm is proposed using dual methods subject to constraints on both interference thresholds of PUs and total transmit power of all CRUs. Analysis and numerical results show that, in contrast to classical resource allocation algorithms, the proposed algorithm can achieve higher transmission rate and guarantee each CRU's minimum transmission rate in both scenarios. Copyright © 2012 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT]
SUMMARYIn this paper, resource allocation problem in orthogonal frequency division multiple access‐based cognitive radio (CR) systems to maintain minimum transmission rate constraints of CR users (CRUs) with the specified interference thresholds is investigated. Firstly, a single primary user (PU) CR system is considered, and a suboptimal resource allocation algorithm to maximize the sum transmission rate of all CRUs is proposed. Secondly, the single‐PU scenario is extended to multiple‐PU case, and an asymptotically optimal resource allocation algorithm is proposed using dual methods subject to constraints on both interference thresholds of PUs and total transmit power of all CRUs. Analysis and numerical results show that, in contrast to classical resource allocation algorithms, the proposed algorithm can achieve higher transmission rate and guarantee each CRU's minimum transmission rate in both scenarios. Copyright © 2012 John Wiley & Sons, Ltd. In this paper, resource allocation in cognitive radio systems based on orthogonal frequency division multiple access with minimum rate constraints of cognitive radio users (CRUs) is investigated to maximize the sum transmission rate of all CRUs while limit the interference introduced to primary users (PUs) under specified thresholds. In single PU scenario, a suboptimal resource allocation algorithm with low complexity is proposed and extended to general case with multiple PUs, resulting an optimal resource allocation algorithm using dual methods.
Author He, Jian
Xu, Changqing
Li, Li
Fan, Pingzhi
Author_xml – sequence: 1
  givenname: Li
  surname: Li
  fullname: Li, Li
  email: Correspondence to: Li Li, Shanghai Jiao Tong University, Electronic Engineering Shanghai, China., wsll320@gmail.com
  organization: Shanghai Jiao Tong University, Electronic Engineering Shanghai, China
– sequence: 2
  givenname: Changqing
  surname: Xu
  fullname: Xu, Changqing
  organization: Shanghai Jiao Tong University, Electronic Engineering Shanghai, China
– sequence: 3
  givenname: Pingzhi
  surname: Fan
  fullname: Fan, Pingzhi
  organization: Southwest Jiao Tong University, Chengdu, Sichuan, China
– sequence: 4
  givenname: Jian
  surname: He
  fullname: He, Jian
  organization: Shanghai Jiao Tong University, Electronic Engineering Shanghai, China
BookMark eNp1kV9vFCEUxYlpE9utiR-BxBdfZoVhGHYem9Vu1U1N_BMfCcNcWioDKzCt--ZHl7FNjY3eF27C75zknnOMDnzwgNBzSpaUkPrVoPSybgh5go4o6bqKUkYP5l00FWecPkXHKV0TQlZ1y4_Qz4-QwhQ1YOVc0Crb4LH1OMR8FS6DVw6bCN8n8HqPB3tj0wyMk8t254pIa0ip6lWCAetw6W22N4CjGmzAaZ8yjAnf2nyFR-vtOI3lK0MhfcpRWZ_TCTo0yiV4dv8u0JezN5_X59X2w-bt-nRbadYJUvFOtKppGWn1yogaGq0HA6yvhTEG-qY3ou87atigYejqnghtRLNqWN8NTJGaLdDLO99dDOWclOVokwbnlIcwJUlbQTkXrMwCvXiEXpeIShSF4py3lPGu-WOoY0gpgpG7aEcV95ISOVchSxVyrqKgy0eotvl31HMI7l-C6k5wax3s_2ssX5-u_-ZtSfzHA6_iN9kKJrj8erGR24t3Z_Xm03vZsF-8g65E
CitedBy_id crossref_primary_10_1002_dac_2443
crossref_primary_10_1002_dac_2668
crossref_primary_10_1002_dac_2755
crossref_primary_10_1002_dac_2523
crossref_primary_10_1002_dac_3321
Cites_doi 10.1109/TSP.2004.840816
10.1109/VETECS.2004.1390598
10.1109/T-WC.2008.07091
10.1002/dac.1272
10.1109/TVT.2010.2042827
10.1109/VETECS.2000.851292
10.1109/49.793310
10.1109/JSAC.2004.839380
10.1109/T-WC.2008.070890
10.1109/TWC.2011.072011.100397
10.1017/CBO9780511804441
10.1109/MCOM.2004.1273768
10.1109/TVT.2011.2126613
10.1049/iet-com:20070358
10.1109/TWC.2009.12.090394
10.1109/98.788210
10.1109/T-WC.2008.071465
10.1109/TCOMM.2006.877962
ContentType Journal Article
Copyright Copyright © 2012 John Wiley & Sons, Ltd.
Copyright © 2014 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2012 John Wiley & Sons, Ltd.
– notice: Copyright © 2014 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7SP
8FD
JQ2
L7M
DOI 10.1002/dac.2400
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
ProQuest Computer Science Collection
DatabaseTitleList CrossRef
Technology Research Database
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1131
EndPage 1159
ExternalDocumentID 3411851391
10_1002_dac_2400
DAC2400
ark_67375_WNG_LNJF2GSK_4
Genre article
GrantInformation_xml – fundername: National Basic Research Program of China (973 Program)
  funderid: 2012CB316100
– fundername: National Natural Science Foundation of China (NSFC)
  funderid: 61071079
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MK~
ML~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SP
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
ID FETCH-LOGICAL-c3970-5976a46306c8f72e4ccdfe3b27fffeb4bf7bb91f3dced92b07cf74843b9d3a023
IEDL.DBID DR2
ISSN 1074-5351
IngestDate Fri Jul 11 16:45:59 EDT 2025
Fri Jul 25 12:24:32 EDT 2025
Tue Jul 01 05:16:11 EDT 2025
Thu Apr 24 23:10:44 EDT 2025
Wed Jan 22 16:51:27 EST 2025
Wed Oct 30 09:56:11 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3970-5976a46306c8f72e4ccdfe3b27fffeb4bf7bb91f3dced92b07cf74843b9d3a023
Notes ArticleID:DAC2400
National Natural Science Foundation of China (NSFC) - No. 61071079
istex:0CC1C06854814A42EDC4F771BE547BDFD2F606AD
National Basic Research Program of China (973 Program) - No. 2012CB316100
ark:/67375/WNG-LNJF2GSK-4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1555613594
PQPubID 996367
PageCount 13
ParticipantIDs proquest_miscellaneous_1671557333
proquest_journals_1555613594
crossref_primary_10_1002_dac_2400
crossref_citationtrail_10_1002_dac_2400
wiley_primary_10_1002_dac_2400_DAC2400
istex_primary_ark_67375_WNG_LNJF2GSK_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2014
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: August 2014
PublicationDecade 2010
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle International journal of communication systems
PublicationTitleAlternate Int. J. Commun. Syst
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Boyd S. Convex Optimization ii. EE364B Course Note. Stanford University: Stanford, USA, 2006.
Wong C, Cheng R, Letaief K, Murch R. Multiuser OFDM with adaptive subcarrier, bit and power allocation. IEEE Journal on Selected Areas in Communications Oct. 1999; 17(10):1747-1758.
Yu W, Lui R. Dual methods for nonconvex spectrum optimization of multicarrier systems. IEEE Transactions on Communications Jul. 2006; 54(7):1310-1322.
Bansal G, Hossian M, Bhargava V. Optimal and suboptimal power allocation schemes for OFDM-based cognitive radio systems. IEEE Transactions on Wireless Communications Nov. 2008; 7(11):4710-4718.
Almalfouh S, Stuber G. Interference-aware radio resource allocation in OFDMA-based cognitive radio networks. IEEE Transactions on Vehicular Technology May. 2011; 60(4):1699-1713.
Bansal G, Hossain M, Bhargava V. Adaptive power loading for OFDM-based cognitive radio systems with statistical interference constraint. IEEE Transactions on Wireless Communications Sep. 2011; 10(9):2786-2791.
Ngo D, Tellambura C, Nguyen H. Resource allocation for OFDMA-based cognitive radio multicast networks with primary user activity consideration. IEEE Transactions on Vehicular Technology May. 2010; 59(4):1668-1679.
Mitola J, Maguire GQ. Cognitive radio: making software radios more personal. IEEE Personal Communications Aug. 1999; 6(4):13-18.
Palomar DP, Fonollasa JR. Practical algorithms for a family of waterfilling solutions. IEEE Transactions on Signal Processing Feb. 2005; 53(2):686-695.
Weiss T, Jondral FK. Spectrum pooling: an innovative strategy for the enhancement of spectrum efficiency. IEEE Communications Magazine Mar. 2004; 42(3):S8-S14.
Wang S, Huang F, Yuan M, Du S. Resource allocation for multiuser cognitive OFDM networks with proportional rate constraints. International Journal of Communication Systems Apr. 2012. DOI: 10.1002.
Cheng P, Zhang Z, Chen H, Qiu P. Optimal distributed joint frequency, rate and power allocation in cognitve OFDMA systems. IET Communications 2008; 2(6):815-826.
Le L, Hossain E. Resource allocation for spectrum underlay in cognitive radio networks. IEEE Transactions on Wireless Communications Dec. 2008; 7(12):5306-5315.
Hasan Z, Bansal G, Hossain E, Bhargava V. Energy-efficient power allocation in OFDM-based cognitive radio systems: a risk-return model. IEEE Transactions on Wireless Communications Dec. 2009; 8(12):6078-6088.
Haykins S. Cognitive radio: brain-empowered wireless communication. IEEE Journal on Selected Areas in Communications Feb. 2005; 23(2):201-220.
Kim D, Le L, Hossain E. Joint rate and power allocation for cognitive radios in dynamic spectrum access environment. IEEE Transactions on Wireless Communications Dec. 2008; 7(12):5517-5527.
Boyd S, Vandenberghe L. Convex Optimization. Cambridge University Press: Cambridge, United Kingdom, 2004.
2004; 42
2010; 59
2012
2006; 54
2011; 60
1999; 17
2004; 4
2008; 7
2005; 53
2011; 10
2009; 8
2006
2000; 2
2004
2008; 2
1999; 6
2005; 23
Weiss T (e_1_2_7_4_1) 2004; 42
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
Boyd S (e_1_2_7_15_1) 2006
e_1_2_7_20_1
References_xml – reference: Weiss T, Jondral FK. Spectrum pooling: an innovative strategy for the enhancement of spectrum efficiency. IEEE Communications Magazine Mar. 2004; 42(3):S8-S14.
– reference: Cheng P, Zhang Z, Chen H, Qiu P. Optimal distributed joint frequency, rate and power allocation in cognitve OFDMA systems. IET Communications 2008; 2(6):815-826.
– reference: Boyd S, Vandenberghe L. Convex Optimization. Cambridge University Press: Cambridge, United Kingdom, 2004.
– reference: Wong C, Cheng R, Letaief K, Murch R. Multiuser OFDM with adaptive subcarrier, bit and power allocation. IEEE Journal on Selected Areas in Communications Oct. 1999; 17(10):1747-1758.
– reference: Bansal G, Hossian M, Bhargava V. Optimal and suboptimal power allocation schemes for OFDM-based cognitive radio systems. IEEE Transactions on Wireless Communications Nov. 2008; 7(11):4710-4718.
– reference: Hasan Z, Bansal G, Hossain E, Bhargava V. Energy-efficient power allocation in OFDM-based cognitive radio systems: a risk-return model. IEEE Transactions on Wireless Communications Dec. 2009; 8(12):6078-6088.
– reference: Almalfouh S, Stuber G. Interference-aware radio resource allocation in OFDMA-based cognitive radio networks. IEEE Transactions on Vehicular Technology May. 2011; 60(4):1699-1713.
– reference: Haykins S. Cognitive radio: brain-empowered wireless communication. IEEE Journal on Selected Areas in Communications Feb. 2005; 23(2):201-220.
– reference: Palomar DP, Fonollasa JR. Practical algorithms for a family of waterfilling solutions. IEEE Transactions on Signal Processing Feb. 2005; 53(2):686-695.
– reference: Mitola J, Maguire GQ. Cognitive radio: making software radios more personal. IEEE Personal Communications Aug. 1999; 6(4):13-18.
– reference: Kim D, Le L, Hossain E. Joint rate and power allocation for cognitive radios in dynamic spectrum access environment. IEEE Transactions on Wireless Communications Dec. 2008; 7(12):5517-5527.
– reference: Wang S, Huang F, Yuan M, Du S. Resource allocation for multiuser cognitive OFDM networks with proportional rate constraints. International Journal of Communication Systems Apr. 2012. DOI: 10.1002.
– reference: Bansal G, Hossain M, Bhargava V. Adaptive power loading for OFDM-based cognitive radio systems with statistical interference constraint. IEEE Transactions on Wireless Communications Sep. 2011; 10(9):2786-2791.
– reference: Boyd S. Convex Optimization ii. EE364B Course Note. Stanford University: Stanford, USA, 2006.
– reference: Le L, Hossain E. Resource allocation for spectrum underlay in cognitive radio networks. IEEE Transactions on Wireless Communications Dec. 2008; 7(12):5306-5315.
– reference: Ngo D, Tellambura C, Nguyen H. Resource allocation for OFDMA-based cognitive radio multicast networks with primary user activity consideration. IEEE Transactions on Vehicular Technology May. 2010; 59(4):1668-1679.
– reference: Yu W, Lui R. Dual methods for nonconvex spectrum optimization of multicarrier systems. IEEE Transactions on Communications Jul. 2006; 54(7):1310-1322.
– volume: 2
  start-page: 1085
  year: 2000
  end-page: 1089
– volume: 4
  start-page: 1873
  year: 2004
  end-page: 1877
– volume: 8
  start-page: 6078
  issue: 12
  year: 2009
  end-page: 6088
  article-title: Energy‐efficient power allocation in OFDM‐based cognitive radio systems: a risk‐return model
  publication-title: IEEE Transactions on Wireless Communications
– volume: 7
  start-page: 5517
  issue: 12
  year: 2008
  end-page: 5527
  article-title: Joint rate and power allocation for cognitive radios in dynamic spectrum access environment
  publication-title: IEEE Transactions on Wireless Communications
– volume: 2
  start-page: 815
  issue: 6
  year: 2008
  end-page: 826
  article-title: Optimal distributed joint frequency, rate and power allocation in cognitve OFDMA systems
  publication-title: IET Communications
– volume: 42
  start-page: S8
  issue: 3
  year: 2004
  end-page: S14
  article-title: Spectrum pooling: an innovative strategy for the enhancement of spectrum efficiency
  publication-title: IEEE Communications Magazine
– volume: 59
  start-page: 1668
  issue: 4
  year: 2010
  end-page: 1679
  article-title: Resource allocation for OFDMA‐based cognitive radio multicast networks with primary user activity consideration
  publication-title: IEEE Transactions on Vehicular Technology
– volume: 60
  start-page: 1699
  issue: 4
  year: 2011
  end-page: 1713
  article-title: Interference‐aware radio resource allocation in OFDMA‐based cognitive radio networks
  publication-title: IEEE Transactions on Vehicular Technology
– volume: 54
  start-page: 1310
  issue: 7
  year: 2006
  end-page: 1322
  article-title: Dual methods for nonconvex spectrum optimization of multicarrier systems
  publication-title: IEEE Transactions on Communications
– year: 2006
– year: 2004
– volume: 7
  start-page: 4710
  issue: 11
  year: 2008
  end-page: 4718
  article-title: Optimal and suboptimal power allocation schemes for OFDM‐based cognitive radio systems
  publication-title: IEEE Transactions on Wireless Communications
– volume: 10
  start-page: 2786
  issue: 9
  year: 2011
  end-page: 2791
  article-title: Adaptive power loading for OFDM‐based cognitive radio systems with statistical interference constraint
  publication-title: IEEE Transactions on Wireless Communications
– volume: 17
  start-page: 1747
  issue: 10
  year: 1999
  end-page: 1758
  article-title: Multiuser OFDM with adaptive subcarrier, bit and power allocation
  publication-title: IEEE Journal on Selected Areas in Communications
– volume: 23
  start-page: 201
  issue: 2
  year: 2005
  end-page: 220
  article-title: Cognitive radio: brain‐empowered wireless communication
  publication-title: IEEE Journal on Selected Areas in Communications
– volume: 6
  start-page: 13
  issue: 4
  year: 1999
  end-page: 18
  article-title: Cognitive radio: making software radios more personal
  publication-title: IEEE Personal Communications
– volume: 53
  start-page: 686
  issue: 2
  year: 2005
  end-page: 695
  article-title: Practical algorithms for a family of waterfilling solutions
  publication-title: IEEE Transactions on Signal Processing
– volume: 7
  start-page: 5306
  issue: 12
  year: 2008
  end-page: 5315
  article-title: Resource allocation for spectrum underlay in cognitive radio networks
  publication-title: IEEE Transactions on Wireless Communications
– year: 2012
  article-title: Resource allocation for multiuser cognitive OFDM networks with proportional rate constraints
  publication-title: International Journal of Communication Systems
– ident: e_1_2_7_20_1
  doi: 10.1109/TSP.2004.840816
– ident: e_1_2_7_5_1
  doi: 10.1109/VETECS.2004.1390598
– ident: e_1_2_7_8_1
  doi: 10.1109/T-WC.2008.07091
– ident: e_1_2_7_11_1
  doi: 10.1002/dac.1272
– ident: e_1_2_7_14_1
  doi: 10.1109/TVT.2010.2042827
– ident: e_1_2_7_18_1
  doi: 10.1109/VETECS.2000.851292
– ident: e_1_2_7_16_1
  doi: 10.1109/49.793310
– ident: e_1_2_7_2_1
  doi: 10.1109/JSAC.2004.839380
– ident: e_1_2_7_6_1
  doi: 10.1109/T-WC.2008.070890
– ident: e_1_2_7_12_1
  doi: 10.1109/TWC.2011.072011.100397
– volume-title: Convex Optimization ii. EE364B Course Note
  year: 2006
  ident: e_1_2_7_15_1
– ident: e_1_2_7_17_1
  doi: 10.1017/CBO9780511804441
– volume: 42
  start-page: S8
  issue: 3
  year: 2004
  ident: e_1_2_7_4_1
  article-title: Spectrum pooling: an innovative strategy for the enhancement of spectrum efficiency
  publication-title: IEEE Communications Magazine
  doi: 10.1109/MCOM.2004.1273768
– ident: e_1_2_7_10_1
  doi: 10.1109/TVT.2011.2126613
– ident: e_1_2_7_9_1
  doi: 10.1049/iet-com:20070358
– ident: e_1_2_7_13_1
  doi: 10.1109/TWC.2009.12.090394
– ident: e_1_2_7_3_1
  doi: 10.1109/98.788210
– ident: e_1_2_7_7_1
  doi: 10.1109/T-WC.2008.071465
– ident: e_1_2_7_19_1
  doi: 10.1109/TCOMM.2006.877962
SSID ssj0008265
Score 2.0148351
Snippet SUMMARYIn this paper, resource allocation problem in orthogonal frequency division multiple access‐based cognitive radio (CR) systems to maintain minimum...
In this paper, resource allocation problem in orthogonal frequency division multiple access‐based cognitive radio (CR) systems to maintain minimum transmission...
SUMMARY In this paper, resource allocation problem in orthogonal frequency division multiple access-based cognitive radio (CR) systems to maintain minimum...
In this paper, resource allocation problem in orthogonal frequency division multiple access-based cognitive radio (CR) systems to maintain minimum transmission...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1147
SubjectTerms Algorithms
Cognitive radio
cognitive radio (CR)
Frequency division
Interference
minimum rate constraints
Optimization
orthogonal frequency division multiple access (OFDMA)
Plutonium
Resource allocation
Thresholds
Title Resource allocation in orthogonal frequency division multiple access-based cognitive radio systems with minimum rate constraints
URI https://api.istex.fr/ark:/67375/WNG-LNJF2GSK-4/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fdac.2400
https://www.proquest.com/docview/1555613594
https://www.proquest.com/docview/1671557333
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFLUQbGBR-kJMS0ceqSqrQCa2E7IcoDMj2s6iFIHUheUnGlEyaB5Sywr1C_qN_ZLeGycBqiKhrrLwjezYvvHxvcfHhLyFRdVy411kTM4iROCREin4leexNpiZE3h2-NMoHZ7wozNxVrEq8SxM0IdoAm7oGeX_Gh1c6dnurWiohfqQAAm_X6RqIR76fKscBahZ1HRDwUS31p2Nk936xXsr0Qp26vd7MPMuWC1Xm_46-Vq3M5BMLnYWc71jrv-ScPy_D3lKnlQglPbCrHlGllzxnKzdkSZ8QX7WcX2KmfkQ16PjgmKaZ3KO8J36aaBh_6B4pgujbrSmJ1JV3sP4--YXrpKWNiQlOlV2PKFBP3pGMQpMUd3kcnFJUbQCLFHSVo2L-ewlOem__3IwjKr7GiIDqCaOYG-SKp7CJsTs-Sxx3BjrHdNJ5r13mmufaZ13PbPG2TzRMUoi8T3OdG6ZAvCwQZaLSeE2CQXX1ZkWAFd0l7u0q1JnE-5ilfDMxVq1yHY9dtJUYubYuG8yyDAnEnpVYq-2SKexvAoCHv-weVcOf2OgphdIeMuEPB0N5MfRUT8ZHH-QvEW26vkhK1-fSUBkuAsTORR3mmLwUky9qMJNFmCTZmCWMcagrnIyPNgYedg7wOerxxq-JquA4nhgJW6R5fl04d4AUprrNlnp7R_u99ulb_wBPfcVNA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V9gAceCMWCrgSglPabGInjThVLdul3e4BWtEDkuUnWrXNVvuQgBPiF_Ab-SXMxOu0RSAhTjl4Iju2J_488_kzwAtcVC033iXGVHlCCDxRokC_8jzVhjJzgs4OHwyL_hHfOxbHS_A6noUJ-hBtwI08o_lfk4NTQHrjQjXUYoXEgLwGK3ShNwnn77y70I5C3Cwi4VDkohuVZ9NsI755ZS1aoW79fAVoXoarzXrTuw0fY0sDzeRkfT7T6-brbyKO__kpd-DWAoeyrTBx7sKSq-_BzUvqhPfhewztM0rOh9AeG9WMMj3jT4TgmZ8EJvYXRse6KPDGIkORqeYqxp_fftBCaVnLU2ITZUdjFiSkp4wCwYwETs7mZ4x0K9CSVG3VqJ5NH8BR783hdj9ZXNmQGAQ2aYLbk0LxAvchZtOXmePGWO9ynZXee6e59qXWVdfn1jhbZTolVSS-yXNd2VwhfngIy_W4do-AoffqUgtELLrLXdFVhbMZd6nKeOlSrTrwKg6eNAs9c2rcqQxKzJnEXpXUqx1Yay3Pg4bHH2xeNuPfGqjJCXHeSiE_DHflYLjXy3bf70vegdU4QeTC3acSQRltxESFxWttMToqZV9U7cZztClKNCvzPMe6mtnw18bIna1tej7-V8PncL1_eDCQg7fD_SdwA0EdDyTFVVieTebuKQKnmX7WOMgvs1kX3g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BKyE48EZsKeBKCE5ps7GdNMeqy7a0ZYWAikocLD_Rqm222ocEnBC_gN_IL2EmTtIWgYQ45eCJ7Nie-PPM588Az3BRdcIGn1hb8oQQeKJljn4VRGosZeYknR1-Pcp3D8XekTxqWJV0FibqQ3QBN_KM-n9NDn7mwsa5aKjD-ogAeRWWRZ6WdG3D4O25dBTCZtnyDSWX_VZ4Ns022jcvLUXL1KufL-HMi2i1Xm6Gt-Bj29DIMjleX8zNuv36m4bj_33JbbjZoFC2FafNHbjiq7tw44I24T343gb2GaXmY2CPjStGeZ7JJ8LvLEwjD_sLo0NdFHZjLT-R6foixp_fftAy6VjHUmJT7cYTFgWkZ4zCwIzkTU4Xp4xUK9CSNG31uJrP7sPh8OX77d2kubAhsQhr0gQ3J7kWOe5C7GYoMi-sdcFzkxUhBG-ECYUxZT9wZ70rM5OSJpLYFNyUjmtEDw9gqZpU_iEw9F1TGIl4xfSFz_s69y4TPtWZKHxqdA9etGOnbKNmTo07UVGHOVPYq4p6tQdrneVZVPD4g83zevg7Az09JsZbIdWH0Y46GO0Ns513-0r0YLWdH6px9plCSEbbMFli8VpXjG5KuRdd-ckCbfICzQrOOdZVT4a_NkYNtrbpufKvhk_h2pvBUB28Gu0_guuI6ERkKK7C0ny68I8RNc3Nk9o9fgFqyBaN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resource+allocation+in+orthogonal+frequency+division+multiple+access-based+cognitive+radio+systems+with+minimum+rate+constraints&rft.jtitle=International+journal+of+communication+systems&rft.au=Li%2C+Li&rft.au=Xu%2C+Changqing&rft.au=Fan%2C+Pingzhi&rft.au=He%2C+Jian&rft.date=2014-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1074-5351&rft.eissn=1099-1131&rft.volume=27&rft.issue=8&rft.spage=1147&rft_id=info:doi/10.1002%2Fdac.2400&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3411851391
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-5351&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-5351&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-5351&client=summon