Exploiting the brain's network structure in identifying ADHD subjects

Attention Deficit Hyperactive Disorder (ADHD) is a common behavioral problem affecting children. In this work, we investigate the automatic classification of ADHD subjects using the resting state functional magnetic resonance imaging (fMRI) sequences of the brain. We show that brain can be modeled a...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in systems neuroscience Vol. 6; p. 75
Main Authors Dey, Soumyabrata, Rao, A. Ravishankar, Shah, Mubarak
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 01.01.2012
Subjects
Online AccessGet full text
ISSN1662-5137
1662-5137
DOI10.3389/fnsys.2012.00075

Cover

Loading…
Abstract Attention Deficit Hyperactive Disorder (ADHD) is a common behavioral problem affecting children. In this work, we investigate the automatic classification of ADHD subjects using the resting state functional magnetic resonance imaging (fMRI) sequences of the brain. We show that brain can be modeled as a functional network, and certain properties of the networks differ in ADHD subjects from control subjects. We compute the pairwise correlation of brain voxels' activity over the time frame of the experimental protocol which helps to model the function of a brain as a network. Different network features are computed for each of the voxels constructing the network. The concatenation of the network features of all the voxels in a brain serves as the feature vector. Feature vectors from a set of subjects are then used to train a PCA-LDA (principal component analysis-linear discriminant analysis) based classifier. We hypothesized that ADHD related differences lie in some specific regions of brain and using features only from those regions are sufficient to discriminate ADHD and control subjects. We propose a method to create a brain mask which includes the useful regions only and demonstrate that using the feature from the masked regions improves classification accuracy on the test data set. We train our classifier with 776 subjects, and test on 171 subjects provided by the Neuro Bureau for the ADHD-200 challenge. We demonstrate the utility of graph-motif features, specifically the maps that represent the frequency of participation of voxels in network cycles of length 3. The best classification performance (69.59%) is achieved using 3-cycle map features with masking. Our proposed approach holds promise in being able to diagnose and understand the disorder.
AbstractList Attention Deficit Hyperactive Disorder (ADHD) is a common behavioral problem affecting children. In this work, we investigate the automatic classification of ADHD subjects using the resting state functional magnetic resonance imaging (fMRI) sequences of the brain. We show that brain can be modeled as a functional network, and certain properties of the networks differ in ADHD subjects from control subjects. We compute the pairwise correlation of brain voxels' activity over the time frame of the experimental protocol which helps to model the function of a brain as a network. Different network features are computed for each of the voxels constructing the network. The concatenation of the network features of all the voxels in a brain serves as the feature vector. Feature vectors from a set of subjects are then used to train a PCA-LDA (principal component analysis-linear discriminant analysis) based classifier. We hypothesized that ADHD related differences lie in some specific regions of brain and using features only from those regions are sufficient to discriminate ADHD and control subjects. We propose a method to create a brain mask which includes the useful regions only and demonstrate that using the feature from the masked regions improves classification accuracy on the test data set. We train our classifier with 776 subjects, and test on 171 subjects provided by the Neuro Bureau for the ADHD-200 challenge. We demonstrate the utility of graph-motif features, specifically the maps that represent the frequency of participation of voxels in network cycles of length 3. The best classification performance (69.59%) is achieved using 3-cycle map features with masking. Our proposed approach holds promise in being able to diagnose and understand the disorder.
Attention Deficit Hyperactive Disorder (ADHD) is a common behavioral problem affecting children. In this work, we investigate the automatic classification of ADHD subjects using the resting state functional magnetic resonance imaging (fMRI) sequences of the brain. We show that brain can be modeled as a functional network, and certain properties of the networks differ in ADHD subjects from control subjects. We compute the pairwise correlation of brain voxels' activity over the time frame of the experimental protocol which helps to model the function of a brain as a network. Different network features are computed for each of the voxels constructing the network. The concatenation of the network features of all the voxels in a brain serves as the feature vector. Feature vectors from a set of subjects are then used to train a PCA-LDA (principal component analysis-linear discriminant analysis) based classifier. We hypothesized that ADHD related differences lie in some specific regions of brain and using features only from those regions are sufficient to discriminate ADHD and control subjects. We propose a method to create a brain mask which includes the useful regions only and demonstrate that using the feature from the masked regions improves classification accuracy on the test data set. We train our classifier with 776 subjects, and test on 171 subjects provided by the Neuro Bureau for the ADHD-200 challenge. We demonstrate the utility of graph-motif features, specifically the maps that represent the frequency of participation of voxels in network cycles of length 3. The best classification performance (69.59%) is achieved using 3-cycle map features with masking. Our proposed approach holds promise in being able to diagnose and understand the disorder.Attention Deficit Hyperactive Disorder (ADHD) is a common behavioral problem affecting children. In this work, we investigate the automatic classification of ADHD subjects using the resting state functional magnetic resonance imaging (fMRI) sequences of the brain. We show that brain can be modeled as a functional network, and certain properties of the networks differ in ADHD subjects from control subjects. We compute the pairwise correlation of brain voxels' activity over the time frame of the experimental protocol which helps to model the function of a brain as a network. Different network features are computed for each of the voxels constructing the network. The concatenation of the network features of all the voxels in a brain serves as the feature vector. Feature vectors from a set of subjects are then used to train a PCA-LDA (principal component analysis-linear discriminant analysis) based classifier. We hypothesized that ADHD related differences lie in some specific regions of brain and using features only from those regions are sufficient to discriminate ADHD and control subjects. We propose a method to create a brain mask which includes the useful regions only and demonstrate that using the feature from the masked regions improves classification accuracy on the test data set. We train our classifier with 776 subjects, and test on 171 subjects provided by the Neuro Bureau for the ADHD-200 challenge. We demonstrate the utility of graph-motif features, specifically the maps that represent the frequency of participation of voxels in network cycles of length 3. The best classification performance (69.59%) is achieved using 3-cycle map features with masking. Our proposed approach holds promise in being able to diagnose and understand the disorder.
Author Rao, A. Ravishankar
Dey, Soumyabrata
Shah, Mubarak
AuthorAffiliation 2 IBM T.J. Watson Research Center Yorktown Heights, NY, USA
1 Computer Vision Lab, Department of Electrical Engineering and Computer Science, University of Central Florida Orlando, FL, USA
AuthorAffiliation_xml – name: 1 Computer Vision Lab, Department of Electrical Engineering and Computer Science, University of Central Florida Orlando, FL, USA
– name: 2 IBM T.J. Watson Research Center Yorktown Heights, NY, USA
Author_xml – sequence: 1
  givenname: Soumyabrata
  surname: Dey
  fullname: Dey, Soumyabrata
– sequence: 2
  givenname: A. Ravishankar
  surname: Rao
  fullname: Rao, A. Ravishankar
– sequence: 3
  givenname: Mubarak
  surname: Shah
  fullname: Shah, Mubarak
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23162440$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1PAjEQxRuDUUDvnsze9AL2Y7e7vZgYwI-ExIuem7a0UF1abLsq_72LoFETTzPJ_N6bybwe6DjvNAAnCA4JqdiFcXEdhxgiPIQQlsUe6CJK8aBApOz86A9BL8YnCCmmBTsAh5ggivMcdsFk8r6qvU3WzbO00JkMwrqzmDmd3nx4zmIKjUpN0Jl1mZ1pl6xZb-Cr8e04i4180irFI7BvRB318a72weP15GF0O5je39yNrqYDRRhNAz0jVTWjrEBYSVmqHCNREc1kqYuCKY1VwYwk0jBjmFIyN5RCKAgWUlVKMdIHl1vfVSOXeqbac4Ko-SrYpQhr7oXlvyfOLvjcv3KSM1aWqDU43xkE_9LomPjSRqXrWjjtm8gRKitaIshwi57-3PW95Ot3LQC3gAo-xqDNN4Ig38TDP-Phm3j4ZzythP6RKJtEsn5zra3_F34ASGeYAQ
CitedBy_id crossref_primary_10_1016_j_nicl_2017_05_016
crossref_primary_10_1002_hbm_25013
crossref_primary_10_3389_fnins_2024_1394234
crossref_primary_10_1016_j_bspc_2020_102227
crossref_primary_10_1109_ACCESS_2020_2982401
crossref_primary_10_1001_jamanetworkopen_2023_1671
crossref_primary_10_1002_mp_15545
crossref_primary_10_1038_s41598_018_30308_w
crossref_primary_10_1016_j_bpsc_2016_03_004
crossref_primary_10_1016_j_neuroimage_2016_02_079
crossref_primary_10_1186_s12916_023_02941_4
crossref_primary_10_1007_s11042_023_17962_7
crossref_primary_10_1016_j_neuroimage_2013_04_083
crossref_primary_10_1177_1087054719837749
crossref_primary_10_1016_j_neuroimage_2016_06_034
crossref_primary_10_1016_j_bpsc_2018_06_003
crossref_primary_10_1038_s41398_023_02309_5
crossref_primary_10_3389_fphys_2020_583005
crossref_primary_10_1016_j_patcog_2016_09_024
crossref_primary_10_1038_s41398_023_02536_w
crossref_primary_10_3389_fncir_2014_00064
crossref_primary_10_1109_TMI_2022_3170701
crossref_primary_10_3389_fnins_2018_00525
crossref_primary_10_1007_s11682_015_9448_7
crossref_primary_10_1016_j_jad_2024_03_111
crossref_primary_10_1038_s41380_022_01706_4
crossref_primary_10_3389_fpsyt_2023_1026616
ContentType Journal Article
Copyright Copyright © 2012 Dey, Rao and Shah. 2012
Copyright_xml – notice: Copyright © 2012 Dey, Rao and Shah. 2012
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.3389/fnsys.2012.00075
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5137
ExternalDocumentID PMC3499771
23162440
10_3389_fnsys_2012_00075
Genre Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R21 CA129263
GroupedDBID ---
29H
2WC
53G
5GY
5VS
9T4
AAFWJ
AAYXX
ABIVO
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
C1A
CITATION
CS3
DIK
E3Z
EMOBN
F5P
GROUPED_DOAJ
GX1
HYE
IPNFZ
KQ8
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
RIG
RNS
RPM
TR2
NPM
7X8
5PM
ID FETCH-LOGICAL-c396t-ed388d69512cbb7c421a83e9b7e559ce2c59fb3bf9ff9ccb4f6600a32abc8cc93
IEDL.DBID M48
ISSN 1662-5137
IngestDate Thu Aug 21 13:42:57 EDT 2025
Fri Jul 11 09:26:43 EDT 2025
Mon Jul 21 06:05:36 EDT 2025
Tue Jul 01 04:03:40 EDT 2025
Thu Apr 24 23:02:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords attention deficit hyperactive disorder
functional magnetic resonance image
default mode network
linear discriminant analysis
principal component analysis
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-ed388d69512cbb7c421a83e9b7e559ce2c59fb3bf9ff9ccb4f6600a32abc8cc93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Jason Bohland, Boston University, USA; Joao Sato, Universidade Federal do ABC, Brazil
Edited by: Damien Fair, Oregon Health and Science University, USA
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnsys.2012.00075
PMID 23162440
PQID 1178671092
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3499771
proquest_miscellaneous_1178671092
pubmed_primary_23162440
crossref_primary_10_3389_fnsys_2012_00075
crossref_citationtrail_10_3389_fnsys_2012_00075
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-01-01
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in systems neuroscience
PublicationTitleAlternate Front Syst Neurosci
PublicationYear 2012
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References 12399590 - Science. 2002 Oct 25;298(5594):824-7
19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5
20621638 - Neuroimage. 2010 Oct 15;53(1):247-56
16919409 - Brain Dev. 2007 Mar;29(2):83-91
11722157 - Psychol Med. 2001 Nov;31(8):1425-35
16767087 - Nat Neurosci. 2006 Jul;9(7):971-8
18219617 - Hum Brain Mapp. 2009 Feb;30(2):625-37
19033453 - Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19235-40
21810475 - Neuroimage. 2012 Jan 2;59(1):431-8
10376114 - Biol Psychiatry. 1999 Jun 15;45(12):1542-52
17888409 - Biol Psychiatry. 2008 Feb 1;63(3):332-7
14643117 - Lancet. 2003 Nov 22;362(9397):1699-707
11209064 - Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676-82
22019881 - Neuroimage. 2012 Feb 1;59(3):2142-54
16510242 - Neurosci Lett. 2006 May 29;400(1-2):39-43
16818869 - Arch Gen Psychiatry. 2006 Jul;63(7):795-807
17047454 - Neuroreport. 2006 Nov 6;17(16):1687-90
8660127 - Arch Gen Psychiatry. 1996 Jul;53(7):607-16
10742158 - Nat Med. 2000 Apr;6(4):470-3
16876137 - Biol Psychiatry. 2006 Nov 15;60(10):1071-80
12742674 - Biol Psychiatry. 2003 May 15;53(10):871-8
18191584 - Neuroimage. 2008 Mar 1;40(1):110-20
16945915 - Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53
15070770 - Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4637-42
20184182 - Sci Am. 2010 Mar;302(3):44-9
21769991 - Hum Brain Mapp. 2012 Aug;33(8):1914-28
11771995 - Neuroimage. 2002 Jan;15(1):273-89
16791098 - Neuroreport. 2006 Jul 17;17(10):1033-6
References_xml – reference: 11771995 - Neuroimage. 2002 Jan;15(1):273-89
– reference: 19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5
– reference: 8660127 - Arch Gen Psychiatry. 1996 Jul;53(7):607-16
– reference: 18191584 - Neuroimage. 2008 Mar 1;40(1):110-20
– reference: 16791098 - Neuroreport. 2006 Jul 17;17(10):1033-6
– reference: 20621638 - Neuroimage. 2010 Oct 15;53(1):247-56
– reference: 10376114 - Biol Psychiatry. 1999 Jun 15;45(12):1542-52
– reference: 16945915 - Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53
– reference: 12399590 - Science. 2002 Oct 25;298(5594):824-7
– reference: 16919409 - Brain Dev. 2007 Mar;29(2):83-91
– reference: 18219617 - Hum Brain Mapp. 2009 Feb;30(2):625-37
– reference: 22019881 - Neuroimage. 2012 Feb 1;59(3):2142-54
– reference: 16876137 - Biol Psychiatry. 2006 Nov 15;60(10):1071-80
– reference: 21810475 - Neuroimage. 2012 Jan 2;59(1):431-8
– reference: 12742674 - Biol Psychiatry. 2003 May 15;53(10):871-8
– reference: 10742158 - Nat Med. 2000 Apr;6(4):470-3
– reference: 15070770 - Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4637-42
– reference: 14643117 - Lancet. 2003 Nov 22;362(9397):1699-707
– reference: 19033453 - Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19235-40
– reference: 17888409 - Biol Psychiatry. 2008 Feb 1;63(3):332-7
– reference: 11209064 - Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676-82
– reference: 11722157 - Psychol Med. 2001 Nov;31(8):1425-35
– reference: 16510242 - Neurosci Lett. 2006 May 29;400(1-2):39-43
– reference: 16818869 - Arch Gen Psychiatry. 2006 Jul;63(7):795-807
– reference: 21769991 - Hum Brain Mapp. 2012 Aug;33(8):1914-28
– reference: 17047454 - Neuroreport. 2006 Nov 6;17(16):1687-90
– reference: 20184182 - Sci Am. 2010 Mar;302(3):44-9
– reference: 16767087 - Nat Neurosci. 2006 Jul;9(7):971-8
SSID ssj0062659
Score 2.1246092
Snippet Attention Deficit Hyperactive Disorder (ADHD) is a common behavioral problem affecting children. In this work, we investigate the automatic classification of...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 75
SubjectTerms Neuroscience
Title Exploiting the brain's network structure in identifying ADHD subjects
URI https://www.ncbi.nlm.nih.gov/pubmed/23162440
https://www.proquest.com/docview/1178671092
https://pubmed.ncbi.nlm.nih.gov/PMC3499771
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDBa69LLL0K2PpVsLDRhW9OA2thzROgxF0MeCAd1pAXIzTFrCArTqwwmw_PtRcpouXVHs4ott2SAl8Psk8qMQn7MeGuIwkIADSjhe6wSLGhILoHJbQ12YUO98-UMPR_n3cX_8WB69MGDzLLUL_aRG91dHv-_mJ7zgvwbGyfH22PlmHpS306i9Cf1XYp3jEoRlepkvzxQYucfWaanWTL9SBe2h5bMjrAapf5Dn0wTKvyLSxYZ4s4CSctD6_q1Ys_6d2Bx4ptHXc_lFxuTOuGu-Kc5jrt0k5DhLhnwSQ2eIg0b6NgtctjKys3srJ15OYvFuLICSg7PhmWxmGLZrmi0xujj_eTpMFh0UElJGTxNbq6KoNaOojBCB8iytCmUNgmUmQTajvnGo0BnnDBHmTjMAqlRWIRVERm2Ljr_x9r2QeYpFT1VVjgQ5YYEaUiJnoWLKhuS64vjBZCUt5MVDl4urkmlGMHIZjVwGI5fRyF1xuHzjtpXWeOHZTw9eKHn-h0ONytubWRPEyoNEX89kXbHTemU5GmNXzfCl1xWw4q_lA0Fbe_WOn_yKGtuKmSBAuvsf3_0gXocfbfdlPooOO8zuMVKZ4n5k-Hz9Nk7342T8A8JB7C0
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploiting+the+brain%27s+network+structure+in+identifying+ADHD+subjects&rft.jtitle=Frontiers+in+systems+neuroscience&rft.au=Dey%2C+Soumyabrata&rft.au=Rao%2C+A+Ravishankar&rft.au=Shah%2C+Mubarak&rft.date=2012-01-01&rft.issn=1662-5137&rft.eissn=1662-5137&rft.volume=6&rft.spage=75&rft_id=info:doi/10.3389%2Ffnsys.2012.00075&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5137&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5137&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5137&client=summon