Assessment of the Brain's Macro- and Micro-Circulatory Blood Flow Responses to CO2 via Transfer Function Analysis

At present, there is no standard bedside method for assessing cerebral autoregulation (CA) with high temporal resolution. We combined the two methods most commonly used for this purpose, transcranial Doppler sonography (TCD, macro-circulation level), and near-infrared spectroscopy (NIRS, micro-circu...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in physiology Vol. 7; p. 162
Main Authors Müller, Martin W.-D., Österreich, Mareike, Müller, Andreas, Lygeros, John
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 09.05.2016
Subjects
Online AccessGet full text
ISSN1664-042X
1664-042X
DOI10.3389/fphys.2016.00162

Cover

Abstract At present, there is no standard bedside method for assessing cerebral autoregulation (CA) with high temporal resolution. We combined the two methods most commonly used for this purpose, transcranial Doppler sonography (TCD, macro-circulation level), and near-infrared spectroscopy (NIRS, micro-circulation level), in an attempt to identify the most promising approach. In eight healthy subjects (5 women; mean age, 38 ± 10 years), CA disturbance was achieved by adding carbon dioxide (CO2) to the breathing air. We simultaneously recorded end-tidal CO2 (ETCO2), blood pressure (BP; non-invasively at the fingertip), and cerebral blood flow velocity (CBFV) in both middle cerebral arteries using TCD and determined oxygenated and deoxygenated hemoglobin levels using NIRS. For the analysis, we used transfer function calculations in the low-frequency band (0.07-0.15 Hz) to compare BP-CBFV, BP-oxygenated hemoglobin (OxHb), BP-tissue oxygenation index (TOI), CBFV-OxHb, and CBFV-TOI. ETCO2 increased from 37 ± 2 to 44 ± 3 mmHg. The CO2-induced CBFV increase significantly correlated with the OxHb increase (R (2) = 0.526, p < 0.001). Compared with baseline, the mean CO2 administration phase shift (in radians) significantly increased (p < 0.005) from -0.67 ± 0.20 to -0.51 ± 0.25 in the BP-CBFV system, and decreased from 1.21 ± 0.81 to -0.05 ± 0.91 in the CBFV-OxHb system, and from 0.94 ± 1.22 to -0.24 ± 1.0 in the CBFV-TOI system; no change was observed for BP-OxHb (0.38 ± 1.17 to 0.41 ± 1.42). Gain changed significantly only in the BP-CBFV system. The correlation between the ETCO2 change and phase change was higher in the CBFV-OxHb system [r = -0.60; 95% confidence interval (CI): -0.16, -0.84; p < 0.01] than in the BP-CBFV system (r = 0.52; 95% CI: 0.03, 0.08; p < 0.05). The transfer function characterizes the blood flow transition from macro- to micro-circulation by time delay only. The CBFV-OxHb system response with a broader phase shift distribution offers the prospect of a more detailed grading of CA responses. Whether this is of clinical relevance needs further studies in different patient populations.
AbstractList OBJECTIVESAt present, there is no standard bedside method for assessing cerebral autoregulation (CA) with high temporal resolution. We combined the two methods most commonly used for this purpose, transcranial Doppler sonography (TCD, macro-circulation level), and near-infrared spectroscopy (NIRS, micro-circulation level), in an attempt to identify the most promising approach.METHODSIn eight healthy subjects (5 women; mean age, 38 ± 10 years), CA disturbance was achieved by adding carbon dioxide (CO2) to the breathing air. We simultaneously recorded end-tidal CO2 (ETCO2), blood pressure (BP; non-invasively at the fingertip), and cerebral blood flow velocity (CBFV) in both middle cerebral arteries using TCD and determined oxygenated and deoxygenated hemoglobin levels using NIRS. For the analysis, we used transfer function calculations in the low-frequency band (0.07-0.15 Hz) to compare BP-CBFV, BP-oxygenated hemoglobin (OxHb), BP-tissue oxygenation index (TOI), CBFV-OxHb, and CBFV-TOI.RESULTSETCO2 increased from 37 ± 2 to 44 ± 3 mmHg. The CO2-induced CBFV increase significantly correlated with the OxHb increase (R (2) = 0.526, p < 0.001). Compared with baseline, the mean CO2 administration phase shift (in radians) significantly increased (p < 0.005) from -0.67 ± 0.20 to -0.51 ± 0.25 in the BP-CBFV system, and decreased from 1.21 ± 0.81 to -0.05 ± 0.91 in the CBFV-OxHb system, and from 0.94 ± 1.22 to -0.24 ± 1.0 in the CBFV-TOI system; no change was observed for BP-OxHb (0.38 ± 1.17 to 0.41 ± 1.42). Gain changed significantly only in the BP-CBFV system. The correlation between the ETCO2 change and phase change was higher in the CBFV-OxHb system [r = -0.60; 95% confidence interval (CI): -0.16, -0.84; p < 0.01] than in the BP-CBFV system (r = 0.52; 95% CI: 0.03, 0.08; p < 0.05).CONCLUSIONThe transfer function characterizes the blood flow transition from macro- to micro-circulation by time delay only. The CBFV-OxHb system response with a broader phase shift distribution offers the prospect of a more detailed grading of CA responses. Whether this is of clinical relevance needs further studies in different patient populations.
At present, there is no standard bedside method for assessing cerebral autoregulation (CA) with high temporal resolution. We combined the two methods most commonly used for this purpose, transcranial Doppler sonography (TCD, macro-circulation level), and near-infrared spectroscopy (NIRS, micro-circulation level), in an attempt to identify the most promising approach. In eight healthy subjects (5 women; mean age, 38 ± 10 years), CA disturbance was achieved by adding carbon dioxide (CO2) to the breathing air. We simultaneously recorded end-tidal CO2 (ETCO2), blood pressure (BP; non-invasively at the fingertip), and cerebral blood flow velocity (CBFV) in both middle cerebral arteries using TCD and determined oxygenated and deoxygenated hemoglobin levels using NIRS. For the analysis, we used transfer function calculations in the low-frequency band (0.07-0.15 Hz) to compare BP-CBFV, BP-oxygenated hemoglobin (OxHb), BP-tissue oxygenation index (TOI), CBFV-OxHb, and CBFV-TOI. ETCO2 increased from 37 ± 2 to 44 ± 3 mmHg. The CO2-induced CBFV increase significantly correlated with the OxHb increase (R (2) = 0.526, p < 0.001). Compared with baseline, the mean CO2 administration phase shift (in radians) significantly increased (p < 0.005) from -0.67 ± 0.20 to -0.51 ± 0.25 in the BP-CBFV system, and decreased from 1.21 ± 0.81 to -0.05 ± 0.91 in the CBFV-OxHb system, and from 0.94 ± 1.22 to -0.24 ± 1.0 in the CBFV-TOI system; no change was observed for BP-OxHb (0.38 ± 1.17 to 0.41 ± 1.42). Gain changed significantly only in the BP-CBFV system. The correlation between the ETCO2 change and phase change was higher in the CBFV-OxHb system [r = -0.60; 95% confidence interval (CI): -0.16, -0.84; p < 0.01] than in the BP-CBFV system (r = 0.52; 95% CI: 0.03, 0.08; p < 0.05). The transfer function characterizes the blood flow transition from macro- to micro-circulation by time delay only. The CBFV-OxHb system response with a broader phase shift distribution offers the prospect of a more detailed grading of CA responses. Whether this is of clinical relevance needs further studies in different patient populations.
Objectives: At present, there is no standard bedside method for assessing cerebral autoregulation (CA) with high temporal resolution. We combined the two methods most commonly used for this purpose, transcranial Doppler sonography (TCD, macro-circulation level), and near-infrared spectroscopy (NIRS, micro-circulation level), in an attempt to identify the most promising approach. Methods: In eight healthy subjects (5 women; mean age, 38 ± 10 years), CA disturbance was achieved by adding carbon dioxide (CO 2 ) to the breathing air. We simultaneously recorded end-tidal CO 2 (ETCO 2 ), blood pressure (BP; non-invasively at the fingertip), and cerebral blood flow velocity (CBFV) in both middle cerebral arteries using TCD and determined oxygenated and deoxygenated hemoglobin levels using NIRS. For the analysis, we used transfer function calculations in the low-frequency band (0.07–0.15 Hz) to compare BP–CBFV, BP–oxygenated hemoglobin (OxHb), BP–tissue oxygenation index (TOI), CBFV–OxHb, and CBFV–TOI. Results: ETCO 2 increased from 37 ± 2 to 44 ± 3 mmHg. The CO 2 -induced CBFV increase significantly correlated with the OxHb increase ( R 2 = 0.526, p < 0.001). Compared with baseline, the mean CO 2 administration phase shift (in radians) significantly increased ( p < 0.005) from –0.67 ± 0.20 to –0.51 ± 0.25 in the BP–CBFV system, and decreased from 1.21 ± 0.81 to −0.05 ± 0.91 in the CBFV–OxHb system, and from 0.94 ± 1.22 to −0.24 ± 1.0 in the CBFV–TOI system; no change was observed for BP–OxHb (0.38 ± 1.17 to 0.41 ± 1.42). Gain changed significantly only in the BP–CBFV system. The correlation between the ETCO 2 change and phase change was higher in the CBFV–OxHb system [ r = −0.60; 95% confidence interval (CI): −0.16, −0.84; p < 0.01] than in the BP–CBFV system ( r = 0.52; 95% CI: 0.03, 0.08; p < 0.05). Conclusion: The transfer function characterizes the blood flow transition from macro- to micro-circulation by time delay only. The CBFV–OxHb system response with a broader phase shift distribution offers the prospect of a more detailed grading of CA responses. Whether this is of clinical relevance needs further studies in different patient populations.
Author Lygeros, John
Müller, Andreas
Müller, Martin W.-D.
Österreich, Mareike
AuthorAffiliation 1 Department of Neurology and Neurorehabilitation, Kantonsspital Lucerne Lucerne, Switzerland
2 Automatic Control Laboratory, ETH Zurich Zurich, Switzerland
AuthorAffiliation_xml – name: 1 Department of Neurology and Neurorehabilitation, Kantonsspital Lucerne Lucerne, Switzerland
– name: 2 Automatic Control Laboratory, ETH Zurich Zurich, Switzerland
Author_xml – sequence: 1
  givenname: Martin W.-D.
  surname: Müller
  fullname: Müller, Martin W.-D.
– sequence: 2
  givenname: Mareike
  surname: Österreich
  fullname: Österreich, Mareike
– sequence: 3
  givenname: Andreas
  surname: Müller
  fullname: Müller, Andreas
– sequence: 4
  givenname: John
  surname: Lygeros
  fullname: Lygeros, John
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27242536$$D View this record in MEDLINE/PubMed
BookMark eNp1Uc9rFDEYDVKxtfbuSXLTy6xJJpOZuQjbxVWhpSAVvIVs5osbySbbfDOV_e_NtLVUwRySD_J-JO-9JEcxRSDkNWeLuu76926_PeBCMK4WrGziGTnhSsmKSfH96Ml8TM4Qf7KyJBMF-YIci1ZI0dTqhNwsEQFxB3GkydFxC_Q8Gx_fIr00NqeKmjjQSz-PK5_tFMyY8oGeh5QGug7pF_0KuE-xqNAx0dWVoLfe0OtsIjrIdD1FO_oU6TKacECPr8hzZwLC2cN5Sr6tP16vPlcXV5--rJYXla17NVbgFAgBZtgMirFBSNZKZ4VjdjAtiL7dONYPApqGd465wciNcNA5UDW3rmnqU_LhXnc_bXYw2PLDbILeZ78z-aCT8frvm-i3-ke61bJTTPGuCLx7EMjpZgIc9c6jhRBMhDSh5m1fCy5lPXu9eer1aPIn5wJg94CSI2IG9wjhTM9t6rs29dymvmuzUNQ_FOtHM0dZXuvD_4m_Ad8Qp7U
CitedBy_id crossref_primary_10_1186_s12883_023_03160_3
crossref_primary_10_3233_BME_171679
crossref_primary_10_33549_physiolres_934147
crossref_primary_10_1007_s00415_016_8262_5
crossref_primary_10_1097_HJH_0000000000001854
crossref_primary_10_1038_s41598_020_66317_x
crossref_primary_10_1109_OJEMB_2023_3234012
crossref_primary_10_1177_0271678X18806107
crossref_primary_10_3389_fphys_2019_01355
crossref_primary_10_1016_j_nicl_2023_103504
crossref_primary_10_1038_s41598_021_88198_4
crossref_primary_10_1177_1591019920931651
Cites_doi 10.1152/japplphysiol.00471.2004
10.1161/01.STR.31.4.924
10.1113/jphysiol.2008.168302
10.1161/01.STR.26.6.1014
10.1113/jphysiol.2011.206953
10.1161/01.STR.26.1.96
10.1161/01.STR.0000068409.81859.C5
10.1038/jcbfm.2013.42
10.1042/cs0960313
10.1016/j.medengphy.2014.02.002
10.1016/S0301-5629(03)00954-2
10.1161/01.STR.19.8.963
10.1161/01.STR.23.2.171
10.1152/ajpheart.00794.2006
10.1161/01.STR.20.1.45
10.1152/ajpheart.1999.277.3.H1089
10.1111/j.1365-2362.2012.02704.x
10.1152/japplphysiol.01458.2010
10.1177/0271678X15626425
10.3389/fphys.2014.00093
10.1113/jphysiol.2013.259747
10.1161/01.STR.27.2.296
10.1093/bja/aep299
10.1016/j.jns.2006.07.011
10.1161/STROKEAHA.109.577320
10.3171/2011.12.FOCUS11280
10.3389/fphys.2014.00327
ContentType Journal Article
Copyright Copyright © 2016 Müller, Österreich, Müller and Lygeros. 2016 Müller, Österreich, Müller and Lygeros
Copyright_xml – notice: Copyright © 2016 Müller, Österreich, Müller and Lygeros. 2016 Müller, Österreich, Müller and Lygeros
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.3389/fphys.2016.00162
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1664-042X
EndPage 162
ExternalDocumentID PMC4860618
27242536
10_3389_fphys_2016_00162
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
DIK
EMOBN
F5P
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
IAO
IEA
IHR
IHW
IPNFZ
ISR
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c396t-ef6e22eadbd600d24074fc2f0cda7e297bf09d2e5518f0fda4b2fe8fe631cf553
IEDL.DBID M48
ISSN 1664-042X
IngestDate Thu Aug 21 18:41:04 EDT 2025
Thu Sep 04 23:51:29 EDT 2025
Thu Jan 02 22:24:52 EST 2025
Thu Apr 24 23:03:21 EDT 2025
Tue Jul 01 04:18:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords transfer function
cerebral blood flow
near-infrared spectroscopy
transcranial Doppler ultrasound
cerebral autoregulation
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-ef6e22eadbd600d24074fc2f0cda7e297bf09d2e5518f0fda4b2fe8fe631cf553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Antonio Colantuoni, “Federico II” University of Naples, Italy
This article was submitted to Vascular Physiology, a section of the journal Frontiers in Physiology
Reviewed by: Mauro Cataldi, Federico II University of Naples, Italy; Giuseppe Pignataro, Federico II University of Naples, Italy
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fphys.2016.00162
PMID 27242536
PQID 1793214435
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4860618
proquest_miscellaneous_1793214435
pubmed_primary_27242536
crossref_primary_10_3389_fphys_2016_00162
crossref_citationtrail_10_3389_fphys_2016_00162
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-05-09
PublicationDateYYYYMMDD 2016-05-09
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-09
  day: 09
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in physiology
PublicationTitleAlternate Front Physiol
PublicationYear 2016
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Müller (B12) 1996; 27
Taussky (B24) 2012; 32
Phillip (B17) 2012; 42
Schubert (B21) 1999; 96
Kleiser (B6) 1992; 23
Aaslid (B1) 1989; 20
Serrador (B22) 2005; 98
Harper (B4) 1984; 246
Tan (B23) 2013; 591
Tiecks (B26) 1995; 26
Zweifel (B30) 2010; 41
Kolb (B7) 2007; 292
Müller (B13) 1995; 26
Cooper (B3) 2011; 110
Murkin (B14) 2009; 103
Hecht (B5) 2013; 33
Meel-van den Abeelen (B9) 2014; 36
Zhang (B29) 1998; 274
Claassen (B2) 2016; 36
Kontos (B8) 1978; 234
Panerai (B16) 1999; 277
Terborg (B25) 2000; 31
Ringelstein (B20) 1988; 19
Reinhard (B19) 2006; 250
Tzeng (B27) 2011; 589
Zhang (B28) 2009; 11
Müller (B10) 2014; 5
Nielsen (B15) 2014; 5
Reinhard (B18) 2003; 29
Müller (B11) 2003; 34
19359366 - J Physiol. 2009 Jun 1;587(Pt 11):2567-77
24725709 - Med Eng Phys. 2014 May;36(5):620-7
7762016 - Stroke. 1995 Jun;26(6):1014-9
26782760 - J Cereb Blood Flow Metab. 2016 Apr;36(4):665-80
17011584 - J Neurol Sci. 2006 Dec 1;250(1-2):103-9
8571426 - Stroke. 1996 Feb;27(2):296-9
22897146 - Eur J Clin Invest. 2012 Nov;42(11):1180-8
7839406 - Stroke. 1995 Jan;26(1):96-100
16963612 - Am J Physiol Heart Circ Physiol. 2007 Jan;292(1):H432-8
15361517 - J Appl Physiol (1985). 2005 Jan;98(1):151-9
6696087 - Am J Physiol. 1984 Jan;246(1 Pt 2):H17-24
20007987 - Br J Anaesth. 2009 Dec;103 Suppl 1:i3-13
24672486 - Front Physiol. 2014 Mar 17;5:93
22296679 - Neurosurg Focus. 2012 Feb;32(2):E2
25206340 - Front Physiol. 2014 Aug 26;5:327
20651272 - Stroke. 2010 Sep;41(9):1963-8
10484432 - Am J Physiol. 1999 Sep;277(3 Pt 2):H1089-99
21540346 - J Physiol. 2011 Jul 1;589(Pt 13):3263-74
10087237 - Clin Sci (Lond). 1999 Apr;96(4):313-26
1561643 - Stroke. 1992 Feb;23 (2):171-4
10754000 - Stroke. 2000 Apr;31(4):924-9
9458872 - Am J Physiol. 1998 Jan;274(1 Pt 2):H233-41
3135641 - Stroke. 1988 Aug;19(8):963-9
21454747 - J Appl Physiol (1985). 2011 Jun;110(6):1691-8
645875 - Am J Physiol. 1978 Apr;234(4):H371-83
2492126 - Stroke. 1989 Jan;20(1):45-52
12677012 - Stroke. 2003 May;34(5):1197-202
12946513 - Ultrasound Med Biol. 2003 Aug;29(8):1105-13
23512134 - J Cereb Blood Flow Metab. 2013 Jul;33(7):1000-7
23959681 - J Physiol. 2013 Oct 15;591(20):5095-105
References_xml – volume: 98
  start-page: 151
  year: 2005
  ident: B22
  article-title: Cerebral pressure-flow relations in hypertensive elderly humans: transfer gain in different frequency domains
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00471.2004
– volume: 31
  start-page: 924
  year: 2000
  ident: B25
  article-title: Reduced vasomotor reactivity in cerebral microangiopa-thy: a study with near-infrared spectroscopy and transcranial Doppler sonography
  publication-title: Stroke
  doi: 10.1161/01.STR.31.4.924
– volume: 11
  start-page: 2567
  issue: 587
  year: 2009
  ident: B28
  article-title: Dynamic pressure–flow relationship of the cerebral circulation during acute increase in arterial pressure
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2008.168302
– volume: 26
  start-page: 1014
  year: 1995
  ident: B26
  article-title: Comparison of static and dynamic cerebral autoregulation measurements
  publication-title: Stroke
  doi: 10.1161/01.STR.26.6.1014
– volume: 589
  start-page: 3263
  year: 2011
  ident: B27
  article-title: Determinants of human cerebral pressure-flow velocity relationships: new insights from vascular modelling and Ca2+ channel blockade
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2011.206953
– volume: 26
  start-page: 96
  year: 1995
  ident: B13
  article-title: Assessment of cerebral vasomotor reactivity by transcranial Doppler ultrasound and breath-holding. A comparison with acetazolamide as vasodila-tory stimulus
  publication-title: Stroke
  doi: 10.1161/01.STR.26.1.96
– volume: 34
  start-page: 1197
  year: 2003
  ident: B11
  article-title: Changes in linear dynamics of cerebrovascular system after severe traumatic brain injury
  publication-title: Stroke
  doi: 10.1161/01.STR.0000068409.81859.C5
– volume: 33
  start-page: 1000
  year: 2013
  ident: B5
  article-title: Laser speckle imaging allows real-time intraoperative blood flow assessment during neurosurgical procedures
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.2013.42
– volume: 96
  start-page: 313
  year: 1999
  ident: B21
  article-title: The myogenic response: established facts and attractive hypothesis
  publication-title: Clin. Sci.
  doi: 10.1042/cs0960313
– volume: 36
  start-page: 620
  year: 2014
  ident: B9
  article-title: Between-center variability in transfer function analysis, a widely used method for linear quantification of the dynamic pressure-flow relation: the CARNet study
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2014.02.002
– volume: 29
  start-page: 1105
  year: 2003
  ident: B18
  article-title: Dynamic cerebral autoregulation and collateral flow patterns in patients with severe carotid stenosis or occlusion
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/S0301-5629(03)00954-2
– volume: 19
  start-page: 963
  year: 1988
  ident: B20
  article-title: Noninvasive assessment of CO2-induced cerebral vasomotor response in normal individuals and patients with internal carotid artery occlusions
  publication-title: Stroke
  doi: 10.1161/01.STR.19.8.963
– volume: 23
  start-page: 171
  year: 1992
  ident: B6
  article-title: Course of carotid artery occlusions with impaired cerebrovascular reactivity
  publication-title: Stroke
  doi: 10.1161/01.STR.23.2.171
– volume: 292
  start-page: H432
  year: 2007
  ident: B7
  article-title: Frequency response characteristics of cerebral blood flow autoregulation in rats
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00794.2006
– volume: 20
  start-page: 45
  year: 1989
  ident: B1
  article-title: Cerebral autoregulation dynamics in humans
  publication-title: Stroke
  doi: 10.1161/01.STR.20.1.45
– volume: 277
  start-page: H1089
  year: 1999
  ident: B16
  article-title: Linear and nonlinear analysis of human dynamic cere-bral autoregulation
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.1999.277.3.H1089
– volume: 274
  start-page: H233
  issue: (Pt 2)
  year: 1998
  ident: B29
  article-title: Transfer function analysis of dynamic cerebral autoregulation in humans
  publication-title: Am. J. Physiol.
– volume: 42
  start-page: 1180
  year: 2012
  ident: B17
  article-title: Low frequency oscillations in cephalic vessels assessed by near infrared spectroscopy
  publication-title: Eur. J. Clin. Invest.
  doi: 10.1111/j.1365-2362.2012.02704.x
– volume: 110
  start-page: 1691
  year: 2011
  ident: B3
  article-title: Continuous monitoring of absolute cerebral blood flow by near-infrared spectroscopy during global and focal temporary vessel occlusion
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.01458.2010
– volume: 36
  start-page: 665
  year: 2016
  ident: B2
  article-title: Transfer function analysis of dynamic cerebral autoregulation: a white paper from the International Cerebral Autoregulation Research Network
  publication-title: J. Cereb. Blood Flow Metab
  doi: 10.1177/0271678X15626425
– volume: 5
  issue: 93
  year: 2014
  ident: B15
  article-title: Systematic review of near-infrared spectroscopy determined cerebral oxygenation during non-cardiac surgery
  publication-title: Front Physiol
  doi: 10.3389/fphys.2014.00093
– volume: 591
  start-page: 5095
  year: 2013
  ident: B23
  article-title: The role of myogenic mechanisms in human cerebrovascular regulation
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2013.259747
– volume: 27
  start-page: 296
  year: 1996
  ident: B12
  article-title: Vasomotor reactivity and pattern of collateral blood flow in severe occlussive carotid artery disease
  publication-title: Stroke
  doi: 10.1161/01.STR.27.2.296
– volume: 234
  start-page: H371
  year: 1978
  ident: B8
  article-title: Responses of cerebral arteries and arterioles to acute hypotension and hypertension
  publication-title: Am. J. Physiol.
– volume: 103
  start-page: i3
  year: 2009
  ident: B14
  article-title: Near-infrared spectroscopy as an index of brain and tissue oxygenation
  publication-title: BJA
  doi: 10.1093/bja/aep299
– volume: 250
  start-page: 103
  year: 2006
  ident: B19
  article-title: Oscillatory cerebral hemodynamics—the macro- vs
  publication-title: microvascular level. J. Neurol. Sci.
  doi: 10.1016/j.jns.2006.07.011
– volume: 41
  start-page: 1963
  year: 2010
  ident: B30
  article-title: Continuous assessment of cerebral autoregulation with Near-Infrared Spectroscopy in adults after subarachnoid hemorrhage
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.109.577320
– volume: 246
  start-page: H17
  year: 1984
  ident: B4
  article-title: Arterial and microvascular contributions to cerebral cortical au-toregulation
  publication-title: Am. J. Physiol.
– volume: 32
  start-page: 1
  year: 2012
  ident: B24
  article-title: Validation of frontal near-infrared spectroscopy as noninvasive bedside monitoring for regional cerebral blood flow in brain-injured patients
  publication-title: Neurosurg. Focus
  doi: 10.3171/2011.12.FOCUS11280
– volume: 5
  issue: 327
  year: 2014
  ident: B10
  article-title: A comparison of dynamic cerebral autoregulation across changes in cerebral blood flow velocity for 200 s
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2014.00327
– reference: 7839406 - Stroke. 1995 Jan;26(1):96-100
– reference: 23959681 - J Physiol. 2013 Oct 15;591(20):5095-105
– reference: 16963612 - Am J Physiol Heart Circ Physiol. 2007 Jan;292(1):H432-8
– reference: 2492126 - Stroke. 1989 Jan;20(1):45-52
– reference: 22897146 - Eur J Clin Invest. 2012 Nov;42(11):1180-8
– reference: 26782760 - J Cereb Blood Flow Metab. 2016 Apr;36(4):665-80
– reference: 15361517 - J Appl Physiol (1985). 2005 Jan;98(1):151-9
– reference: 6696087 - Am J Physiol. 1984 Jan;246(1 Pt 2):H17-24
– reference: 24725709 - Med Eng Phys. 2014 May;36(5):620-7
– reference: 25206340 - Front Physiol. 2014 Aug 26;5:327
– reference: 23512134 - J Cereb Blood Flow Metab. 2013 Jul;33(7):1000-7
– reference: 24672486 - Front Physiol. 2014 Mar 17;5:93
– reference: 10754000 - Stroke. 2000 Apr;31(4):924-9
– reference: 21540346 - J Physiol. 2011 Jul 1;589(Pt 13):3263-74
– reference: 7762016 - Stroke. 1995 Jun;26(6):1014-9
– reference: 645875 - Am J Physiol. 1978 Apr;234(4):H371-83
– reference: 12946513 - Ultrasound Med Biol. 2003 Aug;29(8):1105-13
– reference: 20007987 - Br J Anaesth. 2009 Dec;103 Suppl 1:i3-13
– reference: 3135641 - Stroke. 1988 Aug;19(8):963-9
– reference: 9458872 - Am J Physiol. 1998 Jan;274(1 Pt 2):H233-41
– reference: 21454747 - J Appl Physiol (1985). 2011 Jun;110(6):1691-8
– reference: 12677012 - Stroke. 2003 May;34(5):1197-202
– reference: 20651272 - Stroke. 2010 Sep;41(9):1963-8
– reference: 1561643 - Stroke. 1992 Feb;23 (2):171-4
– reference: 19359366 - J Physiol. 2009 Jun 1;587(Pt 11):2567-77
– reference: 10087237 - Clin Sci (Lond). 1999 Apr;96(4):313-26
– reference: 8571426 - Stroke. 1996 Feb;27(2):296-9
– reference: 10484432 - Am J Physiol. 1999 Sep;277(3 Pt 2):H1089-99
– reference: 22296679 - Neurosurg Focus. 2012 Feb;32(2):E2
– reference: 17011584 - J Neurol Sci. 2006 Dec 1;250(1-2):103-9
SSID ssj0000402001
Score 2.159522
Snippet At present, there is no standard bedside method for assessing cerebral autoregulation (CA) with high temporal resolution. We combined the two methods most...
OBJECTIVESAt present, there is no standard bedside method for assessing cerebral autoregulation (CA) with high temporal resolution. We combined the two methods...
Objectives: At present, there is no standard bedside method for assessing cerebral autoregulation (CA) with high temporal resolution. We combined the two...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 162
SubjectTerms Physiology
Title Assessment of the Brain's Macro- and Micro-Circulatory Blood Flow Responses to CO2 via Transfer Function Analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/27242536
https://www.proquest.com/docview/1793214435
https://pubmed.ncbi.nlm.nih.gov/PMC4860618
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fSxtBEF5EX3wpWrVG2zAFqfhwmuzd7d09SImhQYRUEAN5O_YnBuKdJtE2_31n9i5po1Lw8bi9Zdlvd2e-ne9mGDsSqRF4BiJTjSwSlDSKg9QhS1FxLI3OjEo0XQ30f4rLQXQ1jId_f4-uJ3D6JrWjelKDyfj09-P8O274c2KcaG_PHF0CkErLxxXoQN5AuySIivVrZ9-fy0SVfD3kthCkvuDDKm75ZierduqV8_lSQ_mPUeptsQ-1NwmdCv5ttmaLj2ynUyCTvp_DN_D6Tn9xvsMeO8sknFA6QMcPLqg-xPEU-hIHEYAsDPRJoBd0RxPSp1IAHi5I2g69cfkLbipBrZ3CrITuNYfnkQRv7ZydQA9NJMEMi0Qnu2zQ-3HbvQzqgguBDjMxC6wTlnNcW8qgH2SI7EVOc9fSRiaWZ4lyrcxwS1ncXMsZGSnubOqsCNvaxXG4x9aLsrD7DHTLqdhyiR6HihKXKo1UU6q2Ni7kqY0a7Gwxvbmus5FTUYxxjqyEAMk9IDkBkntAGuxk-cVDlYnjP22_LhDLcbtQDEQWtnya5nQeUZa4MG6wTxWCy954QvwrFA2WrGC7bECpuFffFKM7n5KbSnmJdnrwjjEesk168OLJ7DNbn02e7Bd0cGaq6S8Gmn71_gFBwfxw
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+the+Brain%27s+Macro-+and+Micro-Circulatory+Blood+Flow+Responses+to+CO2+via+Transfer+Function+Analysis&rft.jtitle=Frontiers+in+physiology&rft.au=M%C3%BCller%2C+Martin+W.-D.&rft.au=%C3%96sterreich%2C+Mareike&rft.au=M%C3%BCller%2C+Andreas&rft.au=Lygeros%2C+John&rft.date=2016-05-09&rft.issn=1664-042X&rft.eissn=1664-042X&rft.volume=7&rft_id=info:doi/10.3389%2Ffphys.2016.00162&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fphys_2016_00162
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-042X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-042X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-042X&client=summon