A law of the iterated logarithm for the product limit estimator with doubly censored data

We establish the law of the iterated logarithm for the product limit estimator, when the data are subject to double censoring. This investigation extends the results available for the model for singly censored data.

Saved in:
Bibliographic Details
Published inStatistics & probability letters Vol. 81; no. 8; pp. 1241 - 1244
Main Authors Messaci, Fatiha, Nemouchi, Nahima
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.08.2011
Elsevier
SeriesStatistics & Probability Letters
Subjects
Online AccessGet full text
ISSN0167-7152
1879-2103
DOI10.1016/j.spl.2011.03.023

Cover

Abstract We establish the law of the iterated logarithm for the product limit estimator, when the data are subject to double censoring. This investigation extends the results available for the model for singly censored data.
AbstractList We establish the law of the iterated logarithm for the product limit estimator, when the data are subject to double censoring. This investigation extends the results available for the model for singly censored data.
Author Messaci, Fatiha
Nemouchi, Nahima
Author_xml – sequence: 1
  givenname: Fatiha
  surname: Messaci
  fullname: Messaci, Fatiha
  email: f_messaci@yahoo.fr
– sequence: 2
  givenname: Nahima
  surname: Nemouchi
  fullname: Nemouchi, Nahima
  email: nemouchi_nahima@yahoo.fr
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24275418$$DView record in Pascal Francis
http://econpapers.repec.org/article/eeestapro/v_3a81_3ay_3a2011_3ai_3a8_3ap_3a1241-1244.htm$$DView record in RePEc
BookMark eNp9Ubtu3DAQJAIHyNnJB6Rjk1IKXxIlpDKMvIAD0iRFKmKPWuZ40IkCSdu4v8-eL3CRwsXsAtyZ4WD3ml0taUHG3kvRSiH7j4e2rHOrhJSt0K1Q-hXbyMGOjZJCX7ENcWxjZafesOtSDkII1XVyw37f8hkeeQq87pHHihkqTnxOfyDHuj_ykPLTaM1puveVz_EYK8dS4xEqzR6Jxad0v5tP3ONSUib5BBXestcB5oLv_vUb9uvL559335rtj6_f7263jddjX5sQjAoUFEZKagAtDL4DFexod50ZeqHEaEar-0EZ73c9qNGozlo0uvM7afUN2158M67o3ZopWD45RMoIlNo9OA2DpHIinDdELZ7fCCtBKiMdFeP29Uh2Hy52KxQPc8iw-FiebZVRtjNyIJ688HxOpWQMzxQp3Pkk7uDoJO7pQ6EdnYQ09j-NjxVqTEvNEOcXlZ8uSqRNPkTMrviIi8cpZvTVTSm-oP4LS2qm7g
CODEN SPLTDC
CitedBy_id crossref_primary_10_1016_j_spl_2021_109185
crossref_primary_10_1007_s00362_021_01240_5
crossref_primary_10_1080_03610926_2017_1337143
crossref_primary_10_1080_03610926_2025_2450027
crossref_primary_10_1080_03610926_2025_2458206
crossref_primary_10_1016_j_spl_2014_10_005
crossref_primary_10_1007_s12044_023_00752_4
crossref_primary_10_1016_j_spl_2012_06_026
crossref_primary_10_3103_S1066530719040045
Cites_doi 10.1214/009053606000000065
10.2140/pjm.1961.11.649
10.1007/BF00531975
10.1080/01621459.1974.10480146
10.1080/03610929108830533
ContentType Journal Article
Copyright 2011 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DKI
X2L
DOI 10.1016/j.spl.2011.03.023
DatabaseName CrossRef
Pascal-Francis
RePEc IDEAS
RePEc
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1879-2103
EndPage 1244
ExternalDocumentID eeestapro_v_3a81_3ay_3a2011_3ai_3a8_3ap_3a1241_1244_htm
24275418
10_1016_j_spl_2011_03_023
S0167715211001064
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1OL
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYJJ
ABAOU
ABEHJ
ABFNM
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HMJ
HVGLF
HX~
HZ~
H~9
IHE
J1W
KOM
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SSW
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
AALMO
ABPIF
ABPTK
DKI
X2L
ID FETCH-LOGICAL-c396t-ff42f879a92104ae7a8c5a2f797b5486020949736824ccb6a2942577e435cb173
IEDL.DBID AIKHN
ISSN 0167-7152
IngestDate Wed Jun 07 13:48:24 EDT 2023
Mon Jul 21 09:18:14 EDT 2025
Tue Jul 01 03:35:49 EDT 2025
Thu Apr 24 22:52:25 EDT 2025
Fri Feb 23 02:34:52 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Double censoring
Product limit estimator
Law of the iterated logarithm
Censored data
Statistical method
Limit product estimator
Probability theory
Censored sample
Law of iterated logarithm
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-ff42f879a92104ae7a8c5a2f797b5486020949736824ccb6a2942577e435cb173
PageCount 4
ParticipantIDs repec_primary_eeestapro_v_3a81_3ay_3a2011_3ai_3a8_3ap_3a1241_1244_htm
pascalfrancis_primary_24275418
crossref_primary_10_1016_j_spl_2011_03_023
crossref_citationtrail_10_1016_j_spl_2011_03_023
elsevier_sciencedirect_doi_10_1016_j_spl_2011_03_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-08-01
PublicationDateYYYYMMDD 2011-08-01
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationSeriesTitle Statistics & Probability Letters
PublicationTitle Statistics & probability letters
PublicationYear 2011
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Kiefer (br000010) 1961; 11
Patilea, Rolin (br000020) 2006; 34
Földes, Rejtő (br000005) 1981; 56
Morales, Pardo, Quesada (br000015) 1991; 20
Turnbull (br000025) 1974; 69
Morales (10.1016/j.spl.2011.03.023_br000015) 1991; 20
Kiefer (10.1016/j.spl.2011.03.023_br000010) 1961; 11
Turnbull (10.1016/j.spl.2011.03.023_br000025) 1974; 69
Földes (10.1016/j.spl.2011.03.023_br000005) 1981; 56
Patilea (10.1016/j.spl.2011.03.023_br000020) 2006; 34
References_xml – volume: 11
  start-page: 649
  year: 1961
  end-page: 660
  ident: br000010
  article-title: On large deviations of the empiric d.f. of vector chance variables and a law of the iterated logarithm
  publication-title: Pacific J. Math.
– volume: 20
  start-page: 831
  year: 1991
  end-page: 850
  ident: br000015
  article-title: Bayesian survival estimation for incomplete data when the life distribution is proportionally related to the censoring time distribution
  publication-title: Comm. Statist. Theory Methods.
– volume: 69
  start-page: 169
  year: 1974
  end-page: 173
  ident: br000025
  article-title: Nonparametric estimation of a survivorship function with doubly censored data
  publication-title: J. Amer. Statist. Assoc.
– volume: 34
  start-page: 925
  year: 2006
  end-page: 938
  ident: br000020
  article-title: Product-limit estimators of the survival function with twice censored data
  publication-title: Ann. Statist.
– volume: 56
  start-page: 75
  year: 1981
  end-page: 86
  ident: br000005
  article-title: A LIL type result for the product limit estimator
  publication-title: Z. Wahrscheinlichkeitstheorie verw. Gebiete
– volume: 34
  start-page: 925
  issue: 2
  year: 2006
  ident: 10.1016/j.spl.2011.03.023_br000020
  article-title: Product-limit estimators of the survival function with twice censored data
  publication-title: Ann. Statist.
  doi: 10.1214/009053606000000065
– volume: 11
  start-page: 649
  year: 1961
  ident: 10.1016/j.spl.2011.03.023_br000010
  article-title: On large deviations of the empiric d.f. of vector chance variables and a law of the iterated logarithm
  publication-title: Pacific J. Math.
  doi: 10.2140/pjm.1961.11.649
– volume: 56
  start-page: 75
  year: 1981
  ident: 10.1016/j.spl.2011.03.023_br000005
  article-title: A LIL type result for the product limit estimator
  publication-title: Z. Wahrscheinlichkeitstheorie verw. Gebiete
  doi: 10.1007/BF00531975
– volume: 69
  start-page: 169
  year: 1974
  ident: 10.1016/j.spl.2011.03.023_br000025
  article-title: Nonparametric estimation of a survivorship function with doubly censored data
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1974.10480146
– volume: 20
  start-page: 831
  year: 1991
  ident: 10.1016/j.spl.2011.03.023_br000015
  article-title: Bayesian survival estimation for incomplete data when the life distribution is proportionally related to the censoring time distribution
  publication-title: Comm. Statist. Theory Methods.
  doi: 10.1080/03610929108830533
SSID ssj0002551
Score 1.9558587
Snippet We establish the law of the iterated logarithm for the product limit estimator, when the data are subject to double censoring. This investigation extends the...
SourceID repec
pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 1241
SubjectTerms Double censoring
Exact sciences and technology
General topics
Law of the iterated logarithm
Law of the iterated logarithm Product limit estimator Double censoring
Mathematics
Nonparametric inference
Probability and statistics
Probability theory and stochastic processes
Product limit estimator
Sciences and techniques of general use
Statistics
Title A law of the iterated logarithm for the product limit estimator with doubly censored data
URI https://dx.doi.org/10.1016/j.spl.2011.03.023
http://econpapers.repec.org/article/eeestapro/v_3a81_3ay_3a2011_3ai_3a8_3ap_3a1241-1244.htm
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH_aussQQjBAlI_KB05IWePYiZ1jNTZ1VNsBmBgny3ZsrShtozYD7cLfznO-xA7swMGJZOc51rPz_HvO888A7zPuZZb7NCq4LyJuHY8Mtyay2jHHbWISGfYOX1xm8yv-6Tq93oOTfi9MCKvsbH9r0xtr3eVMO21Oq-Vy-iUE0Isw_dDGseH7cJCwPEtHcDA7X8wvB4OMqJn2FN9BoP-52YR57aqyI_Jkx3HC_jU9Pa70DpXm29MuEMluXeXsX1PR2VN40mFIMmub-Qz23PoIHl0MBKy7IzgMILLlYH4O32ek1L_IxhN8grQ8yq4gaPXQUa5vVgSBa1NUtfSvpAy7nkjg31gFn5yExVpSbG5NeUcs-r2bLYqH2NIXcHV2-vVkHnVHKkQWVVNH3vPES5HrHF09rp3Q0qY68SIXJm3Oo0J3Lxcskwm31mQ6ycNHLRyiKmuoYC9htN6s3SsgrtBUmpihbMEz402qtZGhEvRouI7HEPeaVLbjGw_HXpSqDyz7oVD5KihfxUyh8sfwYRCpWrKNhx7mffeoeyNG4WTwkNjkXlcOL0KsIlJO5RhOm74dCpxDfWvsAfVTMS0pXu4wNXUyvQx5mCpMiJWoCoBJ3dSr1__Xvjdw2C9bx_QtjOrtrXuHuKc2E9g__k0n3egO98XnbwvM_bg4_wNLjQOa
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcqAIISgglkfxgRNSuknsxM6xqlot0O2FViony3ZsdavsbrSbUvXS385MHgs90AMH52B7HGvsjL9xxp8BPuciqLwIWVSKUEbCeRFZ4WzkjOdeuNSmis4OT0_zybn4dpFdbMHhcBaGwip729_Z9NZa9znjXpvjejYb_6AAeknLT9I6NuIRPBYZlxTXt3_3J84DMXMyEHxT9eHXZhvkta6rnsaT78cp_9fi9Kw2a1RZ6O66QBy78rV3fy1Exy_geY8g2UHXyZew5Re78HS6oV9d78IOQciOgfkV_Dxglblhy8CwButYlH3J0Oahm9xczhnC1rao7shfWUVnnhixb8zJI2e0VcvK5bWtbplDr3e5QnGKLH0N58dHZ4eTqL9QIXK8yJsoBJEGJQtToKMnjJdGucykQRbSZu1tVOjsFZLnKhXO2dykBX3S0iOmcjaR_A1sL5YL_xaYL02ibMxRthS5DTYzxipqBP0ZYeIRxIMmtevZxunSi0oPYWVXGpWvSfk65hqVP4IvG5G6o9p4qLIYhkffmy8al4KHxPbuDeXmRYhUZCYSNYKjdmw3Bd6jvg2OgP6luVEJPm4xtW1yM6M8TDUmREqJJrikL5v5u__r3yd4MjmbnuiTr6ff38POsIEdJx9gu1ld-4-IgBq7187w31aPAck
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+law+of+the+iterated+logarithm+for+the+product+limit+estimator+with+doubly+censored+data&rft.jtitle=Statistics+%26+probability+letters&rft.au=Messaci%2C+Fatiha&rft.au=Nemouchi%2C+Nahima&rft.date=2011-08-01&rft.issn=0167-7152&rft.volume=81&rft.issue=8&rft.spage=1241&rft.epage=1244&rft_id=info:doi/10.1016%2Fj.spl.2011.03.023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_spl_2011_03_023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7152&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7152&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7152&client=summon