Resource allocation in orthogonal frequency division multiple access-based cognitive radio systems with minimum rate constraints
SUMMARYIn this paper, resource allocation problem in orthogonal frequency division multiple access‐based cognitive radio (CR) systems to maintain minimum transmission rate constraints of CR users (CRUs) with the specified interference thresholds is investigated. Firstly, a single primary user (PU) C...
Saved in:
Published in | International journal of communication systems Vol. 27; no. 8; pp. 1147 - 1159 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Chichester
Blackwell Publishing Ltd
01.08.2014
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | SUMMARYIn this paper, resource allocation problem in orthogonal frequency division multiple access‐based cognitive radio (CR) systems to maintain minimum transmission rate constraints of CR users (CRUs) with the specified interference thresholds is investigated. Firstly, a single primary user (PU) CR system is considered, and a suboptimal resource allocation algorithm to maximize the sum transmission rate of all CRUs is proposed. Secondly, the single‐PU scenario is extended to multiple‐PU case, and an asymptotically optimal resource allocation algorithm is proposed using dual methods subject to constraints on both interference thresholds of PUs and total transmit power of all CRUs. Analysis and numerical results show that, in contrast to classical resource allocation algorithms, the proposed algorithm can achieve higher transmission rate and guarantee each CRU's minimum transmission rate in both scenarios. Copyright © 2012 John Wiley & Sons, Ltd.
In this paper, resource allocation in cognitive radio systems based on orthogonal frequency division multiple access with minimum rate constraints of cognitive radio users (CRUs) is investigated to maximize the sum transmission rate of all CRUs while limit the interference introduced to primary users (PUs) under specified thresholds. In single PU scenario, a suboptimal resource allocation algorithm with low complexity is proposed and extended to general case with multiple PUs, resulting an optimal resource allocation algorithm using dual methods. |
---|---|
AbstractList | In this paper, resource allocation problem in orthogonal frequency division multiple access‐based cognitive radio (CR) systems to maintain minimum transmission rate constraints of CR users (CRUs) with the specified interference thresholds is investigated. Firstly, a single primary user (PU) CR system is considered, and a suboptimal resource allocation algorithm to maximize the sum transmission rate of all CRUs is proposed. Secondly, the single‐PU scenario is extended to multiple‐PU case, and an asymptotically optimal resource allocation algorithm is proposed using dual methods subject to constraints on both interference thresholds of PUs and total transmit power of all CRUs. Analysis and numerical results show that, in contrast to classical resource allocation algorithms, the proposed algorithm can achieve higher transmission rate and guarantee each CRU's minimum transmission rate in both scenarios. Copyright © 2012 John Wiley & Sons, Ltd. In this paper, resource allocation problem in orthogonal frequency division multiple access-based cognitive radio (CR) systems to maintain minimum transmission rate constraints of CR users (CRUs) with the specified interference thresholds is investigated. Firstly, a single primary user (PU) CR system is considered, and a suboptimal resource allocation algorithm to maximize the sum transmission rate of all CRUs is proposed. Secondly, the single-PU scenario is extended to multiple-PU case, and an asymptotically optimal resource allocation algorithm is proposed using dual methods subject to constraints on both interference thresholds of PUs and total transmit power of all CRUs. Analysis and numerical results show that, in contrast to classical resource allocation algorithms, the proposed algorithm can achieve higher transmission rate and guarantee each CRU's minimum transmission rate in both scenarios. Copyright copyright 2012 John Wiley & Sons, Ltd. In this paper, resource allocation in cognitive radio systems based on orthogonal frequency division multiple access with minimum rate constraints of cognitive radio users (CRUs) is investigated to maximize the sum transmission rate of all CRUs while limit the interference introduced to primary users (PUs) under specified thresholds. In single PU scenario, a suboptimal resource allocation algorithm with low complexity is proposed and extended to general case with multiple PUs, resulting an optimal resource allocation algorithm using dual methods. SUMMARY In this paper, resource allocation problem in orthogonal frequency division multiple access-based cognitive radio (CR) systems to maintain minimum transmission rate constraints of CR users (CRUs) with the specified interference thresholds is investigated. Firstly, a single primary user (PU) CR system is considered, and a suboptimal resource allocation algorithm to maximize the sum transmission rate of all CRUs is proposed. Secondly, the single-PU scenario is extended to multiple-PU case, and an asymptotically optimal resource allocation algorithm is proposed using dual methods subject to constraints on both interference thresholds of PUs and total transmit power of all CRUs. Analysis and numerical results show that, in contrast to classical resource allocation algorithms, the proposed algorithm can achieve higher transmission rate and guarantee each CRU's minimum transmission rate in both scenarios. Copyright © 2012 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT] SUMMARYIn this paper, resource allocation problem in orthogonal frequency division multiple access‐based cognitive radio (CR) systems to maintain minimum transmission rate constraints of CR users (CRUs) with the specified interference thresholds is investigated. Firstly, a single primary user (PU) CR system is considered, and a suboptimal resource allocation algorithm to maximize the sum transmission rate of all CRUs is proposed. Secondly, the single‐PU scenario is extended to multiple‐PU case, and an asymptotically optimal resource allocation algorithm is proposed using dual methods subject to constraints on both interference thresholds of PUs and total transmit power of all CRUs. Analysis and numerical results show that, in contrast to classical resource allocation algorithms, the proposed algorithm can achieve higher transmission rate and guarantee each CRU's minimum transmission rate in both scenarios. Copyright © 2012 John Wiley & Sons, Ltd. In this paper, resource allocation in cognitive radio systems based on orthogonal frequency division multiple access with minimum rate constraints of cognitive radio users (CRUs) is investigated to maximize the sum transmission rate of all CRUs while limit the interference introduced to primary users (PUs) under specified thresholds. In single PU scenario, a suboptimal resource allocation algorithm with low complexity is proposed and extended to general case with multiple PUs, resulting an optimal resource allocation algorithm using dual methods. |
Author | He, Jian Xu, Changqing Li, Li Fan, Pingzhi |
Author_xml | – sequence: 1 givenname: Li surname: Li fullname: Li, Li email: Correspondence to: Li Li, Shanghai Jiao Tong University, Electronic Engineering Shanghai, China., wsll320@gmail.com organization: Shanghai Jiao Tong University, Electronic Engineering Shanghai, China – sequence: 2 givenname: Changqing surname: Xu fullname: Xu, Changqing organization: Shanghai Jiao Tong University, Electronic Engineering Shanghai, China – sequence: 3 givenname: Pingzhi surname: Fan fullname: Fan, Pingzhi organization: Southwest Jiao Tong University, Chengdu, Sichuan, China – sequence: 4 givenname: Jian surname: He fullname: He, Jian organization: Shanghai Jiao Tong University, Electronic Engineering Shanghai, China |
BookMark | eNp1kV9vFCEUxYlpE9utiR-BxBdfZoVhGHYem9Vu1U1N_BMfCcNcWioDKzCt--ZHl7FNjY3eF27C75zknnOMDnzwgNBzSpaUkPrVoPSybgh5go4o6bqKUkYP5l00FWecPkXHKV0TQlZ1y4_Qz4-QwhQ1YOVc0Crb4LH1OMR8FS6DVw6bCN8n8HqPB3tj0wyMk8t254pIa0ip6lWCAetw6W22N4CjGmzAaZ8yjAnf2nyFR-vtOI3lK0MhfcpRWZ_TCTo0yiV4dv8u0JezN5_X59X2w-bt-nRbadYJUvFOtKppGWn1yogaGq0HA6yvhTEG-qY3ou87atigYejqnghtRLNqWN8NTJGaLdDLO99dDOWclOVokwbnlIcwJUlbQTkXrMwCvXiEXpeIShSF4py3lPGu-WOoY0gpgpG7aEcV95ISOVchSxVyrqKgy0eotvl31HMI7l-C6k5wax3s_2ssX5-u_-ZtSfzHA6_iN9kKJrj8erGR24t3Z_Xm03vZsF-8g65E |
CitedBy_id | crossref_primary_10_1002_dac_2443 crossref_primary_10_1002_dac_2668 crossref_primary_10_1002_dac_2755 crossref_primary_10_1002_dac_2523 crossref_primary_10_1002_dac_3321 |
Cites_doi | 10.1109/TSP.2004.840816 10.1109/VETECS.2004.1390598 10.1109/T-WC.2008.07091 10.1002/dac.1272 10.1109/TVT.2010.2042827 10.1109/VETECS.2000.851292 10.1109/49.793310 10.1109/JSAC.2004.839380 10.1109/T-WC.2008.070890 10.1109/TWC.2011.072011.100397 10.1017/CBO9780511804441 10.1109/MCOM.2004.1273768 10.1109/TVT.2011.2126613 10.1049/iet-com:20070358 10.1109/TWC.2009.12.090394 10.1109/98.788210 10.1109/T-WC.2008.071465 10.1109/TCOMM.2006.877962 |
ContentType | Journal Article |
Copyright | Copyright © 2012 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2012 John Wiley & Sons, Ltd. – notice: Copyright © 2014 John Wiley & Sons, Ltd. |
DBID | BSCLL AAYXX CITATION 7SP 8FD JQ2 L7M |
DOI | 10.1002/dac.2400 |
DatabaseName | Istex CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts ProQuest Computer Science Collection |
DatabaseTitleList | CrossRef Technology Research Database Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-1131 |
EndPage | 1159 |
ExternalDocumentID | 3411851391 10_1002_dac_2400 DAC2400 ark_67375_WNG_LNJF2GSK_4 |
Genre | article |
GrantInformation_xml | – fundername: National Basic Research Program of China (973 Program) funderid: 2012CB316100 – fundername: National Natural Science Foundation of China (NSFC) funderid: 61071079 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MK~ ML~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7SP 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L7M |
ID | FETCH-LOGICAL-c3970-5976a46306c8f72e4ccdfe3b27fffeb4bf7bb91f3dced92b07cf74843b9d3a023 |
IEDL.DBID | DR2 |
ISSN | 1074-5351 |
IngestDate | Fri Jul 11 16:45:59 EDT 2025 Fri Jul 25 12:24:32 EDT 2025 Tue Jul 01 05:16:11 EDT 2025 Thu Apr 24 23:10:44 EDT 2025 Wed Jan 22 16:51:27 EST 2025 Wed Oct 30 09:56:11 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3970-5976a46306c8f72e4ccdfe3b27fffeb4bf7bb91f3dced92b07cf74843b9d3a023 |
Notes | ArticleID:DAC2400 National Natural Science Foundation of China (NSFC) - No. 61071079 istex:0CC1C06854814A42EDC4F771BE547BDFD2F606AD National Basic Research Program of China (973 Program) - No. 2012CB316100 ark:/67375/WNG-LNJF2GSK-4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1555613594 |
PQPubID | 996367 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1671557333 proquest_journals_1555613594 crossref_primary_10_1002_dac_2400 crossref_citationtrail_10_1002_dac_2400 wiley_primary_10_1002_dac_2400_DAC2400 istex_primary_ark_67375_WNG_LNJF2GSK_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2014 |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: August 2014 |
PublicationDecade | 2010 |
PublicationPlace | Chichester |
PublicationPlace_xml | – name: Chichester |
PublicationTitle | International journal of communication systems |
PublicationTitleAlternate | Int. J. Commun. Syst |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Boyd S. Convex Optimization ii. EE364B Course Note. Stanford University: Stanford, USA, 2006. Wong C, Cheng R, Letaief K, Murch R. Multiuser OFDM with adaptive subcarrier, bit and power allocation. IEEE Journal on Selected Areas in Communications Oct. 1999; 17(10):1747-1758. Yu W, Lui R. Dual methods for nonconvex spectrum optimization of multicarrier systems. IEEE Transactions on Communications Jul. 2006; 54(7):1310-1322. Bansal G, Hossian M, Bhargava V. Optimal and suboptimal power allocation schemes for OFDM-based cognitive radio systems. IEEE Transactions on Wireless Communications Nov. 2008; 7(11):4710-4718. Almalfouh S, Stuber G. Interference-aware radio resource allocation in OFDMA-based cognitive radio networks. IEEE Transactions on Vehicular Technology May. 2011; 60(4):1699-1713. Bansal G, Hossain M, Bhargava V. Adaptive power loading for OFDM-based cognitive radio systems with statistical interference constraint. IEEE Transactions on Wireless Communications Sep. 2011; 10(9):2786-2791. Ngo D, Tellambura C, Nguyen H. Resource allocation for OFDMA-based cognitive radio multicast networks with primary user activity consideration. IEEE Transactions on Vehicular Technology May. 2010; 59(4):1668-1679. Mitola J, Maguire GQ. Cognitive radio: making software radios more personal. IEEE Personal Communications Aug. 1999; 6(4):13-18. Palomar DP, Fonollasa JR. Practical algorithms for a family of waterfilling solutions. IEEE Transactions on Signal Processing Feb. 2005; 53(2):686-695. Weiss T, Jondral FK. Spectrum pooling: an innovative strategy for the enhancement of spectrum efficiency. IEEE Communications Magazine Mar. 2004; 42(3):S8-S14. Wang S, Huang F, Yuan M, Du S. Resource allocation for multiuser cognitive OFDM networks with proportional rate constraints. International Journal of Communication Systems Apr. 2012. DOI: 10.1002. Cheng P, Zhang Z, Chen H, Qiu P. Optimal distributed joint frequency, rate and power allocation in cognitve OFDMA systems. IET Communications 2008; 2(6):815-826. Le L, Hossain E. Resource allocation for spectrum underlay in cognitive radio networks. IEEE Transactions on Wireless Communications Dec. 2008; 7(12):5306-5315. Hasan Z, Bansal G, Hossain E, Bhargava V. Energy-efficient power allocation in OFDM-based cognitive radio systems: a risk-return model. IEEE Transactions on Wireless Communications Dec. 2009; 8(12):6078-6088. Haykins S. Cognitive radio: brain-empowered wireless communication. IEEE Journal on Selected Areas in Communications Feb. 2005; 23(2):201-220. Kim D, Le L, Hossain E. Joint rate and power allocation for cognitive radios in dynamic spectrum access environment. IEEE Transactions on Wireless Communications Dec. 2008; 7(12):5517-5527. Boyd S, Vandenberghe L. Convex Optimization. Cambridge University Press: Cambridge, United Kingdom, 2004. 2004; 42 2010; 59 2012 2006; 54 2011; 60 1999; 17 2004; 4 2008; 7 2005; 53 2011; 10 2009; 8 2006 2000; 2 2004 2008; 2 1999; 6 2005; 23 Weiss T (e_1_2_7_4_1) 2004; 42 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 Boyd S (e_1_2_7_15_1) 2006 e_1_2_7_20_1 |
References_xml | – reference: Weiss T, Jondral FK. Spectrum pooling: an innovative strategy for the enhancement of spectrum efficiency. IEEE Communications Magazine Mar. 2004; 42(3):S8-S14. – reference: Cheng P, Zhang Z, Chen H, Qiu P. Optimal distributed joint frequency, rate and power allocation in cognitve OFDMA systems. IET Communications 2008; 2(6):815-826. – reference: Boyd S, Vandenberghe L. Convex Optimization. Cambridge University Press: Cambridge, United Kingdom, 2004. – reference: Wong C, Cheng R, Letaief K, Murch R. Multiuser OFDM with adaptive subcarrier, bit and power allocation. IEEE Journal on Selected Areas in Communications Oct. 1999; 17(10):1747-1758. – reference: Bansal G, Hossian M, Bhargava V. Optimal and suboptimal power allocation schemes for OFDM-based cognitive radio systems. IEEE Transactions on Wireless Communications Nov. 2008; 7(11):4710-4718. – reference: Hasan Z, Bansal G, Hossain E, Bhargava V. Energy-efficient power allocation in OFDM-based cognitive radio systems: a risk-return model. IEEE Transactions on Wireless Communications Dec. 2009; 8(12):6078-6088. – reference: Almalfouh S, Stuber G. Interference-aware radio resource allocation in OFDMA-based cognitive radio networks. IEEE Transactions on Vehicular Technology May. 2011; 60(4):1699-1713. – reference: Haykins S. Cognitive radio: brain-empowered wireless communication. IEEE Journal on Selected Areas in Communications Feb. 2005; 23(2):201-220. – reference: Palomar DP, Fonollasa JR. Practical algorithms for a family of waterfilling solutions. IEEE Transactions on Signal Processing Feb. 2005; 53(2):686-695. – reference: Mitola J, Maguire GQ. Cognitive radio: making software radios more personal. IEEE Personal Communications Aug. 1999; 6(4):13-18. – reference: Kim D, Le L, Hossain E. Joint rate and power allocation for cognitive radios in dynamic spectrum access environment. IEEE Transactions on Wireless Communications Dec. 2008; 7(12):5517-5527. – reference: Wang S, Huang F, Yuan M, Du S. Resource allocation for multiuser cognitive OFDM networks with proportional rate constraints. International Journal of Communication Systems Apr. 2012. DOI: 10.1002. – reference: Bansal G, Hossain M, Bhargava V. Adaptive power loading for OFDM-based cognitive radio systems with statistical interference constraint. IEEE Transactions on Wireless Communications Sep. 2011; 10(9):2786-2791. – reference: Boyd S. Convex Optimization ii. EE364B Course Note. Stanford University: Stanford, USA, 2006. – reference: Le L, Hossain E. Resource allocation for spectrum underlay in cognitive radio networks. IEEE Transactions on Wireless Communications Dec. 2008; 7(12):5306-5315. – reference: Ngo D, Tellambura C, Nguyen H. Resource allocation for OFDMA-based cognitive radio multicast networks with primary user activity consideration. IEEE Transactions on Vehicular Technology May. 2010; 59(4):1668-1679. – reference: Yu W, Lui R. Dual methods for nonconvex spectrum optimization of multicarrier systems. IEEE Transactions on Communications Jul. 2006; 54(7):1310-1322. – volume: 2 start-page: 1085 year: 2000 end-page: 1089 – volume: 4 start-page: 1873 year: 2004 end-page: 1877 – volume: 8 start-page: 6078 issue: 12 year: 2009 end-page: 6088 article-title: Energy‐efficient power allocation in OFDM‐based cognitive radio systems: a risk‐return model publication-title: IEEE Transactions on Wireless Communications – volume: 7 start-page: 5517 issue: 12 year: 2008 end-page: 5527 article-title: Joint rate and power allocation for cognitive radios in dynamic spectrum access environment publication-title: IEEE Transactions on Wireless Communications – volume: 2 start-page: 815 issue: 6 year: 2008 end-page: 826 article-title: Optimal distributed joint frequency, rate and power allocation in cognitve OFDMA systems publication-title: IET Communications – volume: 42 start-page: S8 issue: 3 year: 2004 end-page: S14 article-title: Spectrum pooling: an innovative strategy for the enhancement of spectrum efficiency publication-title: IEEE Communications Magazine – volume: 59 start-page: 1668 issue: 4 year: 2010 end-page: 1679 article-title: Resource allocation for OFDMA‐based cognitive radio multicast networks with primary user activity consideration publication-title: IEEE Transactions on Vehicular Technology – volume: 60 start-page: 1699 issue: 4 year: 2011 end-page: 1713 article-title: Interference‐aware radio resource allocation in OFDMA‐based cognitive radio networks publication-title: IEEE Transactions on Vehicular Technology – volume: 54 start-page: 1310 issue: 7 year: 2006 end-page: 1322 article-title: Dual methods for nonconvex spectrum optimization of multicarrier systems publication-title: IEEE Transactions on Communications – year: 2006 – year: 2004 – volume: 7 start-page: 4710 issue: 11 year: 2008 end-page: 4718 article-title: Optimal and suboptimal power allocation schemes for OFDM‐based cognitive radio systems publication-title: IEEE Transactions on Wireless Communications – volume: 10 start-page: 2786 issue: 9 year: 2011 end-page: 2791 article-title: Adaptive power loading for OFDM‐based cognitive radio systems with statistical interference constraint publication-title: IEEE Transactions on Wireless Communications – volume: 17 start-page: 1747 issue: 10 year: 1999 end-page: 1758 article-title: Multiuser OFDM with adaptive subcarrier, bit and power allocation publication-title: IEEE Journal on Selected Areas in Communications – volume: 23 start-page: 201 issue: 2 year: 2005 end-page: 220 article-title: Cognitive radio: brain‐empowered wireless communication publication-title: IEEE Journal on Selected Areas in Communications – volume: 6 start-page: 13 issue: 4 year: 1999 end-page: 18 article-title: Cognitive radio: making software radios more personal publication-title: IEEE Personal Communications – volume: 53 start-page: 686 issue: 2 year: 2005 end-page: 695 article-title: Practical algorithms for a family of waterfilling solutions publication-title: IEEE Transactions on Signal Processing – volume: 7 start-page: 5306 issue: 12 year: 2008 end-page: 5315 article-title: Resource allocation for spectrum underlay in cognitive radio networks publication-title: IEEE Transactions on Wireless Communications – year: 2012 article-title: Resource allocation for multiuser cognitive OFDM networks with proportional rate constraints publication-title: International Journal of Communication Systems – ident: e_1_2_7_20_1 doi: 10.1109/TSP.2004.840816 – ident: e_1_2_7_5_1 doi: 10.1109/VETECS.2004.1390598 – ident: e_1_2_7_8_1 doi: 10.1109/T-WC.2008.07091 – ident: e_1_2_7_11_1 doi: 10.1002/dac.1272 – ident: e_1_2_7_14_1 doi: 10.1109/TVT.2010.2042827 – ident: e_1_2_7_18_1 doi: 10.1109/VETECS.2000.851292 – ident: e_1_2_7_16_1 doi: 10.1109/49.793310 – ident: e_1_2_7_2_1 doi: 10.1109/JSAC.2004.839380 – ident: e_1_2_7_6_1 doi: 10.1109/T-WC.2008.070890 – ident: e_1_2_7_12_1 doi: 10.1109/TWC.2011.072011.100397 – volume-title: Convex Optimization ii. EE364B Course Note year: 2006 ident: e_1_2_7_15_1 – ident: e_1_2_7_17_1 doi: 10.1017/CBO9780511804441 – volume: 42 start-page: S8 issue: 3 year: 2004 ident: e_1_2_7_4_1 article-title: Spectrum pooling: an innovative strategy for the enhancement of spectrum efficiency publication-title: IEEE Communications Magazine doi: 10.1109/MCOM.2004.1273768 – ident: e_1_2_7_10_1 doi: 10.1109/TVT.2011.2126613 – ident: e_1_2_7_9_1 doi: 10.1049/iet-com:20070358 – ident: e_1_2_7_13_1 doi: 10.1109/TWC.2009.12.090394 – ident: e_1_2_7_3_1 doi: 10.1109/98.788210 – ident: e_1_2_7_7_1 doi: 10.1109/T-WC.2008.071465 – ident: e_1_2_7_19_1 doi: 10.1109/TCOMM.2006.877962 |
SSID | ssj0008265 |
Score | 2.0148351 |
Snippet | SUMMARYIn this paper, resource allocation problem in orthogonal frequency division multiple access‐based cognitive radio (CR) systems to maintain minimum... In this paper, resource allocation problem in orthogonal frequency division multiple access‐based cognitive radio (CR) systems to maintain minimum transmission... SUMMARY In this paper, resource allocation problem in orthogonal frequency division multiple access-based cognitive radio (CR) systems to maintain minimum... In this paper, resource allocation problem in orthogonal frequency division multiple access-based cognitive radio (CR) systems to maintain minimum transmission... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1147 |
SubjectTerms | Algorithms Cognitive radio cognitive radio (CR) Frequency division Interference minimum rate constraints Optimization orthogonal frequency division multiple access (OFDMA) Plutonium Resource allocation Thresholds |
Title | Resource allocation in orthogonal frequency division multiple access-based cognitive radio systems with minimum rate constraints |
URI | https://api.istex.fr/ark:/67375/WNG-LNJF2GSK-4/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fdac.2400 https://www.proquest.com/docview/1555613594 https://www.proquest.com/docview/1671557333 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFLUQbGBR-kJMS0ceqSqrQCa2E7IcoDMj2s6iFIHUheUnGlEyaB5Sywr1C_qN_ZLeGycBqiKhrrLwjezYvvHxvcfHhLyFRdVy411kTM4iROCREin4leexNpiZE3h2-NMoHZ7wozNxVrEq8SxM0IdoAm7oGeX_Gh1c6dnurWiohfqQAAm_X6RqIR76fKscBahZ1HRDwUS31p2Nk936xXsr0Qp26vd7MPMuWC1Xm_46-Vq3M5BMLnYWc71jrv-ScPy_D3lKnlQglPbCrHlGllzxnKzdkSZ8QX7WcX2KmfkQ16PjgmKaZ3KO8J36aaBh_6B4pgujbrSmJ1JV3sP4--YXrpKWNiQlOlV2PKFBP3pGMQpMUd3kcnFJUbQCLFHSVo2L-ewlOem__3IwjKr7GiIDqCaOYG-SKp7CJsTs-Sxx3BjrHdNJ5r13mmufaZ13PbPG2TzRMUoi8T3OdG6ZAvCwQZaLSeE2CQXX1ZkWAFd0l7u0q1JnE-5ilfDMxVq1yHY9dtJUYubYuG8yyDAnEnpVYq-2SKexvAoCHv-weVcOf2OgphdIeMuEPB0N5MfRUT8ZHH-QvEW26vkhK1-fSUBkuAsTORR3mmLwUky9qMJNFmCTZmCWMcagrnIyPNgYedg7wOerxxq-JquA4nhgJW6R5fl04d4AUprrNlnp7R_u99ulb_wBPfcVNA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V9gAceCMWCrgSglPabGInjThVLdul3e4BWtEDkuUnWrXNVvuQgBPiF_Ab-SXMxOu0RSAhTjl4Iju2J_488_kzwAtcVC033iXGVHlCCDxRokC_8jzVhjJzgs4OHwyL_hHfOxbHS_A6noUJ-hBtwI08o_lfk4NTQHrjQjXUYoXEgLwGK3ShNwnn77y70I5C3Cwi4VDkohuVZ9NsI755ZS1aoW79fAVoXoarzXrTuw0fY0sDzeRkfT7T6-brbyKO__kpd-DWAoeyrTBx7sKSq-_BzUvqhPfhewztM0rOh9AeG9WMMj3jT4TgmZ8EJvYXRse6KPDGIkORqeYqxp_fftBCaVnLU2ITZUdjFiSkp4wCwYwETs7mZ4x0K9CSVG3VqJ5NH8BR783hdj9ZXNmQGAQ2aYLbk0LxAvchZtOXmePGWO9ynZXee6e59qXWVdfn1jhbZTolVSS-yXNd2VwhfngIy_W4do-AoffqUgtELLrLXdFVhbMZd6nKeOlSrTrwKg6eNAs9c2rcqQxKzJnEXpXUqx1Yay3Pg4bHH2xeNuPfGqjJCXHeSiE_DHflYLjXy3bf70vegdU4QeTC3acSQRltxESFxWttMToqZV9U7cZztClKNCvzPMe6mtnw18bIna1tej7-V8PncL1_eDCQg7fD_SdwA0EdDyTFVVieTebuKQKnmX7WOMgvs1kX3g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BKyE48EZsKeBKCE5ps7GdNMeqy7a0ZYWAikocLD_Rqm222ocEnBC_gN_IL2EmTtIWgYQ45eCJ7Nie-PPM588Az3BRdcIGn1hb8oQQeKJljn4VRGosZeYknR1-Pcp3D8XekTxqWJV0FibqQ3QBN_KM-n9NDn7mwsa5aKjD-ogAeRWWRZ6WdG3D4O25dBTCZtnyDSWX_VZ4Ns022jcvLUXL1KufL-HMi2i1Xm6Gt-Bj29DIMjleX8zNuv36m4bj_33JbbjZoFC2FafNHbjiq7tw44I24T343gb2GaXmY2CPjStGeZ7JJ8LvLEwjD_sLo0NdFHZjLT-R6foixp_fftAy6VjHUmJT7cYTFgWkZ4zCwIzkTU4Xp4xUK9CSNG31uJrP7sPh8OX77d2kubAhsQhr0gQ3J7kWOe5C7GYoMi-sdcFzkxUhBG-ECYUxZT9wZ70rM5OSJpLYFNyUjmtEDw9gqZpU_iEw9F1TGIl4xfSFz_s69y4TPtWZKHxqdA9etGOnbKNmTo07UVGHOVPYq4p6tQdrneVZVPD4g83zevg7Az09JsZbIdWH0Y46GO0Ns513-0r0YLWdH6px9plCSEbbMFli8VpXjG5KuRdd-ckCbfICzQrOOdZVT4a_NkYNtrbpufKvhk_h2pvBUB28Gu0_guuI6ERkKK7C0ny68I8RNc3Nk9o9fgFqyBaN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resource+allocation+in+orthogonal+frequency+division+multiple+access-based+cognitive+radio+systems+with+minimum+rate+constraints&rft.jtitle=International+journal+of+communication+systems&rft.au=Li%2C+Li&rft.au=Xu%2C+Changqing&rft.au=Fan%2C+Pingzhi&rft.au=He%2C+Jian&rft.date=2014-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1074-5351&rft.eissn=1099-1131&rft.volume=27&rft.issue=8&rft.spage=1147&rft_id=info:doi/10.1002%2Fdac.2400&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3411851391 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-5351&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-5351&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-5351&client=summon |