Assessment of the Brain's Macro- and Micro-Circulatory Blood Flow Responses to CO2 via Transfer Function Analysis
At present, there is no standard bedside method for assessing cerebral autoregulation (CA) with high temporal resolution. We combined the two methods most commonly used for this purpose, transcranial Doppler sonography (TCD, macro-circulation level), and near-infrared spectroscopy (NIRS, micro-circu...
Saved in:
Published in | Frontiers in physiology Vol. 7; p. 162 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
09.05.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1664-042X 1664-042X |
DOI | 10.3389/fphys.2016.00162 |
Cover
Abstract | At present, there is no standard bedside method for assessing cerebral autoregulation (CA) with high temporal resolution. We combined the two methods most commonly used for this purpose, transcranial Doppler sonography (TCD, macro-circulation level), and near-infrared spectroscopy (NIRS, micro-circulation level), in an attempt to identify the most promising approach.
In eight healthy subjects (5 women; mean age, 38 ± 10 years), CA disturbance was achieved by adding carbon dioxide (CO2) to the breathing air. We simultaneously recorded end-tidal CO2 (ETCO2), blood pressure (BP; non-invasively at the fingertip), and cerebral blood flow velocity (CBFV) in both middle cerebral arteries using TCD and determined oxygenated and deoxygenated hemoglobin levels using NIRS. For the analysis, we used transfer function calculations in the low-frequency band (0.07-0.15 Hz) to compare BP-CBFV, BP-oxygenated hemoglobin (OxHb), BP-tissue oxygenation index (TOI), CBFV-OxHb, and CBFV-TOI.
ETCO2 increased from 37 ± 2 to 44 ± 3 mmHg. The CO2-induced CBFV increase significantly correlated with the OxHb increase (R (2) = 0.526, p < 0.001). Compared with baseline, the mean CO2 administration phase shift (in radians) significantly increased (p < 0.005) from -0.67 ± 0.20 to -0.51 ± 0.25 in the BP-CBFV system, and decreased from 1.21 ± 0.81 to -0.05 ± 0.91 in the CBFV-OxHb system, and from 0.94 ± 1.22 to -0.24 ± 1.0 in the CBFV-TOI system; no change was observed for BP-OxHb (0.38 ± 1.17 to 0.41 ± 1.42). Gain changed significantly only in the BP-CBFV system. The correlation between the ETCO2 change and phase change was higher in the CBFV-OxHb system [r = -0.60; 95% confidence interval (CI): -0.16, -0.84; p < 0.01] than in the BP-CBFV system (r = 0.52; 95% CI: 0.03, 0.08; p < 0.05).
The transfer function characterizes the blood flow transition from macro- to micro-circulation by time delay only. The CBFV-OxHb system response with a broader phase shift distribution offers the prospect of a more detailed grading of CA responses. Whether this is of clinical relevance needs further studies in different patient populations. |
---|---|
AbstractList | OBJECTIVESAt present, there is no standard bedside method for assessing cerebral autoregulation (CA) with high temporal resolution. We combined the two methods most commonly used for this purpose, transcranial Doppler sonography (TCD, macro-circulation level), and near-infrared spectroscopy (NIRS, micro-circulation level), in an attempt to identify the most promising approach.METHODSIn eight healthy subjects (5 women; mean age, 38 ± 10 years), CA disturbance was achieved by adding carbon dioxide (CO2) to the breathing air. We simultaneously recorded end-tidal CO2 (ETCO2), blood pressure (BP; non-invasively at the fingertip), and cerebral blood flow velocity (CBFV) in both middle cerebral arteries using TCD and determined oxygenated and deoxygenated hemoglobin levels using NIRS. For the analysis, we used transfer function calculations in the low-frequency band (0.07-0.15 Hz) to compare BP-CBFV, BP-oxygenated hemoglobin (OxHb), BP-tissue oxygenation index (TOI), CBFV-OxHb, and CBFV-TOI.RESULTSETCO2 increased from 37 ± 2 to 44 ± 3 mmHg. The CO2-induced CBFV increase significantly correlated with the OxHb increase (R (2) = 0.526, p < 0.001). Compared with baseline, the mean CO2 administration phase shift (in radians) significantly increased (p < 0.005) from -0.67 ± 0.20 to -0.51 ± 0.25 in the BP-CBFV system, and decreased from 1.21 ± 0.81 to -0.05 ± 0.91 in the CBFV-OxHb system, and from 0.94 ± 1.22 to -0.24 ± 1.0 in the CBFV-TOI system; no change was observed for BP-OxHb (0.38 ± 1.17 to 0.41 ± 1.42). Gain changed significantly only in the BP-CBFV system. The correlation between the ETCO2 change and phase change was higher in the CBFV-OxHb system [r = -0.60; 95% confidence interval (CI): -0.16, -0.84; p < 0.01] than in the BP-CBFV system (r = 0.52; 95% CI: 0.03, 0.08; p < 0.05).CONCLUSIONThe transfer function characterizes the blood flow transition from macro- to micro-circulation by time delay only. The CBFV-OxHb system response with a broader phase shift distribution offers the prospect of a more detailed grading of CA responses. Whether this is of clinical relevance needs further studies in different patient populations. At present, there is no standard bedside method for assessing cerebral autoregulation (CA) with high temporal resolution. We combined the two methods most commonly used for this purpose, transcranial Doppler sonography (TCD, macro-circulation level), and near-infrared spectroscopy (NIRS, micro-circulation level), in an attempt to identify the most promising approach. In eight healthy subjects (5 women; mean age, 38 ± 10 years), CA disturbance was achieved by adding carbon dioxide (CO2) to the breathing air. We simultaneously recorded end-tidal CO2 (ETCO2), blood pressure (BP; non-invasively at the fingertip), and cerebral blood flow velocity (CBFV) in both middle cerebral arteries using TCD and determined oxygenated and deoxygenated hemoglobin levels using NIRS. For the analysis, we used transfer function calculations in the low-frequency band (0.07-0.15 Hz) to compare BP-CBFV, BP-oxygenated hemoglobin (OxHb), BP-tissue oxygenation index (TOI), CBFV-OxHb, and CBFV-TOI. ETCO2 increased from 37 ± 2 to 44 ± 3 mmHg. The CO2-induced CBFV increase significantly correlated with the OxHb increase (R (2) = 0.526, p < 0.001). Compared with baseline, the mean CO2 administration phase shift (in radians) significantly increased (p < 0.005) from -0.67 ± 0.20 to -0.51 ± 0.25 in the BP-CBFV system, and decreased from 1.21 ± 0.81 to -0.05 ± 0.91 in the CBFV-OxHb system, and from 0.94 ± 1.22 to -0.24 ± 1.0 in the CBFV-TOI system; no change was observed for BP-OxHb (0.38 ± 1.17 to 0.41 ± 1.42). Gain changed significantly only in the BP-CBFV system. The correlation between the ETCO2 change and phase change was higher in the CBFV-OxHb system [r = -0.60; 95% confidence interval (CI): -0.16, -0.84; p < 0.01] than in the BP-CBFV system (r = 0.52; 95% CI: 0.03, 0.08; p < 0.05). The transfer function characterizes the blood flow transition from macro- to micro-circulation by time delay only. The CBFV-OxHb system response with a broader phase shift distribution offers the prospect of a more detailed grading of CA responses. Whether this is of clinical relevance needs further studies in different patient populations. Objectives: At present, there is no standard bedside method for assessing cerebral autoregulation (CA) with high temporal resolution. We combined the two methods most commonly used for this purpose, transcranial Doppler sonography (TCD, macro-circulation level), and near-infrared spectroscopy (NIRS, micro-circulation level), in an attempt to identify the most promising approach. Methods: In eight healthy subjects (5 women; mean age, 38 ± 10 years), CA disturbance was achieved by adding carbon dioxide (CO 2 ) to the breathing air. We simultaneously recorded end-tidal CO 2 (ETCO 2 ), blood pressure (BP; non-invasively at the fingertip), and cerebral blood flow velocity (CBFV) in both middle cerebral arteries using TCD and determined oxygenated and deoxygenated hemoglobin levels using NIRS. For the analysis, we used transfer function calculations in the low-frequency band (0.07–0.15 Hz) to compare BP–CBFV, BP–oxygenated hemoglobin (OxHb), BP–tissue oxygenation index (TOI), CBFV–OxHb, and CBFV–TOI. Results: ETCO 2 increased from 37 ± 2 to 44 ± 3 mmHg. The CO 2 -induced CBFV increase significantly correlated with the OxHb increase ( R 2 = 0.526, p < 0.001). Compared with baseline, the mean CO 2 administration phase shift (in radians) significantly increased ( p < 0.005) from –0.67 ± 0.20 to –0.51 ± 0.25 in the BP–CBFV system, and decreased from 1.21 ± 0.81 to −0.05 ± 0.91 in the CBFV–OxHb system, and from 0.94 ± 1.22 to −0.24 ± 1.0 in the CBFV–TOI system; no change was observed for BP–OxHb (0.38 ± 1.17 to 0.41 ± 1.42). Gain changed significantly only in the BP–CBFV system. The correlation between the ETCO 2 change and phase change was higher in the CBFV–OxHb system [ r = −0.60; 95% confidence interval (CI): −0.16, −0.84; p < 0.01] than in the BP–CBFV system ( r = 0.52; 95% CI: 0.03, 0.08; p < 0.05). Conclusion: The transfer function characterizes the blood flow transition from macro- to micro-circulation by time delay only. The CBFV–OxHb system response with a broader phase shift distribution offers the prospect of a more detailed grading of CA responses. Whether this is of clinical relevance needs further studies in different patient populations. |
Author | Lygeros, John Müller, Andreas Müller, Martin W.-D. Österreich, Mareike |
AuthorAffiliation | 1 Department of Neurology and Neurorehabilitation, Kantonsspital Lucerne Lucerne, Switzerland 2 Automatic Control Laboratory, ETH Zurich Zurich, Switzerland |
AuthorAffiliation_xml | – name: 1 Department of Neurology and Neurorehabilitation, Kantonsspital Lucerne Lucerne, Switzerland – name: 2 Automatic Control Laboratory, ETH Zurich Zurich, Switzerland |
Author_xml | – sequence: 1 givenname: Martin W.-D. surname: Müller fullname: Müller, Martin W.-D. – sequence: 2 givenname: Mareike surname: Österreich fullname: Österreich, Mareike – sequence: 3 givenname: Andreas surname: Müller fullname: Müller, Andreas – sequence: 4 givenname: John surname: Lygeros fullname: Lygeros, John |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27242536$$D View this record in MEDLINE/PubMed |
BookMark | eNp1Uc9rFDEYDVKxtfbuSXLTy6xJJpOZuQjbxVWhpSAVvIVs5osbySbbfDOV_e_NtLVUwRySD_J-JO-9JEcxRSDkNWeLuu76926_PeBCMK4WrGziGTnhSsmKSfH96Ml8TM4Qf7KyJBMF-YIci1ZI0dTqhNwsEQFxB3GkydFxC_Q8Gx_fIr00NqeKmjjQSz-PK5_tFMyY8oGeh5QGug7pF_0KuE-xqNAx0dWVoLfe0OtsIjrIdD1FO_oU6TKacECPr8hzZwLC2cN5Sr6tP16vPlcXV5--rJYXla17NVbgFAgBZtgMirFBSNZKZ4VjdjAtiL7dONYPApqGd465wciNcNA5UDW3rmnqU_LhXnc_bXYw2PLDbILeZ78z-aCT8frvm-i3-ke61bJTTPGuCLx7EMjpZgIc9c6jhRBMhDSh5m1fCy5lPXu9eer1aPIn5wJg94CSI2IG9wjhTM9t6rs29dymvmuzUNQ_FOtHM0dZXuvD_4m_Ad8Qp7U |
CitedBy_id | crossref_primary_10_1186_s12883_023_03160_3 crossref_primary_10_3233_BME_171679 crossref_primary_10_33549_physiolres_934147 crossref_primary_10_1007_s00415_016_8262_5 crossref_primary_10_1097_HJH_0000000000001854 crossref_primary_10_1038_s41598_020_66317_x crossref_primary_10_1109_OJEMB_2023_3234012 crossref_primary_10_1177_0271678X18806107 crossref_primary_10_3389_fphys_2019_01355 crossref_primary_10_1016_j_nicl_2023_103504 crossref_primary_10_1038_s41598_021_88198_4 crossref_primary_10_1177_1591019920931651 |
Cites_doi | 10.1152/japplphysiol.00471.2004 10.1161/01.STR.31.4.924 10.1113/jphysiol.2008.168302 10.1161/01.STR.26.6.1014 10.1113/jphysiol.2011.206953 10.1161/01.STR.26.1.96 10.1161/01.STR.0000068409.81859.C5 10.1038/jcbfm.2013.42 10.1042/cs0960313 10.1016/j.medengphy.2014.02.002 10.1016/S0301-5629(03)00954-2 10.1161/01.STR.19.8.963 10.1161/01.STR.23.2.171 10.1152/ajpheart.00794.2006 10.1161/01.STR.20.1.45 10.1152/ajpheart.1999.277.3.H1089 10.1111/j.1365-2362.2012.02704.x 10.1152/japplphysiol.01458.2010 10.1177/0271678X15626425 10.3389/fphys.2014.00093 10.1113/jphysiol.2013.259747 10.1161/01.STR.27.2.296 10.1093/bja/aep299 10.1016/j.jns.2006.07.011 10.1161/STROKEAHA.109.577320 10.3171/2011.12.FOCUS11280 10.3389/fphys.2014.00327 |
ContentType | Journal Article |
Copyright | Copyright © 2016 Müller, Österreich, Müller and Lygeros. 2016 Müller, Österreich, Müller and Lygeros |
Copyright_xml | – notice: Copyright © 2016 Müller, Österreich, Müller and Lygeros. 2016 Müller, Österreich, Müller and Lygeros |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.3389/fphys.2016.00162 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1664-042X |
EndPage | 162 |
ExternalDocumentID | PMC4860618 27242536 10_3389_fphys_2016_00162 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION DIK EMOBN F5P GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM IAO IEA IHR IHW IPNFZ ISR NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c396t-ef6e22eadbd600d24074fc2f0cda7e297bf09d2e5518f0fda4b2fe8fe631cf553 |
IEDL.DBID | M48 |
ISSN | 1664-042X |
IngestDate | Thu Aug 21 18:41:04 EDT 2025 Thu Sep 04 23:51:29 EDT 2025 Thu Jan 02 22:24:52 EST 2025 Thu Apr 24 23:03:21 EDT 2025 Tue Jul 01 04:18:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | transfer function cerebral blood flow near-infrared spectroscopy transcranial Doppler ultrasound cerebral autoregulation |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c396t-ef6e22eadbd600d24074fc2f0cda7e297bf09d2e5518f0fda4b2fe8fe631cf553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Antonio Colantuoni, “Federico II” University of Naples, Italy This article was submitted to Vascular Physiology, a section of the journal Frontiers in Physiology Reviewed by: Mauro Cataldi, Federico II University of Naples, Italy; Giuseppe Pignataro, Federico II University of Naples, Italy |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fphys.2016.00162 |
PMID | 27242536 |
PQID | 1793214435 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4860618 proquest_miscellaneous_1793214435 pubmed_primary_27242536 crossref_primary_10_3389_fphys_2016_00162 crossref_citationtrail_10_3389_fphys_2016_00162 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-05-09 |
PublicationDateYYYYMMDD | 2016-05-09 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in physiology |
PublicationTitleAlternate | Front Physiol |
PublicationYear | 2016 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Müller (B12) 1996; 27 Taussky (B24) 2012; 32 Phillip (B17) 2012; 42 Schubert (B21) 1999; 96 Kleiser (B6) 1992; 23 Aaslid (B1) 1989; 20 Serrador (B22) 2005; 98 Harper (B4) 1984; 246 Tan (B23) 2013; 591 Tiecks (B26) 1995; 26 Zweifel (B30) 2010; 41 Kolb (B7) 2007; 292 Müller (B13) 1995; 26 Cooper (B3) 2011; 110 Murkin (B14) 2009; 103 Hecht (B5) 2013; 33 Meel-van den Abeelen (B9) 2014; 36 Zhang (B29) 1998; 274 Claassen (B2) 2016; 36 Kontos (B8) 1978; 234 Panerai (B16) 1999; 277 Terborg (B25) 2000; 31 Ringelstein (B20) 1988; 19 Reinhard (B19) 2006; 250 Tzeng (B27) 2011; 589 Zhang (B28) 2009; 11 Müller (B10) 2014; 5 Nielsen (B15) 2014; 5 Reinhard (B18) 2003; 29 Müller (B11) 2003; 34 19359366 - J Physiol. 2009 Jun 1;587(Pt 11):2567-77 24725709 - Med Eng Phys. 2014 May;36(5):620-7 7762016 - Stroke. 1995 Jun;26(6):1014-9 26782760 - J Cereb Blood Flow Metab. 2016 Apr;36(4):665-80 17011584 - J Neurol Sci. 2006 Dec 1;250(1-2):103-9 8571426 - Stroke. 1996 Feb;27(2):296-9 22897146 - Eur J Clin Invest. 2012 Nov;42(11):1180-8 7839406 - Stroke. 1995 Jan;26(1):96-100 16963612 - Am J Physiol Heart Circ Physiol. 2007 Jan;292(1):H432-8 15361517 - J Appl Physiol (1985). 2005 Jan;98(1):151-9 6696087 - Am J Physiol. 1984 Jan;246(1 Pt 2):H17-24 20007987 - Br J Anaesth. 2009 Dec;103 Suppl 1:i3-13 24672486 - Front Physiol. 2014 Mar 17;5:93 22296679 - Neurosurg Focus. 2012 Feb;32(2):E2 25206340 - Front Physiol. 2014 Aug 26;5:327 20651272 - Stroke. 2010 Sep;41(9):1963-8 10484432 - Am J Physiol. 1999 Sep;277(3 Pt 2):H1089-99 21540346 - J Physiol. 2011 Jul 1;589(Pt 13):3263-74 10087237 - Clin Sci (Lond). 1999 Apr;96(4):313-26 1561643 - Stroke. 1992 Feb;23 (2):171-4 10754000 - Stroke. 2000 Apr;31(4):924-9 9458872 - Am J Physiol. 1998 Jan;274(1 Pt 2):H233-41 3135641 - Stroke. 1988 Aug;19(8):963-9 21454747 - J Appl Physiol (1985). 2011 Jun;110(6):1691-8 645875 - Am J Physiol. 1978 Apr;234(4):H371-83 2492126 - Stroke. 1989 Jan;20(1):45-52 12677012 - Stroke. 2003 May;34(5):1197-202 12946513 - Ultrasound Med Biol. 2003 Aug;29(8):1105-13 23512134 - J Cereb Blood Flow Metab. 2013 Jul;33(7):1000-7 23959681 - J Physiol. 2013 Oct 15;591(20):5095-105 |
References_xml | – volume: 98 start-page: 151 year: 2005 ident: B22 article-title: Cerebral pressure-flow relations in hypertensive elderly humans: transfer gain in different frequency domains publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00471.2004 – volume: 31 start-page: 924 year: 2000 ident: B25 article-title: Reduced vasomotor reactivity in cerebral microangiopa-thy: a study with near-infrared spectroscopy and transcranial Doppler sonography publication-title: Stroke doi: 10.1161/01.STR.31.4.924 – volume: 11 start-page: 2567 issue: 587 year: 2009 ident: B28 article-title: Dynamic pressure–flow relationship of the cerebral circulation during acute increase in arterial pressure publication-title: J. Physiol. doi: 10.1113/jphysiol.2008.168302 – volume: 26 start-page: 1014 year: 1995 ident: B26 article-title: Comparison of static and dynamic cerebral autoregulation measurements publication-title: Stroke doi: 10.1161/01.STR.26.6.1014 – volume: 589 start-page: 3263 year: 2011 ident: B27 article-title: Determinants of human cerebral pressure-flow velocity relationships: new insights from vascular modelling and Ca2+ channel blockade publication-title: J. Physiol. doi: 10.1113/jphysiol.2011.206953 – volume: 26 start-page: 96 year: 1995 ident: B13 article-title: Assessment of cerebral vasomotor reactivity by transcranial Doppler ultrasound and breath-holding. A comparison with acetazolamide as vasodila-tory stimulus publication-title: Stroke doi: 10.1161/01.STR.26.1.96 – volume: 34 start-page: 1197 year: 2003 ident: B11 article-title: Changes in linear dynamics of cerebrovascular system after severe traumatic brain injury publication-title: Stroke doi: 10.1161/01.STR.0000068409.81859.C5 – volume: 33 start-page: 1000 year: 2013 ident: B5 article-title: Laser speckle imaging allows real-time intraoperative blood flow assessment during neurosurgical procedures publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2013.42 – volume: 96 start-page: 313 year: 1999 ident: B21 article-title: The myogenic response: established facts and attractive hypothesis publication-title: Clin. Sci. doi: 10.1042/cs0960313 – volume: 36 start-page: 620 year: 2014 ident: B9 article-title: Between-center variability in transfer function analysis, a widely used method for linear quantification of the dynamic pressure-flow relation: the CARNet study publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2014.02.002 – volume: 29 start-page: 1105 year: 2003 ident: B18 article-title: Dynamic cerebral autoregulation and collateral flow patterns in patients with severe carotid stenosis or occlusion publication-title: Ultrasound Med. Biol. doi: 10.1016/S0301-5629(03)00954-2 – volume: 19 start-page: 963 year: 1988 ident: B20 article-title: Noninvasive assessment of CO2-induced cerebral vasomotor response in normal individuals and patients with internal carotid artery occlusions publication-title: Stroke doi: 10.1161/01.STR.19.8.963 – volume: 23 start-page: 171 year: 1992 ident: B6 article-title: Course of carotid artery occlusions with impaired cerebrovascular reactivity publication-title: Stroke doi: 10.1161/01.STR.23.2.171 – volume: 292 start-page: H432 year: 2007 ident: B7 article-title: Frequency response characteristics of cerebral blood flow autoregulation in rats publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00794.2006 – volume: 20 start-page: 45 year: 1989 ident: B1 article-title: Cerebral autoregulation dynamics in humans publication-title: Stroke doi: 10.1161/01.STR.20.1.45 – volume: 277 start-page: H1089 year: 1999 ident: B16 article-title: Linear and nonlinear analysis of human dynamic cere-bral autoregulation publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.1999.277.3.H1089 – volume: 274 start-page: H233 issue: (Pt 2) year: 1998 ident: B29 article-title: Transfer function analysis of dynamic cerebral autoregulation in humans publication-title: Am. J. Physiol. – volume: 42 start-page: 1180 year: 2012 ident: B17 article-title: Low frequency oscillations in cephalic vessels assessed by near infrared spectroscopy publication-title: Eur. J. Clin. Invest. doi: 10.1111/j.1365-2362.2012.02704.x – volume: 110 start-page: 1691 year: 2011 ident: B3 article-title: Continuous monitoring of absolute cerebral blood flow by near-infrared spectroscopy during global and focal temporary vessel occlusion publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.01458.2010 – volume: 36 start-page: 665 year: 2016 ident: B2 article-title: Transfer function analysis of dynamic cerebral autoregulation: a white paper from the International Cerebral Autoregulation Research Network publication-title: J. Cereb. Blood Flow Metab doi: 10.1177/0271678X15626425 – volume: 5 issue: 93 year: 2014 ident: B15 article-title: Systematic review of near-infrared spectroscopy determined cerebral oxygenation during non-cardiac surgery publication-title: Front Physiol doi: 10.3389/fphys.2014.00093 – volume: 591 start-page: 5095 year: 2013 ident: B23 article-title: The role of myogenic mechanisms in human cerebrovascular regulation publication-title: J. Physiol. doi: 10.1113/jphysiol.2013.259747 – volume: 27 start-page: 296 year: 1996 ident: B12 article-title: Vasomotor reactivity and pattern of collateral blood flow in severe occlussive carotid artery disease publication-title: Stroke doi: 10.1161/01.STR.27.2.296 – volume: 234 start-page: H371 year: 1978 ident: B8 article-title: Responses of cerebral arteries and arterioles to acute hypotension and hypertension publication-title: Am. J. Physiol. – volume: 103 start-page: i3 year: 2009 ident: B14 article-title: Near-infrared spectroscopy as an index of brain and tissue oxygenation publication-title: BJA doi: 10.1093/bja/aep299 – volume: 250 start-page: 103 year: 2006 ident: B19 article-title: Oscillatory cerebral hemodynamics—the macro- vs publication-title: microvascular level. J. Neurol. Sci. doi: 10.1016/j.jns.2006.07.011 – volume: 41 start-page: 1963 year: 2010 ident: B30 article-title: Continuous assessment of cerebral autoregulation with Near-Infrared Spectroscopy in adults after subarachnoid hemorrhage publication-title: Stroke doi: 10.1161/STROKEAHA.109.577320 – volume: 246 start-page: H17 year: 1984 ident: B4 article-title: Arterial and microvascular contributions to cerebral cortical au-toregulation publication-title: Am. J. Physiol. – volume: 32 start-page: 1 year: 2012 ident: B24 article-title: Validation of frontal near-infrared spectroscopy as noninvasive bedside monitoring for regional cerebral blood flow in brain-injured patients publication-title: Neurosurg. Focus doi: 10.3171/2011.12.FOCUS11280 – volume: 5 issue: 327 year: 2014 ident: B10 article-title: A comparison of dynamic cerebral autoregulation across changes in cerebral blood flow velocity for 200 s publication-title: Front. Physiol. doi: 10.3389/fphys.2014.00327 – reference: 7839406 - Stroke. 1995 Jan;26(1):96-100 – reference: 23959681 - J Physiol. 2013 Oct 15;591(20):5095-105 – reference: 16963612 - Am J Physiol Heart Circ Physiol. 2007 Jan;292(1):H432-8 – reference: 2492126 - Stroke. 1989 Jan;20(1):45-52 – reference: 22897146 - Eur J Clin Invest. 2012 Nov;42(11):1180-8 – reference: 26782760 - J Cereb Blood Flow Metab. 2016 Apr;36(4):665-80 – reference: 15361517 - J Appl Physiol (1985). 2005 Jan;98(1):151-9 – reference: 6696087 - Am J Physiol. 1984 Jan;246(1 Pt 2):H17-24 – reference: 24725709 - Med Eng Phys. 2014 May;36(5):620-7 – reference: 25206340 - Front Physiol. 2014 Aug 26;5:327 – reference: 23512134 - J Cereb Blood Flow Metab. 2013 Jul;33(7):1000-7 – reference: 24672486 - Front Physiol. 2014 Mar 17;5:93 – reference: 10754000 - Stroke. 2000 Apr;31(4):924-9 – reference: 21540346 - J Physiol. 2011 Jul 1;589(Pt 13):3263-74 – reference: 7762016 - Stroke. 1995 Jun;26(6):1014-9 – reference: 645875 - Am J Physiol. 1978 Apr;234(4):H371-83 – reference: 12946513 - Ultrasound Med Biol. 2003 Aug;29(8):1105-13 – reference: 20007987 - Br J Anaesth. 2009 Dec;103 Suppl 1:i3-13 – reference: 3135641 - Stroke. 1988 Aug;19(8):963-9 – reference: 9458872 - Am J Physiol. 1998 Jan;274(1 Pt 2):H233-41 – reference: 21454747 - J Appl Physiol (1985). 2011 Jun;110(6):1691-8 – reference: 12677012 - Stroke. 2003 May;34(5):1197-202 – reference: 20651272 - Stroke. 2010 Sep;41(9):1963-8 – reference: 1561643 - Stroke. 1992 Feb;23 (2):171-4 – reference: 19359366 - J Physiol. 2009 Jun 1;587(Pt 11):2567-77 – reference: 10087237 - Clin Sci (Lond). 1999 Apr;96(4):313-26 – reference: 8571426 - Stroke. 1996 Feb;27(2):296-9 – reference: 10484432 - Am J Physiol. 1999 Sep;277(3 Pt 2):H1089-99 – reference: 22296679 - Neurosurg Focus. 2012 Feb;32(2):E2 – reference: 17011584 - J Neurol Sci. 2006 Dec 1;250(1-2):103-9 |
SSID | ssj0000402001 |
Score | 2.159522 |
Snippet | At present, there is no standard bedside method for assessing cerebral autoregulation (CA) with high temporal resolution. We combined the two methods most... OBJECTIVESAt present, there is no standard bedside method for assessing cerebral autoregulation (CA) with high temporal resolution. We combined the two methods... Objectives: At present, there is no standard bedside method for assessing cerebral autoregulation (CA) with high temporal resolution. We combined the two... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 162 |
SubjectTerms | Physiology |
Title | Assessment of the Brain's Macro- and Micro-Circulatory Blood Flow Responses to CO2 via Transfer Function Analysis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27242536 https://www.proquest.com/docview/1793214435 https://pubmed.ncbi.nlm.nih.gov/PMC4860618 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fSxtBEF5EX3wpWrVG2zAFqfhwmuzd7d09SImhQYRUEAN5O_YnBuKdJtE2_31n9i5po1Lw8bi9Zdlvd2e-ne9mGDsSqRF4BiJTjSwSlDSKg9QhS1FxLI3OjEo0XQ30f4rLQXQ1jId_f4-uJ3D6JrWjelKDyfj09-P8O274c2KcaG_PHF0CkErLxxXoQN5AuySIivVrZ9-fy0SVfD3kthCkvuDDKm75ZierduqV8_lSQ_mPUeptsQ-1NwmdCv5ttmaLj2ynUyCTvp_DN_D6Tn9xvsMeO8sknFA6QMcPLqg-xPEU-hIHEYAsDPRJoBd0RxPSp1IAHi5I2g69cfkLbipBrZ3CrITuNYfnkQRv7ZydQA9NJMEMi0Qnu2zQ-3HbvQzqgguBDjMxC6wTlnNcW8qgH2SI7EVOc9fSRiaWZ4lyrcxwS1ncXMsZGSnubOqsCNvaxXG4x9aLsrD7DHTLqdhyiR6HihKXKo1UU6q2Ni7kqY0a7Gwxvbmus5FTUYxxjqyEAMk9IDkBkntAGuxk-cVDlYnjP22_LhDLcbtQDEQWtnya5nQeUZa4MG6wTxWCy954QvwrFA2WrGC7bECpuFffFKM7n5KbSnmJdnrwjjEesk168OLJ7DNbn02e7Bd0cGaq6S8Gmn71_gFBwfxw |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+the+Brain%27s+Macro-+and+Micro-Circulatory+Blood+Flow+Responses+to+CO2+via+Transfer+Function+Analysis&rft.jtitle=Frontiers+in+physiology&rft.au=M%C3%BCller%2C+Martin+W.-D.&rft.au=%C3%96sterreich%2C+Mareike&rft.au=M%C3%BCller%2C+Andreas&rft.au=Lygeros%2C+John&rft.date=2016-05-09&rft.issn=1664-042X&rft.eissn=1664-042X&rft.volume=7&rft_id=info:doi/10.3389%2Ffphys.2016.00162&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fphys_2016_00162 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-042X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-042X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-042X&client=summon |