Exploiting the brain's network structure in identifying ADHD subjects
Attention Deficit Hyperactive Disorder (ADHD) is a common behavioral problem affecting children. In this work, we investigate the automatic classification of ADHD subjects using the resting state functional magnetic resonance imaging (fMRI) sequences of the brain. We show that brain can be modeled a...
Saved in:
Published in | Frontiers in systems neuroscience Vol. 6; p. 75 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
01.01.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 1662-5137 1662-5137 |
DOI | 10.3389/fnsys.2012.00075 |
Cover
Loading…
Abstract | Attention Deficit Hyperactive Disorder (ADHD) is a common behavioral problem affecting children. In this work, we investigate the automatic classification of ADHD subjects using the resting state functional magnetic resonance imaging (fMRI) sequences of the brain. We show that brain can be modeled as a functional network, and certain properties of the networks differ in ADHD subjects from control subjects. We compute the pairwise correlation of brain voxels' activity over the time frame of the experimental protocol which helps to model the function of a brain as a network. Different network features are computed for each of the voxels constructing the network. The concatenation of the network features of all the voxels in a brain serves as the feature vector. Feature vectors from a set of subjects are then used to train a PCA-LDA (principal component analysis-linear discriminant analysis) based classifier. We hypothesized that ADHD related differences lie in some specific regions of brain and using features only from those regions are sufficient to discriminate ADHD and control subjects. We propose a method to create a brain mask which includes the useful regions only and demonstrate that using the feature from the masked regions improves classification accuracy on the test data set. We train our classifier with 776 subjects, and test on 171 subjects provided by the Neuro Bureau for the ADHD-200 challenge. We demonstrate the utility of graph-motif features, specifically the maps that represent the frequency of participation of voxels in network cycles of length 3. The best classification performance (69.59%) is achieved using 3-cycle map features with masking. Our proposed approach holds promise in being able to diagnose and understand the disorder. |
---|---|
AbstractList | Attention Deficit Hyperactive Disorder (ADHD) is a common behavioral problem affecting children. In this work, we investigate the automatic classification of ADHD subjects using the resting state functional magnetic resonance imaging (fMRI) sequences of the brain. We show that brain can be modeled as a functional network, and certain properties of the networks differ in ADHD subjects from control subjects. We compute the pairwise correlation of brain voxels' activity over the time frame of the experimental protocol which helps to model the function of a brain as a network. Different network features are computed for each of the voxels constructing the network. The concatenation of the network features of all the voxels in a brain serves as the feature vector. Feature vectors from a set of subjects are then used to train a PCA-LDA (principal component analysis-linear discriminant analysis) based classifier. We hypothesized that ADHD related differences lie in some specific regions of brain and using features only from those regions are sufficient to discriminate ADHD and control subjects. We propose a method to create a brain mask which includes the useful regions only and demonstrate that using the feature from the masked regions improves classification accuracy on the test data set. We train our classifier with 776 subjects, and test on 171 subjects provided by the Neuro Bureau for the ADHD-200 challenge. We demonstrate the utility of graph-motif features, specifically the maps that represent the frequency of participation of voxels in network cycles of length 3. The best classification performance (69.59%) is achieved using 3-cycle map features with masking. Our proposed approach holds promise in being able to diagnose and understand the disorder. Attention Deficit Hyperactive Disorder (ADHD) is a common behavioral problem affecting children. In this work, we investigate the automatic classification of ADHD subjects using the resting state functional magnetic resonance imaging (fMRI) sequences of the brain. We show that brain can be modeled as a functional network, and certain properties of the networks differ in ADHD subjects from control subjects. We compute the pairwise correlation of brain voxels' activity over the time frame of the experimental protocol which helps to model the function of a brain as a network. Different network features are computed for each of the voxels constructing the network. The concatenation of the network features of all the voxels in a brain serves as the feature vector. Feature vectors from a set of subjects are then used to train a PCA-LDA (principal component analysis-linear discriminant analysis) based classifier. We hypothesized that ADHD related differences lie in some specific regions of brain and using features only from those regions are sufficient to discriminate ADHD and control subjects. We propose a method to create a brain mask which includes the useful regions only and demonstrate that using the feature from the masked regions improves classification accuracy on the test data set. We train our classifier with 776 subjects, and test on 171 subjects provided by the Neuro Bureau for the ADHD-200 challenge. We demonstrate the utility of graph-motif features, specifically the maps that represent the frequency of participation of voxels in network cycles of length 3. The best classification performance (69.59%) is achieved using 3-cycle map features with masking. Our proposed approach holds promise in being able to diagnose and understand the disorder.Attention Deficit Hyperactive Disorder (ADHD) is a common behavioral problem affecting children. In this work, we investigate the automatic classification of ADHD subjects using the resting state functional magnetic resonance imaging (fMRI) sequences of the brain. We show that brain can be modeled as a functional network, and certain properties of the networks differ in ADHD subjects from control subjects. We compute the pairwise correlation of brain voxels' activity over the time frame of the experimental protocol which helps to model the function of a brain as a network. Different network features are computed for each of the voxels constructing the network. The concatenation of the network features of all the voxels in a brain serves as the feature vector. Feature vectors from a set of subjects are then used to train a PCA-LDA (principal component analysis-linear discriminant analysis) based classifier. We hypothesized that ADHD related differences lie in some specific regions of brain and using features only from those regions are sufficient to discriminate ADHD and control subjects. We propose a method to create a brain mask which includes the useful regions only and demonstrate that using the feature from the masked regions improves classification accuracy on the test data set. We train our classifier with 776 subjects, and test on 171 subjects provided by the Neuro Bureau for the ADHD-200 challenge. We demonstrate the utility of graph-motif features, specifically the maps that represent the frequency of participation of voxels in network cycles of length 3. The best classification performance (69.59%) is achieved using 3-cycle map features with masking. Our proposed approach holds promise in being able to diagnose and understand the disorder. |
Author | Rao, A. Ravishankar Dey, Soumyabrata Shah, Mubarak |
AuthorAffiliation | 2 IBM T.J. Watson Research Center Yorktown Heights, NY, USA 1 Computer Vision Lab, Department of Electrical Engineering and Computer Science, University of Central Florida Orlando, FL, USA |
AuthorAffiliation_xml | – name: 1 Computer Vision Lab, Department of Electrical Engineering and Computer Science, University of Central Florida Orlando, FL, USA – name: 2 IBM T.J. Watson Research Center Yorktown Heights, NY, USA |
Author_xml | – sequence: 1 givenname: Soumyabrata surname: Dey fullname: Dey, Soumyabrata – sequence: 2 givenname: A. Ravishankar surname: Rao fullname: Rao, A. Ravishankar – sequence: 3 givenname: Mubarak surname: Shah fullname: Shah, Mubarak |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23162440$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1PAjEQxRuDUUDvnsze9AL2Y7e7vZgYwI-ExIuem7a0UF1abLsq_72LoFETTzPJ_N6bybwe6DjvNAAnCA4JqdiFcXEdhxgiPIQQlsUe6CJK8aBApOz86A9BL8YnCCmmBTsAh5ggivMcdsFk8r6qvU3WzbO00JkMwrqzmDmd3nx4zmIKjUpN0Jl1mZ1pl6xZb-Cr8e04i4180irFI7BvRB318a72weP15GF0O5je39yNrqYDRRhNAz0jVTWjrEBYSVmqHCNREc1kqYuCKY1VwYwk0jBjmFIyN5RCKAgWUlVKMdIHl1vfVSOXeqbac4Ko-SrYpQhr7oXlvyfOLvjcv3KSM1aWqDU43xkE_9LomPjSRqXrWjjtm8gRKitaIshwi57-3PW95Ot3LQC3gAo-xqDNN4Ig38TDP-Phm3j4ZzythP6RKJtEsn5zra3_F34ASGeYAQ |
CitedBy_id | crossref_primary_10_1016_j_nicl_2017_05_016 crossref_primary_10_1002_hbm_25013 crossref_primary_10_3389_fnins_2024_1394234 crossref_primary_10_1016_j_bspc_2020_102227 crossref_primary_10_1109_ACCESS_2020_2982401 crossref_primary_10_1001_jamanetworkopen_2023_1671 crossref_primary_10_1002_mp_15545 crossref_primary_10_1038_s41598_018_30308_w crossref_primary_10_1016_j_bpsc_2016_03_004 crossref_primary_10_1016_j_neuroimage_2016_02_079 crossref_primary_10_1186_s12916_023_02941_4 crossref_primary_10_1007_s11042_023_17962_7 crossref_primary_10_1016_j_neuroimage_2013_04_083 crossref_primary_10_1177_1087054719837749 crossref_primary_10_1016_j_neuroimage_2016_06_034 crossref_primary_10_1016_j_bpsc_2018_06_003 crossref_primary_10_1038_s41398_023_02309_5 crossref_primary_10_3389_fphys_2020_583005 crossref_primary_10_1016_j_patcog_2016_09_024 crossref_primary_10_1038_s41398_023_02536_w crossref_primary_10_3389_fncir_2014_00064 crossref_primary_10_1109_TMI_2022_3170701 crossref_primary_10_3389_fnins_2018_00525 crossref_primary_10_1007_s11682_015_9448_7 crossref_primary_10_1016_j_jad_2024_03_111 crossref_primary_10_1038_s41380_022_01706_4 crossref_primary_10_3389_fpsyt_2023_1026616 |
ContentType | Journal Article |
Copyright | Copyright © 2012 Dey, Rao and Shah. 2012 |
Copyright_xml | – notice: Copyright © 2012 Dey, Rao and Shah. 2012 |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.3389/fnsys.2012.00075 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-5137 |
ExternalDocumentID | PMC3499771 23162440 10_3389_fnsys_2012_00075 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R21 CA129263 |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 9T4 AAFWJ AAYXX ABIVO ACGFO ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV C1A CITATION CS3 DIK E3Z EMOBN F5P GROUPED_DOAJ GX1 HYE IPNFZ KQ8 M48 M~E O5R O5S OK1 OVT P2P PGMZT RIG RNS RPM TR2 NPM 7X8 5PM |
ID | FETCH-LOGICAL-c396t-ed388d69512cbb7c421a83e9b7e559ce2c59fb3bf9ff9ccb4f6600a32abc8cc93 |
IEDL.DBID | M48 |
ISSN | 1662-5137 |
IngestDate | Thu Aug 21 13:42:57 EDT 2025 Fri Jul 11 09:26:43 EDT 2025 Mon Jul 21 06:05:36 EDT 2025 Tue Jul 01 04:03:40 EDT 2025 Thu Apr 24 23:02:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | attention deficit hyperactive disorder functional magnetic resonance image default mode network linear discriminant analysis principal component analysis |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c396t-ed388d69512cbb7c421a83e9b7e559ce2c59fb3bf9ff9ccb4f6600a32abc8cc93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reviewed by: Jason Bohland, Boston University, USA; Joao Sato, Universidade Federal do ABC, Brazil Edited by: Damien Fair, Oregon Health and Science University, USA |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnsys.2012.00075 |
PMID | 23162440 |
PQID | 1178671092 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3499771 proquest_miscellaneous_1178671092 pubmed_primary_23162440 crossref_primary_10_3389_fnsys_2012_00075 crossref_citationtrail_10_3389_fnsys_2012_00075 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-01-01 |
PublicationDateYYYYMMDD | 2012-01-01 |
PublicationDate_xml | – month: 01 year: 2012 text: 2012-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in systems neuroscience |
PublicationTitleAlternate | Front Syst Neurosci |
PublicationYear | 2012 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | 12399590 - Science. 2002 Oct 25;298(5594):824-7 19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5 20621638 - Neuroimage. 2010 Oct 15;53(1):247-56 16919409 - Brain Dev. 2007 Mar;29(2):83-91 11722157 - Psychol Med. 2001 Nov;31(8):1425-35 16767087 - Nat Neurosci. 2006 Jul;9(7):971-8 18219617 - Hum Brain Mapp. 2009 Feb;30(2):625-37 19033453 - Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19235-40 21810475 - Neuroimage. 2012 Jan 2;59(1):431-8 10376114 - Biol Psychiatry. 1999 Jun 15;45(12):1542-52 17888409 - Biol Psychiatry. 2008 Feb 1;63(3):332-7 14643117 - Lancet. 2003 Nov 22;362(9397):1699-707 11209064 - Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676-82 22019881 - Neuroimage. 2012 Feb 1;59(3):2142-54 16510242 - Neurosci Lett. 2006 May 29;400(1-2):39-43 16818869 - Arch Gen Psychiatry. 2006 Jul;63(7):795-807 17047454 - Neuroreport. 2006 Nov 6;17(16):1687-90 8660127 - Arch Gen Psychiatry. 1996 Jul;53(7):607-16 10742158 - Nat Med. 2000 Apr;6(4):470-3 16876137 - Biol Psychiatry. 2006 Nov 15;60(10):1071-80 12742674 - Biol Psychiatry. 2003 May 15;53(10):871-8 18191584 - Neuroimage. 2008 Mar 1;40(1):110-20 16945915 - Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53 15070770 - Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4637-42 20184182 - Sci Am. 2010 Mar;302(3):44-9 21769991 - Hum Brain Mapp. 2012 Aug;33(8):1914-28 11771995 - Neuroimage. 2002 Jan;15(1):273-89 16791098 - Neuroreport. 2006 Jul 17;17(10):1033-6 |
References_xml | – reference: 11771995 - Neuroimage. 2002 Jan;15(1):273-89 – reference: 19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5 – reference: 8660127 - Arch Gen Psychiatry. 1996 Jul;53(7):607-16 – reference: 18191584 - Neuroimage. 2008 Mar 1;40(1):110-20 – reference: 16791098 - Neuroreport. 2006 Jul 17;17(10):1033-6 – reference: 20621638 - Neuroimage. 2010 Oct 15;53(1):247-56 – reference: 10376114 - Biol Psychiatry. 1999 Jun 15;45(12):1542-52 – reference: 16945915 - Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53 – reference: 12399590 - Science. 2002 Oct 25;298(5594):824-7 – reference: 16919409 - Brain Dev. 2007 Mar;29(2):83-91 – reference: 18219617 - Hum Brain Mapp. 2009 Feb;30(2):625-37 – reference: 22019881 - Neuroimage. 2012 Feb 1;59(3):2142-54 – reference: 16876137 - Biol Psychiatry. 2006 Nov 15;60(10):1071-80 – reference: 21810475 - Neuroimage. 2012 Jan 2;59(1):431-8 – reference: 12742674 - Biol Psychiatry. 2003 May 15;53(10):871-8 – reference: 10742158 - Nat Med. 2000 Apr;6(4):470-3 – reference: 15070770 - Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4637-42 – reference: 14643117 - Lancet. 2003 Nov 22;362(9397):1699-707 – reference: 19033453 - Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19235-40 – reference: 17888409 - Biol Psychiatry. 2008 Feb 1;63(3):332-7 – reference: 11209064 - Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676-82 – reference: 11722157 - Psychol Med. 2001 Nov;31(8):1425-35 – reference: 16510242 - Neurosci Lett. 2006 May 29;400(1-2):39-43 – reference: 16818869 - Arch Gen Psychiatry. 2006 Jul;63(7):795-807 – reference: 21769991 - Hum Brain Mapp. 2012 Aug;33(8):1914-28 – reference: 17047454 - Neuroreport. 2006 Nov 6;17(16):1687-90 – reference: 20184182 - Sci Am. 2010 Mar;302(3):44-9 – reference: 16767087 - Nat Neurosci. 2006 Jul;9(7):971-8 |
SSID | ssj0062659 |
Score | 2.1246092 |
Snippet | Attention Deficit Hyperactive Disorder (ADHD) is a common behavioral problem affecting children. In this work, we investigate the automatic classification of... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 75 |
SubjectTerms | Neuroscience |
Title | Exploiting the brain's network structure in identifying ADHD subjects |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23162440 https://www.proquest.com/docview/1178671092 https://pubmed.ncbi.nlm.nih.gov/PMC3499771 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDBa69LLL0K2PpVsLDRhW9OA2thzROgxF0MeCAd1pAXIzTFrCArTqwwmw_PtRcpouXVHs4ott2SAl8Psk8qMQn7MeGuIwkIADSjhe6wSLGhILoHJbQ12YUO98-UMPR_n3cX_8WB69MGDzLLUL_aRG91dHv-_mJ7zgvwbGyfH22PlmHpS306i9Cf1XYp3jEoRlepkvzxQYucfWaanWTL9SBe2h5bMjrAapf5Dn0wTKvyLSxYZ4s4CSctD6_q1Ys_6d2Bx4ptHXc_lFxuTOuGu-Kc5jrt0k5DhLhnwSQ2eIg0b6NgtctjKys3srJ15OYvFuLICSg7PhmWxmGLZrmi0xujj_eTpMFh0UElJGTxNbq6KoNaOojBCB8iytCmUNgmUmQTajvnGo0BnnDBHmTjMAqlRWIRVERm2Ljr_x9r2QeYpFT1VVjgQ5YYEaUiJnoWLKhuS64vjBZCUt5MVDl4urkmlGMHIZjVwGI5fRyF1xuHzjtpXWeOHZTw9eKHn-h0ONytubWRPEyoNEX89kXbHTemU5GmNXzfCl1xWw4q_lA0Fbe_WOn_yKGtuKmSBAuvsf3_0gXocfbfdlPooOO8zuMVKZ4n5k-Hz9Nk7342T8A8JB7C0 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploiting+the+brain%27s+network+structure+in+identifying+ADHD+subjects&rft.jtitle=Frontiers+in+systems+neuroscience&rft.au=Dey%2C+Soumyabrata&rft.au=Rao%2C+A+Ravishankar&rft.au=Shah%2C+Mubarak&rft.date=2012-01-01&rft.issn=1662-5137&rft.eissn=1662-5137&rft.volume=6&rft.spage=75&rft_id=info:doi/10.3389%2Ffnsys.2012.00075&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5137&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5137&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5137&client=summon |