The Causes and Effects of Mercury and Methylmercury Contamination in the Marine Environment: A Review
Purpose of Review The concern of mercury pollution and the impact that it poses on the marine environment were studied heavily since the case of the poison from Minamata bay in the 1960s. The present study provides an insight into the cycle of mercury and methylmercury in the marine environment and...
Saved in:
Published in | Current pollution reports Vol. 8; no. 3; pp. 249 - 272 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.09.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2198-6592 2198-6592 |
DOI | 10.1007/s40726-022-00226-7 |
Cover
Loading…
Abstract | Purpose of Review
The concern of mercury pollution and the impact that it poses on the marine environment were studied heavily since the case of the poison from Minamata bay in the 1960s. The present study provides an insight into the cycle of mercury and methylmercury in the marine environment and the bioindicators that reflect the exposure levels. The paper also used the driving forces, pressures, states, impacts, and responses (DPSIR) analysis to evaluate the global mercury and methylmercury contamination problem.
Recent Findings
The high global budgets of atmospheric total mercury influence the ocean surface water. Therefore, the aquatic environment contamination level is in turn affected by the surrounding emission sources such as industrial and petroleum activities in addition to the transport and fate of mercury across the environmental compartments. This will increase the mercury levels in fish species and will cause an adverse risk to human health through biomagnification.
Summary
This review presents a thorough description of mercury sources and emissions and their fate and transport across the different environmental compartments, despite the fact that serious mitigation measures were taken and guidelines were applied. The risk from fish consumption is still a serious concern as a result of the current mercury emissions and stability and persistent characteristics. |
---|---|
AbstractList | Purpose of ReviewThe concern of mercury pollution and the impact that it poses on the marine environment were studied heavily since the case of the poison from Minamata bay in the 1960s. The present study provides an insight into the cycle of mercury and methylmercury in the marine environment and the bioindicators that reflect the exposure levels. The paper also used the driving forces, pressures, states, impacts, and responses (DPSIR) analysis to evaluate the global mercury and methylmercury contamination problem.Recent FindingsThe high global budgets of atmospheric total mercury influence the ocean surface water. Therefore, the aquatic environment contamination level is in turn affected by the surrounding emission sources such as industrial and petroleum activities in addition to the transport and fate of mercury across the environmental compartments. This will increase the mercury levels in fish species and will cause an adverse risk to human health through biomagnification.SummaryThis review presents a thorough description of mercury sources and emissions and their fate and transport across the different environmental compartments, despite the fact that serious mitigation measures were taken and guidelines were applied. The risk from fish consumption is still a serious concern as a result of the current mercury emissions and stability and persistent characteristics. PURPOSE OF REVIEW: The concern of mercury pollution and the impact that it poses on the marine environment were studied heavily since the case of the poison from Minamata bay in the 1960s. The present study provides an insight into the cycle of mercury and methylmercury in the marine environment and the bioindicators that reflect the exposure levels. The paper also used the driving forces, pressures, states, impacts, and responses (DPSIR) analysis to evaluate the global mercury and methylmercury contamination problem. RECENT FINDINGS: The high global budgets of atmospheric total mercury influence the ocean surface water. Therefore, the aquatic environment contamination level is in turn affected by the surrounding emission sources such as industrial and petroleum activities in addition to the transport and fate of mercury across the environmental compartments. This will increase the mercury levels in fish species and will cause an adverse risk to human health through biomagnification. This review presents a thorough description of mercury sources and emissions and their fate and transport across the different environmental compartments, despite the fact that serious mitigation measures were taken and guidelines were applied. The risk from fish consumption is still a serious concern as a result of the current mercury emissions and stability and persistent characteristics. Purpose of Review The concern of mercury pollution and the impact that it poses on the marine environment were studied heavily since the case of the poison from Minamata bay in the 1960s. The present study provides an insight into the cycle of mercury and methylmercury in the marine environment and the bioindicators that reflect the exposure levels. The paper also used the driving forces, pressures, states, impacts, and responses (DPSIR) analysis to evaluate the global mercury and methylmercury contamination problem. Recent Findings The high global budgets of atmospheric total mercury influence the ocean surface water. Therefore, the aquatic environment contamination level is in turn affected by the surrounding emission sources such as industrial and petroleum activities in addition to the transport and fate of mercury across the environmental compartments. This will increase the mercury levels in fish species and will cause an adverse risk to human health through biomagnification. Summary This review presents a thorough description of mercury sources and emissions and their fate and transport across the different environmental compartments, despite the fact that serious mitigation measures were taken and guidelines were applied. The risk from fish consumption is still a serious concern as a result of the current mercury emissions and stability and persistent characteristics. |
Author | Al-Sulaiti, Maetha M. Al-Ghouti, Mohammad A. Soubra, Lama |
Author_xml | – sequence: 1 givenname: Maetha M. surname: Al-Sulaiti fullname: Al-Sulaiti, Maetha M. organization: Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University – sequence: 2 givenname: Lama surname: Soubra fullname: Soubra, Lama organization: Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University – sequence: 3 givenname: Mohammad A. surname: Al-Ghouti fullname: Al-Ghouti, Mohammad A. email: mohammad.alghouti@qu.edu.qa organization: Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University |
BookMark | eNp9kctKAzEUhoMoqLUv4Crgxs1obp3MuJNSL2ARpPuQyZzRyEyiSUbp2xtbQenCTS6H7zuc5D9G-847QOiUkgtKiLyMgkhWFoSxguSlLOQeOmK0ropyVrP9P-dDNI3xlWSKiHyXRwhWL4DneowQsXYtXnQdmBSx7_ASghnDelNeQnpZ98NPZe5d0oN1OlnvsHU45SZLHawDvHAfNng3gEtX-Bo_wYeFzxN00Ok-wvRnn6DVzWI1vyseHm_v59cPheF1mYqONITxhpEKTGUEn81M1VIqCZWcg241mIY2DeugFVQwQhtoBGUtmNrUreETdL5t-xb8-wgxqcFGA32vHfgxKiYZp4QLITJ6toO--jG4PJxiNWdMCknKTFVbygQfY4BOGZs2r05B215Ror4TUNsEVP58tUlAyayyHfUt2EGH9f8S30oxw-4Zwu9U_1hf3RyafQ |
CitedBy_id | crossref_primary_10_1016_j_jfca_2025_107509 crossref_primary_10_1007_s13530_023_00201_9 crossref_primary_10_1007_s12011_024_04092_w crossref_primary_10_3390_su151813292 crossref_primary_10_1021_acs_analchem_3c00579 crossref_primary_10_5004_dwt_2023_29616 crossref_primary_10_3389_frans_2023_1069678 crossref_primary_10_1177_11786302231201259 crossref_primary_10_15243_jdmlm_2024_113_5551 crossref_primary_10_1016_j_clce_2024_100137 crossref_primary_10_1016_j_jhazmat_2024_137053 crossref_primary_10_1016_j_jece_2023_110428 crossref_primary_10_3390_toxics13030206 crossref_primary_10_1039_D3RA02974C crossref_primary_10_3390_electrochem5020012 crossref_primary_10_1016_j_snb_2024_136492 crossref_primary_10_1016_j_marpolbul_2023_115661 crossref_primary_10_1080_09712119_2023_2282518 crossref_primary_10_1007_s10895_024_04119_4 crossref_primary_10_15616_BSL_2024_30_1_24 crossref_primary_10_1016_j_aca_2024_342259 crossref_primary_10_1016_j_inoche_2024_113232 crossref_primary_10_3390_w15183258 crossref_primary_10_1016_j_saa_2024_125634 crossref_primary_10_1016_j_marpolbul_2024_116827 crossref_primary_10_1016_j_molliq_2024_125592 crossref_primary_10_1016_j_jhazmat_2024_133448 crossref_primary_10_1007_s10661_023_11194_w crossref_primary_10_3390_toxics11080712 crossref_primary_10_1126_science_ade7525 crossref_primary_10_1016_j_wsee_2024_10_001 crossref_primary_10_1016_j_biteb_2025_102040 crossref_primary_10_1016_j_toxac_2024_03_096 crossref_primary_10_1016_j_scitotenv_2024_171028 crossref_primary_10_3389_fsufs_2024_1470683 crossref_primary_10_1016_j_marpolbul_2023_115446 crossref_primary_10_1021_acs_inorgchem_3c02716 crossref_primary_10_1016_j_jwpe_2023_104258 crossref_primary_10_1016_j_scitotenv_2024_175021 crossref_primary_10_3390_ijerph192315929 crossref_primary_10_1016_j_foodchem_2024_141375 crossref_primary_10_1016_j_psep_2024_09_072 crossref_primary_10_1016_j_jlumin_2024_121003 crossref_primary_10_1007_s10661_023_11122_y crossref_primary_10_1016_j_heliyon_2024_e28253 crossref_primary_10_1016_j_envpol_2023_122604 crossref_primary_10_1016_j_scitotenv_2024_177719 crossref_primary_10_3389_fmars_2024_1444302 crossref_primary_10_1016_j_jhazmat_2023_132429 crossref_primary_10_1016_j_chemosphere_2023_139791 crossref_primary_10_1016_j_scitotenv_2024_176844 crossref_primary_10_1038_s41598_024_59917_4 crossref_primary_10_1016_j_marpolbul_2023_115338 crossref_primary_10_3390_w16050756 crossref_primary_10_1016_j_envint_2024_108661 crossref_primary_10_1016_j_scitotenv_2024_173574 crossref_primary_10_1021_acsearthspacechem_3c00304 crossref_primary_10_1088_1755_1315_1297_1_012093 crossref_primary_10_1016_j_ecoenv_2023_114862 crossref_primary_10_1016_j_nanoso_2024_101220 crossref_primary_10_1016_j_ijbiomac_2024_134996 crossref_primary_10_1016_j_envres_2025_121437 crossref_primary_10_47134_biology_v1i1_1931 crossref_primary_10_1016_j_heliyon_2024_e33905 crossref_primary_10_1007_s10661_024_13516_y crossref_primary_10_1007_s11274_023_03686_1 crossref_primary_10_1016_j_aquatox_2024_107202 crossref_primary_10_1016_j_chemosphere_2024_142813 crossref_primary_10_1016_j_chemosphere_2024_142817 crossref_primary_10_1016_j_jconhyd_2024_104492 crossref_primary_10_1007_s13762_023_05395_6 |
Cites_doi | 10.1016/j.envres.2020.109750 10.1016/j.envpol.2020.115510 10.1016/j.scitotenv.2020.140564 10.1007/s10661-014-3885-4 10.1007/s11270-016-3060-3 10.1007/s12011-020-02446-8 10.3329/jsr.v2i3.4667 10.3844/ajessp.2016.341.357 10.1016/j.aej.2020.11.036 10.1016/j.marpolbul.2020.111033 10.1016/j.chemosphere.2020.128024 10.1016/S0048-9697(02)00562-4 10.1016/j.envsci.2018.03.026 10.1016/j.neuro.2020.09.018 10.1016/j.chemosphere.2021.131402 10.1016/j.marpolbul.2017.04.024 10.1016/j.coesh.2021.100242 10.1016/j.ecolind.2020.106500 10.3390/ijerph15081692 10.1016/j.marpolbul.2021.112108 10.1016/j.jclepro.2020.125687 10.1016/j.scitotenv.2017.07.033 10.1016/j.envint.2018.02.028 10.1016/j.microc.2018.04.024 10.1002/2014GB004814 10.1002/gbc.20040 10.1289/ehp.7743 10.1016/j.jfca.2019.103357 10.1007/s00128-018-2530-2 10.1016/j.scitotenv.2018.10.408 10.1016/j.jes.2021.06.016 10.1016/j.marpolbul.2019.110539 10.1016/j.watres.2010.01.028 10.1021/acs.est.7b05217 10.1016/j.marpolbul.2014.10.019 10.1016/j.watres.2020.115563 10.1016/j.chemosphere.2020.128110 10.1016/j.jfca.2017.12.010 10.1016/j.fmre.2021.04.003 10.1016/j.atmosenv.2015.04.045 10.1111/j.1747-6593.2008.00129.x 10.1016/j.trac.2020.116016 10.1016/j.jenvman.2019.109613 10.1016/j.scitotenv.2019.135386 10.1016/j.atmosenv.2021.118349 10.1016/j.chemosphere.2010.10.050 10.1016/j.scitotenv.2019.136384 10.1016/j.aca.2010.01.048 10.1016/j.envpol.2020.114991 10.1016/j.sciaf.2021.e00876 10.26444/aaem/84934 10.1016/j.scitotenv.2019.02.259 10.1016/S0167-5648(03)80056-4 10.1007/s12517-021-07803-y 10.1016/j.jclepro.2021.126869 10.1016/j.chemosphere.2020.125989 10.1016/j.chemosphere.2020.128910 10.5194/acp-13-2827-2013 10.1016/j.marpolbul.2019.110499 10.1016/j.scitotenv.2020.136539 10.1016/j.chemosphere.2020.129233 10.1080/00039896.1984.10545872 10.1021/es026366o 10.1016/j.marchem.2007.04.002 10.1016/j.envpol.2021.117467 10.1007/s00244-006-0237-6 10.1016/j.envint.2021.106561 10.1016/j.envpol.2020.116146 10.1016/j.scitotenv.2020.137540 10.1016/j.envpol.2021.117041 10.1002/ep.13081 10.1016/j.watres.2020.115708 10.1016/j.chemosphere.2020.128890 10.5194/acp-17-8999-2017 10.1080/19393210.2018.1551247 10.1016/j.marpolbul.2020.111096 10.1016/j.envint.2019.03.019 10.1016/j.jfca.2020.103717 10.1016/j.marchem.2020.103753 10.1002/lno.10036 10.1016/j.fct.2010.07.031 10.1289/EHP3460 10.1016/j.fct.2018.06.023 10.1016/j.envsoft.2019.104599 10.4315/0362-028X.JFP-12-346 10.1016/j.foodchem.2015.07.081 10.1080/19393210.2017.1311379 10.1016/j.jhazmat.2018.07.096 10.1016/j.fct.2018.10.053 10.1016/j.jfca.2018.01.003 10.1016/j.scitotenv.2020.142763 10.1016/j.marpolbul.2021.112314 10.1016/j.scitotenv.2021.150124 10.1016/S0025-326X(99)00217-9 10.1016/B978-0-12-811442-1.00005-5 10.5455/OVJ.2015.v5.i2.p130 10.5194/acp-16-11773-2016 10.1016/j.marpolbul.2019.04.022 10.1016/j.envres.2015.04.019 10.1016/j.toxrep.2021.05.010 10.1016/j.marpolbul.2019.04.007 10.1111/j.1439-0426.2006.00829.x 10.1016/j.jclepro.2019.118637 10.1016/j.coesh.2021.100272 10.1016/j.foodchem.2020.127267 10.1016/j.marpolbul.2004.02.029 10.1016/j.apr.2021.01.015 10.1007/s00128-018-2388-3 10.1016/j.jfca.2010.04.009 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FH AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PATMY PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY 7S9 L.6 |
DOI | 10.1007/s40726-022-00226-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef ProQuest Central Student ProQuest Biological Science Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central Environmental Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Environmental Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | ProQuest Central Student AGRICOLA |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2198-6592 |
EndPage | 272 |
ExternalDocumentID | 10_1007_s40726_022_00226_7 |
GrantInformation_xml | – fundername: Qatar University – fundername: Qatar University grantid: QUST-1-CAS 2022-312 funderid: http://dx.doi.org/10.13039/501100004252 |
GroupedDBID | -EM 0R~ 203 406 AAAVM AACDK AAHBH AAHNG AAIAL AAJBT AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYQN AAZMS ABAKF ABBXA ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADINQ ADKNI ADKPE ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEUYN AEVLU AEXYK AFBBN AFKRA AFQWF AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG ATCPS AUKKA AVXWI AXYYD BBNVY BENPR BGNMA BHPHI C6C CCPQU CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FEDTE FERAY FIGPU FINBP FNLPD FSGXE GGCAI GGRSB GJIRD HCIFZ HG6 HQYDN HRMNR HVGLF IKXTQ IWAJR J-C JBSCW JCJTX JZLTJ KOV LLZTM M4Y M7P NPVJJ NQJWS NU0 O9J PATMY PT4 PYCSY RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW Z5O Z7Y ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FH ABRTQ AZQEC DWQXO GNUQQ LK8 PKEHL PQEST PQGLB PQQKQ PQUKI 7S9 L.6 |
ID | FETCH-LOGICAL-c396t-f0b023b208ec8c4355c8d11701733eadaecb1bb2fed414201beb412dec9c9dc3 |
IEDL.DBID | BENPR |
ISSN | 2198-6592 |
IngestDate | Thu Jul 10 23:26:36 EDT 2025 Fri Jul 25 10:53:57 EDT 2025 Tue Jul 01 02:44:58 EDT 2025 Thu Apr 24 23:02:32 EDT 2025 Fri Feb 21 02:45:13 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Fate and transport Mercury methylation Mercury pollution Wastewater Mercury measurements |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c396t-f0b023b208ec8c4355c8d11701733eadaecb1bb2fed414201beb412dec9c9dc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doi.org/10.1007/s40726-022-00226-7 |
PQID | 2932274706 |
PQPubID | 2044259 |
PageCount | 24 |
ParticipantIDs | proquest_miscellaneous_2723103444 proquest_journals_2932274706 crossref_citationtrail_10_1007_s40726_022_00226_7 crossref_primary_10_1007_s40726_022_00226_7 springer_journals_10_1007_s40726_022_00226_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Current pollution reports |
PublicationTitleAbbrev | Curr Pollution Rep |
PublicationYear | 2022 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Obiri-YeboahANyantakyiEKMohammedARYeboahSIIKDomfehMKAbokyiEAssessing potential health effect of lead and mercury and the impact of illegal mining activities in the Bonsa river, Tarkwa Nsuaem, GhanaSci African202113e008761:CAS:528:DC%2BB38XitVKitbbJ10.1016/j.sciaf.2021.e00876 AfonsoCBenefits and risks associated with consumption of raw, cooked, and canned tuna (Thunnus spp.) based on the bioaccessibility of selenium and methylmercuryEnviron Res20151431301371:CAS:528:DC%2BC2MXnvFSisLg%3D10.1016/j.envres.2015.04.019 ThomasSMClimate and landscape conditions indirectly affect fish mercury levels by altering lake water chemistry and fish sizeEnviron Res2020188no. November 20191097501:CAS:528:DC%2BB3cXhtFCju73F10.1016/j.envres.2020.109750 HassanHElezzAAAbuasaliMAlSaadiHBaseline concentrations of mercury species within sediments from Qatar’s coastal marine zoneMar Pollut Bull2019142April5956021:CAS:528:DC%2BC1MXnvVKitL0%3D10.1016/j.marpolbul.2019.04.022 MilatouNDassenakisMMegalofonouPMercury concentrations in reared Atlantic bluefin tuna and risk assessment for the consumers: to eat or not to eat?Food Chem2020331no. December 20191272671:CAS:528:DC%2BB3cXht1ejt7bP10.1016/j.foodchem.2020.127267 O’ConnorDMercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: a critical reviewEnviron Int201912674776110.1016/j.envint.2019.03.0191:CAS:528:DC%2BC1MXltFOqur4%3D Al-AnsariEMASMercury accumulation in Lethrinus nebulosus from the marine waters of the Qatar EEZMar Pollut Bull20171211–21431531:CAS:528:DC%2BC2sXptlSntL0%3D10.1016/j.marpolbul.2017.04.024 KimákováTKuzmováLNevolnáZBenckoVFish and fish products as risk factors of mercurexposureAnn Agric Environ Med201825348849310.26444/aaem/849341:CAS:528:DC%2BC1MXitlKlsrbJ DuanDLitterfall-derived organic matter enhances mercury methylation in mangrove sediments of South ChinaSci Total Environ20217651427631:CAS:528:DC%2BB3cXitV2lsL7F10.1016/j.scitotenv.2020.142763 de PaivaELMorganoMAMilaniRFCadmium, lead, tin, total mercury, and methylmercury in canned tuna commercialised in São Paulo, BrazilFood Addit Contam Part B Surveill201710318519110.1080/19393210.2017.13113791:CAS:528:DC%2BC2sXlvVCjsLc%3D LiuJMengBPoulainAJMengQFengXStable isotope tracers identify sources and transformations of mercury in rice (Oryza sativa L.) growing in a mercury mining areaFundam Res2021132592681:CAS:528:DC%2BB38XitVaqs73L10.1016/j.fmre.2021.04.003 CostaFDNKornMGABritoGBFerlinSFostierAHPreliminary results of mercury levels in raw and cooked seafood and their public health impactFood Chem20161928378411:CAS:528:DC%2BC2MXht1SnsrnJ10.1016/j.foodchem.2015.07.081 WangKMunsonKMArmstrongDAMacdonaldRWWangFDetermining seawater mercury methylation and demethylation rates by the seawater incubation approach: a critiqueMar Chem2020219January1037531:CAS:528:DC%2BB3cXhsFWis7w%3D10.1016/j.marchem.2020.103753 Popovic AR, et al. Levels of toxic elements in canned fish from the Serbian markets and their health risks assessment. J Food Compos Anal. 2018;67(August 2017):70–76. HilsonGZolnikovTROrtizDRKumahCFormalizing artisanal gold mining under the Minamata convention: previewing the challenge in Sub-Saharan AfricaEnviron Sci Policy20188512313110.1016/j.envsci.2018.03.026 EFSA. Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. Parma, 2012. Elsagh A, Jalilian H, Ghaderi Aslshabestari M. Evaluation of heavy metal pollution in coastal sediments of Bandar Abbas, the Persian Gulf, Iran: mercury pollution and environmental geochemical indices. Mar Pollut Bull 2021;167(March):112314. SunderlandEMLiMBullardKDecadal changes in the edible supply of seafood and methylmercury exposure in the United StatesEnviron Health Perspect20181262610.1289/EHP3460 SongZSoil mercury pollution caused by typical anthropogenic sources in China: evidence from stable mercury isotope measurement and receptor model analysisJ Clean Prod20212881256871:CAS:528:DC%2BB3MXmtVCjug%3D%3D10.1016/j.jclepro.2020.125687 AbassKQuantitative estimation of mercury intake by toxicokinetic modelling based on total mercury levels in humansEnviron Int2018114November 20171111:CAS:528:DC%2BC1cXjtF2rtb4%3D10.1016/j.envint.2018.02.028 BudnikLTCasteleynLMercury pollution in modern times and its socio-medical consequencesSci Total Environ2019654November 20187207341:CAS:528:DC%2BC1cXit1eitLfF10.1016/j.scitotenv.2018.10.408 da SilvaJMMercury levels in commercial mid-trophic level fishes along the Portuguese coast – relationships with trophic niche and oxidative damageEcol Indic2020116February10650010.1016/j.ecolind.2020.1065001:CAS:528:DC%2BB3cXhtVWis7%2FP Kljaković-Gašpić Z, Tičina V. Mercury and selenium levels in archive samples of wild Atlantic bluefin tuna from the Mediterranean Sea. Chemosphere. 2021;284(June). Kristensen P. The DPSIR framework, A Compr. / Detail. Assess. vulnerability water Resour. to Environ. Chang. Africa using river basin approach. 2004;1–10. DietzRA risk assessment of the effects of mercury on Baltic Sea, Greater North Sea and North Atlantic wildlife, fish and bivalvesEnviron Int20201462021 GårdfeldtKMuntheJStrömbergDLindqvistOA kinetic study on the abiotic methylation of divalent mercury in the aqueous phaseSci Total Environ20033041–312713610.1016/S0048-9697(02)00562-41:CAS:528:DC%2BD3sXit12isbo%3D Burke SM, et al. Fish growth rates and lake sulphate explain variation in mercury levels in ninespine stickleback (Pungitius pungitius) on the Arctic Coastal Plain of Alaska. Sci Total Environ. 2020;743. XuCYanHZhangSHeavy metal enrichment and health risk assessment of karst cave fish in Libo, Guizhou, ChinaAlexandria Eng J20216011885189610.1016/j.aej.2020.11.036 Alizada N, Malik S, Bin Muzaffar S. Bioaccumulation of heavy metals in tissues of Indian anchovy (Stolephorus indicus) from the UAE coast, Arabian Gulf. Mar Pollut Bull. 2020;154( no. February). ElsayedHYigiterhanOAl-AnsariEMASAl-AshwelAAElezzAAAl-MaslamaniIAMethylmercury bioaccumulation among different food chain levels in the EEZ of Qatar (Arabian Gulf)Reg Stud Mar Sci202037101334 EPA. Mercury study report to congress. 1997. WHO. Chemical aspects. In: WHO, editors. Guidelines for drinking‑water quality. 4th ed. 2017. p. 155–200. ZiaratiPMakkiMLevels of mercury in Persian Gulf frozen fish speciesJ Pharm Heal Sci2017511522 EU Commission. Commission Regulation (EC) No 118/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs, no. 1881/2006. European Union, 2006, pp. 1–28. SalehTAFadillahGCiptawatiEKhaledMAnalytical methods for mercury speciation, detection, and measurement in water, oil, and gasTrAC - Trends Anal Chem20201321110.1016/j.trac.2020.1160161:CAS:528:DC%2BB3cXhslWjsrbF Murillo-Cisneros DA, et al. Mercury concentrations in Baja California Sur fish: dietary exposure assessment. Chemosphere. 2021;267. WHO. Chapter 6.9 Mercury General description. In Air Quality Guidelines, 2nd ed., no. 2, copenhagen: WHO, 2000, pp. 1–15. KawaiTSakuraiTSuzukiNApplication of a new dynamic 3-D model to investigate human impacts on the fate of mercury in the global oceanEnviron Model Softw202012410459910.1016/j.envsoft.2019.104599 TsuiMKTBlumJDKwonSYReview of stable mercury isotopes in ecology and biogeochemistrySci Total Environ20207161353861:CAS:528:DC%2BC1MXitlynu7jM10.1016/j.scitotenv.2019.135386 AbolghaitSKGarbajAMDetermination of cadmium, lead and mercury residual levels in meat of canned light tuna (Katsuwonus pelamis and Thunnus albacares) and fresh little tunny (Euthynnus alletteratus) in LibyaOpen Vet J2015521301371:STN:280:DC%2BC28rgvVansA%3D%3D FAO. The State of World Fisheries and Aquaculture 2020. 2020th ed. Rome.: FAO, 2020. ZhaoMMbin KouJping ChenYgui XueLFanTTmei WangSBioremediation of wastewater containing mercury using three newly isolated bacterial strainsJ Clean Prod20212991268691:CAS:528:DC%2BB3MXotlagtbc%3D10.1016/j.jclepro.2021.126869 TrasandeLLandriganPJSchechterCPublic health and economic consequences of methyl mercury toxicity to the developing brainEnviron Health Perspect200511355905961:CAS:528:DC%2BD2MXkvFCjtLk%3D10.1289/ehp.7743 MaoLOccurrence and risk assessment of total mercury and methylmercury in surface seawater and sediments from the Jiaozhou Bay, Yellow SeaSci Total Environ20207141:CAS:528:DC%2BB3cXhsF2qt70%3D10.1016/j.scitotenv.2020.136539 MilleTDistribution of mercury species in different tissues and trophic levels of commonly consumed fish species from the south Bay of Biscay (France)Mar Pollut Bull2021166no. April 202018 Al-majed NB, Preston MR. An assessment of the total and methyl mercury content of zooplankton and fish tissue collected from Kuwait territorial waters. 2000;40(4). AMAP/UN Environment. Technical Background Report for the Global Mercury Assessment 2013. Oslo, Norway/UNEP Chemicals Branch, Geneva, Switzerland. 2013. WangJDaiJChenGJiangFRole of sulfur biogeochemical cycle in mercury methylation in estuarine sediments: a reviewJ Hazard Mater2021423no. PA126964 Kazuva E, Zhang J, Tong Z, Si A, Na L. The DPSIR model for environmental risk assessment of municipal solid waste in Dar es Salaam city, Tanzania. Int J Environ Res Public Health. 2018;15(8). Stelljes MS. Risk assessment. In: Toxicology for nontoxicologists, Lanham: Government Institutes, 2008, pp. 107–119. BurgerJInterspecific and locational differences in metal levels in edible fish tissue from Saudi ArabiaEnviron Monit Assess201418610672167461:CAS:528:DC%2BC2cXhtFeru7nL10.1007/s10661-014-3885-4 LiuMIncreases of total mercury and methylmercury releases from municipal sewage into environment in China and implicationsEnviron Sci Technol20185211241341:CAS:528:DC%2BC2sXhvFehsLrN10.1021/acs.est.7b05217 SuessEMercury loads and fluxes from wastewater: a nationwide survey in SwitzerlandWater Res20201751157081:CAS:528:DC%2BB3cXls1Glt70%3D10.1016/j.watres.2020.115708 GuoYZhangBChenBYangQLiJDisparities in socio-economic drivers behind China’s provincial energy-related mercury emission changesJ Environ Manage2019251 B Karsli (226_CR69) 2021; 165 226_CR124 CS Yuan (226_CR59) 2021; 12 226_CR123 226_CR91 226_CR122 G Sarà (226_CR90) 2007; 23 226_CR98 226_CR125 226_CR11 226_CR99 226_CR17 K Gårdfeldt (226_CR34) 2003; 304 LT Budnik (226_CR133) 2019; 654 N Milatou (226_CR13) 2020; 331 J Rahmani (226_CR5) 2018; 118 L Sun (226_CR61) 2021; 261 G Hilson (226_CR108) 2018; 85 226_CR119 226_CR118 P Liang (226_CR55) 2021; 20 M Alcala-Orozco (226_CR96) 2021; 00 Y Liu (226_CR64) 2022; 113 226_CR82 226_CR86 226_CR139 226_CR87 226_CR138 EM Sunderland (226_CR115) 2018; 126 226_CR137 226_CR85 SA Peterson (226_CR83) 2007; 53 M Rezaei (226_CR2) 2021; 15 226_CR89 X Ji (226_CR52) 2020; 173 226_CR131 226_CR130 A Obiri-Yeboah (226_CR128) 2021; 13 R Dietz (226_CR16) 2020; 146 SS Saei-Dehkordi (226_CR74) 2010; 48 S Ferreira da Silva (226_CR113) 2020; 248 SS Gbondo-Tugbawa (226_CR38) 2010; 44 D O’Connor (226_CR7) 2019; 126 226_CR105 226_CR73 J Burger (226_CR76) 2014; 186 226_CR104 M Alcala-Orozco (226_CR97) 2017; 10 D Duan (226_CR65) 2021; 765 E Effah (226_CR136) 2021; 8 TW Kreish (226_CR46) 1999; 19 Z Gao (226_CR40) 2020; 710 H Timonen (226_CR60) 2013; 13 T Mille (226_CR14) 2021; 166 E Suess (226_CR41) 2020; 175 L Whalin (226_CR67) 2007; 107 Q Nong (226_CR80) 2021; 263 Y Guo (226_CR109) 2019; 251 CA Kelly (226_CR29) 2003; 37 NR Razavi (226_CR51) 2015; 60 C Afonso (226_CR78) 2015; 143 226_CR112 226_CR111 MM Islam (226_CR84) 2010; 2 226_CR117 CV Alva (226_CR94) 2020; 88 MY Ashfaq (226_CR106) 2019; 38 226_CR114 PA Cunningham (226_CR10) 2019; 143 Z Song (226_CR50) 2021; 288 K Abass (226_CR20) 2018; 114 EL de Paiva (226_CR95) 2017; 10 226_CR107 D Al-Abdulrazzak (226_CR18) 2015; 2 M Akito (226_CR43) 2014; 89 Q Huang (226_CR100) 2016; 16 TW Clarkson (226_CR3) 2020; 81 H Elsayed (226_CR12) 2020; 37 JJ Hung (226_CR54) 2020; 156 MP Jordan (226_CR33) 2019; 667 R Russo (226_CR93) 2013; 76 226_CR57 226_CR58 MM Zhao (226_CR39) 2021; 299 226_CR8 Q Xie (226_CR103) 2021; 282 D Achá (226_CR23) 2011; 82 V Shah (226_CR63) 2017; 17 M Vafaei (226_CR77) 2018; 66 ZF Anual (226_CR28) 2018; 140 A Matsuyama (226_CR44) 2019; 149 EMAS Al-Ansari (226_CR9) 2017; 121 TA Saleh (226_CR4) 2020; 132 R Quiroga-Flores (226_CR53) 2021; 207 L Mao (226_CR35) 2020; 714 A Acquavita (226_CR121) 2021; 22 226_CR47 226_CR45 226_CR48 226_CR49 MKT Tsui (226_CR101) 2020; 716 L Trasande (226_CR134) 2005; 113 FDN Costa (226_CR81) 2016; 192 CY Chen (226_CR129) 2021; 268 226_CR1 B Wang (226_CR102) 2021; 154 SK Abolghait (226_CR88) 2015; 5 J Liu (226_CR126) 2021; 1 T Kimáková (226_CR21) 2018; 25 226_CR145 226_CR144 J Wang (226_CR27) 2021; 423 226_CR143 K Leopold (226_CR32) 2010; 663 226_CR36 K Wang (226_CR22) 2020; 219 226_CR142 226_CR141 226_CR37 226_CR140 C Xu (226_CR6) 2021; 60 C Morosini (226_CR62) 2021; 285 P Ziarati (226_CR31) 2017; 5 M Liu (226_CR42) 2018; 52 J Huang (226_CR135) 2022; 804 HM Amos (226_CR120) 2013; 27 H Hassan (226_CR30) 2019; 142 SM Thomas (226_CR25) 2020; 188 H Du (226_CR26) 2019; 102 Q Chen (226_CR110) 2020; 243 S Mol (226_CR79) 2011; 24 226_CR24 Y Zhang (226_CR66) 2014; 28 E Walberg (226_CR70) 2011; 11 B Mansouri (226_CR92) 2021; 199 Y Wang (226_CR127) 2020; 265 IR Rowland (226_CR132) 1984; 39 T Kawai (226_CR116) 2020; 124 OM Hakami (226_CR75) 2016; 12 H Zhang (226_CR19) 2021; 254 B Laird (226_CR72) 2017; 607–608 A Freije (226_CR71) 2009; 23 K Sofoulaki (226_CR15) 2019; 123 P Liang (226_CR56) 2018; 360 JM da Silva (226_CR68) 2020; 116 |
References_xml | – reference: ZhaoMMbin KouJping ChenYgui XueLFanTTmei WangSBioremediation of wastewater containing mercury using three newly isolated bacterial strainsJ Clean Prod20212991268691:CAS:528:DC%2BB3MXotlagtbc%3D10.1016/j.jclepro.2021.126869 – reference: DietzRA risk assessment of the effects of mercury on Baltic Sea, Greater North Sea and North Atlantic wildlife, fish and bivalvesEnviron Int20201462021 – reference: Kristensen P. The DPSIR framework, A Compr. / Detail. Assess. vulnerability water Resour. to Environ. Chang. Africa using river basin approach. 2004;1–10. – reference: TimonenHAmbroseJLJaffeDAOxidation of elemental Hg in anthropogenic and marine airmassesAtmos Chem Phys20131352827283610.5194/acp-13-2827-20131:CAS:528:DC%2BC3sXhslGitrnO – reference: ThomasSMClimate and landscape conditions indirectly affect fish mercury levels by altering lake water chemistry and fish sizeEnviron Res2020188no. November 20191097501:CAS:528:DC%2BB3cXhtFCju73F10.1016/j.envres.2020.109750 – reference: FDA. Technical Information on Development of FDA/EPA Advice about Eating Fish for Those Who Might Become or Are Pregnant or Breastfeeding and Children Ages 1–11 Years. Food and Drug Administration, 2020. [Online]. Available: https://doi.org/10.1080/19393210.2018.1551247. – reference: DuanDLitterfall-derived organic matter enhances mercury methylation in mangrove sediments of South ChinaSci Total Environ20217651427631:CAS:528:DC%2BB3cXitV2lsL7F10.1016/j.scitotenv.2020.142763 – reference: Al-AnsariEMASMercury accumulation in Lethrinus nebulosus from the marine waters of the Qatar EEZMar Pollut Bull20171211–21431531:CAS:528:DC%2BC2sXptlSntL0%3D10.1016/j.marpolbul.2017.04.024 – reference: WangJDaiJChenGJiangFRole of sulfur biogeochemical cycle in mercury methylation in estuarine sediments: a reviewJ Hazard Mater2021423no. PA126964 – reference: JordanMPStewartAREagles-SmithCAStreckerALNutrients mediate the effects of temperature on methylmercury concentrations in freshwater zooplanktonSci Total Environ20196676016121:CAS:528:DC%2BC1MXkt1WrsLk%3D10.1016/j.scitotenv.2019.02.259 – reference: KawaiTSakuraiTSuzukiNApplication of a new dynamic 3-D model to investigate human impacts on the fate of mercury in the global oceanEnviron Model Softw202012410459910.1016/j.envsoft.2019.104599 – reference: WalbergEEffect of increased water temperature on warm water fish feeding behavior and habitat useJ Undergrad Res Minnesota State Univ Mankato201111113 – reference: YuanCSJhangYMIeIRLeeCEFangGCLuoJExploratory investigation on spatiotemporal variation and source identification of atmospheric speciated mercury surrounding the Taiwan StraitAtmos Pollut Res202112354641:CAS:528:DC%2BB3MXktVOnsbs%3D10.1016/j.apr.2021.01.015 – reference: Kljaković-Gašpić Z, Tičina V. Mercury and selenium levels in archive samples of wild Atlantic bluefin tuna from the Mediterranean Sea. Chemosphere. 2021;284(June). – reference: Kazuva E, Zhang J, Tong Z, Si A, Na L. The DPSIR model for environmental risk assessment of municipal solid waste in Dar es Salaam city, Tanzania. Int J Environ Res Public Health. 2018;15(8). – reference: ClarksonTWStrainJJMethyl mercury: loaves versus fishesNeurotoxicology20208112822871:STN:280:DC%2BB2Mnjsl2quw%3D%3D10.1016/j.neuro.2020.09.018 – reference: LeopoldKFoulkesMWorsfoldPMethods for the determination and speciation of mercury in natural waters—a reviewAnal Chim Acta201066321271381:CAS:528:DC%2BC3cXjtVSgtr0%3D10.1016/j.aca.2010.01.048 – reference: WangYTotal mercury and methylmercury in rice: exposure and health implications in BangladeshEnviron Pollut20202651149911:CAS:528:DC%2BB3cXht1CjtrvP10.1016/j.envpol.2020.114991 – reference: AMAP/UN Environment. 2019 Technical Background Report to the Global Mercury Assessment 2018. Oslo, Norway/UN Environment Programme, Chemicals and Health Branch, Geneva, Switzerland. – reference: ShahVJaegléLSubtropical subsidence and surface deposition of oxidized mercury produced in the free troposphereAtmos Chem Phys20171714899990171:CAS:528:DC%2BC2sXhs1agsL%2FN10.5194/acp-17-8999-2017 – reference: Jain SK, Singh VP. Acquisition and processing of water resources data. In: Developments in water science, vol. 51, no. C, V. P. S. S.K. Jain, Ed. Elsevier Ltd, 2003, pp. 47–121. – reference: RezaeiMHeavy metals concentration in mangrove tissues and associated sediments and seawater from the north coast of Persian Gulf, Iran: ecological and health risk assessmentEnviron Nanotechnol Monit Manag2021151004561:CAS:528:DC%2BB38XhvVSitb3O – reference: wei Chen S, et al. Health risk assessment for local residents from the South China Sea based on mercury concentrations in marine fish. Bull Environ Contam Toxicol. 2018;101(3):398–402. – reference: ZiaratiPMakkiMLevels of mercury in Persian Gulf frozen fish speciesJ Pharm Heal Sci2017511522 – reference: LairdBExposure and risk characterization for dietary methylmercury from seafood consumption in KuwaitSci Total Environ2017607–60837538010.1016/j.scitotenv.2017.07.0331:CAS:528:DC%2BC2sXhtFCgu7vE – reference: EU Commission. Commission Regulation (EC) No 118/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs, no. 1881/2006. European Union, 2006, pp. 1–28. – reference: LiuYWangJGuoJWangLWuQVertical distribution characteristics of soil mercury and its formation mechanism in permafrost regions: a case study of the Qinghai-Tibetan PlateauJ Environ Sci (China)202211331132110.1016/j.jes.2021.06.016 – reference: EPA. National Primary Drinking Water Regulations, no. 1. – reference: Saei-DehkordiSSFallahAANematollahiAArsenic and mercury in commercially valuable fish species from the Persian Gulf: influence of season and habitatFood Chem Toxicol20104810294529501:CAS:528:DC%2BC3cXhtFGjtbrO10.1016/j.fct.2010.07.031 – reference: SofoulakiKKalantziIMachiasAPergantisSATsapakisMMetals in sardine and anchovy from Greek coastal areas: public health risk and nutritional benefits assessmentFood Chem Toxicol2019123no. August 20181131241:CAS:528:DC%2BC1cXitVentL3L10.1016/j.fct.2018.10.053 – reference: FAO. The State of World Fisheries and Aquaculture 2020. 2020th ed. Rome.: FAO, 2020. – reference: UN. Minamata Convention on Mercury, 2019. – reference: FAO/WHO. Methylmercury. In: Sixty-seventh meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Geneva, 2007. – reference: MolSLevels of selected trace metals in canned tuna fish produced in TurkeyJ Food Compos Anal201124166691:CAS:528:DC%2BC3MXhslOlsLw%3D10.1016/j.jfca.2010.04.009 – reference: MansouriBMetal risk assessment study of canned fish available on the Iranian marketBiol Trace Elem Res20211999347034771:CAS:528:DC%2BB3cXit12ktLvK10.1007/s12011-020-02446-8 – reference: LiuJMengBPoulainAJMengQFengXStable isotope tracers identify sources and transformations of mercury in rice (Oryza sativa L.) growing in a mercury mining areaFundam Res2021132592681:CAS:528:DC%2BB38XitVaqs73L10.1016/j.fmre.2021.04.003 – reference: SunLZhangXZhengJZhengYYuanDChenWMercury concentration and isotopic composition on different atmospheric particles (PM10 and PM2.5) in the subtropical coastal suburb of Xiamen Bay, Southern ChinaAtmos Environ.2021261June18604 – reference: Ferreira da SilvaSde Oliveira LimMMercury in fish marketed in the Amazon triple frontier and health risk assessmentChemosphere20202481259891:CAS:528:DC%2BB3cXisFOgtb0%3D10.1016/j.chemosphere.2020.125989 – reference: IslamMMBangSKimK-WAhmedMKJannatMHeavy metals in frozen and canned marine fish of KoreaJ Sci Res2010235491:CAS:528:DC%2BC3cXhsVWktrbF10.3329/jsr.v2i3.4667 – reference: VafaeiMNaseriMImaniALong-term storage effect on some mineral elements of canned silver carp (Hypophthalmichthys molitrix) with reference to daily intake changesJ Food Compos Anal201866November 20161161201:CAS:528:DC%2BC1cXhtFWrtg%3D%3D10.1016/j.jfca.2017.12.010 – reference: •• Luo H, Cheng Q, Pan X. Photochemical behaviors of mercury (Hg) species in aquatic systems: a systematic review on reaction process, mechanism, and influencing factor. Sci Total Environ. 2020;720;1375-40. – reference: Gentès S, et al. Drivers of variability in mercury and methylmercury bioaccumulation and biomagnification in temperate freshwater lakes. Chemosphere. 2021;267. – reference: EFSA. Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. Parma, 2012. – reference: ElsayedHYigiterhanOAl-AnsariEMASAl-AshwelAAElezzAAAl-MaslamaniIAMethylmercury bioaccumulation among different food chain levels in the EEZ of Qatar (Arabian Gulf)Reg Stud Mar Sci202037101334 – reference: Bat L, Arici E. Heavy metal levels in fish, molluscs, and crustacea from Turkish seas and potential risk of human health. 2018; vol. 13. Elsevier Inc. – reference: AbolghaitSKGarbajAMDetermination of cadmium, lead and mercury residual levels in meat of canned light tuna (Katsuwonus pelamis and Thunnus albacares) and fresh little tunny (Euthynnus alletteratus) in LibyaOpen Vet J2015521301371:STN:280:DC%2BC28rgvVansA%3D%3D – reference: BudnikLTCasteleynLMercury pollution in modern times and its socio-medical consequencesSci Total Environ2019654November 20187207341:CAS:528:DC%2BC1cXit1eitLfF10.1016/j.scitotenv.2018.10.408 – reference: HilsonGZolnikovTROrtizDRKumahCFormalizing artisanal gold mining under the Minamata convention: previewing the challenge in Sub-Saharan AfricaEnviron Sci Policy20188512313110.1016/j.envsci.2018.03.026 – reference: TsuiMKTBlumJDKwonSYReview of stable mercury isotopes in ecology and biogeochemistrySci Total Environ20207161353861:CAS:528:DC%2BC1MXitlynu7jM10.1016/j.scitotenv.2019.135386 – reference: HakamiOMRisk assessment of heavy metals in fish in Saudi ArabiaAm J Environ Sci201612634135710.3844/ajessp.2016.341.3571:CAS:528:DC%2BC1cXkvV2ls7s%3D – reference: WHO. Air quality guidelines. 2006. – reference: CostaFDNKornMGABritoGBFerlinSFostierAHPreliminary results of mercury levels in raw and cooked seafood and their public health impactFood Chem20161928378411:CAS:528:DC%2BC2MXht1SnsrnJ10.1016/j.foodchem.2015.07.081 – reference: ChenQTaylorDEconomic development and pollution emissions in Singapore: evidence in support of the Environmental Kuznets Curve hypothesis and its implications for regional sustainabilityJ Clean Prod20202431186371:CAS:528:DC%2BC1MXhvFKhu7zM10.1016/j.jclepro.2019.118637 – reference: WangKMunsonKMArmstrongDAMacdonaldRWWangFDetermining seawater mercury methylation and demethylation rates by the seawater incubation approach: a critiqueMar Chem2020219January1037531:CAS:528:DC%2BB3cXhsFWis7w%3D10.1016/j.marchem.2020.103753 – reference: AMAP/UN Environment. Technical Background Report for the Global Mercury Assessment 2013. Oslo, Norway/UNEP Chemicals Branch, Geneva, Switzerland. 2013. – reference: Obiri-YeboahANyantakyiEKMohammedARYeboahSIIKDomfehMKAbokyiEAssessing potential health effect of lead and mercury and the impact of illegal mining activities in the Bonsa river, Tarkwa Nsuaem, GhanaSci African202113e008761:CAS:528:DC%2BB38XitVKitbbJ10.1016/j.sciaf.2021.e00876 – reference: EPA. Guidance for Implementing the January 2001 Methylmercury Water Quality Criterion, Pennsylvania, 2001. – reference: WHO. Environmental Health Criteria 101: Methylmercury, Geneva, 1990 – reference: ZhangYJaegléLThompsonLNatural biogeochemical cycle of mercury in a global three-dimensional ocean tracer modelGlobal Biogeochem Cycles201428555357010.1002/2014GB0048141:CAS:528:DC%2BC2cXps1Kms7s%3D – reference: Médieu A, et al. Stable mercury concentrations of tropical tuna in the south western Pacific ocean: an 18-year monitoring study. Chemosphere. 2021;263. – reference: Ghazwan MI. The effect of preservatives and freezing on museum saved fish samples, no. January, 2016. – reference: Gyamfi O, Sørensen PB, Darko G, Ansah E, Vorkamp K, Bak JL. Contamination, exposure and risk assessment of mercury in the soils of an artisanal gold mining community in Ghana. Chemosphere. 2021;267. – reference: XieQTotal mercury and methylmercury in human hair and food: implications for the exposure and health risk to residents in the Three Gorges Reservoir Region, ChinaEnviron Pollut20212821170411:CAS:528:DC%2BB3MXoslGrsbw%3D10.1016/j.envpol.2021.117041 – reference: WHO. Chapter 6.9 Mercury General description. In Air Quality Guidelines, 2nd ed., no. 2, copenhagen: WHO, 2000, pp. 1–15. – reference: AcháDHintelmannHYeeJImportance of sulfate reducing bacteria in mercury methylation and demethylation in periphyton from Bolivian Amazon regionChemosphere201182691191610.1016/j.chemosphere.2010.10.0501:CAS:528:DC%2BC3MXksFCltQ%3D%3D – reference: RowlandIRRobinsonRDDohertyRAEffects of diet on mercury metabolism and excretion in mice given methylmercury: role of gut floraArch Environ Health19843964014081:CAS:528:DyaL2MXht1Krsbg%3D10.1080/00039896.1984.10545872 – reference: Alizada N, Malik S, Bin Muzaffar S. Bioaccumulation of heavy metals in tissues of Indian anchovy (Stolephorus indicus) from the UAE coast, Arabian Gulf. Mar Pollut Bull. 2020;154( no. February). – reference: AlvaCVMársicoETRibeiroRDda Silva CarneiroCSimõesJSda Silva FerreiraMConcentrations and health risk assessment of total mercury in canned tuna marketed in Southest BrazilJ Food Compos Anal202088July 20191033571:CAS:528:DC%2BB3cXktVCgtLk%3D10.1016/j.jfca.2019.103357 – reference: MilleTDistribution of mercury species in different tissues and trophic levels of commonly consumed fish species from the south Bay of Biscay (France)Mar Pollut Bull2021166no. April 202018 – reference: KreishTWAl-MuftahARTotal mercury levels in the coastal environment of Qatar (Arabian Gulf)Qatar Univ Sci J1999192742841:CAS:528:DC%2BD38Xht1yjs7o%3D – reference: AMAP/UN Environment. Technical background report to the global atmospheric mercury assessment. 2008. – reference: GårdfeldtKMuntheJStrömbergDLindqvistOA kinetic study on the abiotic methylation of divalent mercury in the aqueous phaseSci Total Environ20033041–312713610.1016/S0048-9697(02)00562-41:CAS:528:DC%2BD3sXit12isbo%3D – reference: SalehTAFadillahGCiptawatiEKhaledMAnalytical methods for mercury speciation, detection, and measurement in water, oil, and gasTrAC - Trends Anal Chem20201321110.1016/j.trac.2020.1160161:CAS:528:DC%2BB3cXhslWjsrbF – reference: Boughattas F, Karoui R. Mid infrared spectroscopy combined with chemometric tools for the identification of canned tuna species in brine. J Food Compos Anal. 2021;96(November 2020):103717. – reference: Alcala-OrozcoMBalcomPHSunderlandEMOlivero-VerbelJCaballero-GallardoKEssential and toxic elements in sardines and tuna on the Colombian marketFood Addit Contam Part B Surveill20210000113 – reference: RahmaniJA systematic review and meta-analysis of metal concentrations in canned tuna fish in Iran and human health risk assessmentFood Chem Toxicol20181187537651:CAS:528:DC%2BC1cXhtFymsLrE10.1016/j.fct.2018.06.023 – reference: SongZSoil mercury pollution caused by typical anthropogenic sources in China: evidence from stable mercury isotope measurement and receptor model analysisJ Clean Prod20212881256871:CAS:528:DC%2BB3MXmtVCjug%3D%3D10.1016/j.jclepro.2020.125687 – reference: AcquavitaAFloreaniFCovelliSOccurrence and speciation of arsenic and mercury in alluvial and coastal sedimentsCurr Opin Environ Sci Heal20212210027210.1016/j.coesh.2021.100272 – reference: National Center for Biotechnology Information. PubChem Compound Summary for CID 46936479, S-(Methylmercury)-L-Cysteine. 2021. [Online]. Available: https://pubchem.ncbi.nlm.nih.gov/compound/S-_Methylmercury_-L-Cysteine. – reference: PetersonSAPeckDVVan SickleJHughesRMMercury concentration in frozen whole-fish homogenates is insensitive to holding timeArch Environ Contam Toxicol20075334114171:CAS:528:DC%2BD2sXpslWrtb8%3D10.1007/s00244-006-0237-6 – reference: FreijeAAwadhMTotal and methyl mercury intake associated with fish consumption in BahrainWater Environ J200923215516410.1111/j.1747-6593.2008.00129.x – reference: AmosHMJacobDJStreetsDGSunderlandEMLegacy impacts of all-time anthropogenic emissions on the global mercury cycleGlobal Biogeochem Cycles20132724104211:CAS:528:DC%2BC3sXhtFOisb7J10.1002/gbc.20040 – reference: RazaviNREffect of eutrophication on mercury (Hg) dynamics in subtropical reservoirs from a high Hg deposition ecoregionLimnol Oceanogr201560238640110.1002/lno.10036 – reference: KimákováTKuzmováLNevolnáZBenckoVFish and fish products as risk factors of mercurexposureAnn Agric Environ Med201825348849310.26444/aaem/849341:CAS:528:DC%2BC1MXitlKlsrbJ – reference: XuCYanHZhangSHeavy metal enrichment and health risk assessment of karst cave fish in Libo, Guizhou, ChinaAlexandria Eng J20216011885189610.1016/j.aej.2020.11.036 – reference: CunninghamPASullivanEEEverettKHKovachSSRajanABarberMCAssessment of metal contamination in Arabian/Persian Gulf fish: a reviewMar Pollut Bull2019143no. November 20182642831:CAS:528:DC%2BC1MXosl2hsb8%3D10.1016/j.marpolbul.2019.04.007 – reference: BurgerJInterspecific and locational differences in metal levels in edible fish tissue from Saudi ArabiaEnviron Monit Assess201418610672167461:CAS:528:DC%2BC2cXhtFeru7nL10.1007/s10661-014-3885-4 – reference: Satheeswaran T, et al. Assessment of trace metal contamination in the marine sediment, seawater, and bivalves of Parangipettai, southeast coast of India. Mar Pollut Bull. 2019;149(August):110499. – reference: Al-majed NB, Preston MR. An assessment of the total and methyl mercury content of zooplankton and fish tissue collected from Kuwait territorial waters. 2000;40(4). – reference: HassanHElezzAAAbuasaliMAlSaadiHBaseline concentrations of mercury species within sediments from Qatar’s coastal marine zoneMar Pollut Bull2019142April5956021:CAS:528:DC%2BC1MXnvVKitL0%3D10.1016/j.marpolbul.2019.04.022 – reference: EPA. Mercury study report to congress. 1997. – reference: LiangPThe role of antibiotics in mercury methylation in marine sedimentsJ Hazard Mater2018360April151:CAS:528:DC%2BC1cXhsVWqtLjP10.1016/j.jhazmat.2018.07.096 – reference: Steenhuisen F, Wilson SJ. Identifying and characterizing major emission point sources as a basis for geospatial distribution of mercury emissions inventories. Atmos Environ. 2015;112(October 2013);167–177. – reference: EU. Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy. 2013. – reference: DuHMaMIgarashiYWangDBiotic and abiotic degradation of methylmercury in aquatic ecosystems: a reviewBull Environ Contam Toxicol201910256056111:CAS:528:DC%2BC1MXlslKntrs%3D10.1007/s00128-018-2530-2 – reference: de PaivaELMorganoMAMilaniRFCadmium, lead, tin, total mercury, and methylmercury in canned tuna commercialised in São Paulo, BrazilFood Addit Contam Part B Surveill201710318519110.1080/19393210.2017.13113791:CAS:528:DC%2BC2sXlvVCjsLc%3D – reference: WhalinLKimEHMasonRMason R. Factors influencing the oxidation, reduction, methylation and demethylation of mercury species in coastal watersMar Chem200710732782941:CAS:528:DC%2BD2sXhtlWntb3F10.1016/j.marchem.2007.04.002 – reference: HuangJContrasting changes in long-term wet mercury deposition and socioeconomic development in the largest city of TibetSci Total Environ20228041501241:CAS:528:DC%2BB3MXitVSrtrfP10.1016/j.scitotenv.2021.150124 – reference: Elsagh A, Jalilian H, Ghaderi Aslshabestari M. Evaluation of heavy metal pollution in coastal sediments of Bandar Abbas, the Persian Gulf, Iran: mercury pollution and environmental geochemical indices. Mar Pollut Bull 2021;167(March):112314. – reference: HungJJHungCSWannCKHungPYKuoFMercury distribution and speciation in two lagoons with different pollution and eutrophication conditions in TaiwanMar Pollut Bull20201561110961:CAS:528:DC%2BB3cXpvVeis7s%3D10.1016/j.marpolbul.2020.111096 – reference: Al-AbdulrazzakDZellerDBelhabibDTesfamichaelDPaulyDTotal marine fisheries catches in the Persian/Arabian Gulf from 1950 to 2010Reg Stud Mar Sci201522834 – reference: SuessEMercury loads and fluxes from wastewater: a nationwide survey in SwitzerlandWater Res20201751157081:CAS:528:DC%2BB3cXls1Glt70%3D10.1016/j.watres.2020.115708 – reference: SaràGSaràRFeeding habits and trophic levels of bluefin tuna Thunnus thynnus of different size classes in the Mediterranean SeaJ Appl Ichthyol200723212212710.1111/j.1439-0426.2006.00829.x – reference: ZhangHWuSLeibenspergerEMSource-receptor relationships for atmospheric mercury deposition in the context of global changeAtmos Environ2021254no. March1183491:CAS:528:DC%2BB3MXovVyisLg%3D10.1016/j.atmosenv.2021.118349 – reference: KarsliBDetermination of metal content in anchovy (Engraulis encrasicolus) from Turkey, Georgia and Abkhazia coasts of the Black Sea: evaluation of potential risks associated with human consumptionMar Pollut Bull2021165December 20201121081:CAS:528:DC%2BB3MXktVKrtrY%3D10.1016/j.marpolbul.2021.112108 – reference: Alcala-OrozcoMMorillo-GarciaYCaballero-GallardoKOlivero-VerbelJMercury in canned tuna marketed in Cartagena, Colombia, and estimation of human exposureFood Addit Contam Part B Surveill20171042412471:CAS:528:DC%2BC2sXpt1Wrsrc%3D – reference: MaoLOccurrence and risk assessment of total mercury and methylmercury in surface seawater and sediments from the Jiaozhou Bay, Yellow SeaSci Total Environ20207141:CAS:528:DC%2BB3cXhsF2qt70%3D10.1016/j.scitotenv.2020.136539 – reference: Ayyamperumal R, Karuppasamy MB, Gopalakrishnan G, Huang X. Characteristics of atmospheric total gaseous mercury concentrations (TGM) and meteorological parameters observed in Chennai metropolis, South India. Arab J Geosci. 2021;14(15). – reference: Murillo-Cisneros DA, et al. Mercury concentrations in Baja California Sur fish: dietary exposure assessment. Chemosphere. 2021;267. – reference: UNDP. The Sustainable Development Goals ( SDGs ) and the Minamata Convention on Mercury, New York City, 2015. – reference: Luo Q, et al. Atmospheric mercury pollution caused by fluorescent lamp manufacturing and the associated human health risk in a large industrial and commercial city. Environ Pollut. 2021;269. – reference: NongQCharacterization of the mercury-binding proteins in tuna and salmon sashimi: implications for health risk of mercury in foodChemosphere20212631281101:CAS:528:DC%2BB3cXhsl2ksbbP10.1016/j.chemosphere.2020.128110 – reference: HuangQIsotopic composition for source identification of mercury in atmospheric fine particlesAtmos Chem Phys2016161811773117861:CAS:528:DC%2BC28XhslKrsLvN10.5194/acp-16-11773-2016 – reference: AshfaqMYAl-GhoutiMAQiblaweyHZouariNRodriguesDFHuYUse of DPSIR framework to analyze water resources in Qatar and overview of reverse osmosis as an environment friendly technologyEnviron Prog Sustain Energy201938411310.1002/ep.130811:CAS:528:DC%2BC1cXhvVOqt73M – reference: MatsuyamaAYanoSMatsunoshitaKKindaichiMTadaAAkagiHThe spatial distribution of total mercury in sediments in the Yatsushiro Sea, JapanMar Pollut Bull2019149August1105391:CAS:528:DC%2BC1MXhvVaitb7J10.1016/j.marpolbul.2019.110539 – reference: E. T. D. E. L. Aquaculture. FAO Yearbook. Fishery and Aquaculture Statistics 2018/FAO annuaire. Statistiques des pêches et de l’aquaculture 2018/FAO anuario. Estadísticas de pesca y acuicultura 2018. 2020. – reference: EffahEAhetoDWAcheampongETulashieSKAdoteyJHuman health risk assessment from heavy metals in three dominant fish species of the Ankobra river, GhanaToxicol Rep20218108110861:CAS:528:DC%2BB3MXhvFSkurnF10.1016/j.toxrep.2021.05.010 – reference: Popovic AR, et al. Levels of toxic elements in canned fish from the Serbian markets and their health risks assessment. J Food Compos Anal. 2018;67(August 2017):70–76. – reference: WangBFish, rice, and human hair mercury concentrations and health risks in typical Hg-contaminated areas and fish-rich areas, ChinaEnviron Int20211541065611:CAS:528:DC%2BB3MXhtVSiurvF10.1016/j.envint.2021.106561 – reference: Burke SM, et al. Fish growth rates and lake sulphate explain variation in mercury levels in ninespine stickleback (Pungitius pungitius) on the Arctic Coastal Plain of Alaska. Sci Total Environ. 2020;743. – reference: ChenCYThe influence of nutrient loading on methylmercury availability in Long Island estuariesEnviron Pollut20212681155101:CAS:528:DC%2BB3cXisVagsr%2FJ10.1016/j.envpol.2020.115510 – reference: GuoYZhangBChenBYangQLiJDisparities in socio-economic drivers behind China’s provincial energy-related mercury emission changesJ Environ Manage2019251July1096131:CAS:528:DC%2BC1MXhvVCkt7bM10.1016/j.jenvman.2019.109613 – reference: AfonsoCBenefits and risks associated with consumption of raw, cooked, and canned tuna (Thunnus spp.) based on the bioaccessibility of selenium and methylmercuryEnviron Res20151431301371:CAS:528:DC%2BC2MXnvFSisLg%3D10.1016/j.envres.2015.04.019 – reference: LiangPWuSZhangCZhangJWongMEnvironmental geochemistry of Hg in intensive fish farming sites: implications of Hg speciation change related to its health perspectivesCurr Opin Environ Sci Heal.20212010024210.1016/j.coesh.2021.100242 – reference: AkitoMReevaluation of Minamata Bay, 25 years after the dredging of mercury-polluted sedimentsMar Pollut Bull2014891–21121201:CAS:528:DC%2BC2cXhvVWit7rJ10.1016/j.marpolbul.2014.10.019 – reference: RussoRHeavy metals in canned tuna from Italian marketsJ Food Prot20137623553591:CAS:528:DC%2BC3sXjtlGnu7w%3D10.4315/0362-028X.JFP-12-346 – reference: Stelljes MS. Risk assessment. In: Toxicology for nontoxicologists, Lanham: Government Institutes, 2008, pp. 107–119. – reference: MilatouNDassenakisMMegalofonouPMercury concentrations in reared Atlantic bluefin tuna and risk assessment for the consumers: to eat or not to eat?Food Chem2020331no. December 20191272671:CAS:528:DC%2BB3cXht1ejt7bP10.1016/j.foodchem.2020.127267 – reference: JiXLiuCZhangMYinYPanGMitigation of methylmercury production in eutrophic waters by interfacial oxygen nanobubblesWater Res20201731155631:CAS:528:DC%2BB3cXivVCqs7c%3D10.1016/j.watres.2020.115563 – reference: O’ConnorDMercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: a critical reviewEnviron Int201912674776110.1016/j.envint.2019.03.0191:CAS:528:DC%2BC1MXltFOqur4%3D – reference: AbassKQuantitative estimation of mercury intake by toxicokinetic modelling based on total mercury levels in humansEnviron Int2018114November 20171111:CAS:528:DC%2BC1cXjtF2rtb4%3D10.1016/j.envint.2018.02.028 – reference: KellyCARuddJWMHolokaMHEffect of pH on mercury uptake by an aquatic bacterium: implications for Hg cyclingEnviron Sci Technol20033713294129461:CAS:528:DC%2BD3sXktVKru78%3D10.1021/es026366o – reference: Gworek B, Bemowska-Kałabun O, Kijeńska M, Wrzosek-Jakubowska J. Mercury in marine and oceanic waters—a review. Water Air Soil Pollut. 2016;227(10). – reference: SunderlandEMLiMBullardKDecadal changes in the edible supply of seafood and methylmercury exposure in the United StatesEnviron Health Perspect20181262610.1289/EHP3460 – reference: Gbondo-TugbawaSSMcAlearJADriscollCTSharpCWTotal and methyl mercury transformations and mass loadings within a wastewater treatment plant and the impact of the effluent discharge to an alkaline hypereutrophic lakeWater Res2010449286328751:CAS:528:DC%2BC3cXltFGqsrk%3D10.1016/j.watres.2010.01.028 – reference: GaoZTotal mercury and methylmercury migration and transformation in an A2/O wastewater treatment plantSci Total Environ20207101363841:CAS:528:DC%2BB3cXot1WlsA%3D%3D10.1016/j.scitotenv.2019.136384 – reference: AnualZFMaherWKrikowaFHakimLAhmadNIFosterSMercury and risk assessment from consumption of crustaceans, cephalopods and fish from West Peninsular MalaysiaMicrochem J20181402142211:CAS:528:DC%2BC1cXovFClsb4%3D10.1016/j.microc.2018.04.024 – reference: LiuMIncreases of total mercury and methylmercury releases from municipal sewage into environment in China and implicationsEnviron Sci Technol20185211241341:CAS:528:DC%2BC2sXhvFehsLrN10.1021/acs.est.7b05217 – reference: • De Mora S, Fowler SW, Wyse E, Azemard S. Distribution of heavy metals in marine bivalves, fish and coastal sediments in the Gulf and Gulf of Oman. Mar Pollut Bull. 2004;49(5–6}:410–424. – reference: da SilvaJMMercury levels in commercial mid-trophic level fishes along the Portuguese coast – relationships with trophic niche and oxidative damageEcol Indic2020116February10650010.1016/j.ecolind.2020.1065001:CAS:528:DC%2BB3cXhtVWis7%2FP – reference: Quiroga-FloresRGuédronSAcháDHigh methylmercury uptake by green algae in Lake Titicaca: potential implications for remediationEcotoxicol Environ Saf2021207August49 – reference: MorosiniCMercury vertical and horizontal concentrations in agricultural soils of a historically contaminated site: role of soil properties, chemical loading, and cultivated plant species in driving its mobilityEnviron Pollut2021285June1174671:CAS:528:DC%2BB3MXhtlamu7bO10.1016/j.envpol.2021.117467 – reference: WHO. Chemical aspects. In: WHO, editors. Guidelines for drinking‑water quality. 4th ed. 2017. p. 155–200. – reference: TrasandeLLandriganPJSchechterCPublic health and economic consequences of methyl mercury toxicity to the developing brainEnviron Health Perspect200511355905961:CAS:528:DC%2BD2MXkvFCjtLk%3D10.1289/ehp.7743 – reference: WHO. Artisanal and small-scale gold mining and health—Technical paper #1: Environmental and occupational health hazards associated with artisanal and small-scale gold mining. Geneva; 2016. – volume: 188 start-page: 109750 issue: no. November 20 year: 2020 ident: 226_CR25 publication-title: Environ Res doi: 10.1016/j.envres.2020.109750 – volume: 268 start-page: 115510 year: 2021 ident: 226_CR129 publication-title: Environ Pollut doi: 10.1016/j.envpol.2020.115510 – volume: 19 start-page: 274 year: 1999 ident: 226_CR46 publication-title: Qatar Univ Sci J – ident: 226_CR45 doi: 10.1016/j.scitotenv.2020.140564 – volume: 186 start-page: 6721 issue: 10 year: 2014 ident: 226_CR76 publication-title: Environ Monit Assess doi: 10.1007/s10661-014-3885-4 – ident: 226_CR104 doi: 10.1007/s11270-016-3060-3 – volume: 199 start-page: 3470 issue: 9 year: 2021 ident: 226_CR92 publication-title: Biol Trace Elem Res doi: 10.1007/s12011-020-02446-8 – volume: 2 start-page: 549 issue: 3 year: 2010 ident: 226_CR84 publication-title: J Sci Res doi: 10.3329/jsr.v2i3.4667 – volume: 12 start-page: 341 issue: 6 year: 2016 ident: 226_CR75 publication-title: Am J Environ Sci doi: 10.3844/ajessp.2016.341.357 – volume: 60 start-page: 1885 issue: 1 year: 2021 ident: 226_CR6 publication-title: Alexandria Eng J doi: 10.1016/j.aej.2020.11.036 – ident: 226_CR17 doi: 10.1016/j.marpolbul.2020.111033 – ident: 226_CR86 doi: 10.1016/j.chemosphere.2020.128024 – volume: 304 start-page: 127 issue: 1–3 year: 2003 ident: 226_CR34 publication-title: Sci Total Environ doi: 10.1016/S0048-9697(02)00562-4 – volume: 85 start-page: 123 year: 2018 ident: 226_CR108 publication-title: Environ Sci Policy doi: 10.1016/j.envsci.2018.03.026 – volume: 5 start-page: 15 issue: 1 year: 2017 ident: 226_CR31 publication-title: J Pharm Heal Sci – volume: 81 start-page: 282 issue: 1 year: 2020 ident: 226_CR3 publication-title: Neurotoxicology doi: 10.1016/j.neuro.2020.09.018 – ident: 226_CR107 – ident: 226_CR87 doi: 10.1016/j.chemosphere.2021.131402 – ident: 226_CR145 – volume: 121 start-page: 143 issue: 1–2 year: 2017 ident: 226_CR9 publication-title: Mar Pollut Bull doi: 10.1016/j.marpolbul.2017.04.024 – volume: 20 start-page: 100242 year: 2021 ident: 226_CR55 publication-title: Curr Opin Environ Sci Heal. doi: 10.1016/j.coesh.2021.100242 – volume: 11 start-page: 1 year: 2011 ident: 226_CR70 publication-title: J Undergrad Res Minnesota State Univ Mankato – volume: 116 start-page: 106500 issue: February year: 2020 ident: 226_CR68 publication-title: Ecol Indic doi: 10.1016/j.ecolind.2020.106500 – ident: 226_CR105 doi: 10.3390/ijerph15081692 – volume: 146 start-page: 2021 year: 2020 ident: 226_CR16 publication-title: Environ Int – volume: 165 start-page: 112108 issue: December 2020 year: 2021 ident: 226_CR69 publication-title: Mar Pollut Bull doi: 10.1016/j.marpolbul.2021.112108 – volume: 288 start-page: 125687 year: 2021 ident: 226_CR50 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.125687 – volume: 607–608 start-page: 375 year: 2017 ident: 226_CR72 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.07.033 – volume: 114 start-page: 1 issue: November 2017 year: 2018 ident: 226_CR20 publication-title: Environ Int doi: 10.1016/j.envint.2018.02.028 – volume: 140 start-page: 214 year: 2018 ident: 226_CR28 publication-title: Microchem J doi: 10.1016/j.microc.2018.04.024 – volume: 28 start-page: 553 issue: 5 year: 2014 ident: 226_CR66 publication-title: Global Biogeochem Cycles doi: 10.1002/2014GB004814 – volume: 27 start-page: 410 issue: 2 year: 2013 ident: 226_CR120 publication-title: Global Biogeochem Cycles doi: 10.1002/gbc.20040 – volume: 113 start-page: 590 issue: 5 year: 2005 ident: 226_CR134 publication-title: Environ Health Perspect doi: 10.1289/ehp.7743 – volume: 88 start-page: 103357 issue: July 2019 year: 2020 ident: 226_CR94 publication-title: J Food Compos Anal doi: 10.1016/j.jfca.2019.103357 – volume: 102 start-page: 605 issue: 5 year: 2019 ident: 226_CR26 publication-title: Bull Environ Contam Toxicol doi: 10.1007/s00128-018-2530-2 – volume: 654 start-page: 720 issue: November 2018 year: 2019 ident: 226_CR133 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.10.408 – ident: 226_CR140 – volume: 113 start-page: 311 year: 2022 ident: 226_CR64 publication-title: J Environ Sci (China) doi: 10.1016/j.jes.2021.06.016 – volume: 149 start-page: 110539 issue: August year: 2019 ident: 226_CR44 publication-title: Mar Pollut Bull doi: 10.1016/j.marpolbul.2019.110539 – volume: 44 start-page: 2863 issue: 9 year: 2010 ident: 226_CR38 publication-title: Water Res doi: 10.1016/j.watres.2010.01.028 – volume: 52 start-page: 124 issue: 1 year: 2018 ident: 226_CR42 publication-title: Environ Sci Technol doi: 10.1021/acs.est.7b05217 – volume: 89 start-page: 112 issue: 1–2 year: 2014 ident: 226_CR43 publication-title: Mar Pollut Bull doi: 10.1016/j.marpolbul.2014.10.019 – ident: 226_CR130 – volume: 207 start-page: 4 issue: August year: 2021 ident: 226_CR53 publication-title: Ecotoxicol Environ Saf – volume: 173 start-page: 115563 year: 2020 ident: 226_CR52 publication-title: Water Res doi: 10.1016/j.watres.2020.115563 – volume: 263 start-page: 128110 year: 2021 ident: 226_CR80 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.128110 – ident: 226_CR138 – volume: 66 start-page: 116 issue: November 2016 year: 2018 ident: 226_CR77 publication-title: J Food Compos Anal doi: 10.1016/j.jfca.2017.12.010 – ident: 226_CR58 – ident: 226_CR124 – volume: 1 start-page: 259 issue: 3 year: 2021 ident: 226_CR126 publication-title: Fundam Res doi: 10.1016/j.fmre.2021.04.003 – ident: 226_CR57 doi: 10.1016/j.atmosenv.2015.04.045 – volume: 2 start-page: 28 year: 2015 ident: 226_CR18 publication-title: Reg Stud Mar Sci – ident: 226_CR143 – volume: 23 start-page: 155 issue: 2 year: 2009 ident: 226_CR71 publication-title: Water Environ J doi: 10.1111/j.1747-6593.2008.00129.x – volume: 261 start-page: 18604 issue: June year: 2021 ident: 226_CR61 publication-title: Atmos Environ. – volume: 37 start-page: 101334 year: 2020 ident: 226_CR12 publication-title: Reg Stud Mar Sci – volume: 132 start-page: 1 year: 2020 ident: 226_CR4 publication-title: TrAC - Trends Anal Chem doi: 10.1016/j.trac.2020.116016 – volume: 251 start-page: 109613 issue: July year: 2019 ident: 226_CR109 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2019.109613 – ident: 226_CR118 – volume: 716 start-page: 135386 year: 2020 ident: 226_CR101 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.135386 – volume: 254 start-page: 118349 issue: no. March year: 2021 ident: 226_CR19 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2021.118349 – volume: 82 start-page: 911 issue: 6 year: 2011 ident: 226_CR23 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2010.10.050 – volume: 710 start-page: 136384 year: 2020 ident: 226_CR40 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.136384 – volume: 663 start-page: 127 issue: 2 year: 2010 ident: 226_CR32 publication-title: Anal Chim Acta doi: 10.1016/j.aca.2010.01.048 – volume: 265 start-page: 114991 year: 2020 ident: 226_CR127 publication-title: Environ Pollut doi: 10.1016/j.envpol.2020.114991 – ident: 226_CR36 – volume: 13 start-page: e00876 year: 2021 ident: 226_CR128 publication-title: Sci African doi: 10.1016/j.sciaf.2021.e00876 – volume: 25 start-page: 488 issue: 3 year: 2018 ident: 226_CR21 publication-title: Ann Agric Environ Med doi: 10.26444/aaem/84934 – volume: 667 start-page: 601 year: 2019 ident: 226_CR33 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.02.259 – ident: 226_CR99 doi: 10.1016/S0167-5648(03)80056-4 – ident: 226_CR122 doi: 10.1007/s12517-021-07803-y – volume: 299 start-page: 126869 year: 2021 ident: 226_CR39 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2021.126869 – volume: 248 start-page: 125989 year: 2020 ident: 226_CR113 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.125989 – ident: 226_CR125 doi: 10.1016/j.chemosphere.2020.128910 – volume: 13 start-page: 2827 issue: 5 year: 2013 ident: 226_CR60 publication-title: Atmos Chem Phys doi: 10.5194/acp-13-2827-2013 – ident: 226_CR48 doi: 10.1016/j.marpolbul.2019.110499 – volume: 714 year: 2020 ident: 226_CR35 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.136539 – ident: 226_CR91 – volume: 166 start-page: 1 issue: no. April 2020 year: 2021 ident: 226_CR14 publication-title: Mar Pollut Bull – ident: 226_CR114 doi: 10.1016/j.chemosphere.2020.129233 – volume: 39 start-page: 401 issue: 6 year: 1984 ident: 226_CR132 publication-title: Arch Environ Health doi: 10.1080/00039896.1984.10545872 – ident: 226_CR117 – volume: 37 start-page: 2941 issue: 13 year: 2003 ident: 226_CR29 publication-title: Environ Sci Technol doi: 10.1021/es026366o – volume: 107 start-page: 278 issue: 3 year: 2007 ident: 226_CR67 publication-title: Mar Chem doi: 10.1016/j.marchem.2007.04.002 – volume: 285 start-page: 117467 issue: June year: 2021 ident: 226_CR62 publication-title: Environ Pollut doi: 10.1016/j.envpol.2021.117467 – volume: 53 start-page: 411 issue: 3 year: 2007 ident: 226_CR83 publication-title: Arch Environ Contam Toxicol doi: 10.1007/s00244-006-0237-6 – ident: 226_CR141 – volume: 154 start-page: 106561 year: 2021 ident: 226_CR102 publication-title: Environ Int doi: 10.1016/j.envint.2021.106561 – ident: 226_CR119 doi: 10.1016/j.envpol.2020.116146 – ident: 226_CR137 – ident: 226_CR24 doi: 10.1016/j.scitotenv.2020.137540 – ident: 226_CR112 – volume: 282 start-page: 117041 year: 2021 ident: 226_CR103 publication-title: Environ Pollut doi: 10.1016/j.envpol.2021.117041 – volume: 38 start-page: 1 issue: 4 year: 2019 ident: 226_CR106 publication-title: Environ Prog Sustain Energy doi: 10.1002/ep.13081 – volume: 175 start-page: 115708 year: 2020 ident: 226_CR41 publication-title: Water Res doi: 10.1016/j.watres.2020.115708 – ident: 226_CR11 doi: 10.1016/j.chemosphere.2020.128890 – volume: 17 start-page: 8999 issue: 14 year: 2017 ident: 226_CR63 publication-title: Atmos Chem Phys doi: 10.5194/acp-17-8999-2017 – ident: 226_CR98 doi: 10.1080/19393210.2018.1551247 – volume: 15 start-page: 100456 year: 2021 ident: 226_CR2 publication-title: Environ Nanotechnol Monit Manag – volume: 00 start-page: 1 issue: 00 year: 2021 ident: 226_CR96 publication-title: Food Addit Contam Part B Surveill – ident: 226_CR123 – volume: 156 start-page: 111096 year: 2020 ident: 226_CR54 publication-title: Mar Pollut Bull doi: 10.1016/j.marpolbul.2020.111096 – ident: 226_CR144 – volume: 126 start-page: 747 year: 2019 ident: 226_CR7 publication-title: Environ Int doi: 10.1016/j.envint.2019.03.019 – ident: 226_CR82 – ident: 226_CR85 doi: 10.1016/j.jfca.2020.103717 – volume: 219 start-page: 103753 issue: January year: 2020 ident: 226_CR22 publication-title: Mar Chem doi: 10.1016/j.marchem.2020.103753 – volume: 60 start-page: 386 issue: 2 year: 2015 ident: 226_CR51 publication-title: Limnol Oceanogr doi: 10.1002/lno.10036 – volume: 48 start-page: 2945 issue: 10 year: 2010 ident: 226_CR74 publication-title: Food Chem Toxicol doi: 10.1016/j.fct.2010.07.031 – ident: 226_CR111 – volume: 423 start-page: 126964 issue: no. PA year: 2021 ident: 226_CR27 publication-title: J Hazard Mater – volume: 126 start-page: 6 issue: 2 year: 2018 ident: 226_CR115 publication-title: Environ Health Perspect doi: 10.1289/EHP3460 – volume: 118 start-page: 753 year: 2018 ident: 226_CR5 publication-title: Food Chem Toxicol doi: 10.1016/j.fct.2018.06.023 – volume: 124 start-page: 104599 year: 2020 ident: 226_CR116 publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2019.104599 – volume: 76 start-page: 355 issue: 2 year: 2013 ident: 226_CR93 publication-title: J Food Prot doi: 10.4315/0362-028X.JFP-12-346 – volume: 192 start-page: 837 year: 2016 ident: 226_CR81 publication-title: Food Chem doi: 10.1016/j.foodchem.2015.07.081 – volume: 10 start-page: 185 issue: 3 year: 2017 ident: 226_CR95 publication-title: Food Addit Contam Part B Surveill doi: 10.1080/19393210.2017.1311379 – volume: 360 start-page: 1 issue: April year: 2018 ident: 226_CR56 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2018.07.096 – volume: 10 start-page: 241 issue: 4 year: 2017 ident: 226_CR97 publication-title: Food Addit Contam Part B Surveill – volume: 123 start-page: 113 issue: no. August 2018 year: 2019 ident: 226_CR15 publication-title: Food Chem Toxicol doi: 10.1016/j.fct.2018.10.053 – ident: 226_CR89 doi: 10.1016/j.jfca.2018.01.003 – volume: 765 start-page: 142763 year: 2021 ident: 226_CR65 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.142763 – ident: 226_CR49 doi: 10.1016/j.marpolbul.2021.112314 – volume: 804 start-page: 150124 year: 2022 ident: 226_CR135 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.150124 – ident: 226_CR37 doi: 10.1016/S0025-326X(99)00217-9 – ident: 226_CR131 – ident: 226_CR8 – ident: 226_CR1 doi: 10.1016/B978-0-12-811442-1.00005-5 – volume: 5 start-page: 130 issue: 2 year: 2015 ident: 226_CR88 publication-title: Open Vet J doi: 10.5455/OVJ.2015.v5.i2.p130 – volume: 16 start-page: 11773 issue: 18 year: 2016 ident: 226_CR100 publication-title: Atmos Chem Phys doi: 10.5194/acp-16-11773-2016 – ident: 226_CR139 – volume: 142 start-page: 595 issue: April year: 2019 ident: 226_CR30 publication-title: Mar Pollut Bull doi: 10.1016/j.marpolbul.2019.04.022 – volume: 143 start-page: 130 year: 2015 ident: 226_CR78 publication-title: Environ Res doi: 10.1016/j.envres.2015.04.019 – volume: 8 start-page: 1081 year: 2021 ident: 226_CR136 publication-title: Toxicol Rep doi: 10.1016/j.toxrep.2021.05.010 – volume: 143 start-page: 264 issue: no. November 20 year: 2019 ident: 226_CR10 publication-title: Mar Pollut Bull doi: 10.1016/j.marpolbul.2019.04.007 – ident: 226_CR142 – volume: 23 start-page: 122 issue: 2 year: 2007 ident: 226_CR90 publication-title: J Appl Ichthyol doi: 10.1111/j.1439-0426.2006.00829.x – volume: 243 start-page: 118637 year: 2020 ident: 226_CR110 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.118637 – volume: 22 start-page: 100272 year: 2021 ident: 226_CR121 publication-title: Curr Opin Environ Sci Heal doi: 10.1016/j.coesh.2021.100272 – volume: 331 start-page: 127267 issue: no. December 20 year: 2020 ident: 226_CR13 publication-title: Food Chem doi: 10.1016/j.foodchem.2020.127267 – ident: 226_CR47 doi: 10.1016/j.marpolbul.2004.02.029 – volume: 12 start-page: 54 issue: 3 year: 2021 ident: 226_CR59 publication-title: Atmos Pollut Res doi: 10.1016/j.apr.2021.01.015 – ident: 226_CR73 doi: 10.1007/s00128-018-2388-3 – volume: 24 start-page: 66 issue: 1 year: 2011 ident: 226_CR79 publication-title: J Food Compos Anal doi: 10.1016/j.jfca.2010.04.009 |
SSID | ssj0002046597 |
Score | 2.4971917 |
SecondaryResourceType | review_article |
Snippet | Purpose of Review
The concern of mercury pollution and the impact that it poses on the marine environment were studied heavily since the case of the poison... Purpose of ReviewThe concern of mercury pollution and the impact that it poses on the marine environment were studied heavily since the case of the poison from... PURPOSE OF REVIEW: The concern of mercury pollution and the impact that it poses on the marine environment were studied heavily since the case of the poison... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 249 |
SubjectTerms | Aquatic environment Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Bacteria Bioaccumulation Biogeochemistry Bioindicators Biological magnification Biomonitoring Chemical bonds Compartments Consumption Contamination Dimethylmercury Earth and Environmental Science Emissions Environment Environmental Law/Policy/Ecojustice Fish fish consumption Food chains Food contamination & poisoning Heavy metals human health Indicator species Industrial plant emissions Industrial Pollution Prevention Marine environment Marine pollution Mercury Mercury (metal) Methylmercury methylmercury compounds Microorganisms Monitoring/Environmental Analysis Ocean surface Outdoor air quality Oxidation petroleum Pollution risk Salinity Section Editors Sediments Sulfur Surface water Topical Collection on Water Pollution Waste Water Technology Water Management Water Pollution (G Toor and L Nghiem Water Pollution Control |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60XvQgPjFaZQVvGkw2m5e3UlqKEE8Vegu7mwkIkkrT_n9nNmmqRQWvm90EZnaYbzIz3zB2V5ReCBSWEJcIBiiqcFUo0K5MXJpYGE9Z3oLsJZq8yudZOGtpcqgXZit__1gTgReVyQqX3E3kxrtsL_SDiMq3htGw-58iMNBDcNz2xfx89Lvv2QDKrRyodS3jI3bYYkI-aJR4zHagOmEHX5gCTxmgOvlQrWqoOcb-vCEdrvm85BksDArGLmeAcqeBKHaFmKcUlbqQ8PlbxRHs8UxRvx8fbRrcnviANymCMzYdj6bDidtOSHBNkEZLt_Q0-lwtvARMYhD5hCYpaJaMHwcB3hEFRvtaixIK6Uv09Rq09EUBJjVpYYJz1qvmFVww7qPhFolSSqpSQpymEiKajlsYL1ZQeg7z16LLTcseTkMs3vOO99iKO0dJ51bceeyw--7MR8Od8efu_lojeWtHdY5gRFDc7EUOu-0eowVQWkNVMF_hnpgwaiCldNjDWpObV_z-xcv_bb9i-8JeJiow67PecrGCa0QkS31jr-Inh0HXMg priority: 102 providerName: Springer Nature |
Title | The Causes and Effects of Mercury and Methylmercury Contamination in the Marine Environment: A Review |
URI | https://link.springer.com/article/10.1007/s40726-022-00226-7 https://www.proquest.com/docview/2932274706 https://www.proquest.com/docview/2723103444 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS-NAEB_UvuiDnJ6H9bSs4NsZLtls83Ev0pYWEVqOQ8G3sNmdwMGR1Kb9_29mu21V0NfNx8J87MzszPwG4MZWYR85LGEsEQpQtA10X5JembQyqTShdrgF01ly_6QenvvP_sKt9WWVmzPRHdS2MXxH_pPMkuQIKkzu5i8BT43i7KofobEPHTqCM5LwznA8-_1ne8siKfwjl9l3y7ieOUYE47pbGbD9SoL0rUXauZnvMqPO4Ey-wLH3FMVgzdoT2MP6FI5e4Qd-BSQmi5FetdgKXVuxhiJuRVOJKS4MkcstT5G4wWNS3ArjUWkugGGWiL-1IBdQTDV3AYrxru3tlxiIdeLgDB4n48fRfeDnJgQmzpNlUIUlWeJShhmazJA_1DeZ5QkzURrHJDkaTRmVpazQqkiRB1BiqSJp0eQmtyb-Bgd1U-M5iIjU2WZaa6UrhWmeK0x4Zq41YaqxCrsQbUhXGI8pzqMt_hVbNGRH7oIoXThyF2kXfmy_ma8RNT59-3LDkcJrV1vsZKEL19vHpBec7NA1Nit6J2XPNVZKdeF2w8ndLz7e8eLzHb_DoXTCw2Vml3CwXKzwivySZdmDzmAyHM56Xgh7sD9KRv8Bm9viKw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fa9wwDBfd9WHbw2j3h97Wri60T11Y4viSy6CUrr1yXZtjjBv0zTi2AoOR65o7xj7UvuMkJ7nrButbXx3HBkm2JEv6CWDfleEA2S1hLBFyUIwLzEDSubJpaVNpQ-NxC_JJMv6qPl0Prtfgd1cLw2mV3Z3oL2o3s_xG_p7UkmQPKkyOb34E3DWKo6tdC41GLC7x109y2eqjizPi74GU56Pp6ThouwoENs6SeVCGBempQoZDtENL1sLADh33X4nSOCa6GrRFVBSyRKciRfqxwEJF0qHNbOZsTMs-gnUVk6XQg_WPo8nnL8tHHUneJlnobXGOL9FjADJO85UBq8skSP9WgCur9p9ArNdv5xvwrDVMxUkjSZuwhtVzeHoHrvAFIMmUODWLGmthKica5ONazEqR460l7vjhHIn53JXFjzD8leF8G5YA8a0SZHGK3HDRoRitquw-iBPRxClewvQhCPoKetWswi0QEd0ebmiMUaZUmGaZwoRb9DobpgbLsA9RRzptWwhz7qTxXS_Blz25NVFae3LrtA-Hy39uGgCPe2dvdxzR7WGu9Ur0-rC3_EzHkGMrpsLZguakbCjHSqk-vOs4uVri_zu-vn_HXXg8nuZX-upicvkGnkgvSJzhtg29-e0Cd8gkmhdvW0EUoB9Y9P8AA6QdqA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58gOhBfGJ9ruBNQ5PNNmm8SbX4avGg0FvY7E5AkFRs-_-d2aRpFRW8bnYTmNlhvsnMfANwZnO_hRyWMJcIBSjaerolya5MnJtYGl873oJeP7p9UfeD1mCui99Vu09TkmVPA7M0FePmu82bdeMb03px8az02AlFXrwIyxSpBFzU14k69V8WSeEfQeaqW-bno1890gxmfsuMOofT3YD1CimKq1K1m7CAxRaszfEHbgOSkkVHT0Y4ErqwoqQiHolhLnr4YUhcbrmHpA0ek-JWmI9KcwEMq0S8FoIgoOhp7gIUN7O2t0txJcrEwQ48d2-eO7deNTfBM2ESjb3cz8gTZ9Jvo2kbwkMt07Y8YSaIw5BujkaTBVkmc7QqUIQAMsxUIC2axCTWhLuwVAwL3AMRkDnbttZa6VxhnCQKI56Za40fa8z9BgRT0aWm4hTn0RZvac2G7MSdkqRTJ-40bsB5fea9ZNT4c_fhVCNpZV2jlCCK5GjajxpwWj8mu-Bkhy5wOKE9MSPXUCnVgIupJmev-P2L-__bfgIrT9fd9PGu_3AAq9LdK65AO4Sl8ccEjwiyjLNjdys_AZMk4mY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Causes+and+Effects+of+Mercury+and+Methylmercury+Contamination+in+the+Marine+Environment%3A+A+Review&rft.jtitle=Current+pollution+reports&rft.au=Al-Sulaiti%2C+Maetha+M&rft.au=Soubra%2C+Lama&rft.au=Al-Ghouti%2C+Mohammad+A&rft.date=2022-09-01&rft.pub=Springer+Nature+B.V&rft.eissn=2198-6592&rft.volume=8&rft.issue=3&rft.spage=249&rft.epage=272&rft_id=info:doi/10.1007%2Fs40726-022-00226-7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-6592&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-6592&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-6592&client=summon |