Which functional responses preclude extinction in ecological population-dynamic models?

•Certain combinations of functional responses ensure coexistence in ecological models.•We show which functional responses lead to these “structural coexistence” models.•Mixed models, where some populations always coexist, whilst others admit extinction.•Structural coexistence has application in biog...

Full description

Saved in:
Bibliographic Details
Published inEcological complexity Vol. 26; pp. 57 - 67
Main Authors Bates, Michael L., Cropp, Roger A., Hawker, Darryl W., Norbury, John
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2016
Subjects
Online AccessGet full text
ISSN1476-945X
DOI10.1016/j.ecocom.2016.03.003

Cover

Loading…
Abstract •Certain combinations of functional responses ensure coexistence in ecological models.•We show which functional responses lead to these “structural coexistence” models.•Mixed models, where some populations always coexist, whilst others admit extinction.•Structural coexistence has application in biogeochemical and fisheries models. The growth and loss terms of interacting populations, called functional responses, are known to have a significant impact on the extinction dynamics of ecological models. We are able to construct models that preclude extinction for any parameter value, simply through the use of particular combinations of functional responses. These structural coexistence (SC) models have functional responses where the per capita growth terms remain positive (non-vanishing), while the per capita loss terms tend to zero (vanishing) as the relevant population tends to zero. Any of the commonly used functional responses, such as Holling Types I, II, and III, lead to non-vanishing growth terms for nutrient uptake, while any type of nonlinearity such as Ivlev or density dependent mortality of the population leads to vanishing loss terms. In order for herbivore/carnivore feeding terms to simultaneously be a vanishing loss term for the prey and a non-vanishing growth term for the predator, the exponent on the predator population must be exactly one, whilst the exponent on the prey population must be greater than one (such as a Holling Type III response). Any SC system with at least one autotroph and (possibly many) heterotrophs will always possess an internal equilibrium point. We show that the inclusion of linear mortality terms are, however, sufficient to restore the possibility of population extinctions. This allows for the formulation of ‘mixed’ systems, where some populations are guaranteed to coexist, whilst others are subject to the possibility of extinction. SC models have use in studies of, for example, biogeochemical cycling or the plankton base of fisheries models, where extinction is not desirable or relevant.
AbstractList The growth and loss terms of interacting populations, called functional responses, are known to have a significant impact on the extinction dynamics of ecological models. We are able to construct models that preclude extinction for any parameter value, simply through the use of particular combinations of functional responses. These structural coexistence (SC) models have functional responses where the per capita growth terms remain positive (non-vanishing), while the per capita loss terms tend to zero (vanishing) as the relevant population tends to zero. Any of the commonly used functional responses, such as Holling Types I, II, and III, lead to non-vanishing growth terms for nutrient uptake, while any type of nonlinearity such as Ivlev or density dependent mortality of the population leads to vanishing loss terms. In order for herbivore/carnivore feeding terms to simultaneously be a vanishing loss term for the prey and a non-vanishing growth term for the predator, the exponent on the predator population must be exactly one, whilst the exponent on the prey population must be greater than one (such as a Holling Type III response). Any SC system with at least one autotroph and (possibly many) heterotrophs will always possess an internal equilibrium point. We show that the inclusion of linear mortality terms are, however, sufficient to restore the possibility of population extinctions. This allows for the formulation of ‘mixed’ systems, where some populations are guaranteed to coexist, whilst others are subject to the possibility of extinction. SC models have use in studies of, for example, biogeochemical cycling or the plankton base of fisheries models, where extinction is not desirable or relevant.
The growth and loss terms of interacting populations, called functional responses, are known to have a significant impact on the extinction dynamics of ecological models. We are able to construct models that preclude extinction for any parameter value, simply through the use of particular combinations of functional responses. These structural coexistence (SC) models have functional responses where the per capita growth terms remain positive (non-vanishing), while the per capita loss terms tend to zero (vanishing) as the relevant population tends to zero. Any of the commonly used functional responses, such as Holling Types I, II, and III, lead to non-vanishing growth terms for nutrient uptake, while any type of nonlinearity such as Ivlev or density dependent mortality of the population leads to vanishing loss terms. In order for herbivore/carnivore feeding terms to simultaneously be a vanishing loss term for the prey and a non-vanishing growth term for the predator, the exponent on the predator population must be exactly one, whilst the exponent on the prey population must be greater than one (such as a Holling Type III response). Any SC system with at least one autotroph and (possibly many) heterotrophs will always possess an internal equilibrium point. We show that the inclusion of linear mortality terms are, however, sufficient to restore the possibility of population extinctions. This allows for the formulation of 'mixed' systems, where some populations are guaranteed to coexist, whilst others are subject to the possibility of extinction. SC models have use in studies of, for example, biogeochemical cycling or the plankton base of fisheries models, where extinction is not desirable or relevant.
•Certain combinations of functional responses ensure coexistence in ecological models.•We show which functional responses lead to these “structural coexistence” models.•Mixed models, where some populations always coexist, whilst others admit extinction.•Structural coexistence has application in biogeochemical and fisheries models. The growth and loss terms of interacting populations, called functional responses, are known to have a significant impact on the extinction dynamics of ecological models. We are able to construct models that preclude extinction for any parameter value, simply through the use of particular combinations of functional responses. These structural coexistence (SC) models have functional responses where the per capita growth terms remain positive (non-vanishing), while the per capita loss terms tend to zero (vanishing) as the relevant population tends to zero. Any of the commonly used functional responses, such as Holling Types I, II, and III, lead to non-vanishing growth terms for nutrient uptake, while any type of nonlinearity such as Ivlev or density dependent mortality of the population leads to vanishing loss terms. In order for herbivore/carnivore feeding terms to simultaneously be a vanishing loss term for the prey and a non-vanishing growth term for the predator, the exponent on the predator population must be exactly one, whilst the exponent on the prey population must be greater than one (such as a Holling Type III response). Any SC system with at least one autotroph and (possibly many) heterotrophs will always possess an internal equilibrium point. We show that the inclusion of linear mortality terms are, however, sufficient to restore the possibility of population extinctions. This allows for the formulation of ‘mixed’ systems, where some populations are guaranteed to coexist, whilst others are subject to the possibility of extinction. SC models have use in studies of, for example, biogeochemical cycling or the plankton base of fisheries models, where extinction is not desirable or relevant.
Author Bates, Michael L.
Hawker, Darryl W.
Norbury, John
Cropp, Roger A.
Author_xml – sequence: 1
  givenname: Michael L.
  orcidid: 0000-0002-3729-1417
  surname: Bates
  fullname: Bates, Michael L.
  email: m.bates@griffith.edu.au
  organization: Griffith School of Environment, Griffith University, 170 Kessels Rd., Nathan, QLD 4111, Australia
– sequence: 2
  givenname: Roger A.
  surname: Cropp
  fullname: Cropp, Roger A.
  organization: Griffith School of Environment, Griffith University, 170 Kessels Rd., Nathan, QLD 4111, Australia
– sequence: 3
  givenname: Darryl W.
  surname: Hawker
  fullname: Hawker, Darryl W.
  organization: Griffith School of Environment, Griffith University, 170 Kessels Rd., Nathan, QLD 4111, Australia
– sequence: 4
  givenname: John
  surname: Norbury
  fullname: Norbury, John
  organization: Mathematical Institute, University of Oxford, Andrew Wiles Building, ROQ, Woodstock Road, Oxford OX2 6GG, UK
BookMark eNqNkT1v1zAQhz0UqS_0GyCRkSXBjpPYYQChqlCkSgy0ajfLL-fWfzl2sJOKfnscwsQATJZ9z-9O9_gUHYUYAKFXBDcEk-HtoQEddZyattwaTBuM6RE6IR0b6rHr74_Rac6H8sgJ607Q3d2j04-VXYNeXAzSVwnyHEOGXM0JtF8NVPBjcXu9cqEq_X18cLqwc5xXL7dCbZ6DnJyupmjA5w8v0QsrfYbz3-cZuv10eXNxVV9__fzl4uN1rek4LLWFfjAcmOl7qrQeJFGYaatpx7FqsR3bHnprGOuM3Ag1SMWVwsQq1XHd0zP0Zu87p_h9hbyIyWUN3ssAcc2ClDU5peP4PyjmrGWM44K-21GdYs4JrNBu-bXnkqTzgmCxyRYHscsWm2yBqSheS7j7IzwnN8n0_K_Y6z1mZRTyIbksbr9tAMaE93hsC_F-J4pgeHKQRNYOggbjyk8twkT39xE_AejBqyI
CitedBy_id crossref_primary_10_3389_fmicb_2021_690200
crossref_primary_10_1016_j_seares_2017_05_003
crossref_primary_10_3389_fmars_2021_638892
crossref_primary_10_1016_j_jmarsys_2019_05_001
crossref_primary_10_3390_su11113029
crossref_primary_10_1016_j_cnsns_2022_106910
crossref_primary_10_1016_j_matcom_2019_02_006
crossref_primary_10_1002_mma_6098
crossref_primary_10_1016_j_jmarsys_2017_02_005
Cites_doi 10.1016/j.jtbi.2011.10.028
10.1016/j.ecolmodel.2013.04.006
10.1086/283553
10.1093/plankt/fbp042
10.1093/icesjms/fst049
10.1016/j.jtbi.2013.02.003
10.5194/bg-10-6833-2013
10.1016/j.dsr2.2003.07.001
10.1086/282171
10.1016/j.jtbi.2010.04.016
10.1016/j.jtbi.2009.01.018
10.1016/j.jmarsys.2014.12.002
10.1016/S0079-6611(03)00109-5
10.1016/j.jmarsys.2009.12.015
10.1007/s10021-011-9503-1
10.1016/j.jmarsys.2012.08.005
10.1086/285658
10.1006/bulm.1998.0082
10.1093/plankt/fbi076
10.1093/plankt/14.1.157
10.1016/j.pocean.2010.06.003
10.1371/journal.pone.0074586
10.1016/j.dsr2.2006.01.025
10.5194/bg-10-1835-2013
10.1016/j.jtbi.2010.11.043
10.1126/science.285.5432.1396
10.1080/02681119608806231
10.3354/meps253001
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID FBQ
AAYXX
CITATION
7SN
C1K
7S9
L.6
DOI 10.1016/j.ecocom.2016.03.003
DatabaseName AGRIS
CrossRef
Ecology Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Ecology Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Ecology Abstracts
AGRICOLA

Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EndPage 67
ExternalDocumentID 10_1016_j_ecocom_2016_03_003
US201600185092
S1476945X16300186
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABFYP
ABGRD
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPCBC
SSA
SSJ
SSZ
T5K
UNMZH
~G-
ABPIF
FBQ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SN
C1K
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c396t-fe56d8e7d553bcc6a1b07cfc3480b20f925e5fd774da53bcb6ab8bb01fbb48c53
IEDL.DBID AIKHN
ISSN 1476-945X
IngestDate Fri Sep 05 11:06:38 EDT 2025
Fri Sep 05 08:56:38 EDT 2025
Tue Jul 01 04:15:10 EDT 2025
Thu Apr 24 22:54:38 EDT 2025
Wed Dec 27 19:18:40 EST 2023
Fri Feb 23 02:29:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Modelling
Competitive exclusion
Plankton
Structural coexistence
Species extinction
Mortality
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-fe56d8e7d553bcc6a1b07cfc3480b20f925e5fd774da53bcb6ab8bb01fbb48c53
Notes http://dx.doi.org/10.1016/j.ecocom.2016.03.003
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3729-1417
PQID 1808727780
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_1817833995
proquest_miscellaneous_1808727780
crossref_citationtrail_10_1016_j_ecocom_2016_03_003
crossref_primary_10_1016_j_ecocom_2016_03_003
fao_agris_US201600185092
elsevier_sciencedirect_doi_10_1016_j_ecocom_2016_03_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-06-01
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Ecological complexity
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References van Leeuwen, Brännström, Jansen, Dieckmann, Rossberg (bib0165) 2013; 328
Micheli (bib0115) 1999; 285
Smith, Thieme (bib0150) 2011
Haydon (bib0090) 1994; 411
Fulton, Smith, Johnson (bib0065) 2003; 253
Edwards, Brindley (bib0055) 1996; 11
Anderson (bib0010) 2010; 81
Riebesell, Czerny, von Bröckel, Boxhammer, Büdenbender, Deckelnick, Fischer, Hoffmann, Krug, Lentz, Ludwig, Muche, Schulz (bib0140) 2013; 10
Bates, Bengtson Nash, Hawker, Norbury, Stark, Cropp (bib0025) 2015; 145
Gross, Edwards, Feudel (bib0080) 2009; 258
Armstrong, McGehee (bib0020) 1980; 115
Cropp, Norbury (bib0035) 2012; 294
Anderson, Gentleman, Sinha (bib0015) 2010; 87
Cropp, Norbury (bib0040) 2012; 15
Hutchinson (bib0100) 1961; 95
Denman (bib0050) 2003; 57
Vallina, Le Quéré (bib0160) 2011; 272
Cropp, Norbury (bib0045) 2013; 125
Cropp, Norbury (bib0030) 2009; 31
Gause (bib0070) 1934
Kolmogorov (bib0105) 1936; 7
Sailley, Vogt, Doney, Aita, Bopp, Buitenhuis, Hashioka, Lima, Le Quéré, Yamanaka (bib0145) 2013; 261-262
Gentleman, Leising, Frost, Strom, Murray (bib0075) 2003; 50
Kot (bib0110) 2001
Hashioka, Vogt, Yamanaka, Le Quéré, Buitenhuis, Aita, Alvain, Bopp, Hirata, Lima, Sailley, Doney (bib0085) 2013; 10
Anderson (bib0005) 2005; 27
Edwards, Brindley (bib0060) 1999; 61
Moore, Doney, Lindsay (bib0120) 2004; 18
Morozov, Petrovskii (bib0125) 2013; 8
Morozov (bib0130) 2010; 265
Record, Pershing, Maps (bib0135) 2014; 71
Steele, Henderson (bib0155) 1992; 14
Hood, Laws, Armstrong, Bates, Brown, Carlson, Chai, Doney, Falkowski, Feely, Friedrichs, Landry, Keith Moore, Nelson, Richardson, Salihoglu, Schartau, Toole, Wiggert (bib0095) 2006; 53
Gause (10.1016/j.ecocom.2016.03.003_bib0070) 1934
Cropp (10.1016/j.ecocom.2016.03.003_bib0040) 2012; 15
van Leeuwen (10.1016/j.ecocom.2016.03.003_bib0165) 2013; 328
Hashioka (10.1016/j.ecocom.2016.03.003_bib0085) 2013; 10
Hood (10.1016/j.ecocom.2016.03.003_bib0095) 2006; 53
Kolmogorov (10.1016/j.ecocom.2016.03.003_bib0105) 1936; 7
Micheli (10.1016/j.ecocom.2016.03.003_bib0115) 1999; 285
Bates (10.1016/j.ecocom.2016.03.003_bib0025) 2015; 145
Morozov (10.1016/j.ecocom.2016.03.003_bib0130) 2010; 265
Kot (10.1016/j.ecocom.2016.03.003_bib0110) 2001
Fulton (10.1016/j.ecocom.2016.03.003_bib0065) 2003; 253
Anderson (10.1016/j.ecocom.2016.03.003_bib0010) 2010; 81
Denman (10.1016/j.ecocom.2016.03.003_bib0050) 2003; 57
Sailley (10.1016/j.ecocom.2016.03.003_bib0145) 2013; 261-262
Cropp (10.1016/j.ecocom.2016.03.003_bib0030) 2009; 31
Anderson (10.1016/j.ecocom.2016.03.003_bib0015) 2010; 87
Record (10.1016/j.ecocom.2016.03.003_bib0135) 2014; 71
Riebesell (10.1016/j.ecocom.2016.03.003_bib0140) 2013; 10
Moore (10.1016/j.ecocom.2016.03.003_bib0120) 2004; 18
Gross (10.1016/j.ecocom.2016.03.003_bib0080) 2009; 258
Morozov (10.1016/j.ecocom.2016.03.003_bib0125) 2013; 8
Vallina (10.1016/j.ecocom.2016.03.003_bib0160) 2011; 272
Anderson (10.1016/j.ecocom.2016.03.003_bib0005) 2005; 27
Hutchinson (10.1016/j.ecocom.2016.03.003_bib0100) 1961; 95
Edwards (10.1016/j.ecocom.2016.03.003_bib0060) 1999; 61
Haydon (10.1016/j.ecocom.2016.03.003_bib0090) 1994; 411
Edwards (10.1016/j.ecocom.2016.03.003_bib0055) 1996; 11
Steele (10.1016/j.ecocom.2016.03.003_bib0155) 1992; 14
Cropp (10.1016/j.ecocom.2016.03.003_bib0045) 2013; 125
Cropp (10.1016/j.ecocom.2016.03.003_bib0035) 2012; 294
Armstrong (10.1016/j.ecocom.2016.03.003_bib0020) 1980; 115
Smith (10.1016/j.ecocom.2016.03.003_bib0150) 2011
Gentleman (10.1016/j.ecocom.2016.03.003_bib0075) 2003; 50
References_xml – volume: 81
  start-page: 4
  year: 2010
  end-page: 11
  ident: bib0010
  article-title: Progress in marine ecosystem modelling and the unreasonable effectiveness of mathematics
  publication-title: J. Mar. Syst.
– volume: 253
  start-page: 1
  year: 2003
  end-page: 16
  ident: bib0065
  article-title: Effect of complexity on marine ecosystem models
  publication-title: Mar. Ecol. Prog. Ser.
– volume: 328
  start-page: 89
  year: 2013
  end-page: 98
  ident: bib0165
  article-title: A generalized functional response for predators that switch between multiple prey species
  publication-title: J. Theor. Biol.
– volume: 71
  start-page: 236
  year: 2014
  end-page: 240
  ident: bib0135
  article-title: The paradox of the “paradox of the plankton”
  publication-title: ICES J. Mar. Sci.
– volume: 87
  start-page: 201
  year: 2010
  end-page: 213
  ident: bib0015
  article-title: Influence of grazing formulations on the emergent properties of a complex ecosystem model in a global ocean general circulation model
  publication-title: Prog. Oceanogr.
– volume: 31
  start-page: 939
  year: 2009
  end-page: 963
  ident: bib0030
  article-title: Parameterizing plankton functional type models: insights from a dynamical systems perspective
  publication-title: J. Plankton Res.
– volume: 11
  start-page: 347
  year: 1996
  end-page: 370
  ident: bib0055
  article-title: Oscillatory behaviour in a three-component plankton population model
  publication-title: Dyn. Stabil. Syst.
– year: 1934
  ident: bib0070
  article-title: The Struggle for Existence
– volume: 411
  start-page: 14
  year: 1994
  end-page: 29
  ident: bib0090
  article-title: Pivotal assumptions determining the relationship between stability and complexity: an analytical synthesis of the stability-complexity debate
  publication-title: Am. Nat.
– volume: 285
  start-page: 1396
  year: 1999
  end-page: 1398
  ident: bib0115
  article-title: Eutrophication, fisheries, and consumer-resource dynamics in marine pelagic ecosystems
  publication-title: Science
– volume: 18
  start-page: 1
  year: 2004
  end-page: 24
  ident: bib0120
  article-title: Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model
  publication-title: Glob. Biogeochem. Cycles
– volume: 272
  start-page: 160
  year: 2011
  end-page: 173
  ident: bib0160
  article-title: Stability of complex food webs: resilience, resistance and the average interaction strength
  publication-title: J. Theor. Biol.
– volume: 95
  start-page: 137
  year: 1961
  end-page: 145
  ident: bib0100
  article-title: The paradox of the plankton
  publication-title: Am. Nat.
– volume: 265
  start-page: 45
  year: 2010
  end-page: 54
  ident: bib0130
  article-title: Emergence of Holling type III zooplankton functional response: bringing together field evidence and mathematical modelling
  publication-title: J. Theor. Biol.
– volume: 261-262
  start-page: 43
  year: 2013
  end-page: 57
  ident: bib0145
  article-title: Comparing food web structures and dynamics across a suite of global marine ecosystem models
  publication-title: Ecol. Model.
– volume: 14
  start-page: 157
  year: 1992
  end-page: 172
  ident: bib0155
  article-title: The role of predation in plankton models
  publication-title: J. Plankton Res.
– volume: 57
  start-page: 429
  year: 2003
  end-page: 452
  ident: bib0050
  article-title: Modelling planktonic ecosystems: parameterizing complexity
  publication-title: Prog. Oceanogr.
– volume: 50
  start-page: 2847
  year: 2003
  end-page: 2875
  ident: bib0075
  article-title: Functional responses for zooplankton feeding on multiple resources: a review of assumptions and biological dynamics
  publication-title: Deep Sea Res. II: Top. Stud. Oceanogr.
– volume: 7
  start-page: 74
  year: 1936
  end-page: 80
  ident: bib0105
  article-title: Sulla Teoria di Volterra della Lotta per l’Esistenza
  publication-title: Giornale Inst. Ital. Attuari
– volume: 125
  start-page: 3
  year: 2013
  end-page: 13
  ident: bib0045
  article-title: Modelling plankton ecosystems and the Library of Lotka
  publication-title: J. Mar. Syst.
– volume: 53
  start-page: 459
  year: 2006
  end-page: 512
  ident: bib0095
  article-title: Pelagic functional group modeling: progress, challenges and prospects
  publication-title: Deep Sea Res. II: Top. Stud. Oceanogr.
– volume: 10
  start-page: 1835
  year: 2013
  end-page: 1847
  ident: bib0140
  article-title: Technical note: a mobile sea-going mesocosm system – new opportunities for ocean change research
  publication-title: Biogeosciences
– volume: 8
  start-page: e74586
  year: 2013
  ident: bib0125
  article-title: Feeding on multiple sources: towards a universal parameterization of the functional response of a generalist predator allowing for switching
  publication-title: PLOS ONE
– volume: 258
  start-page: 148
  year: 2009
  end-page: 155
  ident: bib0080
  article-title: The invisible niche: weakly density-dependent mortality and the coexistence of species
  publication-title: J. Theor. Biol.
– year: 2001
  ident: bib0110
  article-title: Elements of Mathematical Ecology
– volume: 10
  start-page: 6833
  year: 2013
  end-page: 6850
  ident: bib0085
  article-title: Phytoplankton competition during the spring bloom in four plankton functional type models
  publication-title: Biogeosciences
– volume: 61
  start-page: 303
  year: 1999
  end-page: 339
  ident: bib0060
  article-title: Zooplankton mortality and the dynamical behaviour of plankton population models
  publication-title: Bull. Math. Biol.
– volume: 15
  start-page: 200
  year: 2012
  end-page: 212
  ident: bib0040
  article-title: The mechanisms of coexistence and competitive exclusion in complex Plankton ecosystem models
  publication-title: Ecosystems
– volume: 27
  start-page: 1073
  year: 2005
  end-page: 1081
  ident: bib0005
  article-title: Plankton functional type modelling: running before we can walk?
  publication-title: J. Plankton Res.
– year: 2011
  ident: bib0150
  article-title: Dynamic Systems and Population Persistence
– volume: 294
  start-page: 1
  year: 2012
  end-page: 8
  ident: bib0035
  article-title: Constructing ecologies
  publication-title: J. Theor. Biol.
– volume: 115
  start-page: 151
  year: 1980
  end-page: 170
  ident: bib0020
  article-title: Competitive exclusion
  publication-title: Am. Nat.
– volume: 145
  start-page: 1
  year: 2015
  end-page: 14
  ident: bib0025
  article-title: Construction of a trophically complex near-shore Antartctic food web model using the conservative normal framework with structural coexistence
  publication-title: J. Mar. Syst.
– volume: 18
  start-page: 1
  issue: GB4028
  year: 2004
  ident: 10.1016/j.ecocom.2016.03.003_bib0120
  article-title: Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model
  publication-title: Glob. Biogeochem. Cycles
– volume: 294
  start-page: 1
  year: 2012
  ident: 10.1016/j.ecocom.2016.03.003_bib0035
  article-title: Constructing ecologies
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2011.10.028
– year: 2001
  ident: 10.1016/j.ecocom.2016.03.003_bib0110
– volume: 261-262
  start-page: 43
  year: 2013
  ident: 10.1016/j.ecocom.2016.03.003_bib0145
  article-title: Comparing food web structures and dynamics across a suite of global marine ecosystem models
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2013.04.006
– volume: 115
  start-page: 151
  issue: 2
  year: 1980
  ident: 10.1016/j.ecocom.2016.03.003_bib0020
  article-title: Competitive exclusion
  publication-title: Am. Nat.
  doi: 10.1086/283553
– volume: 31
  start-page: 939
  issue: 9
  year: 2009
  ident: 10.1016/j.ecocom.2016.03.003_bib0030
  article-title: Parameterizing plankton functional type models: insights from a dynamical systems perspective
  publication-title: J. Plankton Res.
  doi: 10.1093/plankt/fbp042
– volume: 71
  start-page: 236
  issue: 2
  year: 2014
  ident: 10.1016/j.ecocom.2016.03.003_bib0135
  article-title: The paradox of the “paradox of the plankton”
  publication-title: ICES J. Mar. Sci.
  doi: 10.1093/icesjms/fst049
– volume: 328
  start-page: 89
  year: 2013
  ident: 10.1016/j.ecocom.2016.03.003_bib0165
  article-title: A generalized functional response for predators that switch between multiple prey species
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2013.02.003
– volume: 10
  start-page: 6833
  issue: 11
  year: 2013
  ident: 10.1016/j.ecocom.2016.03.003_bib0085
  article-title: Phytoplankton competition during the spring bloom in four plankton functional type models
  publication-title: Biogeosciences
  doi: 10.5194/bg-10-6833-2013
– volume: 50
  start-page: 2847
  issue: 22–26
  year: 2003
  ident: 10.1016/j.ecocom.2016.03.003_bib0075
  article-title: Functional responses for zooplankton feeding on multiple resources: a review of assumptions and biological dynamics
  publication-title: Deep Sea Res. II: Top. Stud. Oceanogr.
  doi: 10.1016/j.dsr2.2003.07.001
– volume: 95
  start-page: 137
  issue: 882
  year: 1961
  ident: 10.1016/j.ecocom.2016.03.003_bib0100
  article-title: The paradox of the plankton
  publication-title: Am. Nat.
  doi: 10.1086/282171
– volume: 265
  start-page: 45
  issue: 1
  year: 2010
  ident: 10.1016/j.ecocom.2016.03.003_bib0130
  article-title: Emergence of Holling type III zooplankton functional response: bringing together field evidence and mathematical modelling
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2010.04.016
– volume: 258
  start-page: 148
  issue: 1
  year: 2009
  ident: 10.1016/j.ecocom.2016.03.003_bib0080
  article-title: The invisible niche: weakly density-dependent mortality and the coexistence of species
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2009.01.018
– volume: 145
  start-page: 1
  year: 2015
  ident: 10.1016/j.ecocom.2016.03.003_bib0025
  article-title: Construction of a trophically complex near-shore Antartctic food web model using the conservative normal framework with structural coexistence
  publication-title: J. Mar. Syst.
  doi: 10.1016/j.jmarsys.2014.12.002
– volume: 57
  start-page: 429
  issue: 3-4
  year: 2003
  ident: 10.1016/j.ecocom.2016.03.003_bib0050
  article-title: Modelling planktonic ecosystems: parameterizing complexity
  publication-title: Prog. Oceanogr.
  doi: 10.1016/S0079-6611(03)00109-5
– volume: 81
  start-page: 4
  issue: 1-2
  year: 2010
  ident: 10.1016/j.ecocom.2016.03.003_bib0010
  article-title: Progress in marine ecosystem modelling and the unreasonable effectiveness of mathematics
  publication-title: J. Mar. Syst.
  doi: 10.1016/j.jmarsys.2009.12.015
– volume: 15
  start-page: 200
  issue: 2
  year: 2012
  ident: 10.1016/j.ecocom.2016.03.003_bib0040
  article-title: The mechanisms of coexistence and competitive exclusion in complex Plankton ecosystem models
  publication-title: Ecosystems
  doi: 10.1007/s10021-011-9503-1
– volume: 125
  start-page: 3
  year: 2013
  ident: 10.1016/j.ecocom.2016.03.003_bib0045
  article-title: Modelling plankton ecosystems and the Library of Lotka
  publication-title: J. Mar. Syst.
  doi: 10.1016/j.jmarsys.2012.08.005
– volume: 411
  start-page: 14
  issue: 1
  year: 1994
  ident: 10.1016/j.ecocom.2016.03.003_bib0090
  article-title: Pivotal assumptions determining the relationship between stability and complexity: an analytical synthesis of the stability-complexity debate
  publication-title: Am. Nat.
  doi: 10.1086/285658
– year: 2011
  ident: 10.1016/j.ecocom.2016.03.003_bib0150
– volume: 61
  start-page: 303
  issue: 2
  year: 1999
  ident: 10.1016/j.ecocom.2016.03.003_bib0060
  article-title: Zooplankton mortality and the dynamical behaviour of plankton population models
  publication-title: Bull. Math. Biol.
  doi: 10.1006/bulm.1998.0082
– volume: 27
  start-page: 1073
  issue: 11
  year: 2005
  ident: 10.1016/j.ecocom.2016.03.003_bib0005
  article-title: Plankton functional type modelling: running before we can walk?
  publication-title: J. Plankton Res.
  doi: 10.1093/plankt/fbi076
– volume: 14
  start-page: 157
  issue: 1
  year: 1992
  ident: 10.1016/j.ecocom.2016.03.003_bib0155
  article-title: The role of predation in plankton models
  publication-title: J. Plankton Res.
  doi: 10.1093/plankt/14.1.157
– volume: 87
  start-page: 201
  issue: October (1–4)
  year: 2010
  ident: 10.1016/j.ecocom.2016.03.003_bib0015
  article-title: Influence of grazing formulations on the emergent properties of a complex ecosystem model in a global ocean general circulation model
  publication-title: Prog. Oceanogr.
  doi: 10.1016/j.pocean.2010.06.003
– volume: 8
  start-page: e74586
  issue: 9
  year: 2013
  ident: 10.1016/j.ecocom.2016.03.003_bib0125
  article-title: Feeding on multiple sources: towards a universal parameterization of the functional response of a generalist predator allowing for switching
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0074586
– volume: 53
  start-page: 459
  issue: 5–7
  year: 2006
  ident: 10.1016/j.ecocom.2016.03.003_bib0095
  article-title: Pelagic functional group modeling: progress, challenges and prospects
  publication-title: Deep Sea Res. II: Top. Stud. Oceanogr.
  doi: 10.1016/j.dsr2.2006.01.025
– volume: 7
  start-page: 74
  year: 1936
  ident: 10.1016/j.ecocom.2016.03.003_bib0105
  article-title: Sulla Teoria di Volterra della Lotta per l’Esistenza
  publication-title: Giornale Inst. Ital. Attuari
– year: 1934
  ident: 10.1016/j.ecocom.2016.03.003_bib0070
– volume: 10
  start-page: 1835
  issue: 3
  year: 2013
  ident: 10.1016/j.ecocom.2016.03.003_bib0140
  article-title: Technical note: a mobile sea-going mesocosm system – new opportunities for ocean change research
  publication-title: Biogeosciences
  doi: 10.5194/bg-10-1835-2013
– volume: 272
  start-page: 160
  issue: 1
  year: 2011
  ident: 10.1016/j.ecocom.2016.03.003_bib0160
  article-title: Stability of complex food webs: resilience, resistance and the average interaction strength
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2010.11.043
– volume: 285
  start-page: 1396
  issue: 5432
  year: 1999
  ident: 10.1016/j.ecocom.2016.03.003_bib0115
  article-title: Eutrophication, fisheries, and consumer-resource dynamics in marine pelagic ecosystems
  publication-title: Science
  doi: 10.1126/science.285.5432.1396
– volume: 11
  start-page: 347
  issue: 4
  year: 1996
  ident: 10.1016/j.ecocom.2016.03.003_bib0055
  article-title: Oscillatory behaviour in a three-component plankton population model
  publication-title: Dyn. Stabil. Syst.
  doi: 10.1080/02681119608806231
– volume: 253
  start-page: 1
  year: 2003
  ident: 10.1016/j.ecocom.2016.03.003_bib0065
  article-title: Effect of complexity on marine ecosystem models
  publication-title: Mar. Ecol. Prog. Ser.
  doi: 10.3354/meps253001
SSID ssj0038174
Score 2.1164582
Snippet •Certain combinations of functional responses ensure coexistence in ecological models.•We show which functional responses lead to these “structural...
The growth and loss terms of interacting populations, called functional responses, are known to have a significant impact on the extinction dynamics of...
SourceID proquest
crossref
fao
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 57
SubjectTerms biogeochemical cycles
carnivores
Competitive exclusion
extinction
fisheries
functional response models
herbivores
Modelling
Mortality
nutrient uptake
Plankton
Species extinction
Structural coexistence
Title Which functional responses preclude extinction in ecological population-dynamic models?
URI https://dx.doi.org/10.1016/j.ecocom.2016.03.003
https://www.proquest.com/docview/1808727780
https://www.proquest.com/docview/1817833995
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB5ih0IvpU_iPowKvaqWVs89lWAS3FcoTU18EyutlGwJaxPbh1762yutdgOltIEedzUC7czom9FqHgBvZB1tsOUcFzQ4zF2hcEniviq4D1pUSgSSkpM_n8nFkn9YidUBzIdcmBRW2WN_xvQOrfs3s56bs03TzM4pV7LkYkVT1Siq5QgOC1ZKMYbD4_cfF2cDIKcadN3lcqTHacKQQdeFecVDXgobiXZQ5mqn7G8WahSq9R-I3Zmh04fwoPcf0XFe4iM48O1juHfS1Z7-8QQuLq4ad4WStco_-dBNDoL1W7SJH3q9rz2KeNzkcdS0yLsB_9DmtpsXrnOnetR1ytm-ewrL05Nv8wXueydgF3mww8ELWWuvaiGYdU5W1BLlgmNcE1uQUBbCi1BH56-uEoWVldXWEhqs5doJ9gzG7br1R4BYYIraulSl91yputSWS6mtq0iIhyE5ATbwy7i-sHjqb3Fthgiy7yZz2SQuG8JSQdIJ4NtZm1xY4w56NYjC_KYgJmL_HTOPouRMdRlR0yzP00jSl-gpFRN4PYjTxG2V7kqq1q_3W0M10dG1U5r8i4YqzVJu8PP_XtwLuJ-ecvDZSxjvbvb-VXRzdnYKo7c_6TQq8_zrpy_TXql_AWMW_f4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELZ4CJVLVUor0tLWlXp1Y6-fe0IIgdIWuEBEbtb6BYvQJiLJoRd-O_Z6N1KFChLX9Viyx_Y34_U3MwD8EC7aYMMYKkiwiNlCohLHc1UwHxSvJA84BSefnYvRmP2e8MkaOOpjYRKtssP-jOktWndfhp02h7O6Hl4QJkXJ-ISkrFFEiXWwyTiVidf382HF80gZ6Nqn5SiNkngfP9eSvOIVL5FGohUUOdcp_Z99Wg_V9Alet0bo5B1423mP8DAPcAes-eY92DpuM0__3QVXVze1vYHJVuVffPA-U2D9HM7iNO-WzsOIxnVuh3UDve3RD85WtbyQy3XqYVsnZ37wAYxPji-PRqirnIAsLcUCBc-FU146zqmxVlTEYGmDpUxhU-BQFtzz4KLr56okYURllDGYBGOYspx-BBvNtPF7ANJAJTGulKX3TEpXKsOEUMZWOMSrkBgA2utL2y6teKpucad7_titzlrWScsa05SOdADQqtcsp9V4QV72S6H_2R46Iv8LPffiyunqOmKmHl-klrRbop9UDMD3fjl1PFTppaRq_HQ510RhFR07qfBzMkQqmiKDP716cN_Am9Hl2ak-_XX-5zPYTi2ZhrYPNhb3S_8lOjwL87Xd0I-eBf00
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Which+functional+responses+preclude+extinction+in+ecological+population-dynamic+models%3F&rft.jtitle=Ecological+complexity&rft.au=Bates%2C+Michael+L.&rft.au=Cropp%2C+Roger+A.&rft.au=Hawker%2C+Darryl+W.&rft.au=Norbury%2C+John&rft.date=2016-06-01&rft.pub=Elsevier+B.V&rft.issn=1476-945X&rft.volume=26&rft.spage=57&rft.epage=67&rft_id=info:doi/10.1016%2Fj.ecocom.2016.03.003&rft.externalDocID=S1476945X16300186
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-945X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-945X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-945X&client=summon