The Causes and Effects of Mercury and Methylmercury Contamination in the Marine Environment: A Review

Purpose of Review The concern of mercury pollution and the impact that it poses on the marine environment were studied heavily since the case of the poison from Minamata bay in the 1960s. The present study provides an insight into the cycle of mercury and methylmercury in the marine environment and...

Full description

Saved in:
Bibliographic Details
Published inCurrent pollution reports Vol. 8; no. 3; pp. 249 - 272
Main Authors Al-Sulaiti, Maetha M., Soubra, Lama, Al-Ghouti, Mohammad A.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.09.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2198-6592
2198-6592
DOI10.1007/s40726-022-00226-7

Cover

Loading…
Abstract Purpose of Review The concern of mercury pollution and the impact that it poses on the marine environment were studied heavily since the case of the poison from Minamata bay in the 1960s. The present study provides an insight into the cycle of mercury and methylmercury in the marine environment and the bioindicators that reflect the exposure levels. The paper also used the driving forces, pressures, states, impacts, and responses (DPSIR) analysis to evaluate the global mercury and methylmercury contamination problem. Recent Findings The high global budgets of atmospheric total mercury influence the ocean surface water. Therefore, the aquatic environment contamination level is in turn affected by the surrounding emission sources such as industrial and petroleum activities in addition to the transport and fate of mercury across the environmental compartments. This will increase the mercury levels in fish species and will cause an adverse risk to human health through biomagnification. Summary This review presents a thorough description of mercury sources and emissions and their fate and transport across the different environmental compartments, despite the fact that serious mitigation measures were taken and guidelines were applied. The risk from fish consumption is still a serious concern as a result of the current mercury emissions and stability and persistent characteristics.
AbstractList Purpose of ReviewThe concern of mercury pollution and the impact that it poses on the marine environment were studied heavily since the case of the poison from Minamata bay in the 1960s. The present study provides an insight into the cycle of mercury and methylmercury in the marine environment and the bioindicators that reflect the exposure levels. The paper also used the driving forces, pressures, states, impacts, and responses (DPSIR) analysis to evaluate the global mercury and methylmercury contamination problem.Recent FindingsThe high global budgets of atmospheric total mercury influence the ocean surface water. Therefore, the aquatic environment contamination level is in turn affected by the surrounding emission sources such as industrial and petroleum activities in addition to the transport and fate of mercury across the environmental compartments. This will increase the mercury levels in fish species and will cause an adverse risk to human health through biomagnification.SummaryThis review presents a thorough description of mercury sources and emissions and their fate and transport across the different environmental compartments, despite the fact that serious mitigation measures were taken and guidelines were applied. The risk from fish consumption is still a serious concern as a result of the current mercury emissions and stability and persistent characteristics.
PURPOSE OF REVIEW: The concern of mercury pollution and the impact that it poses on the marine environment were studied heavily since the case of the poison from Minamata bay in the 1960s. The present study provides an insight into the cycle of mercury and methylmercury in the marine environment and the bioindicators that reflect the exposure levels. The paper also used the driving forces, pressures, states, impacts, and responses (DPSIR) analysis to evaluate the global mercury and methylmercury contamination problem. RECENT FINDINGS: The high global budgets of atmospheric total mercury influence the ocean surface water. Therefore, the aquatic environment contamination level is in turn affected by the surrounding emission sources such as industrial and petroleum activities in addition to the transport and fate of mercury across the environmental compartments. This will increase the mercury levels in fish species and will cause an adverse risk to human health through biomagnification. This review presents a thorough description of mercury sources and emissions and their fate and transport across the different environmental compartments, despite the fact that serious mitigation measures were taken and guidelines were applied. The risk from fish consumption is still a serious concern as a result of the current mercury emissions and stability and persistent characteristics.
Purpose of Review The concern of mercury pollution and the impact that it poses on the marine environment were studied heavily since the case of the poison from Minamata bay in the 1960s. The present study provides an insight into the cycle of mercury and methylmercury in the marine environment and the bioindicators that reflect the exposure levels. The paper also used the driving forces, pressures, states, impacts, and responses (DPSIR) analysis to evaluate the global mercury and methylmercury contamination problem. Recent Findings The high global budgets of atmospheric total mercury influence the ocean surface water. Therefore, the aquatic environment contamination level is in turn affected by the surrounding emission sources such as industrial and petroleum activities in addition to the transport and fate of mercury across the environmental compartments. This will increase the mercury levels in fish species and will cause an adverse risk to human health through biomagnification. Summary This review presents a thorough description of mercury sources and emissions and their fate and transport across the different environmental compartments, despite the fact that serious mitigation measures were taken and guidelines were applied. The risk from fish consumption is still a serious concern as a result of the current mercury emissions and stability and persistent characteristics.
Author Al-Sulaiti, Maetha M.
Al-Ghouti, Mohammad A.
Soubra, Lama
Author_xml – sequence: 1
  givenname: Maetha M.
  surname: Al-Sulaiti
  fullname: Al-Sulaiti, Maetha M.
  organization: Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University
– sequence: 2
  givenname: Lama
  surname: Soubra
  fullname: Soubra, Lama
  organization: Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University
– sequence: 3
  givenname: Mohammad A.
  surname: Al-Ghouti
  fullname: Al-Ghouti, Mohammad A.
  email: mohammad.alghouti@qu.edu.qa
  organization: Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University
BookMark eNp9kctKAzEUhoMoqLUv4Crgxs1obp3MuJNSL2ARpPuQyZzRyEyiSUbp2xtbQenCTS6H7zuc5D9G-847QOiUkgtKiLyMgkhWFoSxguSlLOQeOmK0ropyVrP9P-dDNI3xlWSKiHyXRwhWL4DneowQsXYtXnQdmBSx7_ASghnDelNeQnpZ98NPZe5d0oN1OlnvsHU45SZLHawDvHAfNng3gEtX-Bo_wYeFzxN00Ok-wvRnn6DVzWI1vyseHm_v59cPheF1mYqONITxhpEKTGUEn81M1VIqCZWcg241mIY2DeugFVQwQhtoBGUtmNrUreETdL5t-xb8-wgxqcFGA32vHfgxKiYZp4QLITJ6toO--jG4PJxiNWdMCknKTFVbygQfY4BOGZs2r05B215Ror4TUNsEVP58tUlAyayyHfUt2EGH9f8S30oxw-4Zwu9U_1hf3RyafQ
CitedBy_id crossref_primary_10_1016_j_jfca_2025_107509
crossref_primary_10_1007_s13530_023_00201_9
crossref_primary_10_1007_s12011_024_04092_w
crossref_primary_10_3390_su151813292
crossref_primary_10_1021_acs_analchem_3c00579
crossref_primary_10_5004_dwt_2023_29616
crossref_primary_10_3389_frans_2023_1069678
crossref_primary_10_1177_11786302231201259
crossref_primary_10_15243_jdmlm_2024_113_5551
crossref_primary_10_1016_j_clce_2024_100137
crossref_primary_10_1016_j_jhazmat_2024_137053
crossref_primary_10_1016_j_jece_2023_110428
crossref_primary_10_3390_toxics13030206
crossref_primary_10_1039_D3RA02974C
crossref_primary_10_3390_electrochem5020012
crossref_primary_10_1016_j_snb_2024_136492
crossref_primary_10_1016_j_marpolbul_2023_115661
crossref_primary_10_1080_09712119_2023_2282518
crossref_primary_10_1007_s10895_024_04119_4
crossref_primary_10_15616_BSL_2024_30_1_24
crossref_primary_10_1016_j_aca_2024_342259
crossref_primary_10_1016_j_inoche_2024_113232
crossref_primary_10_3390_w15183258
crossref_primary_10_1016_j_saa_2024_125634
crossref_primary_10_1016_j_marpolbul_2024_116827
crossref_primary_10_1016_j_molliq_2024_125592
crossref_primary_10_1016_j_jhazmat_2024_133448
crossref_primary_10_1007_s10661_023_11194_w
crossref_primary_10_3390_toxics11080712
crossref_primary_10_1126_science_ade7525
crossref_primary_10_1016_j_wsee_2024_10_001
crossref_primary_10_1016_j_biteb_2025_102040
crossref_primary_10_1016_j_toxac_2024_03_096
crossref_primary_10_1016_j_scitotenv_2024_171028
crossref_primary_10_3389_fsufs_2024_1470683
crossref_primary_10_1016_j_marpolbul_2023_115446
crossref_primary_10_1021_acs_inorgchem_3c02716
crossref_primary_10_1016_j_jwpe_2023_104258
crossref_primary_10_1016_j_scitotenv_2024_175021
crossref_primary_10_3390_ijerph192315929
crossref_primary_10_1016_j_foodchem_2024_141375
crossref_primary_10_1016_j_psep_2024_09_072
crossref_primary_10_1016_j_jlumin_2024_121003
crossref_primary_10_1007_s10661_023_11122_y
crossref_primary_10_1016_j_heliyon_2024_e28253
crossref_primary_10_1016_j_envpol_2023_122604
crossref_primary_10_1016_j_scitotenv_2024_177719
crossref_primary_10_3389_fmars_2024_1444302
crossref_primary_10_1016_j_jhazmat_2023_132429
crossref_primary_10_1016_j_chemosphere_2023_139791
crossref_primary_10_1016_j_scitotenv_2024_176844
crossref_primary_10_1038_s41598_024_59917_4
crossref_primary_10_1016_j_marpolbul_2023_115338
crossref_primary_10_3390_w16050756
crossref_primary_10_1016_j_envint_2024_108661
crossref_primary_10_1016_j_scitotenv_2024_173574
crossref_primary_10_1021_acsearthspacechem_3c00304
crossref_primary_10_1088_1755_1315_1297_1_012093
crossref_primary_10_1016_j_ecoenv_2023_114862
crossref_primary_10_1016_j_nanoso_2024_101220
crossref_primary_10_1016_j_ijbiomac_2024_134996
crossref_primary_10_1016_j_envres_2025_121437
crossref_primary_10_47134_biology_v1i1_1931
crossref_primary_10_1016_j_heliyon_2024_e33905
crossref_primary_10_1007_s10661_024_13516_y
crossref_primary_10_1007_s11274_023_03686_1
crossref_primary_10_1016_j_aquatox_2024_107202
crossref_primary_10_1016_j_chemosphere_2024_142813
crossref_primary_10_1016_j_chemosphere_2024_142817
crossref_primary_10_1016_j_jconhyd_2024_104492
crossref_primary_10_1007_s13762_023_05395_6
Cites_doi 10.1016/j.envres.2020.109750
10.1016/j.envpol.2020.115510
10.1016/j.scitotenv.2020.140564
10.1007/s10661-014-3885-4
10.1007/s11270-016-3060-3
10.1007/s12011-020-02446-8
10.3329/jsr.v2i3.4667
10.3844/ajessp.2016.341.357
10.1016/j.aej.2020.11.036
10.1016/j.marpolbul.2020.111033
10.1016/j.chemosphere.2020.128024
10.1016/S0048-9697(02)00562-4
10.1016/j.envsci.2018.03.026
10.1016/j.neuro.2020.09.018
10.1016/j.chemosphere.2021.131402
10.1016/j.marpolbul.2017.04.024
10.1016/j.coesh.2021.100242
10.1016/j.ecolind.2020.106500
10.3390/ijerph15081692
10.1016/j.marpolbul.2021.112108
10.1016/j.jclepro.2020.125687
10.1016/j.scitotenv.2017.07.033
10.1016/j.envint.2018.02.028
10.1016/j.microc.2018.04.024
10.1002/2014GB004814
10.1002/gbc.20040
10.1289/ehp.7743
10.1016/j.jfca.2019.103357
10.1007/s00128-018-2530-2
10.1016/j.scitotenv.2018.10.408
10.1016/j.jes.2021.06.016
10.1016/j.marpolbul.2019.110539
10.1016/j.watres.2010.01.028
10.1021/acs.est.7b05217
10.1016/j.marpolbul.2014.10.019
10.1016/j.watres.2020.115563
10.1016/j.chemosphere.2020.128110
10.1016/j.jfca.2017.12.010
10.1016/j.fmre.2021.04.003
10.1016/j.atmosenv.2015.04.045
10.1111/j.1747-6593.2008.00129.x
10.1016/j.trac.2020.116016
10.1016/j.jenvman.2019.109613
10.1016/j.scitotenv.2019.135386
10.1016/j.atmosenv.2021.118349
10.1016/j.chemosphere.2010.10.050
10.1016/j.scitotenv.2019.136384
10.1016/j.aca.2010.01.048
10.1016/j.envpol.2020.114991
10.1016/j.sciaf.2021.e00876
10.26444/aaem/84934
10.1016/j.scitotenv.2019.02.259
10.1016/S0167-5648(03)80056-4
10.1007/s12517-021-07803-y
10.1016/j.jclepro.2021.126869
10.1016/j.chemosphere.2020.125989
10.1016/j.chemosphere.2020.128910
10.5194/acp-13-2827-2013
10.1016/j.marpolbul.2019.110499
10.1016/j.scitotenv.2020.136539
10.1016/j.chemosphere.2020.129233
10.1080/00039896.1984.10545872
10.1021/es026366o
10.1016/j.marchem.2007.04.002
10.1016/j.envpol.2021.117467
10.1007/s00244-006-0237-6
10.1016/j.envint.2021.106561
10.1016/j.envpol.2020.116146
10.1016/j.scitotenv.2020.137540
10.1016/j.envpol.2021.117041
10.1002/ep.13081
10.1016/j.watres.2020.115708
10.1016/j.chemosphere.2020.128890
10.5194/acp-17-8999-2017
10.1080/19393210.2018.1551247
10.1016/j.marpolbul.2020.111096
10.1016/j.envint.2019.03.019
10.1016/j.jfca.2020.103717
10.1016/j.marchem.2020.103753
10.1002/lno.10036
10.1016/j.fct.2010.07.031
10.1289/EHP3460
10.1016/j.fct.2018.06.023
10.1016/j.envsoft.2019.104599
10.4315/0362-028X.JFP-12-346
10.1016/j.foodchem.2015.07.081
10.1080/19393210.2017.1311379
10.1016/j.jhazmat.2018.07.096
10.1016/j.fct.2018.10.053
10.1016/j.jfca.2018.01.003
10.1016/j.scitotenv.2020.142763
10.1016/j.marpolbul.2021.112314
10.1016/j.scitotenv.2021.150124
10.1016/S0025-326X(99)00217-9
10.1016/B978-0-12-811442-1.00005-5
10.5455/OVJ.2015.v5.i2.p130
10.5194/acp-16-11773-2016
10.1016/j.marpolbul.2019.04.022
10.1016/j.envres.2015.04.019
10.1016/j.toxrep.2021.05.010
10.1016/j.marpolbul.2019.04.007
10.1111/j.1439-0426.2006.00829.x
10.1016/j.jclepro.2019.118637
10.1016/j.coesh.2021.100272
10.1016/j.foodchem.2020.127267
10.1016/j.marpolbul.2004.02.029
10.1016/j.apr.2021.01.015
10.1007/s00128-018-2388-3
10.1016/j.jfca.2010.04.009
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FH
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PATMY
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
7S9
L.6
DOI 10.1007/s40726-022-00226-7
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Central Student
ProQuest Biological Science Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central
Environmental Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Environmental Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList ProQuest Central Student
AGRICOLA

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2198-6592
EndPage 272
ExternalDocumentID 10_1007_s40726_022_00226_7
GrantInformation_xml – fundername: Qatar University
– fundername: Qatar University
  grantid: QUST-1-CAS 2022-312
  funderid: http://dx.doi.org/10.13039/501100004252
GroupedDBID -EM
0R~
203
406
AAAVM
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYQN
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFQWF
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
ATCPS
AUKKA
AVXWI
AXYYD
BBNVY
BENPR
BGNMA
BHPHI
C6C
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GGRSB
GJIRD
HCIFZ
HG6
HQYDN
HRMNR
HVGLF
IKXTQ
IWAJR
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
M7P
NPVJJ
NQJWS
NU0
O9J
PATMY
PT4
PYCSY
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
Z5O
Z7Y
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FH
ABRTQ
AZQEC
DWQXO
GNUQQ
LK8
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7S9
L.6
ID FETCH-LOGICAL-c396t-f0b023b208ec8c4355c8d11701733eadaecb1bb2fed414201beb412dec9c9dc3
IEDL.DBID BENPR
ISSN 2198-6592
IngestDate Thu Jul 10 23:26:36 EDT 2025
Fri Jul 25 10:53:57 EDT 2025
Tue Jul 01 02:44:58 EDT 2025
Thu Apr 24 23:02:32 EDT 2025
Fri Feb 21 02:45:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Fate and transport
Mercury methylation
Mercury pollution
Wastewater
Mercury measurements
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-f0b023b208ec8c4355c8d11701733eadaecb1bb2fed414201beb412dec9c9dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doi.org/10.1007/s40726-022-00226-7
PQID 2932274706
PQPubID 2044259
PageCount 24
ParticipantIDs proquest_miscellaneous_2723103444
proquest_journals_2932274706
crossref_citationtrail_10_1007_s40726_022_00226_7
crossref_primary_10_1007_s40726_022_00226_7
springer_journals_10_1007_s40726_022_00226_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Current pollution reports
PublicationTitleAbbrev Curr Pollution Rep
PublicationYear 2022
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Obiri-YeboahANyantakyiEKMohammedARYeboahSIIKDomfehMKAbokyiEAssessing potential health effect of lead and mercury and the impact of illegal mining activities in the Bonsa river, Tarkwa Nsuaem, GhanaSci African202113e008761:CAS:528:DC%2BB38XitVKitbbJ10.1016/j.sciaf.2021.e00876
AfonsoCBenefits and risks associated with consumption of raw, cooked, and canned tuna (Thunnus spp.) based on the bioaccessibility of selenium and methylmercuryEnviron Res20151431301371:CAS:528:DC%2BC2MXnvFSisLg%3D10.1016/j.envres.2015.04.019
ThomasSMClimate and landscape conditions indirectly affect fish mercury levels by altering lake water chemistry and fish sizeEnviron Res2020188no. November 20191097501:CAS:528:DC%2BB3cXhtFCju73F10.1016/j.envres.2020.109750
HassanHElezzAAAbuasaliMAlSaadiHBaseline concentrations of mercury species within sediments from Qatar’s coastal marine zoneMar Pollut Bull2019142April5956021:CAS:528:DC%2BC1MXnvVKitL0%3D10.1016/j.marpolbul.2019.04.022
MilatouNDassenakisMMegalofonouPMercury concentrations in reared Atlantic bluefin tuna and risk assessment for the consumers: to eat or not to eat?Food Chem2020331no. December 20191272671:CAS:528:DC%2BB3cXht1ejt7bP10.1016/j.foodchem.2020.127267
O’ConnorDMercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: a critical reviewEnviron Int201912674776110.1016/j.envint.2019.03.0191:CAS:528:DC%2BC1MXltFOqur4%3D
Al-AnsariEMASMercury accumulation in Lethrinus nebulosus from the marine waters of the Qatar EEZMar Pollut Bull20171211–21431531:CAS:528:DC%2BC2sXptlSntL0%3D10.1016/j.marpolbul.2017.04.024
KimákováTKuzmováLNevolnáZBenckoVFish and fish products as risk factors of mercurexposureAnn Agric Environ Med201825348849310.26444/aaem/849341:CAS:528:DC%2BC1MXitlKlsrbJ
DuanDLitterfall-derived organic matter enhances mercury methylation in mangrove sediments of South ChinaSci Total Environ20217651427631:CAS:528:DC%2BB3cXitV2lsL7F10.1016/j.scitotenv.2020.142763
de PaivaELMorganoMAMilaniRFCadmium, lead, tin, total mercury, and methylmercury in canned tuna commercialised in São Paulo, BrazilFood Addit Contam Part B Surveill201710318519110.1080/19393210.2017.13113791:CAS:528:DC%2BC2sXlvVCjsLc%3D
LiuJMengBPoulainAJMengQFengXStable isotope tracers identify sources and transformations of mercury in rice (Oryza sativa L.) growing in a mercury mining areaFundam Res2021132592681:CAS:528:DC%2BB38XitVaqs73L10.1016/j.fmre.2021.04.003
CostaFDNKornMGABritoGBFerlinSFostierAHPreliminary results of mercury levels in raw and cooked seafood and their public health impactFood Chem20161928378411:CAS:528:DC%2BC2MXht1SnsrnJ10.1016/j.foodchem.2015.07.081
WangKMunsonKMArmstrongDAMacdonaldRWWangFDetermining seawater mercury methylation and demethylation rates by the seawater incubation approach: a critiqueMar Chem2020219January1037531:CAS:528:DC%2BB3cXhsFWis7w%3D10.1016/j.marchem.2020.103753
Popovic AR, et al. Levels of toxic elements in canned fish from the Serbian markets and their health risks assessment.  J Food Compos Anal. 2018;67(August 2017):70–76.
HilsonGZolnikovTROrtizDRKumahCFormalizing artisanal gold mining under the Minamata convention: previewing the challenge in Sub-Saharan AfricaEnviron Sci Policy20188512313110.1016/j.envsci.2018.03.026
EFSA. Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. Parma, 2012.
Elsagh A, Jalilian H, Ghaderi Aslshabestari M. Evaluation of heavy metal pollution in coastal sediments of Bandar Abbas, the Persian Gulf, Iran: mercury pollution and environmental geochemical indices. Mar Pollut Bull 2021;167(March):112314.
SunderlandEMLiMBullardKDecadal changes in the edible supply of seafood and methylmercury exposure in the United StatesEnviron Health Perspect20181262610.1289/EHP3460
SongZSoil mercury pollution caused by typical anthropogenic sources in China: evidence from stable mercury isotope measurement and receptor model analysisJ Clean Prod20212881256871:CAS:528:DC%2BB3MXmtVCjug%3D%3D10.1016/j.jclepro.2020.125687
AbassKQuantitative estimation of mercury intake by toxicokinetic modelling based on total mercury levels in humansEnviron Int2018114November 20171111:CAS:528:DC%2BC1cXjtF2rtb4%3D10.1016/j.envint.2018.02.028
BudnikLTCasteleynLMercury pollution in modern times and its socio-medical consequencesSci Total Environ2019654November 20187207341:CAS:528:DC%2BC1cXit1eitLfF10.1016/j.scitotenv.2018.10.408
da SilvaJMMercury levels in commercial mid-trophic level fishes along the Portuguese coast – relationships with trophic niche and oxidative damageEcol Indic2020116February10650010.1016/j.ecolind.2020.1065001:CAS:528:DC%2BB3cXhtVWis7%2FP
Kljaković-Gašpić Z, Tičina V. Mercury and selenium levels in archive samples of wild Atlantic bluefin tuna from the Mediterranean Sea. Chemosphere. 2021;284(June).
Kristensen P. The DPSIR framework, A Compr. / Detail. Assess. vulnerability water Resour. to Environ. Chang. Africa using river basin approach. 2004;1–10.
DietzRA risk assessment of the effects of mercury on Baltic Sea, Greater North Sea and North Atlantic wildlife, fish and bivalvesEnviron Int20201462021
GårdfeldtKMuntheJStrömbergDLindqvistOA kinetic study on the abiotic methylation of divalent mercury in the aqueous phaseSci Total Environ20033041–312713610.1016/S0048-9697(02)00562-41:CAS:528:DC%2BD3sXit12isbo%3D
Burke SM, et al. Fish growth rates and lake sulphate explain variation in mercury levels in ninespine stickleback (Pungitius pungitius) on the Arctic Coastal Plain of Alaska. Sci Total Environ. 2020;743.
XuCYanHZhangSHeavy metal enrichment and health risk assessment of karst cave fish in Libo, Guizhou, ChinaAlexandria Eng J20216011885189610.1016/j.aej.2020.11.036
Alizada N, Malik S, Bin Muzaffar S. Bioaccumulation of heavy metals in tissues of Indian anchovy (Stolephorus indicus) from the UAE coast, Arabian Gulf. Mar Pollut Bull. 2020;154( no. February).
ElsayedHYigiterhanOAl-AnsariEMASAl-AshwelAAElezzAAAl-MaslamaniIAMethylmercury bioaccumulation among different food chain levels in the EEZ of Qatar (Arabian Gulf)Reg Stud Mar Sci202037101334
EPA. Mercury study report to congress. 1997.
WHO. Chemical aspects. In: WHO, editors. Guidelines for drinking‑water quality. 4th ed. 2017. p. 155–200.
ZiaratiPMakkiMLevels of mercury in Persian Gulf frozen fish speciesJ Pharm Heal Sci2017511522
EU Commission. Commission Regulation (EC) No 118/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs, no. 1881/2006. European Union, 2006, pp. 1–28.
SalehTAFadillahGCiptawatiEKhaledMAnalytical methods for mercury speciation, detection, and measurement in water, oil, and gasTrAC - Trends Anal Chem20201321110.1016/j.trac.2020.1160161:CAS:528:DC%2BB3cXhslWjsrbF
Murillo-Cisneros DA, et al. Mercury concentrations in Baja California Sur fish: dietary exposure assessment. Chemosphere. 2021;267.
WHO. Chapter 6.9 Mercury General description. In Air Quality Guidelines, 2nd ed., no. 2, copenhagen: WHO, 2000, pp. 1–15.
KawaiTSakuraiTSuzukiNApplication of a new dynamic 3-D model to investigate human impacts on the fate of mercury in the global oceanEnviron Model Softw202012410459910.1016/j.envsoft.2019.104599
TsuiMKTBlumJDKwonSYReview of stable mercury isotopes in ecology and biogeochemistrySci Total Environ20207161353861:CAS:528:DC%2BC1MXitlynu7jM10.1016/j.scitotenv.2019.135386
AbolghaitSKGarbajAMDetermination of cadmium, lead and mercury residual levels in meat of canned light tuna (Katsuwonus pelamis and Thunnus albacares) and fresh little tunny (Euthynnus alletteratus) in LibyaOpen Vet J2015521301371:STN:280:DC%2BC28rgvVansA%3D%3D
FAO. The State of World Fisheries and Aquaculture 2020. 2020th ed. Rome.: FAO, 2020.
ZhaoMMbin KouJping ChenYgui XueLFanTTmei WangSBioremediation of wastewater containing mercury using three newly isolated bacterial strainsJ Clean Prod20212991268691:CAS:528:DC%2BB3MXotlagtbc%3D10.1016/j.jclepro.2021.126869
TrasandeLLandriganPJSchechterCPublic health and economic consequences of methyl mercury toxicity to the developing brainEnviron Health Perspect200511355905961:CAS:528:DC%2BD2MXkvFCjtLk%3D10.1289/ehp.7743
MaoLOccurrence and risk assessment of total mercury and methylmercury in surface seawater and sediments from the Jiaozhou Bay, Yellow SeaSci Total Environ20207141:CAS:528:DC%2BB3cXhsF2qt70%3D10.1016/j.scitotenv.2020.136539
MilleTDistribution of mercury species in different tissues and trophic levels of commonly consumed fish species from the south Bay of Biscay (France)Mar Pollut Bull2021166no. April 202018
Al-majed NB, Preston MR. An assessment of the total and methyl mercury content of zooplankton and fish tissue collected from Kuwait territorial waters. 2000;40(4).
AMAP/UN Environment. Technical Background Report for the Global Mercury Assessment 2013. Oslo, Norway/UNEP Chemicals Branch, Geneva, Switzerland. 2013.
WangJDaiJChenGJiangFRole of sulfur biogeochemical cycle in mercury methylation in estuarine sediments: a reviewJ Hazard Mater2021423no. PA126964
Kazuva E, Zhang J, Tong Z, Si A, Na L. The DPSIR model for environmental risk assessment of municipal solid waste in Dar es Salaam city, Tanzania. Int J Environ Res Public Health. 2018;15(8).
Stelljes MS. Risk assessment. In: Toxicology for nontoxicologists, Lanham: Government Institutes, 2008, pp. 107–119.
BurgerJInterspecific and locational differences in metal levels in edible fish tissue from Saudi ArabiaEnviron Monit Assess201418610672167461:CAS:528:DC%2BC2cXhtFeru7nL10.1007/s10661-014-3885-4
LiuMIncreases of total mercury and methylmercury releases from municipal sewage into environment in China and implicationsEnviron Sci Technol20185211241341:CAS:528:DC%2BC2sXhvFehsLrN10.1021/acs.est.7b05217
SuessEMercury loads and fluxes from wastewater: a nationwide survey in SwitzerlandWater Res20201751157081:CAS:528:DC%2BB3cXls1Glt70%3D10.1016/j.watres.2020.115708
GuoYZhangBChenBYangQLiJDisparities in socio-economic drivers behind China’s provincial energy-related mercury emission changesJ Environ Manage2019251
B Karsli (226_CR69) 2021; 165
226_CR124
CS Yuan (226_CR59) 2021; 12
226_CR123
226_CR91
226_CR122
G Sarà (226_CR90) 2007; 23
226_CR98
226_CR125
226_CR11
226_CR99
226_CR17
K Gårdfeldt (226_CR34) 2003; 304
LT Budnik (226_CR133) 2019; 654
N Milatou (226_CR13) 2020; 331
J Rahmani (226_CR5) 2018; 118
L Sun (226_CR61) 2021; 261
G Hilson (226_CR108) 2018; 85
226_CR119
226_CR118
P Liang (226_CR55) 2021; 20
M Alcala-Orozco (226_CR96) 2021; 00
Y Liu (226_CR64) 2022; 113
226_CR82
226_CR86
226_CR139
226_CR87
226_CR138
EM Sunderland (226_CR115) 2018; 126
226_CR137
226_CR85
SA Peterson (226_CR83) 2007; 53
M Rezaei (226_CR2) 2021; 15
226_CR89
X Ji (226_CR52) 2020; 173
226_CR131
226_CR130
A Obiri-Yeboah (226_CR128) 2021; 13
R Dietz (226_CR16) 2020; 146
SS Saei-Dehkordi (226_CR74) 2010; 48
S Ferreira da Silva (226_CR113) 2020; 248
SS Gbondo-Tugbawa (226_CR38) 2010; 44
D O’Connor (226_CR7) 2019; 126
226_CR105
226_CR73
J Burger (226_CR76) 2014; 186
226_CR104
M Alcala-Orozco (226_CR97) 2017; 10
D Duan (226_CR65) 2021; 765
E Effah (226_CR136) 2021; 8
TW Kreish (226_CR46) 1999; 19
Z Gao (226_CR40) 2020; 710
H Timonen (226_CR60) 2013; 13
T Mille (226_CR14) 2021; 166
E Suess (226_CR41) 2020; 175
L Whalin (226_CR67) 2007; 107
Q Nong (226_CR80) 2021; 263
Y Guo (226_CR109) 2019; 251
CA Kelly (226_CR29) 2003; 37
NR Razavi (226_CR51) 2015; 60
C Afonso (226_CR78) 2015; 143
226_CR112
226_CR111
MM Islam (226_CR84) 2010; 2
226_CR117
CV Alva (226_CR94) 2020; 88
MY Ashfaq (226_CR106) 2019; 38
226_CR114
PA Cunningham (226_CR10) 2019; 143
Z Song (226_CR50) 2021; 288
K Abass (226_CR20) 2018; 114
EL de Paiva (226_CR95) 2017; 10
226_CR107
D Al-Abdulrazzak (226_CR18) 2015; 2
M Akito (226_CR43) 2014; 89
Q Huang (226_CR100) 2016; 16
TW Clarkson (226_CR3) 2020; 81
H Elsayed (226_CR12) 2020; 37
JJ Hung (226_CR54) 2020; 156
MP Jordan (226_CR33) 2019; 667
R Russo (226_CR93) 2013; 76
226_CR57
226_CR58
MM Zhao (226_CR39) 2021; 299
226_CR8
Q Xie (226_CR103) 2021; 282
D Achá (226_CR23) 2011; 82
V Shah (226_CR63) 2017; 17
M Vafaei (226_CR77) 2018; 66
ZF Anual (226_CR28) 2018; 140
A Matsuyama (226_CR44) 2019; 149
EMAS Al-Ansari (226_CR9) 2017; 121
TA Saleh (226_CR4) 2020; 132
R Quiroga-Flores (226_CR53) 2021; 207
L Mao (226_CR35) 2020; 714
A Acquavita (226_CR121) 2021; 22
226_CR47
226_CR45
226_CR48
226_CR49
MKT Tsui (226_CR101) 2020; 716
L Trasande (226_CR134) 2005; 113
FDN Costa (226_CR81) 2016; 192
CY Chen (226_CR129) 2021; 268
226_CR1
B Wang (226_CR102) 2021; 154
SK Abolghait (226_CR88) 2015; 5
J Liu (226_CR126) 2021; 1
T Kimáková (226_CR21) 2018; 25
226_CR145
226_CR144
J Wang (226_CR27) 2021; 423
226_CR143
K Leopold (226_CR32) 2010; 663
226_CR36
K Wang (226_CR22) 2020; 219
226_CR142
226_CR141
226_CR37
226_CR140
C Xu (226_CR6) 2021; 60
C Morosini (226_CR62) 2021; 285
P Ziarati (226_CR31) 2017; 5
M Liu (226_CR42) 2018; 52
J Huang (226_CR135) 2022; 804
HM Amos (226_CR120) 2013; 27
H Hassan (226_CR30) 2019; 142
SM Thomas (226_CR25) 2020; 188
H Du (226_CR26) 2019; 102
Q Chen (226_CR110) 2020; 243
S Mol (226_CR79) 2011; 24
226_CR24
Y Zhang (226_CR66) 2014; 28
E Walberg (226_CR70) 2011; 11
B Mansouri (226_CR92) 2021; 199
Y Wang (226_CR127) 2020; 265
IR Rowland (226_CR132) 1984; 39
T Kawai (226_CR116) 2020; 124
OM Hakami (226_CR75) 2016; 12
H Zhang (226_CR19) 2021; 254
B Laird (226_CR72) 2017; 607–608
A Freije (226_CR71) 2009; 23
K Sofoulaki (226_CR15) 2019; 123
P Liang (226_CR56) 2018; 360
JM da Silva (226_CR68) 2020; 116
References_xml – reference: ZhaoMMbin KouJping ChenYgui XueLFanTTmei WangSBioremediation of wastewater containing mercury using three newly isolated bacterial strainsJ Clean Prod20212991268691:CAS:528:DC%2BB3MXotlagtbc%3D10.1016/j.jclepro.2021.126869
– reference: DietzRA risk assessment of the effects of mercury on Baltic Sea, Greater North Sea and North Atlantic wildlife, fish and bivalvesEnviron Int20201462021
– reference: Kristensen P. The DPSIR framework, A Compr. / Detail. Assess. vulnerability water Resour. to Environ. Chang. Africa using river basin approach. 2004;1–10.
– reference: TimonenHAmbroseJLJaffeDAOxidation of elemental Hg in anthropogenic and marine airmassesAtmos Chem Phys20131352827283610.5194/acp-13-2827-20131:CAS:528:DC%2BC3sXhslGitrnO
– reference: ThomasSMClimate and landscape conditions indirectly affect fish mercury levels by altering lake water chemistry and fish sizeEnviron Res2020188no. November 20191097501:CAS:528:DC%2BB3cXhtFCju73F10.1016/j.envres.2020.109750
– reference: FDA. Technical Information on Development of FDA/EPA Advice about Eating Fish for Those Who Might Become or Are Pregnant or Breastfeeding and Children Ages 1–11 Years. Food and Drug Administration, 2020. [Online]. Available: https://doi.org/10.1080/19393210.2018.1551247.
– reference: DuanDLitterfall-derived organic matter enhances mercury methylation in mangrove sediments of South ChinaSci Total Environ20217651427631:CAS:528:DC%2BB3cXitV2lsL7F10.1016/j.scitotenv.2020.142763
– reference: Al-AnsariEMASMercury accumulation in Lethrinus nebulosus from the marine waters of the Qatar EEZMar Pollut Bull20171211–21431531:CAS:528:DC%2BC2sXptlSntL0%3D10.1016/j.marpolbul.2017.04.024
– reference: WangJDaiJChenGJiangFRole of sulfur biogeochemical cycle in mercury methylation in estuarine sediments: a reviewJ Hazard Mater2021423no. PA126964
– reference: JordanMPStewartAREagles-SmithCAStreckerALNutrients mediate the effects of temperature on methylmercury concentrations in freshwater zooplanktonSci Total Environ20196676016121:CAS:528:DC%2BC1MXkt1WrsLk%3D10.1016/j.scitotenv.2019.02.259
– reference: KawaiTSakuraiTSuzukiNApplication of a new dynamic 3-D model to investigate human impacts on the fate of mercury in the global oceanEnviron Model Softw202012410459910.1016/j.envsoft.2019.104599
– reference: WalbergEEffect of increased water temperature on warm water fish feeding behavior and habitat useJ Undergrad Res Minnesota State Univ Mankato201111113
– reference: YuanCSJhangYMIeIRLeeCEFangGCLuoJExploratory investigation on spatiotemporal variation and source identification of atmospheric speciated mercury surrounding the Taiwan StraitAtmos Pollut Res202112354641:CAS:528:DC%2BB3MXktVOnsbs%3D10.1016/j.apr.2021.01.015
– reference: Kljaković-Gašpić Z, Tičina V. Mercury and selenium levels in archive samples of wild Atlantic bluefin tuna from the Mediterranean Sea. Chemosphere. 2021;284(June).
– reference: Kazuva E, Zhang J, Tong Z, Si A, Na L. The DPSIR model for environmental risk assessment of municipal solid waste in Dar es Salaam city, Tanzania. Int J Environ Res Public Health. 2018;15(8).
– reference: ClarksonTWStrainJJMethyl mercury: loaves versus fishesNeurotoxicology20208112822871:STN:280:DC%2BB2Mnjsl2quw%3D%3D10.1016/j.neuro.2020.09.018
– reference: LeopoldKFoulkesMWorsfoldPMethods for the determination and speciation of mercury in natural waters—a reviewAnal Chim Acta201066321271381:CAS:528:DC%2BC3cXjtVSgtr0%3D10.1016/j.aca.2010.01.048
– reference: WangYTotal mercury and methylmercury in rice: exposure and health implications in BangladeshEnviron Pollut20202651149911:CAS:528:DC%2BB3cXht1CjtrvP10.1016/j.envpol.2020.114991
– reference: AMAP/UN Environment. 2019 Technical Background Report to the Global Mercury Assessment 2018. Oslo, Norway/UN Environment Programme, Chemicals and Health Branch, Geneva, Switzerland.
– reference: ShahVJaegléLSubtropical subsidence and surface deposition of oxidized mercury produced in the free troposphereAtmos Chem Phys20171714899990171:CAS:528:DC%2BC2sXhs1agsL%2FN10.5194/acp-17-8999-2017
– reference: Jain SK, Singh VP. Acquisition and processing of water resources data. In: Developments in water science, vol. 51, no. C, V. P. S. S.K. Jain, Ed. Elsevier Ltd, 2003, pp. 47–121.
– reference: RezaeiMHeavy metals concentration in mangrove tissues and associated sediments and seawater from the north coast of Persian Gulf, Iran: ecological and health risk assessmentEnviron Nanotechnol Monit Manag2021151004561:CAS:528:DC%2BB38XhvVSitb3O
– reference: wei Chen S, et al. Health risk assessment for local residents from the South China Sea based on mercury concentrations in marine fish. Bull Environ Contam Toxicol. 2018;101(3):398–402.
– reference: ZiaratiPMakkiMLevels of mercury in Persian Gulf frozen fish speciesJ Pharm Heal Sci2017511522
– reference: LairdBExposure and risk characterization for dietary methylmercury from seafood consumption in KuwaitSci Total Environ2017607–60837538010.1016/j.scitotenv.2017.07.0331:CAS:528:DC%2BC2sXhtFCgu7vE
– reference: EU Commission. Commission Regulation (EC) No 118/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs, no. 1881/2006. European Union, 2006, pp. 1–28.
– reference: LiuYWangJGuoJWangLWuQVertical distribution characteristics of soil mercury and its formation mechanism in permafrost regions: a case study of the Qinghai-Tibetan PlateauJ Environ Sci (China)202211331132110.1016/j.jes.2021.06.016
– reference: EPA. National Primary Drinking Water Regulations, no. 1.
– reference: Saei-DehkordiSSFallahAANematollahiAArsenic and mercury in commercially valuable fish species from the Persian Gulf: influence of season and habitatFood Chem Toxicol20104810294529501:CAS:528:DC%2BC3cXhtFGjtbrO10.1016/j.fct.2010.07.031
– reference: SofoulakiKKalantziIMachiasAPergantisSATsapakisMMetals in sardine and anchovy from Greek coastal areas: public health risk and nutritional benefits assessmentFood Chem Toxicol2019123no. August 20181131241:CAS:528:DC%2BC1cXitVentL3L10.1016/j.fct.2018.10.053
– reference: FAO. The State of World Fisheries and Aquaculture 2020. 2020th ed. Rome.: FAO, 2020.
– reference: UN. Minamata Convention on Mercury, 2019.
– reference: FAO/WHO. Methylmercury. In: Sixty-seventh meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Geneva, 2007.
– reference: MolSLevels of selected trace metals in canned tuna fish produced in TurkeyJ Food Compos Anal201124166691:CAS:528:DC%2BC3MXhslOlsLw%3D10.1016/j.jfca.2010.04.009
– reference: MansouriBMetal risk assessment study of canned fish available on the Iranian marketBiol Trace Elem Res20211999347034771:CAS:528:DC%2BB3cXit12ktLvK10.1007/s12011-020-02446-8
– reference: LiuJMengBPoulainAJMengQFengXStable isotope tracers identify sources and transformations of mercury in rice (Oryza sativa L.) growing in a mercury mining areaFundam Res2021132592681:CAS:528:DC%2BB38XitVaqs73L10.1016/j.fmre.2021.04.003
– reference: SunLZhangXZhengJZhengYYuanDChenWMercury concentration and isotopic composition on different atmospheric particles (PM10 and PM2.5) in the subtropical coastal suburb of Xiamen Bay, Southern ChinaAtmos Environ.2021261June18604
– reference: Ferreira da SilvaSde Oliveira LimMMercury in fish marketed in the Amazon triple frontier and health risk assessmentChemosphere20202481259891:CAS:528:DC%2BB3cXisFOgtb0%3D10.1016/j.chemosphere.2020.125989
– reference: IslamMMBangSKimK-WAhmedMKJannatMHeavy metals in frozen and canned marine fish of KoreaJ Sci Res2010235491:CAS:528:DC%2BC3cXhsVWktrbF10.3329/jsr.v2i3.4667
– reference: VafaeiMNaseriMImaniALong-term storage effect on some mineral elements of canned silver carp (Hypophthalmichthys molitrix) with reference to daily intake changesJ Food Compos Anal201866November 20161161201:CAS:528:DC%2BC1cXhtFWrtg%3D%3D10.1016/j.jfca.2017.12.010
– reference: •• Luo H, Cheng Q, Pan X. Photochemical behaviors of mercury (Hg) species in aquatic systems: a systematic review on reaction process, mechanism, and influencing factor. Sci Total Environ. 2020;720;1375-40.
– reference: Gentès S, et al. Drivers of variability in mercury and methylmercury bioaccumulation and biomagnification in temperate freshwater lakes. Chemosphere. 2021;267.
– reference: EFSA. Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. Parma, 2012.
– reference: ElsayedHYigiterhanOAl-AnsariEMASAl-AshwelAAElezzAAAl-MaslamaniIAMethylmercury bioaccumulation among different food chain levels in the EEZ of Qatar (Arabian Gulf)Reg Stud Mar Sci202037101334
– reference: Bat L, Arici E. Heavy metal levels in fish, molluscs, and crustacea from Turkish seas and potential risk of human health. 2018; vol. 13. Elsevier Inc.
– reference: AbolghaitSKGarbajAMDetermination of cadmium, lead and mercury residual levels in meat of canned light tuna (Katsuwonus pelamis and Thunnus albacares) and fresh little tunny (Euthynnus alletteratus) in LibyaOpen Vet J2015521301371:STN:280:DC%2BC28rgvVansA%3D%3D
– reference: BudnikLTCasteleynLMercury pollution in modern times and its socio-medical consequencesSci Total Environ2019654November 20187207341:CAS:528:DC%2BC1cXit1eitLfF10.1016/j.scitotenv.2018.10.408
– reference: HilsonGZolnikovTROrtizDRKumahCFormalizing artisanal gold mining under the Minamata convention: previewing the challenge in Sub-Saharan AfricaEnviron Sci Policy20188512313110.1016/j.envsci.2018.03.026
– reference: TsuiMKTBlumJDKwonSYReview of stable mercury isotopes in ecology and biogeochemistrySci Total Environ20207161353861:CAS:528:DC%2BC1MXitlynu7jM10.1016/j.scitotenv.2019.135386
– reference: HakamiOMRisk assessment of heavy metals in fish in Saudi ArabiaAm J Environ Sci201612634135710.3844/ajessp.2016.341.3571:CAS:528:DC%2BC1cXkvV2ls7s%3D
– reference: WHO. Air quality guidelines. 2006.
– reference: CostaFDNKornMGABritoGBFerlinSFostierAHPreliminary results of mercury levels in raw and cooked seafood and their public health impactFood Chem20161928378411:CAS:528:DC%2BC2MXht1SnsrnJ10.1016/j.foodchem.2015.07.081
– reference: ChenQTaylorDEconomic development and pollution emissions in Singapore: evidence in support of the Environmental Kuznets Curve hypothesis and its implications for regional sustainabilityJ Clean Prod20202431186371:CAS:528:DC%2BC1MXhvFKhu7zM10.1016/j.jclepro.2019.118637
– reference: WangKMunsonKMArmstrongDAMacdonaldRWWangFDetermining seawater mercury methylation and demethylation rates by the seawater incubation approach: a critiqueMar Chem2020219January1037531:CAS:528:DC%2BB3cXhsFWis7w%3D10.1016/j.marchem.2020.103753
– reference: AMAP/UN Environment. Technical Background Report for the Global Mercury Assessment 2013. Oslo, Norway/UNEP Chemicals Branch, Geneva, Switzerland. 2013.
– reference: Obiri-YeboahANyantakyiEKMohammedARYeboahSIIKDomfehMKAbokyiEAssessing potential health effect of lead and mercury and the impact of illegal mining activities in the Bonsa river, Tarkwa Nsuaem, GhanaSci African202113e008761:CAS:528:DC%2BB38XitVKitbbJ10.1016/j.sciaf.2021.e00876
– reference: EPA. Guidance for Implementing the January 2001 Methylmercury Water Quality Criterion, Pennsylvania, 2001.
– reference: WHO. Environmental Health Criteria 101: Methylmercury, Geneva, 1990
– reference: ZhangYJaegléLThompsonLNatural biogeochemical cycle of mercury in a global three-dimensional ocean tracer modelGlobal Biogeochem Cycles201428555357010.1002/2014GB0048141:CAS:528:DC%2BC2cXps1Kms7s%3D
– reference: Médieu A, et al. Stable mercury concentrations of tropical tuna in the south western Pacific ocean: an 18-year monitoring study. Chemosphere. 2021;263.
– reference: Ghazwan MI. The effect of preservatives and freezing on museum saved fish samples, no. January, 2016.
– reference: Gyamfi O, Sørensen PB, Darko G, Ansah E, Vorkamp K, Bak JL. Contamination, exposure and risk assessment of mercury in the soils of an artisanal gold mining community in Ghana. Chemosphere. 2021;267.
– reference: XieQTotal mercury and methylmercury in human hair and food: implications for the exposure and health risk to residents in the Three Gorges Reservoir Region, ChinaEnviron Pollut20212821170411:CAS:528:DC%2BB3MXoslGrsbw%3D10.1016/j.envpol.2021.117041
– reference: WHO. Chapter 6.9 Mercury General description. In Air Quality Guidelines, 2nd ed., no. 2, copenhagen: WHO, 2000, pp. 1–15.
– reference: AcháDHintelmannHYeeJImportance of sulfate reducing bacteria in mercury methylation and demethylation in periphyton from Bolivian Amazon regionChemosphere201182691191610.1016/j.chemosphere.2010.10.0501:CAS:528:DC%2BC3MXksFCltQ%3D%3D
– reference: RowlandIRRobinsonRDDohertyRAEffects of diet on mercury metabolism and excretion in mice given methylmercury: role of gut floraArch Environ Health19843964014081:CAS:528:DyaL2MXht1Krsbg%3D10.1080/00039896.1984.10545872
– reference: Alizada N, Malik S, Bin Muzaffar S. Bioaccumulation of heavy metals in tissues of Indian anchovy (Stolephorus indicus) from the UAE coast, Arabian Gulf. Mar Pollut Bull. 2020;154( no. February).
– reference: AlvaCVMársicoETRibeiroRDda Silva CarneiroCSimõesJSda Silva FerreiraMConcentrations and health risk assessment of total mercury in canned tuna marketed in Southest BrazilJ Food Compos Anal202088July 20191033571:CAS:528:DC%2BB3cXktVCgtLk%3D10.1016/j.jfca.2019.103357
– reference: MilleTDistribution of mercury species in different tissues and trophic levels of commonly consumed fish species from the south Bay of Biscay (France)Mar Pollut Bull2021166no. April 202018
– reference: KreishTWAl-MuftahARTotal mercury levels in the coastal environment of Qatar (Arabian Gulf)Qatar Univ Sci J1999192742841:CAS:528:DC%2BD38Xht1yjs7o%3D
– reference: AMAP/UN Environment. Technical background report to the global atmospheric mercury assessment. 2008.
– reference: GårdfeldtKMuntheJStrömbergDLindqvistOA kinetic study on the abiotic methylation of divalent mercury in the aqueous phaseSci Total Environ20033041–312713610.1016/S0048-9697(02)00562-41:CAS:528:DC%2BD3sXit12isbo%3D
– reference: SalehTAFadillahGCiptawatiEKhaledMAnalytical methods for mercury speciation, detection, and measurement in water, oil, and gasTrAC - Trends Anal Chem20201321110.1016/j.trac.2020.1160161:CAS:528:DC%2BB3cXhslWjsrbF
– reference: Boughattas F, Karoui R. Mid infrared spectroscopy combined with chemometric tools for the identification of canned tuna species in brine. J Food Compos Anal. 2021;96(November 2020):103717.
– reference: Alcala-OrozcoMBalcomPHSunderlandEMOlivero-VerbelJCaballero-GallardoKEssential and toxic elements in sardines and tuna on the Colombian marketFood Addit Contam Part B Surveill20210000113
– reference: RahmaniJA systematic review and meta-analysis of metal concentrations in canned tuna fish in Iran and human health risk assessmentFood Chem Toxicol20181187537651:CAS:528:DC%2BC1cXhtFymsLrE10.1016/j.fct.2018.06.023
– reference: SongZSoil mercury pollution caused by typical anthropogenic sources in China: evidence from stable mercury isotope measurement and receptor model analysisJ Clean Prod20212881256871:CAS:528:DC%2BB3MXmtVCjug%3D%3D10.1016/j.jclepro.2020.125687
– reference: AcquavitaAFloreaniFCovelliSOccurrence and speciation of arsenic and mercury in alluvial and coastal sedimentsCurr Opin Environ Sci Heal20212210027210.1016/j.coesh.2021.100272
– reference: National Center for Biotechnology Information. PubChem Compound Summary for CID 46936479, S-(Methylmercury)-L-Cysteine. 2021. [Online]. Available: https://pubchem.ncbi.nlm.nih.gov/compound/S-_Methylmercury_-L-Cysteine.
– reference: PetersonSAPeckDVVan SickleJHughesRMMercury concentration in frozen whole-fish homogenates is insensitive to holding timeArch Environ Contam Toxicol20075334114171:CAS:528:DC%2BD2sXpslWrtb8%3D10.1007/s00244-006-0237-6
– reference: FreijeAAwadhMTotal and methyl mercury intake associated with fish consumption in BahrainWater Environ J200923215516410.1111/j.1747-6593.2008.00129.x
– reference: AmosHMJacobDJStreetsDGSunderlandEMLegacy impacts of all-time anthropogenic emissions on the global mercury cycleGlobal Biogeochem Cycles20132724104211:CAS:528:DC%2BC3sXhtFOisb7J10.1002/gbc.20040
– reference: RazaviNREffect of eutrophication on mercury (Hg) dynamics in subtropical reservoirs from a high Hg deposition ecoregionLimnol Oceanogr201560238640110.1002/lno.10036
– reference: KimákováTKuzmováLNevolnáZBenckoVFish and fish products as risk factors of mercurexposureAnn Agric Environ Med201825348849310.26444/aaem/849341:CAS:528:DC%2BC1MXitlKlsrbJ
– reference: XuCYanHZhangSHeavy metal enrichment and health risk assessment of karst cave fish in Libo, Guizhou, ChinaAlexandria Eng J20216011885189610.1016/j.aej.2020.11.036
– reference: CunninghamPASullivanEEEverettKHKovachSSRajanABarberMCAssessment of metal contamination in Arabian/Persian Gulf fish: a reviewMar Pollut Bull2019143no. November 20182642831:CAS:528:DC%2BC1MXosl2hsb8%3D10.1016/j.marpolbul.2019.04.007
– reference: BurgerJInterspecific and locational differences in metal levels in edible fish tissue from Saudi ArabiaEnviron Monit Assess201418610672167461:CAS:528:DC%2BC2cXhtFeru7nL10.1007/s10661-014-3885-4
– reference: Satheeswaran T, et al. Assessment of trace metal contamination in the marine sediment, seawater, and bivalves of Parangipettai, southeast coast of India. Mar Pollut Bull. 2019;149(August):110499.
– reference: Al-majed NB, Preston MR. An assessment of the total and methyl mercury content of zooplankton and fish tissue collected from Kuwait territorial waters. 2000;40(4).
– reference: HassanHElezzAAAbuasaliMAlSaadiHBaseline concentrations of mercury species within sediments from Qatar’s coastal marine zoneMar Pollut Bull2019142April5956021:CAS:528:DC%2BC1MXnvVKitL0%3D10.1016/j.marpolbul.2019.04.022
– reference: EPA. Mercury study report to congress. 1997.
– reference: LiangPThe role of antibiotics in mercury methylation in marine sedimentsJ Hazard Mater2018360April151:CAS:528:DC%2BC1cXhsVWqtLjP10.1016/j.jhazmat.2018.07.096
– reference: Steenhuisen F, Wilson SJ. Identifying and characterizing major emission point sources as a basis for geospatial distribution of mercury emissions inventories. Atmos Environ. 2015;112(October 2013);167–177.
– reference: EU. Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy. 2013.
– reference: DuHMaMIgarashiYWangDBiotic and abiotic degradation of methylmercury in aquatic ecosystems: a reviewBull Environ Contam Toxicol201910256056111:CAS:528:DC%2BC1MXlslKntrs%3D10.1007/s00128-018-2530-2
– reference: de PaivaELMorganoMAMilaniRFCadmium, lead, tin, total mercury, and methylmercury in canned tuna commercialised in São Paulo, BrazilFood Addit Contam Part B Surveill201710318519110.1080/19393210.2017.13113791:CAS:528:DC%2BC2sXlvVCjsLc%3D
– reference: WhalinLKimEHMasonRMason R. Factors influencing the oxidation, reduction, methylation and demethylation of mercury species in coastal watersMar Chem200710732782941:CAS:528:DC%2BD2sXhtlWntb3F10.1016/j.marchem.2007.04.002
– reference: HuangJContrasting changes in long-term wet mercury deposition and socioeconomic development in the largest city of TibetSci Total Environ20228041501241:CAS:528:DC%2BB3MXitVSrtrfP10.1016/j.scitotenv.2021.150124
– reference: Elsagh A, Jalilian H, Ghaderi Aslshabestari M. Evaluation of heavy metal pollution in coastal sediments of Bandar Abbas, the Persian Gulf, Iran: mercury pollution and environmental geochemical indices. Mar Pollut Bull 2021;167(March):112314.
– reference: HungJJHungCSWannCKHungPYKuoFMercury distribution and speciation in two lagoons with different pollution and eutrophication conditions in TaiwanMar Pollut Bull20201561110961:CAS:528:DC%2BB3cXpvVeis7s%3D10.1016/j.marpolbul.2020.111096
– reference: Al-AbdulrazzakDZellerDBelhabibDTesfamichaelDPaulyDTotal marine fisheries catches in the Persian/Arabian Gulf from 1950 to 2010Reg Stud Mar Sci201522834
– reference: SuessEMercury loads and fluxes from wastewater: a nationwide survey in SwitzerlandWater Res20201751157081:CAS:528:DC%2BB3cXls1Glt70%3D10.1016/j.watres.2020.115708
– reference: SaràGSaràRFeeding habits and trophic levels of bluefin tuna Thunnus thynnus of different size classes in the Mediterranean SeaJ Appl Ichthyol200723212212710.1111/j.1439-0426.2006.00829.x
– reference: ZhangHWuSLeibenspergerEMSource-receptor relationships for atmospheric mercury deposition in the context of global changeAtmos Environ2021254no. March1183491:CAS:528:DC%2BB3MXovVyisLg%3D10.1016/j.atmosenv.2021.118349
– reference: KarsliBDetermination of metal content in anchovy (Engraulis encrasicolus) from Turkey, Georgia and Abkhazia coasts of the Black Sea: evaluation of potential risks associated with human consumptionMar Pollut Bull2021165December 20201121081:CAS:528:DC%2BB3MXktVKrtrY%3D10.1016/j.marpolbul.2021.112108
– reference: Alcala-OrozcoMMorillo-GarciaYCaballero-GallardoKOlivero-VerbelJMercury in canned tuna marketed in Cartagena, Colombia, and estimation of human exposureFood Addit Contam Part B Surveill20171042412471:CAS:528:DC%2BC2sXpt1Wrsrc%3D
– reference: MaoLOccurrence and risk assessment of total mercury and methylmercury in surface seawater and sediments from the Jiaozhou Bay, Yellow SeaSci Total Environ20207141:CAS:528:DC%2BB3cXhsF2qt70%3D10.1016/j.scitotenv.2020.136539
– reference: Ayyamperumal R, Karuppasamy MB, Gopalakrishnan G, Huang X. Characteristics of atmospheric total gaseous mercury concentrations (TGM) and meteorological parameters observed in Chennai metropolis, South India. Arab J Geosci. 2021;14(15).
– reference: Murillo-Cisneros DA, et al. Mercury concentrations in Baja California Sur fish: dietary exposure assessment. Chemosphere. 2021;267.
– reference: UNDP. The Sustainable Development Goals ( SDGs ) and the Minamata Convention on Mercury, New York City, 2015.
– reference: Luo Q, et al. Atmospheric mercury pollution caused by fluorescent lamp manufacturing and the associated human health risk in a large industrial and commercial city. Environ Pollut. 2021;269.
– reference: NongQCharacterization of the mercury-binding proteins in tuna and salmon sashimi: implications for health risk of mercury in foodChemosphere20212631281101:CAS:528:DC%2BB3cXhsl2ksbbP10.1016/j.chemosphere.2020.128110
– reference: HuangQIsotopic composition for source identification of mercury in atmospheric fine particlesAtmos Chem Phys2016161811773117861:CAS:528:DC%2BC28XhslKrsLvN10.5194/acp-16-11773-2016
– reference: AshfaqMYAl-GhoutiMAQiblaweyHZouariNRodriguesDFHuYUse of DPSIR framework to analyze water resources in Qatar and overview of reverse osmosis as an environment friendly technologyEnviron Prog Sustain Energy201938411310.1002/ep.130811:CAS:528:DC%2BC1cXhvVOqt73M
– reference: MatsuyamaAYanoSMatsunoshitaKKindaichiMTadaAAkagiHThe spatial distribution of total mercury in sediments in the Yatsushiro Sea, JapanMar Pollut Bull2019149August1105391:CAS:528:DC%2BC1MXhvVaitb7J10.1016/j.marpolbul.2019.110539
– reference: E. T. D. E. L. Aquaculture. FAO Yearbook. Fishery and Aquaculture Statistics 2018/FAO annuaire. Statistiques des pêches et de l’aquaculture 2018/FAO anuario. Estadísticas de pesca y acuicultura 2018. 2020.
– reference: EffahEAhetoDWAcheampongETulashieSKAdoteyJHuman health risk assessment from heavy metals in three dominant fish species of the Ankobra river, GhanaToxicol Rep20218108110861:CAS:528:DC%2BB3MXhvFSkurnF10.1016/j.toxrep.2021.05.010
– reference: Popovic AR, et al. Levels of toxic elements in canned fish from the Serbian markets and their health risks assessment.  J Food Compos Anal. 2018;67(August 2017):70–76.
– reference: WangBFish, rice, and human hair mercury concentrations and health risks in typical Hg-contaminated areas and fish-rich areas, ChinaEnviron Int20211541065611:CAS:528:DC%2BB3MXhtVSiurvF10.1016/j.envint.2021.106561
– reference: Burke SM, et al. Fish growth rates and lake sulphate explain variation in mercury levels in ninespine stickleback (Pungitius pungitius) on the Arctic Coastal Plain of Alaska. Sci Total Environ. 2020;743.
– reference: ChenCYThe influence of nutrient loading on methylmercury availability in Long Island estuariesEnviron Pollut20212681155101:CAS:528:DC%2BB3cXisVagsr%2FJ10.1016/j.envpol.2020.115510
– reference: GuoYZhangBChenBYangQLiJDisparities in socio-economic drivers behind China’s provincial energy-related mercury emission changesJ Environ Manage2019251July1096131:CAS:528:DC%2BC1MXhvVCkt7bM10.1016/j.jenvman.2019.109613
– reference: AfonsoCBenefits and risks associated with consumption of raw, cooked, and canned tuna (Thunnus spp.) based on the bioaccessibility of selenium and methylmercuryEnviron Res20151431301371:CAS:528:DC%2BC2MXnvFSisLg%3D10.1016/j.envres.2015.04.019
– reference: LiangPWuSZhangCZhangJWongMEnvironmental geochemistry of Hg in intensive fish farming sites: implications of Hg speciation change related to its health perspectivesCurr Opin Environ Sci Heal.20212010024210.1016/j.coesh.2021.100242
– reference: AkitoMReevaluation of Minamata Bay, 25 years after the dredging of mercury-polluted sedimentsMar Pollut Bull2014891–21121201:CAS:528:DC%2BC2cXhvVWit7rJ10.1016/j.marpolbul.2014.10.019
– reference: RussoRHeavy metals in canned tuna from Italian marketsJ Food Prot20137623553591:CAS:528:DC%2BC3sXjtlGnu7w%3D10.4315/0362-028X.JFP-12-346
– reference: Stelljes MS. Risk assessment. In: Toxicology for nontoxicologists, Lanham: Government Institutes, 2008, pp. 107–119.
– reference: MilatouNDassenakisMMegalofonouPMercury concentrations in reared Atlantic bluefin tuna and risk assessment for the consumers: to eat or not to eat?Food Chem2020331no. December 20191272671:CAS:528:DC%2BB3cXht1ejt7bP10.1016/j.foodchem.2020.127267
– reference: JiXLiuCZhangMYinYPanGMitigation of methylmercury production in eutrophic waters by interfacial oxygen nanobubblesWater Res20201731155631:CAS:528:DC%2BB3cXivVCqs7c%3D10.1016/j.watres.2020.115563
– reference: O’ConnorDMercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: a critical reviewEnviron Int201912674776110.1016/j.envint.2019.03.0191:CAS:528:DC%2BC1MXltFOqur4%3D
– reference: AbassKQuantitative estimation of mercury intake by toxicokinetic modelling based on total mercury levels in humansEnviron Int2018114November 20171111:CAS:528:DC%2BC1cXjtF2rtb4%3D10.1016/j.envint.2018.02.028
– reference: KellyCARuddJWMHolokaMHEffect of pH on mercury uptake by an aquatic bacterium: implications for Hg cyclingEnviron Sci Technol20033713294129461:CAS:528:DC%2BD3sXktVKru78%3D10.1021/es026366o
– reference: Gworek B, Bemowska-Kałabun O, Kijeńska M, Wrzosek-Jakubowska J. Mercury in marine and oceanic waters—a review. Water Air Soil Pollut. 2016;227(10).
– reference: SunderlandEMLiMBullardKDecadal changes in the edible supply of seafood and methylmercury exposure in the United StatesEnviron Health Perspect20181262610.1289/EHP3460
– reference: Gbondo-TugbawaSSMcAlearJADriscollCTSharpCWTotal and methyl mercury transformations and mass loadings within a wastewater treatment plant and the impact of the effluent discharge to an alkaline hypereutrophic lakeWater Res2010449286328751:CAS:528:DC%2BC3cXltFGqsrk%3D10.1016/j.watres.2010.01.028
– reference: GaoZTotal mercury and methylmercury migration and transformation in an A2/O wastewater treatment plantSci Total Environ20207101363841:CAS:528:DC%2BB3cXot1WlsA%3D%3D10.1016/j.scitotenv.2019.136384
– reference: AnualZFMaherWKrikowaFHakimLAhmadNIFosterSMercury and risk assessment from consumption of crustaceans, cephalopods and fish from West Peninsular MalaysiaMicrochem J20181402142211:CAS:528:DC%2BC1cXovFClsb4%3D10.1016/j.microc.2018.04.024
– reference: LiuMIncreases of total mercury and methylmercury releases from municipal sewage into environment in China and implicationsEnviron Sci Technol20185211241341:CAS:528:DC%2BC2sXhvFehsLrN10.1021/acs.est.7b05217
– reference: • De Mora S, Fowler SW, Wyse E, Azemard S. Distribution of heavy metals in marine bivalves, fish and coastal sediments in the Gulf and Gulf of Oman. Mar Pollut Bull. 2004;49(5–6}:410–424.
– reference: da SilvaJMMercury levels in commercial mid-trophic level fishes along the Portuguese coast – relationships with trophic niche and oxidative damageEcol Indic2020116February10650010.1016/j.ecolind.2020.1065001:CAS:528:DC%2BB3cXhtVWis7%2FP
– reference: Quiroga-FloresRGuédronSAcháDHigh methylmercury uptake by green algae in Lake Titicaca: potential implications for remediationEcotoxicol Environ Saf2021207August49
– reference: MorosiniCMercury vertical and horizontal concentrations in agricultural soils of a historically contaminated site: role of soil properties, chemical loading, and cultivated plant species in driving its mobilityEnviron Pollut2021285June1174671:CAS:528:DC%2BB3MXhtlamu7bO10.1016/j.envpol.2021.117467
– reference: WHO. Chemical aspects. In: WHO, editors. Guidelines for drinking‑water quality. 4th ed. 2017. p. 155–200.
– reference: TrasandeLLandriganPJSchechterCPublic health and economic consequences of methyl mercury toxicity to the developing brainEnviron Health Perspect200511355905961:CAS:528:DC%2BD2MXkvFCjtLk%3D10.1289/ehp.7743
– reference: WHO. Artisanal and small-scale gold mining and health—Technical paper #1: Environmental and occupational health hazards associated with artisanal and small-scale gold mining. Geneva; 2016.
– volume: 188
  start-page: 109750
  issue: no. November 20
  year: 2020
  ident: 226_CR25
  publication-title: Environ Res
  doi: 10.1016/j.envres.2020.109750
– volume: 268
  start-page: 115510
  year: 2021
  ident: 226_CR129
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2020.115510
– volume: 19
  start-page: 274
  year: 1999
  ident: 226_CR46
  publication-title: Qatar Univ Sci J
– ident: 226_CR45
  doi: 10.1016/j.scitotenv.2020.140564
– volume: 186
  start-page: 6721
  issue: 10
  year: 2014
  ident: 226_CR76
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-014-3885-4
– ident: 226_CR104
  doi: 10.1007/s11270-016-3060-3
– volume: 199
  start-page: 3470
  issue: 9
  year: 2021
  ident: 226_CR92
  publication-title: Biol Trace Elem Res
  doi: 10.1007/s12011-020-02446-8
– volume: 2
  start-page: 549
  issue: 3
  year: 2010
  ident: 226_CR84
  publication-title: J Sci Res
  doi: 10.3329/jsr.v2i3.4667
– volume: 12
  start-page: 341
  issue: 6
  year: 2016
  ident: 226_CR75
  publication-title: Am J Environ Sci
  doi: 10.3844/ajessp.2016.341.357
– volume: 60
  start-page: 1885
  issue: 1
  year: 2021
  ident: 226_CR6
  publication-title: Alexandria Eng J
  doi: 10.1016/j.aej.2020.11.036
– ident: 226_CR17
  doi: 10.1016/j.marpolbul.2020.111033
– ident: 226_CR86
  doi: 10.1016/j.chemosphere.2020.128024
– volume: 304
  start-page: 127
  issue: 1–3
  year: 2003
  ident: 226_CR34
  publication-title: Sci Total Environ
  doi: 10.1016/S0048-9697(02)00562-4
– volume: 85
  start-page: 123
  year: 2018
  ident: 226_CR108
  publication-title: Environ Sci Policy
  doi: 10.1016/j.envsci.2018.03.026
– volume: 5
  start-page: 15
  issue: 1
  year: 2017
  ident: 226_CR31
  publication-title: J Pharm Heal Sci
– volume: 81
  start-page: 282
  issue: 1
  year: 2020
  ident: 226_CR3
  publication-title: Neurotoxicology
  doi: 10.1016/j.neuro.2020.09.018
– ident: 226_CR107
– ident: 226_CR87
  doi: 10.1016/j.chemosphere.2021.131402
– ident: 226_CR145
– volume: 121
  start-page: 143
  issue: 1–2
  year: 2017
  ident: 226_CR9
  publication-title: Mar Pollut Bull
  doi: 10.1016/j.marpolbul.2017.04.024
– volume: 20
  start-page: 100242
  year: 2021
  ident: 226_CR55
  publication-title: Curr Opin Environ Sci Heal.
  doi: 10.1016/j.coesh.2021.100242
– volume: 11
  start-page: 1
  year: 2011
  ident: 226_CR70
  publication-title: J Undergrad Res Minnesota State Univ Mankato
– volume: 116
  start-page: 106500
  issue: February
  year: 2020
  ident: 226_CR68
  publication-title: Ecol Indic
  doi: 10.1016/j.ecolind.2020.106500
– ident: 226_CR105
  doi: 10.3390/ijerph15081692
– volume: 146
  start-page: 2021
  year: 2020
  ident: 226_CR16
  publication-title: Environ Int
– volume: 165
  start-page: 112108
  issue: December 2020
  year: 2021
  ident: 226_CR69
  publication-title: Mar Pollut Bull
  doi: 10.1016/j.marpolbul.2021.112108
– volume: 288
  start-page: 125687
  year: 2021
  ident: 226_CR50
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.125687
– volume: 607–608
  start-page: 375
  year: 2017
  ident: 226_CR72
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.07.033
– volume: 114
  start-page: 1
  issue: November 2017
  year: 2018
  ident: 226_CR20
  publication-title: Environ Int
  doi: 10.1016/j.envint.2018.02.028
– volume: 140
  start-page: 214
  year: 2018
  ident: 226_CR28
  publication-title: Microchem J
  doi: 10.1016/j.microc.2018.04.024
– volume: 28
  start-page: 553
  issue: 5
  year: 2014
  ident: 226_CR66
  publication-title: Global Biogeochem Cycles
  doi: 10.1002/2014GB004814
– volume: 27
  start-page: 410
  issue: 2
  year: 2013
  ident: 226_CR120
  publication-title: Global Biogeochem Cycles
  doi: 10.1002/gbc.20040
– volume: 113
  start-page: 590
  issue: 5
  year: 2005
  ident: 226_CR134
  publication-title: Environ Health Perspect
  doi: 10.1289/ehp.7743
– volume: 88
  start-page: 103357
  issue: July 2019
  year: 2020
  ident: 226_CR94
  publication-title: J Food Compos Anal
  doi: 10.1016/j.jfca.2019.103357
– volume: 102
  start-page: 605
  issue: 5
  year: 2019
  ident: 226_CR26
  publication-title: Bull Environ Contam Toxicol
  doi: 10.1007/s00128-018-2530-2
– volume: 654
  start-page: 720
  issue: November 2018
  year: 2019
  ident: 226_CR133
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.10.408
– ident: 226_CR140
– volume: 113
  start-page: 311
  year: 2022
  ident: 226_CR64
  publication-title: J Environ Sci (China)
  doi: 10.1016/j.jes.2021.06.016
– volume: 149
  start-page: 110539
  issue: August
  year: 2019
  ident: 226_CR44
  publication-title: Mar Pollut Bull
  doi: 10.1016/j.marpolbul.2019.110539
– volume: 44
  start-page: 2863
  issue: 9
  year: 2010
  ident: 226_CR38
  publication-title: Water Res
  doi: 10.1016/j.watres.2010.01.028
– volume: 52
  start-page: 124
  issue: 1
  year: 2018
  ident: 226_CR42
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.7b05217
– volume: 89
  start-page: 112
  issue: 1–2
  year: 2014
  ident: 226_CR43
  publication-title: Mar Pollut Bull
  doi: 10.1016/j.marpolbul.2014.10.019
– ident: 226_CR130
– volume: 207
  start-page: 4
  issue: August
  year: 2021
  ident: 226_CR53
  publication-title: Ecotoxicol Environ Saf
– volume: 173
  start-page: 115563
  year: 2020
  ident: 226_CR52
  publication-title: Water Res
  doi: 10.1016/j.watres.2020.115563
– volume: 263
  start-page: 128110
  year: 2021
  ident: 226_CR80
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.128110
– ident: 226_CR138
– volume: 66
  start-page: 116
  issue: November 2016
  year: 2018
  ident: 226_CR77
  publication-title: J Food Compos Anal
  doi: 10.1016/j.jfca.2017.12.010
– ident: 226_CR58
– ident: 226_CR124
– volume: 1
  start-page: 259
  issue: 3
  year: 2021
  ident: 226_CR126
  publication-title: Fundam Res
  doi: 10.1016/j.fmre.2021.04.003
– ident: 226_CR57
  doi: 10.1016/j.atmosenv.2015.04.045
– volume: 2
  start-page: 28
  year: 2015
  ident: 226_CR18
  publication-title: Reg Stud Mar Sci
– ident: 226_CR143
– volume: 23
  start-page: 155
  issue: 2
  year: 2009
  ident: 226_CR71
  publication-title: Water Environ J
  doi: 10.1111/j.1747-6593.2008.00129.x
– volume: 261
  start-page: 18604
  issue: June
  year: 2021
  ident: 226_CR61
  publication-title: Atmos Environ.
– volume: 37
  start-page: 101334
  year: 2020
  ident: 226_CR12
  publication-title: Reg Stud Mar Sci
– volume: 132
  start-page: 1
  year: 2020
  ident: 226_CR4
  publication-title: TrAC - Trends Anal Chem
  doi: 10.1016/j.trac.2020.116016
– volume: 251
  start-page: 109613
  issue: July
  year: 2019
  ident: 226_CR109
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2019.109613
– ident: 226_CR118
– volume: 716
  start-page: 135386
  year: 2020
  ident: 226_CR101
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.135386
– volume: 254
  start-page: 118349
  issue: no. March
  year: 2021
  ident: 226_CR19
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2021.118349
– volume: 82
  start-page: 911
  issue: 6
  year: 2011
  ident: 226_CR23
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2010.10.050
– volume: 710
  start-page: 136384
  year: 2020
  ident: 226_CR40
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.136384
– volume: 663
  start-page: 127
  issue: 2
  year: 2010
  ident: 226_CR32
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2010.01.048
– volume: 265
  start-page: 114991
  year: 2020
  ident: 226_CR127
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2020.114991
– ident: 226_CR36
– volume: 13
  start-page: e00876
  year: 2021
  ident: 226_CR128
  publication-title: Sci African
  doi: 10.1016/j.sciaf.2021.e00876
– volume: 25
  start-page: 488
  issue: 3
  year: 2018
  ident: 226_CR21
  publication-title: Ann Agric Environ Med
  doi: 10.26444/aaem/84934
– volume: 667
  start-page: 601
  year: 2019
  ident: 226_CR33
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.02.259
– ident: 226_CR99
  doi: 10.1016/S0167-5648(03)80056-4
– ident: 226_CR122
  doi: 10.1007/s12517-021-07803-y
– volume: 299
  start-page: 126869
  year: 2021
  ident: 226_CR39
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2021.126869
– volume: 248
  start-page: 125989
  year: 2020
  ident: 226_CR113
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.125989
– ident: 226_CR125
  doi: 10.1016/j.chemosphere.2020.128910
– volume: 13
  start-page: 2827
  issue: 5
  year: 2013
  ident: 226_CR60
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-13-2827-2013
– ident: 226_CR48
  doi: 10.1016/j.marpolbul.2019.110499
– volume: 714
  year: 2020
  ident: 226_CR35
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.136539
– ident: 226_CR91
– volume: 166
  start-page: 1
  issue: no. April 2020
  year: 2021
  ident: 226_CR14
  publication-title: Mar Pollut Bull
– ident: 226_CR114
  doi: 10.1016/j.chemosphere.2020.129233
– volume: 39
  start-page: 401
  issue: 6
  year: 1984
  ident: 226_CR132
  publication-title: Arch Environ Health
  doi: 10.1080/00039896.1984.10545872
– ident: 226_CR117
– volume: 37
  start-page: 2941
  issue: 13
  year: 2003
  ident: 226_CR29
  publication-title: Environ Sci Technol
  doi: 10.1021/es026366o
– volume: 107
  start-page: 278
  issue: 3
  year: 2007
  ident: 226_CR67
  publication-title: Mar Chem
  doi: 10.1016/j.marchem.2007.04.002
– volume: 285
  start-page: 117467
  issue: June
  year: 2021
  ident: 226_CR62
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2021.117467
– volume: 53
  start-page: 411
  issue: 3
  year: 2007
  ident: 226_CR83
  publication-title: Arch Environ Contam Toxicol
  doi: 10.1007/s00244-006-0237-6
– ident: 226_CR141
– volume: 154
  start-page: 106561
  year: 2021
  ident: 226_CR102
  publication-title: Environ Int
  doi: 10.1016/j.envint.2021.106561
– ident: 226_CR119
  doi: 10.1016/j.envpol.2020.116146
– ident: 226_CR137
– ident: 226_CR24
  doi: 10.1016/j.scitotenv.2020.137540
– ident: 226_CR112
– volume: 282
  start-page: 117041
  year: 2021
  ident: 226_CR103
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2021.117041
– volume: 38
  start-page: 1
  issue: 4
  year: 2019
  ident: 226_CR106
  publication-title: Environ Prog Sustain Energy
  doi: 10.1002/ep.13081
– volume: 175
  start-page: 115708
  year: 2020
  ident: 226_CR41
  publication-title: Water Res
  doi: 10.1016/j.watres.2020.115708
– ident: 226_CR11
  doi: 10.1016/j.chemosphere.2020.128890
– volume: 17
  start-page: 8999
  issue: 14
  year: 2017
  ident: 226_CR63
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-17-8999-2017
– ident: 226_CR98
  doi: 10.1080/19393210.2018.1551247
– volume: 15
  start-page: 100456
  year: 2021
  ident: 226_CR2
  publication-title: Environ Nanotechnol Monit Manag
– volume: 00
  start-page: 1
  issue: 00
  year: 2021
  ident: 226_CR96
  publication-title: Food Addit Contam Part B Surveill
– ident: 226_CR123
– volume: 156
  start-page: 111096
  year: 2020
  ident: 226_CR54
  publication-title: Mar Pollut Bull
  doi: 10.1016/j.marpolbul.2020.111096
– ident: 226_CR144
– volume: 126
  start-page: 747
  year: 2019
  ident: 226_CR7
  publication-title: Environ Int
  doi: 10.1016/j.envint.2019.03.019
– ident: 226_CR82
– ident: 226_CR85
  doi: 10.1016/j.jfca.2020.103717
– volume: 219
  start-page: 103753
  issue: January
  year: 2020
  ident: 226_CR22
  publication-title: Mar Chem
  doi: 10.1016/j.marchem.2020.103753
– volume: 60
  start-page: 386
  issue: 2
  year: 2015
  ident: 226_CR51
  publication-title: Limnol Oceanogr
  doi: 10.1002/lno.10036
– volume: 48
  start-page: 2945
  issue: 10
  year: 2010
  ident: 226_CR74
  publication-title: Food Chem Toxicol
  doi: 10.1016/j.fct.2010.07.031
– ident: 226_CR111
– volume: 423
  start-page: 126964
  issue: no. PA
  year: 2021
  ident: 226_CR27
  publication-title: J Hazard Mater
– volume: 126
  start-page: 6
  issue: 2
  year: 2018
  ident: 226_CR115
  publication-title: Environ Health Perspect
  doi: 10.1289/EHP3460
– volume: 118
  start-page: 753
  year: 2018
  ident: 226_CR5
  publication-title: Food Chem Toxicol
  doi: 10.1016/j.fct.2018.06.023
– volume: 124
  start-page: 104599
  year: 2020
  ident: 226_CR116
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2019.104599
– volume: 76
  start-page: 355
  issue: 2
  year: 2013
  ident: 226_CR93
  publication-title: J Food Prot
  doi: 10.4315/0362-028X.JFP-12-346
– volume: 192
  start-page: 837
  year: 2016
  ident: 226_CR81
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2015.07.081
– volume: 10
  start-page: 185
  issue: 3
  year: 2017
  ident: 226_CR95
  publication-title: Food Addit Contam Part B Surveill
  doi: 10.1080/19393210.2017.1311379
– volume: 360
  start-page: 1
  issue: April
  year: 2018
  ident: 226_CR56
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2018.07.096
– volume: 10
  start-page: 241
  issue: 4
  year: 2017
  ident: 226_CR97
  publication-title: Food Addit Contam Part B Surveill
– volume: 123
  start-page: 113
  issue: no. August 2018
  year: 2019
  ident: 226_CR15
  publication-title: Food Chem Toxicol
  doi: 10.1016/j.fct.2018.10.053
– ident: 226_CR89
  doi: 10.1016/j.jfca.2018.01.003
– volume: 765
  start-page: 142763
  year: 2021
  ident: 226_CR65
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.142763
– ident: 226_CR49
  doi: 10.1016/j.marpolbul.2021.112314
– volume: 804
  start-page: 150124
  year: 2022
  ident: 226_CR135
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.150124
– ident: 226_CR37
  doi: 10.1016/S0025-326X(99)00217-9
– ident: 226_CR131
– ident: 226_CR8
– ident: 226_CR1
  doi: 10.1016/B978-0-12-811442-1.00005-5
– volume: 5
  start-page: 130
  issue: 2
  year: 2015
  ident: 226_CR88
  publication-title: Open Vet J
  doi: 10.5455/OVJ.2015.v5.i2.p130
– volume: 16
  start-page: 11773
  issue: 18
  year: 2016
  ident: 226_CR100
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-16-11773-2016
– ident: 226_CR139
– volume: 142
  start-page: 595
  issue: April
  year: 2019
  ident: 226_CR30
  publication-title: Mar Pollut Bull
  doi: 10.1016/j.marpolbul.2019.04.022
– volume: 143
  start-page: 130
  year: 2015
  ident: 226_CR78
  publication-title: Environ Res
  doi: 10.1016/j.envres.2015.04.019
– volume: 8
  start-page: 1081
  year: 2021
  ident: 226_CR136
  publication-title: Toxicol Rep
  doi: 10.1016/j.toxrep.2021.05.010
– volume: 143
  start-page: 264
  issue: no. November 20
  year: 2019
  ident: 226_CR10
  publication-title: Mar Pollut Bull
  doi: 10.1016/j.marpolbul.2019.04.007
– ident: 226_CR142
– volume: 23
  start-page: 122
  issue: 2
  year: 2007
  ident: 226_CR90
  publication-title: J Appl Ichthyol
  doi: 10.1111/j.1439-0426.2006.00829.x
– volume: 243
  start-page: 118637
  year: 2020
  ident: 226_CR110
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.118637
– volume: 22
  start-page: 100272
  year: 2021
  ident: 226_CR121
  publication-title: Curr Opin Environ Sci Heal
  doi: 10.1016/j.coesh.2021.100272
– volume: 331
  start-page: 127267
  issue: no. December 20
  year: 2020
  ident: 226_CR13
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2020.127267
– ident: 226_CR47
  doi: 10.1016/j.marpolbul.2004.02.029
– volume: 12
  start-page: 54
  issue: 3
  year: 2021
  ident: 226_CR59
  publication-title: Atmos Pollut Res
  doi: 10.1016/j.apr.2021.01.015
– ident: 226_CR73
  doi: 10.1007/s00128-018-2388-3
– volume: 24
  start-page: 66
  issue: 1
  year: 2011
  ident: 226_CR79
  publication-title: J Food Compos Anal
  doi: 10.1016/j.jfca.2010.04.009
SSID ssj0002046597
Score 2.4971917
SecondaryResourceType review_article
Snippet Purpose of Review The concern of mercury pollution and the impact that it poses on the marine environment were studied heavily since the case of the poison...
Purpose of ReviewThe concern of mercury pollution and the impact that it poses on the marine environment were studied heavily since the case of the poison from...
PURPOSE OF REVIEW: The concern of mercury pollution and the impact that it poses on the marine environment were studied heavily since the case of the poison...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 249
SubjectTerms Aquatic environment
Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Bacteria
Bioaccumulation
Biogeochemistry
Bioindicators
Biological magnification
Biomonitoring
Chemical bonds
Compartments
Consumption
Contamination
Dimethylmercury
Earth and Environmental Science
Emissions
Environment
Environmental Law/Policy/Ecojustice
Fish
fish consumption
Food chains
Food contamination & poisoning
Heavy metals
human health
Indicator species
Industrial plant emissions
Industrial Pollution Prevention
Marine environment
Marine pollution
Mercury
Mercury (metal)
Methylmercury
methylmercury compounds
Microorganisms
Monitoring/Environmental Analysis
Ocean surface
Outdoor air quality
Oxidation
petroleum
Pollution
risk
Salinity
Section Editors
Sediments
Sulfur
Surface water
Topical Collection on Water Pollution
Waste Water Technology
Water Management
Water Pollution (G Toor and L Nghiem
Water Pollution Control
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60XvQgPjFaZQVvGkw2m5e3UlqKEE8Vegu7mwkIkkrT_n9nNmmqRQWvm90EZnaYbzIz3zB2V5ReCBSWEJcIBiiqcFUo0K5MXJpYGE9Z3oLsJZq8yudZOGtpcqgXZit__1gTgReVyQqX3E3kxrtsL_SDiMq3htGw-58iMNBDcNz2xfx89Lvv2QDKrRyodS3jI3bYYkI-aJR4zHagOmEHX5gCTxmgOvlQrWqoOcb-vCEdrvm85BksDArGLmeAcqeBKHaFmKcUlbqQ8PlbxRHs8UxRvx8fbRrcnviANymCMzYdj6bDidtOSHBNkEZLt_Q0-lwtvARMYhD5hCYpaJaMHwcB3hEFRvtaixIK6Uv09Rq09EUBJjVpYYJz1qvmFVww7qPhFolSSqpSQpymEiKajlsYL1ZQeg7z16LLTcseTkMs3vOO99iKO0dJ51bceeyw--7MR8Od8efu_lojeWtHdY5gRFDc7EUOu-0eowVQWkNVMF_hnpgwaiCldNjDWpObV_z-xcv_bb9i-8JeJiow67PecrGCa0QkS31jr-Inh0HXMg
  priority: 102
  providerName: Springer Nature
Title The Causes and Effects of Mercury and Methylmercury Contamination in the Marine Environment: A Review
URI https://link.springer.com/article/10.1007/s40726-022-00226-7
https://www.proquest.com/docview/2932274706
https://www.proquest.com/docview/2723103444
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS-NAEB_UvuiDnJ6H9bSs4NsZLtls83Ev0pYWEVqOQ8G3sNmdwMGR1Kb9_29mu21V0NfNx8J87MzszPwG4MZWYR85LGEsEQpQtA10X5JembQyqTShdrgF01ly_6QenvvP_sKt9WWVmzPRHdS2MXxH_pPMkuQIKkzu5i8BT43i7KofobEPHTqCM5LwznA8-_1ne8siKfwjl9l3y7ieOUYE47pbGbD9SoL0rUXauZnvMqPO4Ey-wLH3FMVgzdoT2MP6FI5e4Qd-BSQmi5FetdgKXVuxhiJuRVOJKS4MkcstT5G4wWNS3ArjUWkugGGWiL-1IBdQTDV3AYrxru3tlxiIdeLgDB4n48fRfeDnJgQmzpNlUIUlWeJShhmazJA_1DeZ5QkzURrHJDkaTRmVpazQqkiRB1BiqSJp0eQmtyb-Bgd1U-M5iIjU2WZaa6UrhWmeK0x4Zq41YaqxCrsQbUhXGI8pzqMt_hVbNGRH7oIoXThyF2kXfmy_ma8RNT59-3LDkcJrV1vsZKEL19vHpBec7NA1Nit6J2XPNVZKdeF2w8ndLz7e8eLzHb_DoXTCw2Vml3CwXKzwivySZdmDzmAyHM56Xgh7sD9KRv8Bm9viKw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fa9wwDBfd9WHbw2j3h97Wri60T11Y4viSy6CUrr1yXZtjjBv0zTi2AoOR65o7xj7UvuMkJ7nrButbXx3HBkm2JEv6CWDfleEA2S1hLBFyUIwLzEDSubJpaVNpQ-NxC_JJMv6qPl0Prtfgd1cLw2mV3Z3oL2o3s_xG_p7UkmQPKkyOb34E3DWKo6tdC41GLC7x109y2eqjizPi74GU56Pp6ThouwoENs6SeVCGBempQoZDtENL1sLADh33X4nSOCa6GrRFVBSyRKciRfqxwEJF0qHNbOZsTMs-gnUVk6XQg_WPo8nnL8tHHUneJlnobXGOL9FjADJO85UBq8skSP9WgCur9p9ArNdv5xvwrDVMxUkjSZuwhtVzeHoHrvAFIMmUODWLGmthKica5ONazEqR460l7vjhHIn53JXFjzD8leF8G5YA8a0SZHGK3HDRoRitquw-iBPRxClewvQhCPoKetWswi0QEd0ebmiMUaZUmGaZwoRb9DobpgbLsA9RRzptWwhz7qTxXS_Blz25NVFae3LrtA-Hy39uGgCPe2dvdxzR7WGu9Ur0-rC3_EzHkGMrpsLZguakbCjHSqk-vOs4uVri_zu-vn_HXXg8nuZX-upicvkGnkgvSJzhtg29-e0Cd8gkmhdvW0EUoB9Y9P8AA6QdqA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58gOhBfGJ9ruBNQ5PNNmm8SbX4avGg0FvY7E5AkFRs-_-d2aRpFRW8bnYTmNlhvsnMfANwZnO_hRyWMJcIBSjaerolya5MnJtYGl873oJeP7p9UfeD1mCui99Vu09TkmVPA7M0FePmu82bdeMb03px8az02AlFXrwIyxSpBFzU14k69V8WSeEfQeaqW-bno1890gxmfsuMOofT3YD1CimKq1K1m7CAxRaszfEHbgOSkkVHT0Y4ErqwoqQiHolhLnr4YUhcbrmHpA0ek-JWmI9KcwEMq0S8FoIgoOhp7gIUN7O2t0txJcrEwQ48d2-eO7deNTfBM2ESjb3cz8gTZ9Jvo2kbwkMt07Y8YSaIw5BujkaTBVkmc7QqUIQAMsxUIC2axCTWhLuwVAwL3AMRkDnbttZa6VxhnCQKI56Za40fa8z9BgRT0aWm4hTn0RZvac2G7MSdkqRTJ-40bsB5fea9ZNT4c_fhVCNpZV2jlCCK5GjajxpwWj8mu-Bkhy5wOKE9MSPXUCnVgIupJmev-P2L-__bfgIrT9fd9PGu_3AAq9LdK65AO4Sl8ccEjwiyjLNjdys_AZMk4mY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Causes+and+Effects+of+Mercury+and+Methylmercury+Contamination+in+the+Marine+Environment%3A+A+Review&rft.jtitle=Current+pollution+reports&rft.au=Al-Sulaiti%2C+Maetha+M&rft.au=Soubra%2C+Lama&rft.au=Al-Ghouti%2C+Mohammad+A&rft.date=2022-09-01&rft.pub=Springer+Nature+B.V&rft.eissn=2198-6592&rft.volume=8&rft.issue=3&rft.spage=249&rft.epage=272&rft_id=info:doi/10.1007%2Fs40726-022-00226-7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-6592&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-6592&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-6592&client=summon