Analysis of high order fast interface tracking methods
Fast high order methods for the propagation of an interface in a velocity field are constructed and analyzed. The methods are generalizations of the fast interface tracking method proposed in Runborg (Commun Math Sci 7:365–398, 2009 ). They are based on high order subdivision to make a multiresoluti...
Saved in:
Published in | Numerische Mathematik Vol. 128; no. 2; pp. 339 - 375 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fast high order methods for the propagation of an interface in a velocity field are constructed and analyzed. The methods are generalizations of the fast interface tracking method proposed in Runborg (Commun Math Sci 7:365–398,
2009
). They are based on high order subdivision to make a multiresolution decomposition of the interface. Instead of tracking marker points on the interface the related wavelet vectors are tracked. Like the markers they satisfy ordinary differential equations (ODEs), but fine scale wavelets can be tracked with longer timesteps than coarse scale wavelets. This leads to methods with a computational cost of
O
(
log
N
/
Δ
t
)
rather than
O
(
N
/
Δ
t
)
for
N
markers and reference timestep
Δ
t
. These methods are proved to still have the same order of accuracy as the underlying direct ODE solver under a stability condition in terms of the order of the subdivision, the order of the ODE solver and the time step ratio between wavelet levels. In particular it is shown that with a suitable high order subdivision scheme any explicit Runge–Kutta method can be used. Numerical examples supporting the theory are also presented. |
---|---|
AbstractList | Fast high order methods for the propagation of an interface in a velocity field are constructed and analyzed. The methods are generalizations of the fast interface tracking method proposed in Runborg (Commun Math Sci 7:365-398, 2009). They are based on high order subdivision to make a multiresolution decomposition of the interface. Instead of tracking marker points on the interface the related wavelet vectors are tracked. Like the markers they satisfy ordinary differential equations (ODEs), but fine scale wavelets can be tracked with longer timesteps than coarse scale wavelets. This leads to methods with a computational cost of rather than for markers and reference timestep . These methods are proved to still have the same order of accuracy as the underlying direct ODE solver under a stability condition in terms of the order of the subdivision, the order of the ODE solver and the time step ratio between wavelet levels. In particular it is shown that with a suitable high order subdivision scheme any explicit Runge-Kutta method can be used. Numerical examples supporting the theory are also presented. Fast high order methods for the propagation of an interface in a velocity field are constructed and analyzed. The methods are generalizations of the fast interface tracking method proposed in Runborg (Commun Math Sci 7:365–398, 2009 ). They are based on high order subdivision to make a multiresolution decomposition of the interface. Instead of tracking marker points on the interface the related wavelet vectors are tracked. Like the markers they satisfy ordinary differential equations (ODEs), but fine scale wavelets can be tracked with longer timesteps than coarse scale wavelets. This leads to methods with a computational cost of O ( log N / Δ t ) rather than O ( N / Δ t ) for N markers and reference timestep Δ t . These methods are proved to still have the same order of accuracy as the underlying direct ODE solver under a stability condition in terms of the order of the subdivision, the order of the ODE solver and the time step ratio between wavelet levels. In particular it is shown that with a suitable high order subdivision scheme any explicit Runge–Kutta method can be used. Numerical examples supporting the theory are also presented. |
Author | Runborg, Olof |
Author_xml | – sequence: 1 givenname: Olof surname: Runborg fullname: Runborg, Olof email: olofr@nada.kth.se organization: Department of Mathematics, Swedish e-Science Research Center (SeRC), KTH |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-154370$$DView record from Swedish Publication Index |
BookMark | eNp9kMlOwzAQhi1UJNrCA3DLCxjGSxL7WJWlSJW4AOJmOYmduEtc2a5Q355UrThw6Gnm8H-zfBM06n1vELon8EAAyscIQAnBQDiGgjCcX6ExSJ5jRnk-GnqgEudSft-gSYwrAFIWnIxRMev15hBdzLzNOtd2mQ-NCZnVMWWuTyZYXZssBV2vXd9mW5M638RbdG31Jpq7c52iz5fnj_kCL99f3-azJa6ZLBK2pBIVSGkENNRWHLRoLOVE0JLRklKbCwGUNbyhIC3TdVEYymllraxAS8GmCJ_mxh-z21dqF9xWh4Py2qkn9zVTPrRqnTpFcs5KGPLklK-DjzEY-0cQUEdR6iRKDaLUUZTKB6b8x9Qu6eR8P3ztNhdJer5u2NK3JqiV34dBaLwA_QKvEn36 |
CitedBy_id | crossref_primary_10_1137_15M1017302 crossref_primary_10_1016_j_jcp_2017_02_017 crossref_primary_10_1016_j_camwa_2015_02_021 |
Cites_doi | 10.1016/0021-9991(81)90145-5 10.4310/CMS.2009.v7.n2.a5 10.1017/S0962492904000182 10.1016/j.jcp.2006.07.032 10.1023/A:1027315032100 10.1007/s00365-004-0581-6 10.1111/j.1365-246X.1996.tb00021.x 10.1007/s00365-003-0543-4 10.1016/0167-8396(87)90001-X 10.1137/S1064827595293600 10.1137/0522089 10.1016/0021-9991(88)90002-2 10.1017/S1446788700027932 10.1016/0196-8858(81)90040-3 10.1137/S0036142994260872 10.1190/1.1443499 10.1007/s10208-011-9104-6 10.1016/0021-9991(92)90307-K 10.1016/j.cagd.2005.06.003 10.1137/0523059 10.1007/978-3-642-27413-8_34 10.1109/CVPRW.2008.4563002 10.2172/4563173 10.1017/S0962492904000169 10.1145/344779.344831 10.1090/memo/0453 |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2014 |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2014 |
DBID | AAYXX CITATION ADTPV AOWAS D8V |
DOI | 10.1007/s00211-014-0613-5 |
DatabaseName | CrossRef SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Computer Science |
EISSN | 0945-3245 |
EndPage | 375 |
ExternalDocumentID | oai_DiVA_org_kth_154370 10_1007_s00211_014_0613_5 |
GroupedDBID | --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 203 29N 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 41~ 5QI 5VS 67Z 692 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDYV AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KQ8 LAS LLZTM LO0 M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 P19 P2P P9R PF0 PKN PT4 PT5 QOK QOS R4E R89 R9I REI RHV RIG RNI RNS ROL RPX RSV RYB RZK RZZ S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XJT YLTOR YNT YQT Z45 Z5O Z7R Z7X Z83 Z86 Z88 Z8M Z8R Z8W Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ ADTPV AOWAS D8V |
ID | FETCH-LOGICAL-c396t-f1b8b099e80d2fb40a8df24182732722f588023d4d209f3ac66e242bff9b0a983 |
IEDL.DBID | U2A |
ISSN | 0029-599X 0945-3245 |
IngestDate | Thu Aug 21 07:13:08 EDT 2025 Tue Jul 01 00:36:48 EDT 2025 Thu Apr 24 23:02:38 EDT 2025 Fri Feb 21 02:33:59 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | 42C40 65L20 65D99 |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c396t-f1b8b099e80d2fb40a8df24182732722f588023d4d209f3ac66e242bff9b0a983 |
PageCount | 37 |
ParticipantIDs | swepub_primary_oai_DiVA_org_kth_154370 crossref_primary_10_1007_s00211_014_0613_5 crossref_citationtrail_10_1007_s00211_014_0613_5 springer_journals_10_1007_s00211_014_0613_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-10-01 |
PublicationDateYYYYMMDD | 2014-10-01 |
PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg |
PublicationTitle | Numerische Mathematik |
PublicationTitleAbbrev | Numer. Math |
PublicationYear | 2014 |
Publisher | Springer Berlin Heidelberg |
Publisher_xml | – name: Springer Berlin Heidelberg |
References | Vinje, Iversen, Gjøystdal (CR25) 1993; 58 Albrecht (CR1) 1996; 33 Deslauriers, Dubuc (CR9) 1987 Oswald (CR20) 2004; 20 Runborg (CR22) 2009; 7 CR15 CR13 Hirt, Nichols (CR16) 1981; 39 Dyn, Levin, Gregory (CR10) 1987; 4 Osher, Sethian (CR19) 1988; 79 Harizanov, Oswald, Shingel (CR14) 2011; 11 Bungartz, Griebel (CR2) 2004; 13 Xie, Yu (CR28) 2005; 22 Wallner, Dyn (CR26) 2005; 22 Glimm, Isaacson, Marchesin, McBryan (CR12) 1981; 2 CR5 Candès, Ying (CR4) 2006; 220 CR29 CR27 Hosea (CR17) 1995; 32 Daubechies, Lagarias (CR6) 1991; 22 CR23 Lambaré, Lucio, Hanyga (CR18) 1996; 125 CR21 Daubechies, Lagarias (CR7) 1992; 23 Glimm, Grove, Li, Shyue, Zeng, Zhang (CR11) 1998; 19 Unverdi, Tryggvason (CR24) 1992; 100 Butcher (CR3) 1963; 3 Daubechies, Runborg, Sweldens (CR8) 2004; 20 E Candès (613_CR4) 2006; 220 613_CR23 I Daubechies (613_CR6) 1991; 22 613_CR21 613_CR27 JC Butcher (613_CR3) 1963; 3 G Lambaré (613_CR18) 1996; 125 613_CR29 613_CR5 P Albrecht (613_CR1) 1996; 33 G Deslauriers (613_CR9) 1987 P Oswald (613_CR20) 2004; 20 G Xie (613_CR28) 2005; 22 O Runborg (613_CR22) 2009; 7 613_CR15 SJ Osher (613_CR19) 1988; 79 I Daubechies (613_CR8) 2004; 20 J Glimm (613_CR12) 1981; 2 613_CR13 H-J Bungartz (613_CR2) 2004; 13 N Dyn (613_CR10) 1987; 4 J Glimm (613_CR11) 1998; 19 613_CR17 J Wallner (613_CR26) 2005; 22 S Harizanov (613_CR14) 2011; 11 SO Unverdi (613_CR24) 1992; 100 CW Hirt (613_CR16) 1981; 39 I Daubechies (613_CR7) 1992; 23 V Vinje (613_CR25) 1993; 58 |
References_xml | – volume: 39 start-page: 201 year: 1981 end-page: 225 ident: CR16 article-title: Volume of fluid (VOF) method for the dynamics of free boundaries publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(81)90145-5 – volume: 7 start-page: 365 issue: 2 year: 2009 end-page: 398 ident: CR22 article-title: Fast interface tracking via a multiresolution representation of curves and surfaces publication-title: Commun. Math. Sci. doi: 10.4310/CMS.2009.v7.n2.a5 – start-page: 44 year: 1987 end-page: 55 ident: CR9 publication-title: Interpolation dyadique. Fractals. dimensions non entières et applications – volume: 13 start-page: 1 year: 2004 end-page: 121 ident: CR2 article-title: Sparse grids publication-title: Acta Numer. doi: 10.1017/S0962492904000182 – volume: 220 start-page: 6 year: 2006 end-page: 18 ident: CR4 article-title: Fast geodesics computations with the phase flow method publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2006.07.032 – volume: 20 start-page: 401 year: 2004 end-page: 423 ident: CR20 article-title: Smoothness of nonlinear subdivision schemes publication-title: Adv. Comp. Math doi: 10.1023/A:1027315032100 – ident: CR29 – volume: 22 start-page: 219 year: 2005 end-page: 254 ident: CR28 article-title: Smoothness analysis of nonlinear subdivision schemes of homoegeneous and affine invariant type publication-title: Constr. Approx. doi: 10.1007/s00365-004-0581-6 – ident: CR27 – volume: 32 start-page: 1989 issue: 6 year: 1995 end-page: 2001 ident: CR17 article-title: A new recurrence for computing Runge-Kutta truncation error coefficients publication-title: SIAM J. Numer. Anal. – volume: 125 start-page: 584 year: 1996 end-page: 598 ident: CR18 article-title: Two-dimensional multivalued traveltime and amplitude maps by uniform sampling of ray field publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.1996.tb00021.x – ident: CR23 – volume: 20 start-page: 399 year: 2004 end-page: 463 ident: CR8 article-title: Normal multiresolution approximation of curves publication-title: Constr. Approx. doi: 10.1007/s00365-003-0543-4 – volume: 4 start-page: 257 year: 1987 end-page: 268 ident: CR10 article-title: A 4-point interpolatory subdivision scheme for curve design publication-title: Comput. Aided Geom. Des. doi: 10.1016/0167-8396(87)90001-X – volume: 19 start-page: 703 issue: 3 year: 1998 end-page: 727 ident: CR11 article-title: Three-dimensional front tracking publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827595293600 – ident: CR21 – volume: 22 start-page: 1388 issue: 5 year: 1991 end-page: 1410 ident: CR6 article-title: Two-scale difference equations I. Existence and global regularity of solutions publication-title: SIAM J. Math. Anal. doi: 10.1137/0522089 – volume: 79 start-page: 12 issue: 1 year: 1988 end-page: 49 ident: CR19 article-title: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(88)90002-2 – volume: 3 start-page: 185 year: 1963 end-page: 201 ident: CR3 article-title: Coefficients for the study of Runge-Kutta integration processes publication-title: J. Austral. Math. Soc. doi: 10.1017/S1446788700027932 – ident: CR15 – volume: 2 start-page: 91 year: 1981 end-page: 119 ident: CR12 article-title: Front tracking for hyperbolic systems publication-title: Adv. Appl. Math doi: 10.1016/0196-8858(81)90040-3 – volume: 33 start-page: 1712 issue: 5 year: 1996 end-page: 1735 ident: CR1 article-title: The Runge-Kutta theory in a nutshell publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142994260872 – volume: 58 start-page: 1157 issue: 8 year: 1993 end-page: 1166 ident: CR25 article-title: Traveltime and amplitude estimation using wavefront construction publication-title: Geophysics doi: 10.1190/1.1443499 – ident: CR13 – volume: 11 start-page: 617 issue: 6 year: 2011 end-page: 656 ident: CR14 article-title: Normal multi-scale transforms for curves publication-title: Found. Comput. Math. doi: 10.1007/s10208-011-9104-6 – volume: 100 start-page: 25 year: 1992 end-page: 37 ident: CR24 article-title: A front tracking method for viscous, incompressible, multi-fluid flows publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(92)90307-K – volume: 22 start-page: 593 year: 2005 end-page: 622 ident: CR26 article-title: Convergence and analysis of subdivision schemes on manifolds by proximity publication-title: Comput. Aided Geom. Des. doi: 10.1016/j.cagd.2005.06.003 – ident: CR5 – volume: 23 start-page: 1031 issue: 4 year: 1992 end-page: 1079 ident: CR7 article-title: Two-scale difference equations II. Local regularity, infinite products of matrices and fractals publication-title: SIAM J. Math. Anal. doi: 10.1137/0523059 – volume: 23 start-page: 1031 issue: 4 year: 1992 ident: 613_CR7 publication-title: SIAM J. Math. Anal. doi: 10.1137/0523059 – ident: 613_CR29 – volume: 4 start-page: 257 year: 1987 ident: 613_CR10 publication-title: Comput. Aided Geom. Des. doi: 10.1016/0167-8396(87)90001-X – ident: 613_CR21 doi: 10.1007/978-3-642-27413-8_34 – volume: 22 start-page: 1388 issue: 5 year: 1991 ident: 613_CR6 publication-title: SIAM J. Math. Anal. doi: 10.1137/0522089 – volume: 11 start-page: 617 issue: 6 year: 2011 ident: 613_CR14 publication-title: Found. Comput. Math. doi: 10.1007/s10208-011-9104-6 – ident: 613_CR15 – ident: 613_CR17 – ident: 613_CR23 doi: 10.1109/CVPRW.2008.4563002 – volume: 100 start-page: 25 year: 1992 ident: 613_CR24 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(92)90307-K – volume: 220 start-page: 6 year: 2006 ident: 613_CR4 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2006.07.032 – volume: 58 start-page: 1157 issue: 8 year: 1993 ident: 613_CR25 publication-title: Geophysics doi: 10.1190/1.1443499 – volume: 20 start-page: 399 year: 2004 ident: 613_CR8 publication-title: Constr. Approx. doi: 10.1007/s00365-003-0543-4 – volume: 19 start-page: 703 issue: 3 year: 1998 ident: 613_CR11 publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827595293600 – volume: 22 start-page: 593 year: 2005 ident: 613_CR26 publication-title: Comput. Aided Geom. Des. doi: 10.1016/j.cagd.2005.06.003 – volume: 33 start-page: 1712 issue: 5 year: 1996 ident: 613_CR1 publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142994260872 – volume: 3 start-page: 185 year: 1963 ident: 613_CR3 publication-title: J. Austral. Math. Soc. doi: 10.1017/S1446788700027932 – ident: 613_CR27 doi: 10.2172/4563173 – volume: 13 start-page: 1 year: 2004 ident: 613_CR2 publication-title: Acta Numer. doi: 10.1017/S0962492904000169 – volume: 79 start-page: 12 issue: 1 year: 1988 ident: 613_CR19 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(88)90002-2 – volume: 125 start-page: 584 year: 1996 ident: 613_CR18 publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.1996.tb00021.x – ident: 613_CR13 doi: 10.1145/344779.344831 – start-page: 44 volume-title: Interpolation dyadique. Fractals. dimensions non entières et applications year: 1987 ident: 613_CR9 – volume: 39 start-page: 201 year: 1981 ident: 613_CR16 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(81)90145-5 – volume: 22 start-page: 219 year: 2005 ident: 613_CR28 publication-title: Constr. Approx. doi: 10.1007/s00365-004-0581-6 – volume: 2 start-page: 91 year: 1981 ident: 613_CR12 publication-title: Adv. Appl. Math doi: 10.1016/0196-8858(81)90040-3 – ident: 613_CR5 doi: 10.1090/memo/0453 – volume: 20 start-page: 401 year: 2004 ident: 613_CR20 publication-title: Adv. Comp. Math doi: 10.1023/A:1027315032100 – volume: 7 start-page: 365 issue: 2 year: 2009 ident: 613_CR22 publication-title: Commun. Math. Sci. doi: 10.4310/CMS.2009.v7.n2.a5 |
SSID | ssj0017641 |
Score | 2.0672536 |
Snippet | Fast high order methods for the propagation of an interface in a velocity field are constructed and analyzed. The methods are generalizations of the fast... |
SourceID | swepub crossref springer |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 339 |
SubjectTerms | 2-Scale Difference-Equations Curves Front-Tracking Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Numerical Analysis Numerical and Computational Physics Regularity Simulation Smoothness Subdivision Schemes Theoretical Travel-Time |
Title | Analysis of high order fast interface tracking methods |
URI | https://link.springer.com/article/10.1007/s00211-014-0613-5 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-154370 |
Volume | 128 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66e9GDj1VxfSw5iAcl0DZNmhyLri7KenJlPYUmTVSUXWnr_zdpm4IiC97TCUwmmW86M98AcGbtIDBSU5RJHKE4DDXilHGkjQkTLHNJlOtGnj7QySy-m5N528dd-mp3n5KsX-qu2c25Ixf6xvU0AkTWQZ-40N0a8SxKu9RBQuPQ13UQzuc-lfmXiJ_OyG_7izW09jQ3O2CrhYgwbc50F6zpxQBs-_ELsL2NA7A57ShXyz1APb0IXBroSIhhzaoJTVZW0JFCFCZTGlZFptzfcdiMji73wexm_Hg1Qe1QBKQwpxUyoWTSwjrNgjwyMg4ylhvrhpnFIVESRYYwx-mWx3kUcIMzRam2blgaw2WQcYYPQG-xXOhDAHWgiOIhz4lmsY1sOFEWa2PMY8XcNkMQeO0I1TKGu8EVH6LjOq4VKqxChVOoIENw0X3y2dBlrFp86VUu2ptTrlp93pxKJ9gxY1-_PaViWbyI9-pVWDiIk-DoX2KPwUbkDKKuzzsBvar40qcWZ1RyBPrp7fP9eFTb1zeBYsjU |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8MgFCc6D-rBj6lxfnIwHjQkLYUWjou6TN122sxupFBQo9lMW_9_oS1NNMbEOzySx4P3g_fe7wFwYe0gMFLHKJURRiQMNeIx40gbEyaRzCRVrhp5PImHM_Iwp_Omjrvw2e4-JFnd1G2xm3NH7ulLqm4EiK6CNYsFmMvjmuF-GzpIYhL6vA7K-dyHMn8T8d0Z-WV_sIZWnmawA7YaiAj79Z7ughW96IJt334BNqexCzbHLeVqsQdiTy8ClwY6EmJYsWpCkxYldKQQuUmVhmWeKvc7DuvW0cU-mA3upjdD1DRFQCricYlMKJm0sE6zIMNGkiBlmbFumFkcghOMDWWO0y0jGQ64iVIVx9q6YWkMl0HKWXQAOovlQh8CqANFFQ95RjUj9mXDqbJYO4o4Ucwt0wOB145QDWO4a1zxLlqu40qhwipUOIUK2gNX7ZSPmi7jr8HXXuWiOTnFX6Mv611pBTtm7NvXp75Y5s_irXwRFg5GSXD0L7HnYH04HY_E6H7yeAw2sDOOKlfvBHTK_FOfWsxRyrPKxr4AzuvKMw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46QfTBy1Sc1zyID0pZ2jRt8jicY142fHCyt9CkiYqyjbb-f5O2KSgy8D1NyslJz5eec74PgAvjB0gLFXmJwIEX-r7yWESZp7T2YyxSQaTtRh6No-EkvJ-Saa1zmrtqd5eSrHoaLEvTrOguUt1tGt9saLLX4LBUJvDIKlgzX2PfuvUk6DVphDgKfVfjQRiburTmX1P8DEzuFX4xiJZRZ7ADtmq4CHvV_u6CFTVrg20nxQDrk9kGm6OGfjXfA5GjGoFzDS0hMSwZNqFO8gJagohMJ1LBIkuk_VMOKxnpfB9MBrfPN0OvFkjwJGZR4WlfUGEgnqIoDbQIUUJTbUIyNZgkiINAE2r53dIwDRDTOJFRpExIFlozgRJG8QFozeYzdQigQpJI5rOUKBqaWw4j0uBujFkoqV2mA5CzDpc1e7gVsfjkDe9xaVBuDMqtQTnpgKvmkUVFnbFs8LUzOa9PUb5s9GW1K83EliW7__7S4_PslX8Ub9xAQxyjo39New7Wn_oD_ng3fjgGG4H1jbJs7wS0iuxLnRr4UYiz0sW-Adw5zm8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+high+order+fast+interface+tracking+methods&rft.jtitle=Numerische+Mathematik&rft.au=Runborg%2C+Olof&rft.date=2014-10-01&rft.issn=0945-3245&rft.volume=128&rft.issue=2&rft.spage=339&rft_id=info:doi/10.1007%2Fs00211-014-0613-5&rft.externalDocID=oai_DiVA_org_kth_154370 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-599X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-599X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-599X&client=summon |